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Leverage and Regression Through the Origin 
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The problem of deciding whether an intercept or no-intercept model 

is more appropriate for a given set of data is a problem with no 

simple solution. Often, the underlying physical situation will 

suggest an appropri~te model; however, there still may be interest 

in assessing which model best fits the data or is the better pre-

dieter. In this article a different interpretation of regression 

through the origin is derived, that of a full fit to the original 

data set augmented by one further point. Examination of the lever-

age and influence of the augmented data point can provide help in 

comparing the models. 
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1. INTRODUCTION 

In simple linear regression, unless there is information to the contrary, 

the equation y=a+(3x+€ is often fitted to the data. However, there are many 

situations where it is reasonable to constrain the line to pass through the 

origin. Such a constraint will usually arise from the physical characteris-

tics of the variables measured, and in these situations the no-intercept 

model y = s0x + 5 may be more appropriate. 
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If the primary concern of the experimenter is to fit the data as well as 

possible, or to obtain a good prediction equation, he may be faced with the 

task of choosing between the no-intercept and intercept model. Of course, it 

may be the case that a more complicated model than either of the two consid­

ered here is appropriate, but here we will only be concerned with straight 

line relationships. 

Hahn (1977) discusses various difficulties encountered when fitting 

models with no intercept, and notes that many of the usual statistics (such 

as R2 and the model F) are not comparable between the intercept and no­

intercept models. One of his suggestions is to base comparisons on residual 

standard deviations, which are comparable. Marquardt and Snee (1974) are 

primarily concerned with mixture models. They show that even though mixture 

models can be written in a form without an intercept, conventional "no­

intercept" statistics are inappropriate, and can lead to erroneous conclu­

sions. More recently, Gordon (1981) argues that the way R2 is usually 

calculated for the no-intercept model is misleading, leading to an over­

estimation of the adequacy of the fit. This is because the total sum of 

squares for the no-intercept model is not corrected for the mean and, since 

it is always greater than the corrected sum of squares, the no-intercept R2 

is usually higher than the R2 for the intercept model. Gordon suggests using 

the corrected sum of squares when calculating R2 for the no-intercept model, 

in order to provide a better basis for comparing the models. Thus, the prob­

lem of evaluating the no-intercept versus intercept model is not an elementary 

one, and some thought must be given to develop an appropriate basis of 

comparison. 

In this paper a new way of interpreting regression through the oriein is 

introduced; one in terms of leverage points. (For a good introduction to the 
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concept of leverage in regression see Hoaglin and Welsch (1978).) This new 

interpretation can be of use in understanding the difference between the full 

fit and the fit forced through the origin, and may :possibly be employed as 

either a diagnostic tool or a teaching aid. It is shown that regression 

through the origin is equivalent to fitting the full model to a new data set. 

This new data set is composed of the original observations :plus one addi tionaJ. 

:point that is derived from the original observations. Evaluation of the 

leverage :possessed by this new :point is equivalent to evaluating whether a:= 0 

in the full model. However, the leverage approach seems slightly more flexible, 

and :provides a graphical aid which might facilitate the task of deciding be-

tween the models. 

2. LEVERAGE POINTS AND REGRESSION THROUGH THE ORIGIN 

2.1 Augmenting the Data Set 

, (x ,y ) be n data :points observed according to n n 

y1• = a: + fjx. + E • 
J. J. ' (2.1) 

where the experimental errors, Ei' are independently normally distributed 

with mean 0 and variance o2 • The least squares estimates for a: and f3 are 

A 

f3 = 

n 
L: (x. -x)(y. -y) 

i=l J. J. 

n 
L: (x.-x)2 

i=l J. 

n n 

A - A_ 

a: = Y- f3x 
' (2.2) 

where x = (1/n) L: x., y = (1/n) L: y. 
i=l J. i=l J. 

If the regression is forced through 

the origin, then it is assumed that the data are observed according to 

and the least squares estimate of 130 in this model is 
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If the original data set is augmented with a new observaticn (x y ) 
n+l' n+l 

(2.3) 

( •- *-) * I < )i = n x,n y , where n = n [ n +1 -1], then fitting the full model to the 

augmented data set is equivalent to forcing the original regression through 

the origin. This follows from the easily verified identities 

n+l n 

I (xi- xn+l)(yk- Yn+l) = I xiyi 
i=l i=l 

where 

n+l 

L: <xi - xn+l)2 = 
i=l 

n 

\ Y!f, L 1 
i=l 

n+l 

xn+l = [1/(n + 1)] I xi' 
i=l 

' 

n+l n 

L (yi- Yn+l)2 = 
i:::::l 

2,yf 
i=l 

n+l 

Yn+l = [1/(n + 1)] L yi 
i=l 

(2.4) 

' 

*- *-) The position of the point (n x,n y, relative to the other points, determines 

whether the new point has high or low leverage. The leverage of the new point 

can be used to decide if the regression through the origin is more appropriate 

than the model which includes an intercept term. 

?.~> Ascessing the Leverage of a Data Point 

The leverage, hi.' of a data pointy. is the amount of influence that 
J J 

A 

data point has on each fitted value yi • 

A 

A predicted value, say yi' can be written as 

n 

;i = I hijyj 
j=l 

(2.5) 
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where 

1 (x. -x)(x.-i) 
= -+ l. J 

n n (2.6) 
z <~-x)2 

k=l 

The h. . show how each observation y. affects the predicted value y. • More 
l.J . . J l. 

A 

importantly, however, h .. shows how y. affects y., and is quite useful in the 
l.l. l. l. 

detection of influential points. The relative size of h .. can give us infor­
l.l. 

mution an the potential influence y1 has an the fit. 

For purposes of comparison, it is fortunate that the values h .. have a 
l.J. 

built-in scale. The matrix H =[h .. ] is a projection matrix, and from the 
l.J 

propr!rtier: of projection matrices it can be verified that 0 s; h .. s; 1 and 
l.l. n 

r. h .. = p, where p is the number of coefficients to be estimated. Thus, on 
i=l l.l. . 

the average, h .. should be approximately equal to p/n • Hoaglin and Welsch 
l.l. 

suggest, as a rough guideline, paying attention to any data point having 

h .. > 2p/n • 
l.l. 

The hij values depend only on the experimental design (the x' s), and not 

on the results of the ex:Perimerit (the y's), hence a data point with high lever-

age may not necessarily have an_ adverse effect on the fit. One measure of 

the effect of data point i ~ the fit is the Studentized residual, r~ . This 

is the standardized residual·co;rresponding to yi when (xi'yi) has been omitted 

from the fit. Using the subscript "(i)" to denote that data point i has not 

been used in an estimate, we have 

A A 

* Yi -(a(1)+13c1)~) 

ri = [~(a, 1) +~( 1) ~) ji (2.7) 

VA(A A ) A A 

ar a, 1 > +13c 1 > ~ is the estimated variance of ~ 1 > + 13c 1 > ~ , and a little alge-

bra will show 
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, (2.8) 

A 

where df1 > is the residual mean square from the "not-i" fit. A large value of 

r~ suggests that data point i has a large impact an the fit. Since r~ follows 
1 1 

a t distribution with n - p - 1 degrees of freedom, the significance of any 

particular r~ can be assessed. 
1 

2.3 The Leverage of the Augmented Point 

We are concerned here with the influence of the (n + 1) st data point 

Using (2.6), (2.7), and (2.8) it is straightforward to calculate 

A 

* a h = ...!.. 1 + _n_x-_ 
n+l n+ n i 2.:"'....2] and r n+l =--------..- , 

~r: 
i=l 1 cr[l + 

~ (x. -x)2 
. 1 1 1= 

where a and ~ are, respectively, the estimated intercept and residual mean 

square from the full fit on the original n data points. As can be seen, r* 1 n+ 

is exactly the t statistic that tests H0 :a = 0 • *- *-) Thus, the impact of (n x,n y 

on the fit concerns only the intercept. A large value of r* 1 indicates that n+ 

the two regressions {with and without (n*i,n*y)) will have very different 

coefficients, and a decision must be made whether or not to include (n*x,n*y) 

in the fit. This interpretation seems more flexible than the classical one 

of accepting the full fit if r:+l is large. 

There is still another interpretation of r* 1 which can be useful in n+ 

evaluating the no-intercept models. As noted before, Hahn (1977) recommends 

comparing the intercept versus no-intercept models on the basis of their 

residual errors. Some algebra will verify that 
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~ 
= (n -1) ; - (n- 2) ' 

(2.10) 

where cr~ and ~ denote, respectively, the residual mean squares from the regres­

~ian through the origin and the full regression. The statistic (r:~1 )2 measures 

exactly what i~ recommended by Hahn, the relationship between residual vari­

ances. Notice, also, that this interpretation of r:+l is consistent with that 

( ) ( * , ... of' ?.9 ; small values of rn+l "-, which support H0 : a= 0, also aupport 

H0 : a6~cr2 • Moreover, it is straightforward to check that (r:+1 ) 2 is equal 

to the C statistic (Mallows, 1973) for assessing the adequacy of the no-intercept 
p . 

model as a subset of the intercept model. 

These results can be generalized to include the case where the regression 

line is forced through some arbitrary point (x0,y0) . If we define new vari­

ables x.' and y! by x! = x. - x0 and y.' = y. - y0, then forcing the original data 
l. l. l. l. l. l. 

through (x0,y0) is equivalent to forcing the adjusted data through (0,0) • 

There is also a straightforward generalization to multiple linear regression; 

the original data is augmented with the point (n*i:,n*y), where i: is a vector 

containing the means of the indepe:qdent variables. The full fit to the aug-

mented data set is still equivalent to fitting the no-intercept model to the 

original data. 

The impact of the augmented data point on the fit becomes clearer 

when hn+l is also examined. It is, perhaps, more instructive to write hn+l 

in the equivalent form 

n 

h n+l 
1 i.2 

= -[1 +n( )Q n+l ..., -·-. 
o~+X"- -

X 

, (?.11) 

where a2 = (1/n) ): (x. - x)2 • Thm;, the impact of the flU{?'Jlented duta point 
X i.::l l. 

increaGes with (x/cr )2 , and we can expect the greatest discrepancy between 
X 
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the full fit and the fit through the origin when x is large compared to a • 
X 

In such cases, the augmented data set will seem to be composed of two distinct 

( *- *-) clusters; one composed of the original data and one composed of n x,n y • 

This information can be of same help in cases where the primary concern is 

finclin~ the best linear prediction equation. Since the augmented point will 

be at some distance from the original data, a plot of the augmented data set 

will give a more "global" view. If straight line extrapolation is realistic, 

assessing whether the augmented point could, in fact, be a physically valid 

data point would help in deciding if it is reasonable to force the regression 

through the origin. Indeed, it may be possible to take an observation near 

the augmented x value, which may help to confirm linearity and extend the 

range of applicability of the fitted equation. 

The distance between the augmented data point and the original data is 
l. 

proportional to n2 • Thus, as n increases, we expect the augmented point to 

move further away from the original data. An explanation of this fact is 

provided by examining the leverage of the augmented point relative to the 

original data set. When the full fit is performed on the augmented data set, 
n+l 

two coefficients are estimated, so ~ h .. = 2 • Thus, 2 - h 1 provides a 
. i=l ~~ n+ 

measure of the leverage of the original n data points, and a little algebra 

shows that the leverage of the augmented point relative to the original data 

is 

h n+l 
2-h n+l 

= 
Ml+ [(n*-1)2?/cr~J} 

2 + M 1 + [ (n* -1)2 ? /cr~]} 
(2.12) 

If n is allowed to increase while (x/crx)2 is held fixed, hn+l/(2- hn+l) will 

remain relatively constant if n* is proportional to nf . Thus, in order to 

maintain a constant relative levera~e, the augmented point must maintain a 

distance of approximately nf from the original data. 
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2.4 Calculational Considerations 

By augmenting the data set with the point (n*x,n*y), a computer program 

which does not have the option to fit the no-intercept model can be used to 

f'it such a model. Hawkins (l98o), and Criner and McElroy (1976), independently 

noted that if' the original data is aueJnented with n new data pointn conniding 

of the reflections in the origin of' the original data, then the full fit on 

this new data set is equivalent to f'orcing the regression through the origin. 

The ar.sociated ntatistics are correct except f'or some minor modif'icationu, 

which are explained in both papers. 

If the point (n*x,n*y) is added to the original data and the f'ull fit is 

performed using a statistical computer package, the associated statistics (and 

degrees of f'reedom) are correct f'or the no-intercept model. In particular, 

the outputted ~' F, and the residual mean square are the correct quantities 

f'or the no-intercept model (although, as noted bef'ore1 care must be taken when 

using same of these statistics). This method of adapting a program to perf'orm 

the f'it through the origin will, in some cases, be easier to implement than 

the others, especially if the calculations are being done with a hand-held 

calculator. Many calculators today have built-in linear regression, but 

usually without the no-intercept option. It is relatively easy, however, to 

calculate the augmented point (since Ex and Ey will be in storage) and add it 

to the original data set. 

3. NUMERICAL EXAMPLE 

To illustrate the leverage point interpretation of regression through the 

origin, consider the gas mileage data of' Hocking (1976), which is reported in 

f'ull in Henderson and Velleman (1981). Only two variables will be considered 

here: gallons per mile (GPM), which is the inverse of' miles per gallon, is 
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the dependent variable, and total weight of the vehicle (WT) is the indepen­

dent variable. 

Henderson and Velleman suggest that WT is the best single predictor of 

GEM, and that the relationship is very close to linear. (A plot of miles 

per gallon vs. WT shows a distinct nonlinear relationship.) Furthermore, 

they provide an informal theoretical argument which shows that there are 

physical grounds for fitting a line through the origin. Briefly, if gasoline 

consumed is proportional to the work expended in moving the vehicle, this 

work is also proportional to the weight of the vehicle, hence GEM a WT. 

(Theoretically, a vehicle with zero weight will coosume zero fuel.) Thus, 

considering the physical constraints imposed by the relationship between GEM 

and WT, it seems most appropriate to fit a line through the origin. However, 

for purposes of prediction, it may be desirable to assess the adequacy of both 

the intercept and no-intercept model. 

The data set, taken from 1974 Motor Trend magazine, contains measurement 

on 32 different automobiles. The variable GIM is rescaled to gallons per 100 

miles, a more convenient set of units, and WT measures weight in 1,000 lbs. 

The full fit to these data yields the least square equation GEM= .617 + L494WT, 

with R2 = • 792 • The fit through the origin gives GEM= 1. 67WT, with R2 = • 982 • 

At first glance, the higher R2 of the regression through the origin suggests 

that this is the better fit. However, it may be the case that this value is 

artificially inflated, since it is based on the uncorrected total sum of squares. 

The alter.nate method for calculating R2 for the regression through the 

origin, suggested by Gordon (1981), is 

~ = 1- (Residual SS/Corrected Total SS) 
' (3.1) 

where Residual SS is the residual sum of squares based on the model being 
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fitted (in this case ResiduaJ. SS = r.~ - [ (r.xiy. )2 /r.~]), and the Corrected 
J. J. J. 

Total SS = r.(yi - y) 2 • For the no-intercept model, ~ =. 780, showing that the 

intercept and no-intercept models fit the data equally as well. Indeed, 

Figure 1, a scatterplot of the data together with the two least squares lines, 

shows the models to be virtually indistinguishable. 

The hypothesis H0 : a=O in the full model hast= .698(p> .4), and hence 

supports the conclusion that the no-intercept model is appropriate. Thus, 

taking into account that the physical constraints support the no-intercept 

model, and that the statistical evidence shows this model to be adequate, the 

regression through the origin seems to be the better choice. 

When the originaJ. data are plotted together with the augmented point, as 

in Figure 2, a slightly different picture is seen. The augmented data point 

(n*:X,n*y) = (21.697,36.576) is a point of high leverage (h 1 = .920), but does n+ 

not affect the fit in an adverse way (r* 1 = .698) 
n+ 

The regression through 

the origin, acting as if a full fit is being done to the augmented data set, 

"sees" two distinct clusters; the originaJ. data and (n*x,n*y) • The least 

squares line from the no-intercept model virtuaJ.ly goes through the augmented 

point. 

The vertical distance between the augmented point and a+ s(n*x), the 

predicted value at n*x from the full fit on the original data, is 

(3.2) 

showing that the discrepancy between the two models, at the augmented point, 

is proportionaJ. to jal (which measures the discrepancy at the origin). This 

magnification of the discrepancy between the two models can be a useful visual 

aid, and can help to choose the more appropriate model. 

If prediction is a major concern, Figure 2 also provides guidance in 



-12-

deciding between models. It is sometimes possible to assess if the augmented 

data point could, in fact, be a valid data point. That is, using his expertise 

and knowledge of the physical situation, an experimenter might be able to 

*-decide if it is reasonable for an observation taken at n x to yield a response 

close to n•y • Indeed, in same cases, it may be possible to take such data 

experimentally. In either case, assessing whether (n*i,n*y) might be a valid 

data point can help in deciding which model is the better predictor. 

For the gas mileage data, the augmented point corresponds to a vehicle 

weight of 21,697 lbs. and 2. 73 miles per gallon. This value of weight is 

beyond those of automobiles, but is close to values for large trucks. If there 

is interest in extending the predictions to vehicles of such weights, we should 

try to decide if 2.73 miles per gallon is a reasonable value. (There is, of 

course, a problem in that most trucks use diesel fuel, while all but one of 

the automobiles in the original data were gasoline powered. However, we might 

just as well ignore this, since the major question is which of these simple 

models perform better realistically.) The value of 2.73 miles per gallon is 

less than is to be expected from a truck of approximately 21,000 lbs., and 

hence a value lower than 36. 576 GIM is more reasonable. Thus, for predictions 

at these higher weights, the intercept model should provide more reasonable . 

results than the no-intercept model. 
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