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1. INTRODUCTION

Covariance structural analysis is a generic term used when a
population dispersion (variance-covariasnce) metrix, V, is assumed
to have an a priori pattern (in addition to symmetry) and structure.
One particular, but nevertheless quite general, structure occurring
in such diverse situations as variance component estimation, experi-
mental design and psychametrics, is considered, for example, by
Anderson [1969, 1970] and Mukherjee [1976]. It is where V is taken
as a linear combination of a set, {gi}, of linearly independent
matrices which are not functions of the parameters {o,}:

(1)

K.
j=1 1

c
(By linearly independent we mean that = eiKi =0 implies that 6, =0
i=]
for all i=1, ..., ¢ .) For general V of order n X n there are at

most n® such Ki's, so that c < n®, and for V being a dispersion

matrix and hence symmetric, ¢ <Zn(n+1) .

C -
Of special interest is the case when V = £ 9.K. and V 1 =

~ i=1 1~ i=1
have the same structure, i.e., are linear combinations (possibly with

™Mo

T.K.
i i

same zero weights) of the same set of Ki's . This is discussed by
Searle and Henderson [1979] for variance camponent models, as is

-

now indicated.

l.1. Variance camponent models

Dispersion matrices for variance component models are special



cases of (1). When data from such models have equal mummbers of
observations in the subclasses (i.e., balanced-data), each 51 of
(1) can be expressed as a Kronecker product of ':E- and g-matfices
where in general Ea is an identity matrix of order a, and gn is &
square matrix of order n with every element unity. For example,
consider the model for the two-way crossed classification with
interaction:

yijk = p+C¥i+Bj +(oc{3)ij+eijk (2)

with i=1, ..., a, j=1, ««-, b and k=1, +--, n . When all terms,
except y, are random, with zero means, &ll covariances zero, and
with variances denoted by o° with subscript corresponding to the
term concerned, the dispersion matrix of y is
_ A2 2 2
v= Ue(za®.1.b®zn) M Ua(za®gb®gn) * JB(ga®Eb®gn)
(3)

2 .
* Goza(zaqu ®gn) ’

where & denotes the operation of Kronecker product. Although

"_E ®En = Ean and ga®£n = gan’ it is more convenient to work with
(3) as shown. In addition to having the terms in V of (3) with
different weights, v has & term involving (Ja®J.b®Jn) .

~

Searle and Henderson [1979] develop a simple methodology for

deriving the eigenvalues, determinant and inverse of (3) and its
generalizations to balanced p-way crossed and/or nested classifica-
tions. Similar ideas have also been discussed independently

by Nelder [1965a,b] and Smith and Hocking [1978]. In the

p-way case, with J° =I, each Ki of (1) is a Kronecker

~



product of powers (O and 1) of p g-matrices, not necessarily of

the same order. Then (1) is
1 i i
-5 Pgs Plg... 1)
AN CA ANl *)

where some of the §'s are o°'s and the others are zero, e.g., in
(3) four g's are ¢°'s and the other four are zero. The exponents
in (4), ip, ceey il, are also used as subscripts to 6 where, for
notational convenience and readsbility only, they are represented as
a vector .:5 . These subscripts are in reverse natural order to facil-
itate using the complete subscript to each 6 as a binary mmber
(since every index ir for f:p, p-1, ..., 1 takes only the values O
or 1), and the summation .E represents the multiple summatien

; cee % and so notati%:'glly is summation over the first 2P nonnega-

i,=0 1, =0
tive binary mumbers fram 00...0 to 11...1 .

l1.2. An extension

Seely [1971] considers (1) and the special case when V is a
weighted sum of powers of a symmetric matrix A which is indepen-

dent of {ei} :
da

Y = -Zoeiél . (5)
1=

-

Gilbert [1962] expresses a circulant matrix in this form, where A
is a "one-element type" (nonsymmetric) circulant. A generalization

of this, and of (4), is when each J.in (4) is replaced by A of



order n_ X n, which is independent of {Bi}, and the summetion and

= oo 1.
powers &re to d = (dp dl) ; namely

i
8 =APg...
;K;  where K, ép - @A, (6)

~ ~ ~

I gaeR{="

v
~D i

~

and with Yp and,gz having order NP = rilnr . When the dr are all
equal to 4, say, the subscript of E will range through the first
(d+1)F mumbers of base b=d+1 .

That YP be a dispersion matrix, with consequent symmetry and
positive definiteness, is not necessary in the subsequent develop-
ment. Note that under symmetry and when p=1, (6) reduces to (5),
the case discussed by Seely [1971] in terms of a quadratic sub-
space of the vector space of real symmetric matrices.

In the sequel, procedures developed for deriving eigenvalues
and the inverse of (4) are extended to V= ; 6K, in (1) when the

i=1
K. 's commte in pairs, and then to the special case (6) and exam-

~

ples thereof, with applications for symmetric V in covariance

structural analysis and for nonsymmetric V in other situations.

This paper is based on chapter 6 of the thesis by Henderson [1979].

2. EIGENVALUES AND THE INVERSE OF V

Eigenvalues have many uses in multivariate statistics; for
example, they provide invariant tests of the general linear hypothe-
sis and are expected mean squares in varignce component models.

An important occurrence of the inverse of v is as the matrix

of the quadratic form in the normal probability density function.



It therefore arises in maximum likelihood estimstion under normal-
ity and hence in any subsequent hypothesis testing.

The set of all eigenvalues of a square matrix is known as its
spectrum. A relationship between v, X-l and its spectrum is exhib-

ited in the spectral decomposition theorem.

Spectral decomposition theorem (ILancaster [1969, p. 63]):

Let V be a simple matrix of order n with s distinct nonzero

real or complex eigenvalues, Ki for i =1,'*+,s . Then

s - s _
VY= zAM ed¥yls= zAlM (7)
i=1 1~1 i=1 i ~1
for
s -
izlyi =1, yi~j =0 fori £ 3 and yi =M . (8)

A special case of this theorem is usually given (e.g., Mukher-
jee [1976, p. 135] and Searle and Henderson [1979]) for dispersion
matrices with V, and hence the 'l:i 's, being real and symmetric. But
the theorem holds for Y being simple (diagonable or diagonalizable,
i.e., similar to & diagonal matrix, e.g., real symmetric, hermitian,
normal and idempotent matrices are simple).  When Y is not simple
we say X is defective or not diagonable. In this case g-l does not

exist in VU = UD, where D is the diagonal matrix of eigenvalues of

~
.

v .

- c

We now exploit the special structure’ of V = I 9151 and its
~ i=1

relationship to the spectral decamposition.



2.1. The main result

c

The eigenvalues and the inverse of V = £ 8.K. in (1), when
~oi=1 T

certain conditions epply to the Ki's, are given by the following

two-part algorithm, which is derived in succeeding paragraphs.

Algorithm:
c
et V= % 6.K., of order n X n, where K. has m, distinct
~ 4oy 1 ~i i
eigenvalues with.nx:nmx(ml,--., mc) .

Eigenvalues of V: Suppose the K{s are simultaneocusly Jordansble

(commute in pairs). Then the vector of m (possibly) distinct
eigenvalues of y is

3\:3?‘ ) . (9)

where the rows of T are the m distinct rows of L = {zij} with

~

4ij being the ith eigenvalue of Kj, and.g' = [el ...ec] .

Inverse of V: When

(1) Y has no zero eigenvalues and so is nonsingular,

(ii) the gi's are simultaneously diagonable (commite in pairs
and are simple),

(iii) V is in the quadratic subspace éf simple matrices gen-

erated by the linearly independent gi's,

(iv) m=c, ensuring that T is square and nonsingular and

(v) p is defined as the vector of reciprocals of A= in
(9),

then the inverse of V is:



vi-
~ i

ntMo

lTiEi where T =T " . (10)

2.2. Eigenvaelues of V for simultaneously Jordansble Ki's

We are interested in situations where the eigenvalues of

c
V= X 6.K. are linear combinations of those of the Ki's . Such

i=1
is the case when the Ki's are simultaneously Jordanable, That is,

for j=1, «.., c,

Kj = PJjQ' wvhere Q'P =1 (11)

and Jj is a Jordan normal form of Kj-an "glmost diagonal" matrix

~

with the eigenvalues {tij} of Kj on the diagonal, ones or zeros
on the superdiagonal and zeros elsewhere. - (When Kj is also
simple Jj is diagonal). Then V is also Jordanized by the same

matrices P and Q:

~

[¢]

V=P(Z‘.6.J.> Q' . (12)

The ith eigenvalue of V, from (12), is the linear combination

61
C
= = coe ° 1= ! I3
[

hence the vector of the n eigenvalues, to be denoted by W, is

Ll' -
w = E 6=18 . (1)

Reductions in the order of w and L may be accamplished by



considering only distinct eigenvalues as presented in (9), the
statement of the algorithm, which follows immediately from (14).
The relationship between the number of distinct eigenvalues

of

HE

and nonzero parameters, ei (zero B's and corresponding columns
of T can be deleted), has important statistical consequences. When
they are equal T is square and nonsingular and by the criteria of
Anderson [1969] and Miller [1973], explicit maximum likelihood
solutions for the parameters exist. This work is further extended
and applied by Miller [1977], Szatrowski [1978, 1980}, Szatrowski

and Miller [1980] and Rubin and Sgzatrowski [1982].

2.3. Inverse of V for simulteneously diagonable Ki's

c

The inverse of V= £ 8

.K. is, of course, still available from
~oi=1 :

its spectral decamposition (7). But it is.often instructive, see,
-1 ..
for example, Anderson [1969, 1970], to express v directly as &

weighted sum of the Ki's:

C
V= 5 TK, . (15)

-1 ¢ ¢
vV K )z T.K.>
(12161~1 (i=l At

-
]
?
H
"

(16)

C c C
T 0.1.K2 + :zL: ?9-’~§i§j

501 144 i'J

One way of ensuring this is for V to be in a system that is closed
under powers and products of Ki‘s or V's of the same form (viewing
v in (15) as another V) . This is formalized in the following

notion of a quadratic subspace.
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Quadratic subspaces

A quadratic subspace of the vector space of real symmetric
matrices was introduced by Seely [1971, p. 711], and subsequently
called a Jordan algebra by Seely [1977]. We extend this to a
vector space of structured or patterned matrices denoted by Q,

e.g., symmetric or circulant matrices.

Definition A subspace 2 of @ with the property that Vel
~ (17)

implies V2 ep is said to be a quadratic subspace of

The properties developed by Seely [1971] carry over to this
more general situation (deleting references to symmetry). For exam-
ple, if VefB, then (a) Vkeé’ for each positive integer k, (b) so
is its Moore-Penrose inverse V+ and hence when V is nonsingular so

~

is V1 and (c) there exists a basis for [ (which generates B) con-
sisting of idempotent matrices.
Further, when the elements of 8 commute, the subspace £ is

called a commutative quadratic subspace and then by lemma 6 of

Seely [1971] the idempotent M 's of (7) and (8) constitute the
unique idempotent basis, apart from indexing.

It is sufficient that V be in the quadratic subspace gener-

c

ated by the idempotent M.'s or all the X.'s for V= I g.K. to

imply that vl - £ 1K, for same values of T, . The spectral
~ j=1 1 i

decomposition of V in (7) and (8) is a special case of this. 1In
general, this requirement simply ensures that we have all the §i's,

even those with zero coefficients in V . In contrast to Anderson

~
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[1969] we describe Y and Y-l as having the same structure even when
some of the coefficients in either (or both) of V and V_l are
zero. By allowing this generalization we introduce the subtlety
that when Si is zero, Ti need not be zero, so that elthough Y and
and V-1 are both linear combinations of all the Ki's, the particu-
lar subsets with nonzero weights need not be the same. This is so
with (3), as detailed by Searle and Henderson [1979]. Even though
the gi's with nonzero ei's in Y may not be all the same as those
with nonzero 7. 's in Y_l we still describe X and Y'l as having the
same structure.

When V and Y-l have the same form as just defined the algor-
ithm for V_l given in (10) is established iy exploiting the relation
between the spectral decampositions of V and V_l; hence the require-

ment that the Ki's also be simple. Specifically, define p as the

vector of reciprocal elements of A = T9, i.e. Hy = A.~ . Then be-

i
c - c
cause V= T g.K. and V 1 = X T.K. have the same structure p = Tt.
~  i=1 *~ ~ i=1 =7 ~ o~
The Ki's and hence the columns of T are linearly independent and

SO T = T_lp .

c

Having established a general algoritﬁm for v= % eiKi’ we
~ i=1 "~

now consider the special case (6) and examples thereof.

3. EIGENVALUES AND THE INVERSE OF Vé

The special case (6) covers a wide.range of application.

Here the Ki's cammite, have special structure and are all evident;
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by virtue of their being Kronecker products of powers of matrices.
The eigenvalues and the inverse of YP are given by the following
algorithm, which is derived from the general algorithm, (9) and
(10), in the next two sectioms. This result generalizes the al-
goritm of Searle and Henderson [1979] for (4), the result for the
eigenvalues of (5) in Seely [1971, pp. 711-712] and that given by

Gilbert [1962] for circulants.

P
This result reduces finding the Bp = I br (possibly) distinct
P r=1
eigenvalues of V_ of order N_ = [l n_ to performing matrix and vec-
~P P r=1 r

tor multiplication of order Bp and evaluating the br distinct
eigenvalues of the p ér-matrices of order n, - This can represent
considerable computational reduction cqmpafed to the alternative
of directly decamposing Yp . In fact, a recursive algorithm is
available, as given in Section 3.3.

Similarly, inverting Yp’ of order Nb is reduced to matrix and
vector multiplication of order Bp and the inversion of p Vandermonde

matrices of order br .
Algorithm: We consider VP as detailed in (6),

i i
. . DP .. 1
ei,l.(.i with Ei = fp ® ®fl (18)

~

VvV =

lé)l"l!p.-

P -
of order Nb = rglnr, where fr is square of order n_
and has br distinct eigenvalues, By *tts ab,r'

P
Eigenvalues: Then the vector of the BP = Il br (possibly) distinct
r=1



g

and
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is a Vandermonde matrix.

Inverse:

When

(1) Vp has no zero eigenvalues,

(ii) each A (and hence Ki) is simple,

(Xe}
d

®..-®C, (19)

(20)

.eigenvalues of Yp is given by —A‘P = :I"pgp, where
- o -
XOO...O O"‘O
)\OO-. 6 - eO"‘l T
. <P ’ ~P
A B4...
Ay« dy | RCNAREEY
= Cplagn ooy e‘b,,r)
J-1 . .
{air } for 1=1,-~,br and j=1, ---, dr+1
[ d. ]
Loy ot By
. i d di.
1 r
|t F,r fp,r |

(iii) V_ is in the quadra’gic subspace generated by the K;'s,

and

~

(iv) b =d +1 (so that C,. and hence T is nonsingular),

then on defining

Yo

.

as the vector of reciprocals of elements of )‘p 9

(21)



the coefficients in the inverse of Vb,

Vo= £k withK.:AP®---®A1 (22)
~P 1_0 . ~3 ~P ~
are given by
-1
T =T 2
e (23)

using T;)l = C;)l@ @Cil .

3.1. Eigenvalues of VP

By definition (18), YP is a weighted sum of Kronecker products
of p matrices. When all the dr are equal La.ncasterl[l969, p. 259]
for p=2 and Searle and Henderson [1979] for amy p> 1 have theorems
for determining the eigenvalues of such a sum. We now extend‘this
to the general case of unequal dr . The extension is straightfor-

ward and is stated without proof. The result relies on the Jordan

normal form of Ar’ as does (13), of which this is a special case.

Theorem: Suppose Ar is square of order n, with eigenvalues

2 «ee, 4 . 'Then the NP eigenvalues of Vp of (18) are polynom-

1r’ Oy r

jals of the £'s with the p's as coefficients:

A.Jf Efo (jlzzr) ? ’ (2%)

where tp, essy t. is denoted by t and where each {, takes, in turn,

1 t

the values of Llr’ cee, Ln,r‘
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We now express (24) in matrix notatiom, akin to (13). Observe
d
= PR ' v = e e T
that Ay = (£p® ®£’P) EP where fr l 1 L‘t, ztr , and so the NP

eigenvalues are given by

.~ df -
1 ‘elr ’ ‘elr
1 4y, e Lg;
wy = (L@ @L)e, where L = : (25)
dr
_l Jen,r zn,r ]

is of order n., X (dr+l) . The stetement in the algorithm for dis-
tinct eigenvalues follows directly fram (25) in the same way (9)

does from (14), where C,. has the distinct rows of L .

3.2. Inverse of V

The algorithm for V;l follows as a special case of that for V—:L

of (10); the subscript p being added to all terms. The special struc-
ture of Tp = Cp@ -++®C, ensures that it is nonsingular. This follows

because the Vandermonde matrix Cr is nonsingular; its determinant

. s . . 3
with distinct a;,."s being [grl = 1 (a,

-a._) and hence nonzero.
M r T %
1>J

3.3. A recursive property

A recursive property of the eigenvalues of "):P = Epgp is worthy

of note. From (19)

-

[ v a® 7
.?p-l ®1p Ep-l r %1p .?p-l
j-l } . o' .
T, =C®T 1 =18%p L1 = | : : : 26
"'P ~P®~P'l 1P NP’l 0 . é.p ( )
| To-1 %p,pTp-1 77" *byplp-1)
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for i=1, ""bp and j=1, ¢eo, dp+1 .
Define §; _ ) = {eiim il} for 1=0, «++, & with i =0,
cee, dr forr =1, -.-, p-1, observing that

8

~0,p-1

e =] : (27)
6
~d;,p-1

and similarly for Ap . The vector of (possibly) distinct eigen-

values of Vp is given by

A =T6 with its ith subvector
~P~D _—

~P (28)
AL =T 6 R
~1,p-174p%+,p-1,1
on defining
8 Z T (2
.= L oa,
~e,p-1,1 =0 iper,p-1 (29)

3 . e ’ .
as the ith weighted sum Of-.-r,p-l s

For example, Searle and Henderson [1979] give (26) for the

special case (4), with examples, where

)
~p ’ ~p )
T nT e
~p-1  pp-1 ~1,p-1

In this case (28) gives the eigenvalues of VP as

A T .®
= [=%p-1] _ |~P-1~-,P-1,0 (31)
~p k T J

8
~1,p-1 ~p-1~-,p-1,1
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4. SPECIFIC APPLICATIONS

We now illustrate the algorithm for specific examples of Vp

in (18), of interest in covariance structural analysis.

4.1 Variance component models

Several examples of YP being the dispersion matrix for a vari-
ance component model for balanced data, similar to (3) and its
generalization (4), are presented by Searle and Henderson [1979],
using a special case of the algorithm specific to variance component
models. Nelder [1965a,b] also presents a number of examples in a
detailed discussion of the analysis of randomized experiments with
orthogonal block structure. Extensions to this work are developed
in Speed [1981, 1983], Houtman and Speed [1983] and references therein.
Smith and Hocking [1978] also independently develop similar methodology
for variance component models for balanced data. Searle and Rudan
[1973], Wansbeek [1982] and Bunney and Kissling [1984] discuss

inverting a dispersion matrix for unbalanced data.

4L.2. Quasi-circumplex correlation matrix

Consider the pattern matrix

a b c d
b a d c
V, = 32
~2 c d a (32)
d c b
= a(I,®I,) + b(I,®E,) + c(E,®1,) + &(E,®E,)
1 i 3
= z eij(E2®E2) ’ (33)
i, J=0 -

_]0 1 v
where E, = [1 O] and‘ge =[a b ¢ d].
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R . . A 1 2
The eigenvalues of EE are 1, so using (19) with 32'81_[1 1],
those of V2 are

Ao = T8, = (G808,

[a -b-c+d]

)‘OO ['1 -1 -1 1} ta
AOl 1 1 -1 -1}1}v a+b-c-4d
- = = : (34)
;‘lO 1 -1 1 -lj}e a-b+c-4a
A
*11) -1 1 1 l- _d_ -a+b+c+d_
R i3 -1
To express V = X 1,.[ES®E ), we use T, = L~, Where . is
~ .. ij\~2 "~ ~2 ~2 ~2 R2 =2
1,3=0 17t 1z
the vector of reciprocal elements of A, . Since [1 1] = 5[_1 1],
el 4011 1 1
o=t E ?[-1 1] ® [-1 1]&2
(1 1 1 1] ’poo’
-1 -1 1) ju .
=3 R (35)
-1 -1 1 1 K10
1 -1 -1 1fip
L J L ll_

When 8/} = 1 Py Pp pl], v, is a L x 4 Guttman [1954] quasi-
circumplex correlation matrix with eigenvalues

[ - - - -
§2 = [1 Py l-0, 1l+4p, 2pl l+2pl+pe] . The comsequent spec
tral decamposition is given by Mukherjee [1976, p. 139] although he
does not recognize the Kronecker product structure.

In the previous examples the Ki's have enjoyed both special

power and Kronecker product structure. The next two applications

-

have only power structure.



- 19 -

4,3, A spectral matrix

Consider the dispersion matrix (with & > b) discussed by Muk-
herjee [1976, p. 136],

v=1]|o0 28, 0 , (36)

which can be decomposed by inspection into its spectral decompo-

sition:
t ot o3
V=220 1 0j+20 0 0 O EALM:L%E&% (37)
i 0% <+ 0 3

where klf=2a has multiplicity 2 . Its inverse has then, of course,

the same form:

a+b 0] b-a

-1 . -1 1
Vo= kllfﬁ + Ag M, =55 © 2b 0 . (38)
b-a 0 a+b

To illustrate the algorithm consider the more obvious decampo-

sition:

V=(2+4b)I + (a-b)X where K = (39)

H O O
o +H O
o O W+

Then V is in a quadratic subspace generated by I and K and the algor-
ithm to express Y-l in terms of I = 50 and K is applicable. The

eigenvalues of K are 1, 1 and -1, so (9) gives



as in (37).

A
"
]

Hence, V

as in (38).

L4,

r 3] [E]

Circulants

2 4]

The coefficients in V-l

i

PIP

-1 a+d

BRI

are

ASvRE I

Lab

A circulant is a square matrix having the form

1 n-1
0 """ %m-2
2 """ % |

(40)

] . (%)

(42)

The inverse of a nonsingular circulant is itself a circulant. A

rmumber of methods for obtaining the inverse are available; see Davis [1979] and

Searle [1979], who also gives a new method involving recurrence

equations,

and Feinsilver [1984].

-

An earlier method, from Gilbert [1962], of transforming to

xﬁfaiagcnal form, inverting, and then transfornnng back to original

'—;;-igom 18 a speciag_ case of our genera.l algorithm aspplied to circulants.



- 21 -

This is achieved by defining the "one-element type circulant

A =¢(0,1, ---, 0) and expressing C in the form of (5) as

n-1 5
C = ‘Zocié . (43)
1=

The eigenvalues of 5 are well-known and the application of the
algorithm is straightforward.

Symmetric circulants have been considered in statistical eppli-
cations, e.g., as the dispersion matrix for certain cyclic partially
balanced designs, by Wise [1955], Srivastava [1966], Olkin and Press
[1969], T. W. Anderson [1969] and D. A. Anderson [1972]. T. W.
Anderson [1969] presents the 6 X 6 case as illustration, but does

not appeal to the power structure afforded by (43).
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