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ABSTRACT 

Methods for deriving eigenvalues and the inverse of a disper-

sion matrix for balanced-data variance-components models are 

extended to linear combinations of commutative matrices and to 

linear combinations of powers of a matrix or Kronecker products 

of powers of matrices. The result for the inverse exploits 

relationships with its spectral decomposition and so also requires 

that the matrices be simple. Applications in covariance structural 

analysis for (real symmetric) structured dispersion matrices and 

for other situations are discussed. 
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l. INTRODUCTION 

Covariance structural analysis is a generic term used when a 

population dispersion (variance-covariance) matrix, V, is assutned 

to have an ~priori pattern (in addition to symmetry) and structure. 

One particular, but nevertheless quite general, structure occurring 

in such diverse si~Qations as variance component estimation, experi-

mental design and psychometrics, is considered, for example, by 

Anderson [1969, 1970] a..Tld Mukherjee [1976]. It is where V is taken 

as a linear combination of a set, [K.}, of linearly independent 
-~ 

matrices which are not fUnctions of the parameters (ei}: 

c 
V = L: e.K. 

i=l ~~ 

c 

(1) 

(By linearly independent we mean that L: 8 .K. = 0 implies that 8. = 0 
i=l ~-1 1 

for all i = 1, .•• , c • ) For general V of order n X n there are at 

most n2 such K. 's, so that c s n2 , and for V being a dispersion 
-1 -

matrix and hence synmetric, c s in(n + l) • 
c -1 c 

Of special interest is the case when V = L: e.K. and V = L: T.K. 
i=l ~-~ i=l 1_1 

have the same structure, i.e., are linear combinations (possibly with 

same zero weights) of the same set of K. 's . This is discussed by 
-l 

Searle and Henderson [1979] for variance component models, as is 

now indicated. 

1.1. Variance c~onent models 

Dispersion matrices for variance component :models are special 



- 3 -

cases of (1). When data from such models have equal rru:mbers of 

observations in the subclasses (i.e., balanced-data), each K. of 
-~ 

(1) can be expressed as a Kronecker product of I- and J-matrices - -
where in general I is an identity matrix of order a, and J is a 

... a -n 

square matrix of order n with every element unity. For example, 

consider the model for the two-way crossed classification with 

interaction: 

y .. k = 11 +a.+ 13. + (C$) .. +e .. k (2) 
~J ~ J ~J ~J 

with i = 1, ... , a, j = 1, · · ·, b and k = 1, · · ·, n . When all terms, 

except~, are random, with zero means, all covaria~ces zero, and 

with variances denoted by a2 with subscript corresponding to the 

term concerned, the dispersion matrix of y is 

V = a!(~a ® !b ®!n) + a~(~a ® ~b ®~n) + a~(~a ®~b ® ~n) 

+a~l3(1a®~b®~n) ; 

where ® denotes the operation of Kronecker product. Although 

( 3) 

I ®I = I and J ®J = J , it is more convenient to work with ... a _n _an ... a -n .... an 

(3) as shown. In addition to having the ter.ms in V of (3) with 

different weights, V-l has a term involving (J ®Jb®J ) • ..... _a _ _n 

Searle and Henderson [1979] develop a simple methodology for 

deriving the eigenvalues, determinant and inverse of (3) and its 

generalizations to balanced p-wa.y crossed and/or nested classifica-

tions. Similar ideas have also been discussed independently 

by Neider [1965a,b] and Smith and Hocking [1978]. In the 

p-way case, with J 0 =I, each K. of (1) is a Kronecker 
-~ 
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product of powers (0 and 1) of p J-matrices, not necessarily of .. 
the same order. Then (1) is 

v 
-P 

1 i i i 
= 'E e . (J P ® J P -1 ® ... ® J 1) 

. 0 l. -P -P-1 -1 
J.= -

(4) 

where some of thee's are cr 2 's and the others are zero, e.g., in 

(3) four e 's are cr 2 's and the other four are zero. The exponents 

in (4), ip' ···, i 1, are also used as subscripts to 6 where, for 

notational convenience and readability only, they are represented as 

a vector i These subscripts are in reverse natural order to facil-

itate using the complete subscript to each e as a binary number 

(since every index i for r = p, p-1, ... , 1 takes only the values 0 
r 1 

or 1), and the summation ~ represents the multiple summation 
1 1 i=O 
L: · · • L: and so notationally is summation over the first ~ nonnega-

i., =0 i:L =0 
tive binary numbers from 00 .•. 0 to 11 .•• 1. 

1.2. An extension 

Seely [1971] considers (l) and the special case when ~ is a 

weighted sum of powers of a symmetric matrix A which is indepen-

dent of {6.}: 
J. 

d . 
V= L:9.A1 

i=O l.-
( 5) 

Gilbert [1962] expresses a circulant matrix in this fonn, where A -
is a "one-element type" ( nonsymmetric) circulant. A generalization 

of this, and of (4), is when each J in (4) is replaced by A of -r _r 
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order n X n, which is independent of {9.}, and the summation and 
r r ~ 

powers are to d = ( d · · • d__ ) 1 ; namely 
- p J. 

v 
-P 

d 
= ~ e.K. 

. 0 ~~ 
~= - -

where (6) 

p 
and with V and K. having order N = n n 

-P -~ p r=l r 
When the d are all 

r 

equal to d, say, the subscript of i will range through the first 

( d + l)p numbers of base b = d + 1 . 

That V be a dispersion matrix, with consequent symmetry and 
-P 

positive definiteness, is not necessary in the subsequent develop-

ment. Note that under symmetry and when p=l, (6) _reduces to (5), 

the case discussed by Seely [1971] in ter.ms of a quadratic sub-

space of the vector space of real symmetric matrices. 

In the sequel,procedures developed for deriving eigenvalues 
c 

and the inverse of (4) are extended to V = E e.K. in (1) when the 
- i=l ~~ 

K. 1 s commute in pairs, and then to the special case ( 6) and exa:m-
-~ 

ples thereof, with applications for symmetric ~ in covariance 

structural analysis and for nonsymmetric y in other situations. 

This paper is based on chapter 6 of the thesis by Henderson [1979]. 

2. EIGENVALUES AND THE INVERSE OF V -
Eigenvalues have many uses in multivariate statistics; for 

example, they provide invariant tests of the general linear hypothe-

sis and are expected mean squares in vari,.a.nce component models. 

An important occurrence of the inverse of '! is as the matrix 

of the quadratic form in the nor.mal probability density function. 
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It therefore arises in maximum likelihood estimation under nor.mal-

ity and hence in any subsequent hypothesis testing. 

The set of all eigenvalues of a square :matrix is known as its 

spectrum. -1 A relationship between V, V and its spectrum is exhib-- -
ited in the spectral decomposition theorem. 

Spectral decamoosition theorem (Lancaster [1969, p. 63]): 

Let V be a simple matrix of order n with s distinct nonzero 

real or complex eigenvalues, A. fori= 1,··· ,s Then J. 

for 
s 

s 
y = L: A.. M. 

i=l J.-J.. 

-1 and V - = ~A.~~. 
i=l J. -J.. 

L: M. = I, M. M. = 0 for i ~ j 
i=l-J. - -J.-J 

and W. = M. 
-J.. ... J. 

(7) 

( 8) 

A speciaJ. case of this theorem is usually given (e. g., Mukher-

jee [1976, p. 135] and Searle and Henderson [1979]) for dispersion 

matrices with~' and hence the ~i's, being real and symmetric. But 

the theorem holds for~ being simple ( diagonable or diagonalizable, 

i.e., similar to a diagonaJ. matrix, e.g., real symmetric, hermitian, 

nor.rnal and idempotent matrices are simple). · When V is not simple -
we say V is defective or not diagonable. In this case U-l does not ... 
exist in VU = UD, where D is the diagonal matrix of eigenval.ues of - --
v. 

We now exploit the special. structure· of V 

relationship to the spectral decomposition. 

c 
= L e .. K. and its 

i=l .L-J.. 
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2.1. The main result 
c 

The eigenvalues and the inverse of V = L: 6 .K. in 
i=l ~-~ 

(1), when 

certain conditions apply to the K. 's, are 
-~ 

given by the follo'tf.'ing 

two-part algorithin, which is derived in succeeding paragraphs. 

Algori thin: 
c 

Let V = L. s . K. , of order n X n, 
i=l ~~ 

where K. has In. distinct 
-~ ~ 

eigenvalues with In= max( II]_, · • ·, Inc) . 

Eigenvalues of V: Suppose the !5is are simultaneously Jordanable 

(commute in pairs). Then the vector of In (possibly) distinct 

eigenvalues of V is 

A = Ta ' 

where the rows of T are the In distinct rows of~ = [lij} witn 

Lij being the ith eigenvalue of !5j' and e' = [e1 ·•• ec] . 

Inverse of V: When -
(i) V has no zero eigenvalues and so is nonsingular, 

( 9) 

(ii) the K. 's are simultaneously diagonable (commute in pairs 
-~ 

and are simple), 

(iii) V is in the quadratic subspace of simple matrices gen-

erated by the linearly independent K. 's, 
-~ 

(iv) In= c, ensuring that T is square a.nd nonpingular and 

(v) ~ is defined as the vector of reciprocals of A = Te in -
(9)' 

then the inverse of V is: 
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-1 c -1 
V = I: -r"' K. where ! = :£ .1: 

i=l .._l. 

2.2. Eigenvalues of V for simultaneously Jordanable K. 's 
-J. 

We are interested in situations where the eigenvalues of 
c 

(10) 

V = I: e.K. are linear combinations of those of the K. 's • Such 
i=l l....,l. -J. 

is the case when the K. 's are simultaneously Jordanable. That is, 
..,.l. 

for j = 1, •.. , c , 

K. = PJ.Q' 
-J -J-

where Q.'P = I (11) 

and J. is a Jordan normal form of K.- an "allnost diagonal" matrix 
-J -J 

with the eigenvalues {.t .. } of K. on the diagonal, ones or zeros 
l.J -J 

on the superdiagonal and zeros elsewhere. ·(When K. is also 
..,J 

simple J. is diagonal). Then Y. is also Jordanized by the S8J!le 
.... J- -

matrices P and Q: 

c 
v = P( I: e .J .) Q' 
.... .... j=l J .... J 

The ith eigenvalue of V, fram (12), is the linear combination 
..., 

.t. = ~,e . . e. = [.t.l··· .t. J[ e~]= .t!e ; 
l. j=l l.J J l. l.C • . ....J...., 

ec 

hence the vector of the n eigenvalues, to be denoted b.Y w, is 

w = u~'] e =IS .., . - -
L' 11 

Reductions in the order of ~ and ~ may be accomplished by 

(l2) 

(13) 

(14) 
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considering only distinct eigenvalues as presented in (9), the 

statement of the algorithm, which follows immediately from (14). 

The relationship between the number of distinct eigenvalues 

of V and nonzero parameters, e. (zero 8's and corresponding columns 
- 1 

ofT can be deleted), has important statistical consequences. When 

they are equal ! is square and nonsingular and by the criteria of 

Anderson [1969] and Miller [1973], explicit maximum likelihood 

solutions for the parameters exist. This work is further extended 

and applied by Miller [1977], Szatrowski [1978, 1980], Szatrowski 

and Miller [1980] and Rubin and S:zatrowski [1982]. 

Inverse of V for simultaneously d.:iagonable K. 's 
- _1 

c 
The inverse of V = : e.K. is, of course, still available fram 

- i=l J...... 1 

its spectral decomposition (7). But it is.often instructive, see, 

-1 
for example, Anderson [1969, 1970], to express V directly as a 

weighted sum of the K. 's: 
_1 

When this is so we have 

I = :YY-1 

-1 v 
c 

= Lr 'T.K. 
i=l :1_ 1 

c c 
= (: 9.K.)(: T.K.) 

i=l 1_1 i=l 1_1 

c c c 
= L: e.~ .. K~ + ~ ~. 'T .K.K. 

i=l 1 1-1 i~j 1 J-L-J 

(15) 

(16) 

One way of ensuring this is for V to be in a system that is closed 

under powers and products of K. 's or V's -of the same form (viewing 
_1 

y-1 in (15) as another V) • This is formalized in the following 

notion of a quadratic subspace. 
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Quadratic subspaces 

A quadratic subspace of the vector space of real symmetric 

matrices was introduced by Seely [1971, p. 711], and subsequently 

called a Jordan algebra by Seely [1977]. We extend this to a 

vector space of structured or patterned matrices denoted by Q., 

e.g., symmetric or circulant matrices. 

Def'ini tion A subspace !3 of' Q with the property that V € 8 - (17) 
implies V 2 E f3 is said to be a quadratic subspace of' Q 

The properties developed by Seely [1971] carry over to this 

more general situation (deleting references to symmetry). For exam­

ple, if' V E/3, then (a) Vk Ei3 for each positive integer k, (b) so 

is its Moore-Penrose inverse V+ and hence when V is nonsingular so 

is V-l and (c) there exists a basis forB (which generates B) con-

sisting of' idempotent matrices. 

Further, when the elements of' B cammut~the subspace f3 is 

called a commutative quadratic subspace and then by lemma 6 of 

Seely [1971] the idempotent ~ 1 s of' (7) and (8) constitute the 

unique idempotent basis, apart f'r<ml indexing. 

It is sufficient that V be in the quadratic subspace gener-
c 

ated by the idempotent M. Is or all the K. 's for v = L e .K. to 
-~ -- -~ , i=l ~~ 

-1 c 
imply that V = L -r"'K. for sane val.ues of -r. • The spectral 

i=l ~~ ~ 

decomposition of V in (7) and (8) is a special. case of this. In 

general., this requirement simply ensures that we have a.11. the K. 1 s, -- -~ 

even those with zero coefficients in V • In contrast to Anderson 
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[1969] we describe V and V-l as having the same structure even when ... -
same of the coefficients in either (or both) of V and V-l are -
zero. By allowing this generalization we introduce the subtlety 

that when e. is zero, ~. need not be zero, so that although V and 
~ J. 

and V-l are both linear combinations of all the K. 's, the particu--- -~ 

lar subsets with nonzero weights need not be the same. This is so 

with (3), as detailed by Searle and Henderson [1979]. Even though 

the K. 's with nonzero e.'s in V may not be all the s~ as those 
...,J. J. -

with nonzero~. 'sin V-l we still describe V and V-l as having the 
J. 

same structure. 

When V and V-l have the same form as just defined the algor­

ithm for V-l given in (10) is established by exploiting the relation 

-1 between the spectral decompositions of v and v ; hence the require-

ment that the K. 's also be simple. Specifically, define ~ as the 
...,J. 

. -1 vector of reciprocal elements of _A = 19, J..e. ~· = A· . Then be-
-- J. ~ 

c -1 c 
cause V = ~ e.K. and V = ~ ~.K. have the same structure~= TT. 

i=l J. ... ~ i=l ~J. 
The K. 's and hence the columns of T are linearly independent and 

_J. 

so ~ 

now 

-1 = T ~ - - c 
Having established a general algorithm for V = L: e .K., we 

i=l J._J. 
consider the special case (6) and examples thereof. 

3. EIGENVALUES AND THE INVERSE OF V .., 
. 

The special case (6) covers a wide range of application. 

Here the K. 's commute, have special structure and are all evident; 
... J. 



- 12 -

by virtue of' their being Kronecker products of' powers of matrices. 

The eigenvalues and the inverse of V are given by the following 
... p 

algorithm, which is derived from the general algorithm, (9) and 

(10), in the next two sections. This result generalizes the al-

gorithm of Searle and Henderson [1979] for (4), the result for the 

eigenvalues of (5) in Seely [1971, pp. 711-712] and that given by 

Gilbert [ 1962] for circulants. 

This result reduces finding the 
p 

p 
B = II b (possibly) distinct 
p r=l r 

eigenvalues of V of order N = n n to performing matrix and vee-
-P P r=l r 

tor multiplication of order B and evaluating the b distinct p r 

eigenvalues of the p A -matrices of order n • Th±s can represent 
... r r 

considerable computational reduction compared to the alternative 

of directly decomposing V . In fac~ a recursive algorithm is 
-P 

available, as given in Section 3.3. 

Similarly, inverting V , of order N is reduced to matrix and 
... p p 

vector multiplication of order B and the inversion of p Vander.monde p 

matrices of order b 
r 

Algorithm: We consider V as detailed in (6), 
... p 

d 
v = ~ e .K. 
... p "=0 :!._~ J..- .,., f/lrtl ... -

p 

with 

of order N = IT nr' where A is square of order n 
P r=l ... r r 

and has br distinct eigenvalues, ~r' · • ., ~. r • 

p 

(18) 

EigeiiVal.ues: Then the vector of the B = n b (possibly) distinct 
P r=l r 



- 13 -

eigenvalues of V is gi. ven by L = T ep' where 
-P ~~ -P-

Ace ... 0 e o ... 0 

A.oo···l 
~p 

9o· · ·1 
~= , = , T = c ® ••• ® c1 (19) 

-P ... p -

A.dp ••• d 1 ea.;··d~ 

and 

C ::C(a..r'· .. ,e.. ) r r ~ b,r 

- { j-1'~ - a. 
~r 

for i = 1, • • ·, b and j = 1, · • ·, d + 1 r r 

(20) 

= 
d 

1 
r 

~,r 

is a Vandermonde matrix. 

Inverse: When 

and 

(i) V has no zero eigenvalues, 
-P 

(ii) each A (and hence K.) is simple, 
... r _J. -(iii) V is in the quadratic subspace-generated by the K. 's, 

-P ... J. 

(iv) b = d + 1 (so that C and hence T is nonsingular), r r ... r _ 

then on defining 

~p as the vector of reciprocals of elements of ~ , (21) 
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the coefficients in the inverse of V , 
-:P 

-1 v 
-P 

d 
= ~ ,. .K. 

i=O :I_~ 

are given by 

-1 using T 
-P 

-1 -1 
= c e···®C -P _l 

3.1. Eigenvalues of V 

i il 
'With K. =A :p® ···®A_ 

-~ -P ~~ 

-1 
-r = T 1-L 
-P -P -P 

(22) 

(23) 

By definition (18), V is a weighted sum of Kronecker products 
-:P 

of :p matrices. When all the dr are equal Lancaster ,[1969, :p. 259] 

for :p = 2 and Searle and Henderson [1979] fo-r any p::::: 1 have theorems 

for determining the eigenvalues of such a sum. We now extend this 

to the general case of unequal d . The extension is straightfor­
r 

ward and is stated without proof. The result relies on the Jordan 

normal form of A , as does (13), of which this is a special case. _r 

Theorem: Suppose A is square of order n with eigenvalues _r r 

J, , • • ·, J, • Then the N eigenvalues of V of (18) are :polynam-
lr nrr :P -:P 

ials of the l's with the a's as coefficients: 

d :p i 
~= !e.(ntr) 

i=O ~ r=l tr ' 
(24) 

where t:p' ••• , t 1 is denoted by t and where each Ltr takes, in turn, 

the values of ~' ... , l . 
n,r 
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We now express (24) in matrix notation, akin to (13). Observe 

that At = (.t ® • • • ® .t ) 'e where .t' = [1 .tt • · • .tdr] a..11d so the Np -P -P -P _r r tr -eigenvalues are given by 

1 .tlr 
dr 

.tlr 

1 .t2r 
dr 

.t2r 
w = (L ® •• • ® ~)e where L = (25) 
-P -P - ... p _r 

1 .t J,dr 
nrr nrr 

is of order n X ( d + 1) . The statement in the algorithm for dis­
r r 

tinct eigenvalues follows directly fram (25) in the same way (9) 

does from (14), where C has the distinct rows of L, • _r _r 

3.2. Inverse of V 
-P 

-1 -1 The algorithm for V follows as a special case of that for V 
-P 

of (10); the subscript p being added to all ter.ms. The special struc-

ture of T = C ® • • • ® c1 ensures that it is nonsingular. This follows 
-P -P -

because the Vandermonde matrix C is nonsingular; its determinant _r 

with distinct a. 's being I_Crl = rr (a. -a. ) and hence nonzero. 
~r . . ~r Jr 

l.>J 

3.3. A recursive pr?Perty 

A recursive property of the eigenvalues of A. = T e is worthy 
-p -p-p 

of note. From (19) 

T 
-:P-1 ~p !:p-1 

a~ T 
~p -:p-1 

T = C ®T 
-P -P -P-1 

- aJ- T { . 1 } 
- ip -P-1 = (26) 

T 
-p-1 ~p::p.!p-1 ~T pP...P-1 
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for i = 1, ••• , b and j = 1, ••• , d + 1 • 
p p 

Define e. 1 = {e. . . I for i = o, · · ·, d with i = o, -l.,p- l.l.p-1 ••• ~ r p r 

... ' d for r = 1, · · ·, p- 1, observing that 
r 

e 
-P = 

e 
-O,p-1 

e 
-dp,p-1 

' 
(27) 

and similarly for h . The vector of (possibly) distinct eigen­
-P 

values of V is given by 
-P 

on defining 

~ = T 9 with its ith subvector 
-P -P-P 

h. 1 =T6 . 
- l., p- -p-. 'p-1, l. 

e 1 . 
-. 'p- 'l. 

~ r 
= L: a. e 1 

r=O l.p...r, p-

as the ith weighted sum of 9 1 's • 
- -r,p-

For example, Searle and Henderson [1979] give (26) for the 

special case (4), with examples, where 

T = r~p-1 
... p T 

-p-1 

0 ] 
n T p-p-1 

, 9 = [!o,p-1] 
... p e 

-l,p-1 

In this case (28) gives the eigenvalues of V as ... p 

~ = r~,p-11 = r~p-~·,p~l,OJ , 
-p ~ T e 

-l,p-1 -p-1-·,p-1,1 

(28) 

(29) 

(30) 

(31) 



- 17 -

4. SPECIFIC APPLICATIONS 

We now illustrate the algorithm for specific examples of V 
-P 

in (18), of interest in covariance structural analysis. 

4.1 Variance component models 

Several examples of V being the dispersion matrix for a vari­
-P 

ance component model for balanced data, similar to (3) and its 

generalization (4), are presented by Searle and Henderson [1979], 

using a special case of the algorithm specific to variance component 

models. Neider [1965a,b] also presents a number of examples in a 

detailed discussion of the analysis of randomized experiments with 

orthogonal block structure. Extensions to this work are developed 

in Speed [1981, 1983], Houtman and Speed [1983] and references therein. 

Smith and Hocking [1978] also independently develo~ similar methodology 

for variance component models for balanced.data. Searle and Rudan 

[1973], Wansbeek [1982] and Bunney and Kissling [1984] discuss 

inverting a dispersion matrix for unbalanced data. 

4.2. QQasi-circumplex correlation matrix 

Consider the pattern matrix 

y2 = 

= 

a b c d 

b a d c 

c d a b 

d c b a 

1 . . 
L: 9.j(E2~®E2J) 

i,j=O ~ - "" 

(32) 

(33) 
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The eigenvalues of ~2 are :1, so using (19) with : 2 = : 1 = [i -iJ, 
those of ~2 are 

).00 1 -1 -1 1 a a-b-c+d 

"o1 1 1 -1 -1 b a+b-c-d 
= = = (34) 

).10 1 -1 1 -1 c a-b+c-d 
). 1 1 1 1 d a+b+c+d 11 

-1 1 ( i j) -1 To express V = L: 'r •• E2 ® E2 , we use 'r2 = T2 JJ.2, where _J-l.2 is 
- .. 0 ~J - - - - -

~,J= [1 -11]-1 = ~[_11 11], the vector of reciprocal elements of ~2 . Since 1 ~ 

1 1 1 1 1-Loo 
-1 1 -1 1 1-Lo1 (35) -~ - 4 
-1 -1 1 1 1-L1o 
1 -1 -1 1 1-Lll 

When ~2 = [1 p1 p2 p1 ], y2 is a 4 X 4 Guttman [1954] quasi-

circumplex correlation matrix with eigenvalues 

~2 = [1- P2 1- P2 1 + p2 - 2p1 1 + 2p1 +p 2 ] • The consequent spec­

tral decomposition is given by M.lkherjee [19'76, p. 139] although he 

does not recognize the Kronecker product structure. 

In the :previous examples the K. 's have enjoyed both s:pecial 
-~ r 

:power and Kronecker product structure. The next two applications 

have only :power structure. 



- 19 -

4.3. A spectral matrix 

Consider the dispersion matrix (with a> b) discussed by Mlk-

herjee [1976, p. 136], 

[
a+b 

v = 0 - a-b 

0 

' 
(36) 2a 

0 

which can be decomposed by inspection into its spectral decampo-

sition: 

(t 0 t] [ .J,_ 0 -i] y = 2a 0 1 0 + 2b ~ 0 0 = ;.1-~ + i. 2....~ 
toi -to j 

(37) 

where ;.1 = 2a has multiplicity 2 • Its inverse has then, of course, 

the same form: 

0 

2b 

0 

(38) 

To illustrate the algorithm consider the more obvious decampo-

sition: 

y = (a+b)_! + {a-b)! where ~ ~ [~ ~ ~] (39) 

Then V is in a quadratic subspace generated by I and K and the algor-- - -
-1 0 

ithm to express ! in terms of! =! anet! is applicable. '.Ihe 

eigenvalues of K are 1, 1 and -1, so (9) gives -



- . -
.- d:-:~""~~-:-~-

--=- ~-: -. =-~:~_--

;\ = '.m = [1 1] [a+ b] = [2a] 
- - 1 -1 a -b 2b 

(40) 

as in (37). The coefficients in V-l are 

1] [l/2a] ~[1/a + 1/b] 
-1 l/2b = 4 1/a -1/b 

_lja+b] 
= ~lb- a (41) 

H V-1 . ence, ~s 

as in (38). 

4.4. Circulants 

A circulant is a square matrix having .the form 

co cl c n-1 
c n-1 co c n-2 

c = C(c0, .•• , c _1 ) = (42) 
- - n 

cl c2 co 

The inverse of a nonsingul.ar circulant is itself a circulant. A 

number of methods for obtaining the inverse are available; see Davis [1979] and 

Searle [1979], who also gives a new method involving recurrence 

equations, and Feinsi1ver [1984]. 

·An earlier method, fran GUbert [1$162], of transforming to 

.. - cdia.gorial. form, inverting, and 1;ben ?transforming back to original 
- . . -

· ~emu is .a speCiaJ. ase of cur general algorithm applied to circulants. 
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This is achieved by defining the "one-element type" circulant 

A = C( 0, 1, • · ·, 0) and expressing C in the for.m of ( 5) as - - -
n-1 . 

C = E c.A 
- . 0 :t.-1= 

l. 

The eigenvalues of ~ are well-known and the application of the 

algorithm is straightforward. 

(43) 

Symmetric circulants have been considered in statistical appli-

cations, e. g., as the dispersion matrix for certain cyclic partiaJ..ly 

balanced designs, by Wise [1955], Srivastava [1966], Olkin and Press 

[1969], T. W. Anderson [1969] and D. A. Anderson [1972]. T. w. 

Anderson [1969] presents the 6 X 6 case as ~1lustration, but does 

not appeal to the power structure afforded by (43). 
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