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Abstract 

Empirical Bayes methods have, in recent years, been shown to be 

powerfUl data-analytic tools. The empirical Bayes model is much richer 

than either the classical model or the ordinary Bayes model, and often 

provides superior estimates of parameters. An introduction to some 

empirical Bayes methods is given, and these methods are illustrated 

with two examples. 
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l. Introduction 

Empirical Bayes methods have been around for quite a long time. Their roots 

can be traced back to work by von Mises in the 1940's (see Maritz, 1970), but the 

first major work must be attributed to Robbins (1955), although his formulation 

is somewhat different from that used here. One might refer to Robbins' for.mu-

lation as "non-parametric empirical Bayes", while the formulation discussed here 

can be referred to as "parametric empirical Bayes". The major difference is that 

the parametric approach specifies a parametric familY of prior distributions, while 

the non-parametric approach leaves the prior completelY unspecified. We will deal 

here onlY with parametric empirical Bayes methods, and will refer to them simply 

as "empirical Bayes methods". 

Although the idea of a parametric empirical Bayes analysis is not new, the 

first major work in this area did not appear until the early 1970's, in a series 

of papers by Efron and Morris (1972, 1973, 1975), and one might rightfully say 

that they are the founders of modern empirical Bayes data analysis. Efron and 

Morris (1977) is an excellent, fairly non-technical account of the interrelation-

ship of.these methods and the "Stein-effect". 

Empirical Bayes methods have become increasingly popular, and have been 

applied to many types of problems. Some examples are fire alarm probabilities 

(Carter and Rolph; 1974), revenue sharing (Fay and Herriot, 1979), quality assur­

ance (Hoadley, 1981), and law school admissions (Rubin, 1981). More recentlY, 

Morris (1983), has formulated a theory of parametric empirical Bayes inference. 

The purpose here is to give a simple introduction to empirical Bayes methods, 

and illustrate them with two examples. 

2. Empirical Bayes Estimators for the Normal Case 

Suppose we observe p random variables, each from a normal population with 

different means but the same known variance, i.e., 

x.-n(e.,o-2) 
l l 

i = l, p • (2.1) 
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(Think o~ a balanced one-way analysis o~ variance, with the X. representing the 
J. 

cell means.) The cases of' unknown variance, or dif'f'erent sample sizes per cell 

can also be handled, but here we will stay with this simple case. 

The usual, or classical, estimator o~ e. is X., the observation (or cell 
1 J. 

mean). This estimator has many optimality properties (best linear unbiased, 

. maximum likelihood, minimax, etc.), but we can do better. 

For the moment, make the Bayesian assumption 

e. ,..., n(J-L, ~) 
1 

i = 1, ... , p • 

B The Bayes estimate ~or ei, 5 (Xi), is given by 

(2.2) 

(2.3) 

Note that 5B(X.) is a weighted average o~ 1-L, the prior estimate, and X., the 
1 1 

sample estimate. The weights used in the weighted average depend on the relative 

sizes o~ ~ (the prior variance) and a2 (the sample variance). As ~/r? gets 

smaller, more weight is put on 1-L· Thus, the relative accuracy of' the estimates 

X. and 1-L determines how much weight they receive in the weighted average. 
1 

5B(Xi) is the Bayes estimate because it is the mean of' the posterior distri­

bution, the distribution of' e. given X., denoted by TT (e .IX.). A standard calcu-
1 1 1 1 

lation shows that 

i = 1, ' p • (2.4) 

The empirical Bayesian agrees with the Bayes model, but re~es to specif'y 

values f'or 1-L and ~. Instead, he estimates these parameters f'rom the data. All 

the inf'ormation about 1-L and ~ is contained in the marginal distribution of X. 
1 

(unconditional on e.), and another standard calculation shows that this marginal 
1 

distribution, f(X.), is given by 
1 
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f(X.) ,_ n(J.L, a2 + ~) 
l. 

i = l, , p • (2. 5) 

Thus, unconditionally, we can regard the X.' s as coming from the same population. 
l. 

This assumption was already implicit in the Bayes model, since each e. had the 
l. 

same prior distribution. In many cases this assumption is also quite reasonable 

- think of a one-way analysis of variance where the treatments are defined by 

levels of a particular factor. It is reasonable to assume that there is some 

distant, underlying similarity in the responses. 

Using (2.5), we can construct estimates of the Bayes quantities in (2.3). 

In particular, we have 

E(X) = J.L, d (p- 3)~) - r? 
'~ex. -x)2 - a2 +~ ' 

l. 

(2.6) 

where the expectation is taken over the marginal distribution of the X.'s. From 
l. 

(2.6), we have unbiased estimators of the Bayes quantities in (2.3), and we can 

construct an empirical Bayes estimator of e. by replacing these quantities by 
l. 

their estimates. Thus, an empirical Bayes estimator of a., 8~(X), is given by 
l. l. 

8~(x) = ( (p- 3)a2)x + (1- (p- 3)a2)x .. 
l. ~ex. -x)2 ~ex. -x)2 l. 

l. l. 

(2.7) 

Note that 8~ uses information from all the X.'s when estimating each e .. 
l. l. l. 

This takes advantage of what has come to be known as the "Stein Effect" (see 

Stein (1981) or Berger (1982), for example). Simply put, the Stein Effect asserts 

that estimates can be improved by using information from all coordinates when 

estimating each coordinate. 

The empirical Bayes estimator 8~(X) is quite a good estimator of e.. We 
l. l. 

will see later how it performs on data, but it also has an extremely appealing 

theoretical property: on the average, it is always closer to e. than X.. We can 
l. l. 

measure the worth of an estimator 8. by considering E(e. - 8.)2 , the sum of the 
l. l. l. 
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squared differences between the estimator and the parameter. If p ~ 3, it is 

true that 

E ( ~ (e. - o~(X))2 ) < E( ~ e. - x. )2 ), for all e., 
.l J. J. .lJ. J. J. J.= J.= 

(2.8) 

where, here, the expectation is over the distribution of X. given e., 
J. J. 

X. - n(e., ~). In this sense, o~(X) is always closer to e. than X.. (For a J. J. J. J. J. 

rigorous proof of (2.8), see Efron and Morris, 1973.) 

The quantities in (2.8) are called the Mean Squared Error (MSE) of the re­

spective estimators, and are functions of a and a2 only through the quantity 

~ 9~/ ~. From Figure l, it is fairly obvious that the empirical Bayes estimator 
i=l J. 
has the most desirable MSE. 

Risk 

0 p 
Parameter = .E a~/ a2 

i=l J.: 

Figure 1: Mean squared error of the usual estimator, X, 

the Bayes estimator, oB, and the empirical Bayes estimator, 
oE. 
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3. Some Empirical Bayes Intuition 

There is a very nice intuitive justification of the empirical Bayes esti-

mator of (2.7) in the one-way analysis of variance. Suppose that there are five 

treatments. Let Xl' ···, x5 represent observed cell means, and al, ···, a5 repre­

sent true cell means. The ANOVA F-test tests the hypotheses 

(3.l) 

We can regard these hypotheses as two extremes: if H0 is true then we should 

estimate each a . with X = DC. /5 (since all the a . 's are equal), while if HA is 
~ ~ ~ 

true we should estimate each a. with X.. The empirical Bayes estimator, given in 
~ ~ 

(2.7), is a compromise between these two extremes, as seen in Figure 2. 

i Empirical Bayes 
Estimates 

t 

Figure 2: The empirical Bayes estimator in the one-way ANOVA. 
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Note how the empirical Bayes estimator af~ects the extreme means (x1 and x5) 

much more than it a~~ects the means that are close to X. In most cases this type 

o~ shrinkage will improve the estimate of e. : the extreme cell means are o~ten · 
~ 

overestimates or underestimates. One might say that the empirical Bayes estimator 

"anticipates regression to the mean". 

The amount o~ shrinkage in the empirical Bayes estimator is directly related 

to the F-statistic that tests the ANOVA null hypothesis. I~ there are p treat-

ments, the F-statistic is 

!:(X. - X)2 / (p -1) 
~ F = ---~----------------
~ , (3. 2) 

where '02 estimates a2. Since here we are dealing with known a2, the ANOVA nul.l 

hypothesis woul.d be tested by 

!: ex. -x")2 / (p - 1) 
T = ~ ,..... x2 

a2 p-1 , (3. 3) 

and large values of T would lead to rejection o~ H0 : all ei' s equaL Using (3. 3), 

the empirical Bayes estimator of (2.7) can be written 

E ( ) _ (P- 3) -L~ ( (l?..::.J) -l) 8 i Xi - p _ l T -x + 1 - p _ l T Xi • (3.4) 

As T gets large (and the data support HA)' 8~(X.) puts more weight on X. and less 
~ ~ ~ 

on X. Thus, 8E(X.) puts more weight on the estimate (X. or X) which seems most 
~ ~ 

reasonable based on the evidence ~om all the data. 

4. Examples o~ Empirical Bayes Estimates 

The ~oilowing two examples were chosen because, in both cases, the parameter 

values were available. Thus, it is possible to directly assess the per~ormance 

of the estimators. 
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Example 1: Estimating Batting Averages 

E~ron and Morris (1975) report the batting averages o~ 18 major league base-

ball players a~er their ~irst 45 at bats. The problem is to estimate their ~inal 

batting average. For simplicity, here we will only consider a subset o~ their 

data, consisting o~ seven players selected to be illustrative. (The highest, 

lowest, and ~ve others at random were chosen.) 

It is reasonable to assume that each time at bat is a binomial trial, with 

success probability equal to the player's true batting average. With 45 trials, 

the normal approximation seems reasonable. (Actually, the arcsin-square root 

trans~or.mation was per~ormed on the data, and the data were then recentered to 

resemble batting averages. The variance attached to each player's observed 

average is (.o659)2 .) 

Thus, we can model each observed batting average, X., by 
~ 

x. -n(e., c?) (4.1) 
~ ~ 

where e. = true batting average and a2 = (.o659)2 • We then use the Bayes prior, 
~ 

9. ~ n(~, a2), and construct the empirical Bayes estimator as indicated in 
~ . 

Section ·2. The data, calculations, and ~inal batting averages (true 9.) are given 
~ 

in Table 1. 

1 
2 
3 
4 
5 
6 
7 

MSE 

xi 
(Observed batting 

average) 

. 395 

. 355 
• 313 
.291 
.247 
.224 
.175 

1.084 

x = • 286 

Table 1: Baseball Data 

a. 
~ 

(Final batting 
average) 

-346 
-'279 
.'Z(6 
.266 
-271 
.266 
-318 

!:(X. - X)2 = • 035 
~ 

o~(X) = (.495)(.286) + .505X. = .142 + .505X .. 
~ 1 1 

8~(X) 
~ 

(Empirical Bayes 
estimate) 

.341 

.321 

.300 

.289 

.266 

.255 

.230 

. 355 

4a2 
---=-= = . 495 
!:(X. - X)2 

~ 
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The empirical Bayes estimators are closer to the e.'s than the classical esti­
l. 

mators, the X.' s. The improvement in mean squared error is quite remarkable, 
l. 

.355/1.084 = .327, meaning a 67% reduction in mean squared error. (Here we have 

scaled the .MSE, so, for example, l. 084 = !:(X. -e. )2 /7a2. Of course, this does 
1. 1. 

not affect the comparisons with the empirical Bayes estimator. ) 

The empirical Bayes estimator performed well because it "anticipated re-

gression toward the mean". The player who was batting .395 af'ter 45 at bats was 

doing unusually well ("playing above his head"), and it would be unreasonable to 

expect him to continue at such a pace. Notice also that both X. and 8~ failed 
l. l. 

miserably on player 7, who had- (for him) an unusually poor start. (An explanation 

for this failure may be the fact that player·7 was Thurmon Munso'n, and these data 

were taken in his rookie year. MUnson went on to become a consistently excellent 

ball player.) 

A graphical display, as in Figure 2, will serve to further support the claim 

that regression toward the mean is a very real effect. Examining Figure 3, and 
- E 

noting how close together the e.'s are (compared to the X.'s and even the 8. 's), 
1. 1. l. 

shows that the empirical Bayes estimates are vastly superior to the usual ones. 

Example 2: Assessing Consumer Intent 

This example was not only chosen because the parameters were available, but 

also to illustrate the empirical Bayes technique for distributions other than the 

normal distribution. The data is taken from Juster (1966), and has also been 

analyzed by Morrison (1979), using techniques outlined by Sutherland et al. (1975). 

In fact, Morrison uses some highly sophisticated empirical Bayes techniques, and 

obtains even better estimates than those presented here. 

The problem here is to estimate the probability that a consumer will purchase 

a given product, given his stated probability (intent) of such an event. Here we 
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EB 
Estimates 

Final 
Values 

Figure 3: Graphical Display of the Baseball Data. 

Observed 
Mean 

will concentrate only on a portion of Juster's data, where 447 randomly selected 

people were asked the question: 

Taking everything into account, what are the prospects 
that you or some member of your family will buy a car sometime 
during the next 12 months? 

Certain 

Almost Sure 

Very Probab.cy 

Very Slight Possibility 

No Chance 

(10 in 10) 

(9 in 10) 

(8 in 10) 

(1 in 10) 

(0 in 10) 
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The distribution of responses is given in Table 2. 

Table 2: Consumer Intent Data 

Intent 

0 .l .2 . 3 .4 . 5 .6 ·7 .8 -9 l 

#Responses 293 26 21 2l 10 9 12 13 ll 10 21 ... - , ... - , ... - , 
.19 .51 -79 

The data were grouped by Juster (as indicated in Table 2) in order to in-

crease the sample sizes. The weighted average of these groups is also given in 

Table 2. This grouping was also used by Morrison, and will be used here. Thus, 

we are dealing with five intent groups. 

Before proceeding to a formal model, it should be noticed that these data 

should almost certainly be shrunk toward their mean. It is quite unreasonable 

to assume that none of the 293 people in the zero intent group will buy a car; 

thus, 0 is certainly an underestimate of the intent. The same type of argument 

applies to group with intent = 1. 

s The model for these data, used by Morrison and others, is that Ii' the 

stated intent of person i, can be modeled as a binomial random variable with 

T n = 10 and p = Ii' the true intent. That is, 

~ ~ binomial(lO, I~) • (4. 2) 

T The justification for this model is that an individual with true intent I responds 

0 or l in an independent fashion to each point on the intent scale with proba­

bilities IT and l - IT, respectively. The stated intention is then the sum of 

these 0,1 responses. 

While this model may sound strange, it has been widely used, and justified, 

in both marketing and psychology literature (Morrison, 1979). From a practical 
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point of view, it also seems to work rather well. 

There is a minor problem with scaling, in that the stated intention is on a 

0 -l scale_, and the modeled intention is on a 0- lO scale. This can, of course, 

be handled rather easily, and here we will not go into such details. 

The empirical Bayes model also specifies that 

T I. ~ Beta(a, ~) _, 
1. 

(4. 3) 

i.e., the true intentions are drawn from a Beta distribution with parameters a 

and ~· 
T Note that the I.'s are specified to have a common distribution, which 
1. 

will_, to a certain extent, take into account the fact that the stated intentions 

are somewhat related. 

Under the model (4.2) and (4.3), the Bayes estimate of I~ is given by 
1. 

where, here and hereafter, I~ will be taken to be on the 0- l scale. The marginal 
1. 

distribution of I~ (unconditional on I~) is the negative hypergeometric distri-
1. 1. 

bution, sometimes called the Beta-Binomial. The exact form is not important here, 

because we will only use the facts that, unconditionally, 

E(I~) = a 
1. a+~ 

(4. 5) 
var(~) - l:..(_£__)(1 - _£__X a+~+ lo) 

1. - 10 a + ~ a + f3 a + ~ + l · 

(See Kendall and Stuart, Vol. l, 1977, for more information on the Beta-Binomial 

distribution. ) 

Using (4.5) and the method of moments, a and (3 can be estimated. From the 

------full data set in Table 2, we have IS= .172, Var(~) = .091. Equating these to 

the expressions in (4.5), we can solve for a and (3, and get a= .25, ~ = .43. 

These yield the empirical Bayes estimate 
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AT s 
I.= (.172)(.405) + (.595)!.' 

l. l. 
(4. 6) 

which can be seen, once again, to be a weighted average of the grand mean (.172) 

and the individual intention. 

The 447 people in the sample were contacted after the time period, and it 

was found out whether or not a car had been purchased. Thus, the parameter values 

are known. These values, together with the usual estimates (observed intent) and 

empirical Bayes estimates, are given in Table 3. 

Table 3: Consumer Intent Estimates and Parameters 

Intent Group Empirical Bayes Estimate . 

MSE • 729 • 055 

(MSE scaled by 02 = • 091) 

As expected, the empirical Bayes estimates are far superior to the observed 

intent, yielding a 93% improvement in mean squared error. Notice how the parameter 

values are much closer together than the observed intent~ the phenomenon antici-

pated by the empirical Bayes estimates. In fact, the regression toward the mean 

was even more pronounced than predicted by the empirical Bayes estimates. 

Table 3 shows that the empirical Bayes estimates perform remarkably well 

but, seen in another light, their performance is quite startling. From (4.4) and 

(4.6) it can be seen that we are using estimates of I~ which are linear functions 
l. 

s of I.. Since we now have the parameter values, we can see what the best linear 
l. 

predictor is (in practice, this can never be done). A linear regression of the 

s true intent on the stated intent yields the line .10 + .47I. as the best possible 
l. 
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linear predictor. Compare this to the empirical Bayes line • C!"( + • 595X, and it 

can be seen that the empirical Bayes line is incredibly close to the best possible 

(but always unattainable) line. Imagine doing a regression o~ y on x without any 

y values! Figure 4 illust~ates this graphically . 

. 8 

.6 

.4 

.2 

0 .2 .4 .6 .8 

Figure 4: Comparison o~ the Empirical Bayes Line with 

the Best Possible Line. 

l 

Finally, the empirical Bayes method can tell us something about the prior 

distribution~ and such i~ormation can be use~ul, particularly i~ ~uture studies 

are to be done. Recall that our estimates of a and ~' the prior parameters, were 

.25 and .43, respectively. Figure 5 is a graph o~ the Beta distribution with 

these parameter values. As one can see, the greatest concentration o~ mass is 
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.4 • 08 .ll . 09 .09 .o6 .16 

.1 .2 .3 .4 .5 .6 -7 .8 -9 1 

Figure 5: The Beta density function, a = • 25, t3 = .43. 

near the ends of the intervals, with the distribution being fairly flat in the 

middle. Since the Beta distribution can have virtually any shape (U-shape, bell-

shape, symmetric or asymmetric), it is interesting that the empirical prior is an 

asymmetric U-shaped distribution. Since the empirical Bayes estimator produced 

such good estimates, it is reasonable to infer that this U-shaped prior is a 

reasonable approximation to the true pr~or distribution. Thus, one would expect 

a population's true intents to be clustered near 0 or 1, with a small portion 

(approximately 30%) uniformly distributed between .2 and .8. 
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