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1. Introduction

Experimenters and statisticians place considerable trust in statistical out-
put from statistical computer package programs. In some cases, this trust is
misplaced. One should always check to ascertain that one is receiving a correct
and an appropriate statistical énalysis for a set of data. If the statistical
computations are incorrect and/or inappropriate, and if the results are published,
the general scientific community suffers. The subject of covariance in itself
appears not to be well understood by some experimenters and statisticians, and
hence, one would not expect the statistical computer packages to be in any better
shape. It would be better not to include covariance analyses in a package if
there are errors in the program and/or if it is wrongly used a large proportion

of the time.

As a result of a statistical consulting problem related to computer output,
it was decided to study a number of statistical computer covariance programs.
The adequacy, deficiencies, and correctness of computer program covariance analyses
was investigated for a completely randomized design, a randomized complete block
design, a latin square design, and a split plot design. A numerical example for
each of these designs was obtained from statistical literature as follows:

i) Completely randomized design: S. R. Searle, Linear Models, pages 353-355,
Tables 8.5, 8.6a, and 8.6b. The 3 treatments are less than high school

education, high school education, and college education with 3, 2, and 2
observations, respectively. The dependent variate Yij is investment index

and the covariate Xij is number of children in a man's family.



ii)

iii)

iv)

Randomized complete block design: G. W. Snedecor and W. G. Cochran,
Statistical Methods, pages 427-428, Table 14.4.2. Six varieties of corn

were grown in 4 blocks. The dependent variate Yi is pounds field weight

J
of ear corn and the covariate Xij is number of plants (stand) per plot.

Latin square design: W. T. Federer, Experimental Design — Theory and

Application, pages 490-493, Tables XVI.5 and XVI.6. Six double cross corn
hybrids were grown in a 6 X 6 latin square design. The dependent variate
Yhij was pounds field weight of ear corn and the covariate Xhij was number

of plants (stand) per plot.

Split plot design: Rothamsted Experiment Station Reports, 1931, page 142.

The 3 whole plot treatments were oat varieties Marvellous (M), Golden Rain II
(G), and Victory (V), planted in 6 blocks of a randomized complete block
design. Each variety whole plot was split into 4 split plots and 4 levels

of nitrogen fertilizer were randomly allotted to the 4 split plots in each
whole plot. The dependent variate Yhij (rounded to whole pounds) is grain
yield in pounds per split plot and the covariate Xhij (rounded to whole

pounds) is straw weight in pounds per split plot.

The appropriateness of a covariance analysis for each of the above examples

could be in question. A more appropriate analysis could be one in which regres-

sion coefficients vary from treatment to treatment (see Robson and Atkinson

(1960)) or a bivariate analysis of variance (see Steel and Federer (1955)). This

is not our concern here. We simply use these as examples to compare covariance

analyses output from a number of widely distributed computer packages. To be

specific, the packages investigated were:

1. BMDP — Biomedical Computer Program, version 1977.
o, GENSTAT — A General Statistical Program, version 4.0l1.

3. SAS Statistical Analysis System, version 76.6.

k., SPSS ~ Statistical Packages for the Social Sciences, version H, release 7.2.



I In section two, we present tables for the four experiment designs indicat-
ing the computations and statistics desired from covariance analyses. The

statistical covariance linear models assumed for these designs are:

Completely randomized design

response model equation =

Y. .
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Randomized complete block design

response model equation =
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Latin square design

response model equation =

Ypag =R et Yyt Be(KgtR ) ey
Ey.i. =Rttt BE(X-i-’x...) >

2 . 2 . 2
€yij are NIID(O,oe) 5 o, are IID(o,op) 5 Yy are IID(O,UY) .

Split plot design

response model equation =
Tpig = B 5 op t Ty F Oy By X )T oy amy g Bp(K g ) b

. Ey . =“+Ti+BA(ici.—i'..).’ h:l,--o’r-’ i=l,""a', ,j=l,"',b',



Ey-ij bttt BA(X-i.'X---) + on. + aTij + BX(X- ij_x-i-) 5 .

=
<
1]

M + a,j + BE(X'.-J'-Xo..) .’

2 . 2 . 2
€yij A€ NIID(O,GE) ; B, are NIID(0,0%) Py are IID(o,c;p) .

In section three, the numerical results for the four examples are presented.
The Y-variable, X-variable, and adjusted Y-variable residuals were not presented
in the textbooks from which the examples were taken. With the advances in data
analytic procedures, we believe that residuals should be investigated as a regular

feature of statistical analyses.

Attempts were made using the previously described packages to obtain all the
computations obtained in section three. The success for each of the packages is
described in section four. Some comments on the successes and deficiencies of

the various packages are given in the last section.

The results obtained here represent an extension of papers by Heighberger

(1976a, 1976b). The present paper is in the same spirit of these papers.

2. Covariance Analyses for Four Experiment Designs

A form of covariance analysis for each of the four selected experiment designs
is given in Tables 2.1 to 2.4. The form of the analysis of covariance tables
follows that in standard statistics textbooks (e.g., Snedecor and Cochran (1967),
chapter 14, and Federer (1955), chapter XVI). In addition, the R(-/-) notation
described in Searle (1971) is used. For example, the correction for the mean equal
to the total squared divided by the total number of observations, is designated
as R(u). The sum of squares for treatments corrected for the mean but ignoring

all else in the response model equation is designated as R(t/u), and is equal te .



R(p,7) - R(p). The sum of squares due to the mean, the treatments, and a linear
regression coefficien is R(u,7,B). The total sum of squares for any design 1is
designated as Z'y where y is the column vector of all the observations in the

experiment. The remaining computations are as described in the above reference.

Additional computations, e.g., the treatment regression coefficient bT = Txy/Txx’
are often desired. Also, it may be of interest to compare the treatment and error
regressions. Federer (1955), page h93, gives one such test, but the error vari-

ances for treatment and error regressions may differ. TFor this case, the reader

is referred to Smith (1958).

It should be noted that one form of covariance analysis for a split plot design
was used here (see Federer (1955)). Another form has been described by Truitt
and Smith (1956). They consider the situation wherein the whole plot and split
plot regressions estimate the same parameters, BE’ and the terms in the split plot

design response model equation combine into the single term BE(Xhij—i ). (It

was observed that in 6 of the 9 examples they considered, these regressions were
significantly different;) They further show how to obtain the maximum likelihood
estimate of BE and how to make tests of significance. If only error (b) sums of
products were used to estimate BE and to adjust all other sums of squares including

error (a), then the mean squares for error (a) and for main plots are not independent

and the F-test is not valid. (Also, see Anderson (1946) and Bartlett (1937).)
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Table 2.1. Covariance analysis for a completely randomized design.
Source of Degrees of Sum of products
variation freedom y2 Xy % F
Total r -1 Syy=¥ y-R(n) SXy “x
Treatment v-1 I&y;R(T/H) T&y Ty Txx(r~-v)/(v_l)Exx
= ! -
Error r -v Eyy'¥ y-R(p,7) EXy o
Adjusted sum of squares Mean square F

. i L. _ 2 = "o 1 e T _
Error adj. r -v-1 BB Exy/EXX v'y-R(w,7,B) Ew/(r, v-1)=E*,
Error 2 - 2 2 [
regression L Exy/Exx R(B/u,7) Exy/Exx Exy/Enyxx
Treatment + r oD gt —g2 ‘S;ZQ/S - -
error . VY ¥y XX

atment adj -1 T' =5' -E' =R(7 T' /(v-1)=T* T* /E*
Treatmen J v vy oy By (t/u,B) yy/( ) TV yy/ ¥y
Treatment means
unadjusted adjusted y where bE = Exy/Exx’ v;. and X, are
v, X, yl--bE(Xl-'x--) treatment i means from r. observations,
N - -
: 4 and y  and x_  are overall arithmetic means

- - - - - for the variates Y,. and X, ., respectively.
Yy X, yv-—bE(Xv-—X.-) ij ij
v.. X -

Standard error of a difference between 2 adjusted treatment means, i and i'

(}-(:I': _}-(i ' )2

'\/VE-X- {i +
NA'S I‘i I‘i

+E'}

XX



Table 2.1.

(Cont'd)

Average standard error of a difference between 2 adjusted treatment means

* _
/ 2% » T_J(v-1)
r E

XX

} = AW

2 adjusted means =

/

Efficiency of covariance

Residuals

Residuals for Y. .:
1J
Residuals for X. .:
1J

Residuals for adjusted Yij: e.

Solutions fo

r

2Eyy/rv(r-l)A*, r, =

1

A%

r

average of v(v-1)/2 variances of a difference between

Aver. unadjusted standard error of a difference/A%* , r, % r .

>

ijy

o>

ijx

1

13

fixed effects, using usual

= Tiy T Y

=X..-X
iJ i

=e.. -be, . =Y, - (?..
ijy Eijx iJ ij

constraints

T >

= V...
= Y5 bE(X1~-X~~) =
= yi'—y- - bE(Xi'_X")

adjusted itP? treatment mean



Table 2.2. Covariance analysis for a randomized complete block design.

Source of Degrees of Sum of products

variation freedom v Xy xZ F

Total rv-1 S =y'y-R S S

yy = LYRG) Xy Xy
Block r-1 yy D/H) Bxy BXX
t -1 =R(T T T -
Treatmen v yy (1/u) - e (r l)Txx/Exx
= 7
Error (r-1)(v-1) Eyy v'y-R(k,p,7) Exy E .
Adjusted sum of squares Mean square F
Error adj. r-1)(v-1)-1 | B' =E_ -E2 /E_ =y'y-R(u,T E* -
adj (r-1)(v-1) yyyyxy/xy:zy (1,7,0,B) x

Error 2 = 2 2 *

regression L Exy/Exx R(B/1,750) Exy/Exx Exy/ExxEyy
Treatment + r(v-1)-1 (T_+E_)'=T +E _ _

error yy vy yy vy

2
(T *E )7/ (T ¥E ) @

Treatment adj v-1 =(T _+E_)'-E' =R(t ' T T JEH*

reatm J yy (,YY yy) vy (/“JQ)B) y—y/ vy

Treatment means

unad justed adjusted y where bE = Exy/Exx’ ;. and X, are
. X, yl'_bE(Xl° X .) treatment i means from r observations,

: : : ’ and y _ and x _ are overall means for
V. X yv—_bE(Xv-—X--) the variates Yij and Xij’ respectively.
y.. X -




Table 2.2. (Cont'd)

Average standard error of a difference between 2 adjusted treatment means

Ve Terp——

Efficiency of covariance

EEyy/r(r-l)(v-l)A*

Residuals
' Residuals for Y. .: 3.. =Y.. -YV. -y .+7
1J 13y 1J yl' y'J I
Residuals for X. .: e.. =%X..-%X -% .+%
ij ijx iJ i. *J ..
i A

Residuals for adjusted Yij: e.,. =

Solutions for fixed effects

D=3
N - - -
Sy Tl = yi' - bE<X1'—X )
Ty =Yy -V - bp(xg -x )
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Table 2.3. Covariance analysis for a latin square design.
Source of Degrees of Sum of products
variation freedom y2 Xy xZ F
Total V-1 S_=y'y-R S S
L Y-R(W) - e
Row v-1 R_=R R R
~R(o/1) - -
Column v-1 C._ =R C C
sy RO ) - x
Treatment v-1 TW=R(T/ ) Txy Ty (v-2)Tx X/EXX
Error (v-1)(v-2) E E E
vy Xy XX
Adjusted sum of squares Mean square F
5 - -2)- ' = -2 =v 'v- a* -
Error adj. |(v-1)(v-2)-1 By By Exy/Exx y'y-R(4,0,Y,7,8B) Y
Error 2 — 2 2 #*
regression 1 Exy/Exx—R(B/“’p’Y’T) Exy/Exx B ExxEyy
Treatment + | (v-1)2-1 (T _+E_)'=T +E - -
error oy oy
2
(Tt B W (T B )
Treat t ad] v-1 T' =(T _+E '"-E' =R(7, T T /E#*
reatmen 1 vy ( vy yy) vy ( /H:O:Y;?) vy yy/ vy
Treatment means \
unadjusted adjusted y where bE = Exy/Exx’ y.i.and X, are
V.. X4, y'l'-bE(X'l'-X’*') treatment i means from r observations,
: > and y ., and x, , ,  are overall means for
Y.y X . y-v--bE(X-v--x---) the variates Yhij and Xﬁij’ respectively.
V... X -

Standard error of a difference between 2 adjusted treatment means, i and i'




Table 2.3.

- 11 -

(Cont'd)

Average standard error of a difference between 2 adjusted treatment means

VEsy (e nd e, )

Efficiency of

covariance

2Eyy/v(v—l)(v-2)A*

Residuals

Residuals for Y, . .:
hij
Residuals for Xhij:

Residuals for adjusted Y 54t

Solutions for

>

>

hij

fixed effects

>

®hijy
ehijx

1
®hij

A
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Table 2.4. Covariance analysis for a split plot design.
Source of Degrees of Sum of products
variation freedom y2 Xy x° F
Total rab-1 S S S -
vy xy XX
Block r-1 R R R -
vy Xy XX
W.p.treat.=A a-1 L. L. W (r-l)wm/EXX
Error (a) (r-1)(a-1) Aw Axy A
S.p.treat.=B b-1 Ty TXy Ty a(r-l)Tm/EXX
A XB (a-1)(b-1) Iy Ty Iy a(r-l)IXX/(a-l)EXX
Error (b a(r-1)(b-1 E E E -
(v) (v-1) (b-1) - - -
Adjusted sum of squares | Mean square F
E a) adj. | (r-1)(a-1)-1 A' =A_ -AZ /A A -
rror(a) sdj. | (r-1)(a-1) o =h B2 /A » o
Error(a) + r(a-1)-1 (W_+A_)'=W__+A - -
w.p. tr. voyy vy
_ 2
(W +A T (AR )
A adj. a-1 W' =(W_+A "-A Wik W¥ /A
aed by~ iy ) =By vy vy
= R(O‘/U) Q)BA)
. - - — \ = - 2 * -
Error(b) adj. | a(r-1)(b-1)-1 Eyy Eyy Exy/EXX E
Error(b) + b-1)(ar-a+l)-1 T +W _)'=T +E - -
rrox(b) (0-1) (ar-a+1) (40 )'=T +E
2
(T *Ey) /(T *E,)
B adj. b-1 T' =(T +E '-E' T T #*
J Np ( vy :yy) vy By
E b )+AXB b-1)(ar-1)-1 I _+E '=I +E - -
rror (b) (b-1) (ar-1) (1,78 ) =T 8
AXB adj. a-1)(b-1 I' =(I_+E '-B I3 I* /g
acd (a-1)(b-1) vy~ Ty Byy) By vy v 5oy
Error (a) 2 2 ‘ 2 #*
regression l Axy/ Axx Axy/ AXX Axy/ AxxAyy ‘
Error (b) 2
1 E 2 2
regression XY/EXX Exy/Exx Exy/ExxE‘f:;'Ty
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Table 2.4, (Cont'd)

Whole plot treatment means

unad justed adjusted y
Y. X, y_l.-bA(x_l.-X'..)
: : 4
Y., X .. v —bA(x -x )
y... X

Split plot treatment means

unad justed adjusted y

y"l X..l y l E(X‘ _X.. ) o
-

Yoo *oup y..b'bE(X,.b'X...)

where bA = Axy/Axx’ V.. and X 5.
are whole plot treatment i means
from rb observations, and ﬁ.__ and

b'd are overall means for the variates

3 and Xh ., respectively.

where bE = Exy/Exx’ and y_.j and x
are split plot treatment j means

from ra observations.

Split plot treatments within levels of whole plot treatments

unad justed adjusted y N
Y1 A1 V.11 (X 7%,
-bA(x_l -x_ )
Yoip %1 V.15 Pg (X%, 1)
\
bA<X.1b' “oe ) 4
Yoo1 X1 Vo1 05 (%, p17%.0.)
-b, (% 0.7 X% .)
y-ab x-ab y ab bE(X ab X~a-)
_bA( ar X /

where g-ij and i~ij are treatment

ij means for j*" split treatment

in i*® whole plot treatment from

r observations for variates Yhij

and Xhij’ respectively
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Table 2.4. (Cont'd)

Standard error of a difference between 2 adjusted whole plot treatment means i and i' .

)2

(x . )
g, 150 Exta
yy U rb AXX

Average standard error of difference between 2 adjusted whole plot treatment means

5 A 1
S pw - = A¥*
’\/rbAyy l+wxx/(al)Axx} Aw
Standard error of a difference between 2 adjusted split plot treatment means, j and j'

(k.. .-x, 1 )2
\/E-x- 2 4 % 3’ }
vy \ar =

Average standard error of a difference between 2 adjusted split plot treatment means

2
S - = A%
“/ar Eyjy‘ {l * Rxx/(a l)Exx } AS

Standard error of a difference between 2 adjusted split plot means at the same level

of a whole plot treatment, ij and ij'

- = 2
X ..=X ..
/E* 2, Fag*ay) }
vy r Ex_x

Average standard error of a difference between 2 adjusted split plot means at the

same level of a whole plot treatment

J% B {1 + (14T )/a(o-1)E } = A*



Table 2.4, (Cont'd)

Efficiency of covariance

Whole plot:

Split plot:

Split plot within whole plot:

- 15 -

2Ayy/rb(a-1)(r-1)A§
2Eyy/ra2(b-l)(r-l)A§
QEW/ra(b-l)(r-l)A;;S

Residuals
id ..t a =y, . y -y
Residuals for thJ ahiy yhl. yh . y_i.
®nijy = Thij " Yni- " Y.
Residuals for Xhij: ahix = Xhi- - yh. - y-i-
®nisx = Fnij T Fnie T e
. . . 1 A _ ~ .
Residuals for adjusted Yhij' & = iy bAath
®hij = ®nisy " PEChijx
Solutions for fixed effects
o=y
b+t =yt bA(x-i--X"-)
TS Vg m VL Gy ex )
/i\d ¥ b (X X
. = . - X  .-X
K 3 Y,,J EVE -3 ..
a. =¥y .-y -b(x .-x
J yo-J y.o E( . . .)
aBiJ = y'lJ - Y_i, - Y.'j + y. - bE(X.ij-X,i.-X.oj+X
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3. Numerical Examples of Covariance Analyses .

The nature of the four numerical examples selected for the four experiment
designs (the completely randomized, the randomized complete block, latin square,
and split plot designs) has been discussed in the first section. A number of
numerical results presented in Tables 3.1 to 3.4 are in fractions in order to
eliminate any rounding errors due to lack of carrying an insufficient number
of significant digits. In cases where fractions are not used, e.g., residuals
for the Y variable adjusted for the covariate, a sufficient number of significant
digits were carried to keep rounding errors small. The sum of squares of residuals
can then be used to compute the error line sum of products and have exact or

close agreement with the correct values.

It may be desirable to have the option of whether or not to compute the
individual standard errors of a difference between two treatment means adjusted ‘
for error regression. If the treatment means i'i' are not too variable or if
the number of treatments v is large or moderately large, it may be desired not
to compute the v(v-1)/2 individual standard errors. Instead, only the average

standard error of a mean difference would be computed.
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Table 3.1. Covariance analysis for completely randomized design from Searle, Linear
Models, pages 353-355.

Source of Degrees of Sum of products
variation freedom Xy x° F
Total 6 ¥ 'y-R(n)=392 L3 82/7 -
Education level 2 R(t/p)=310 Lo Lo/7 1.901
Error L Y'Y'R(“’T)=82 3 6 -
Adjusted sum of squares Mean square F
Error adj. 3 v'y-R(u,7,8)=80.5 26.833 -
Error regression 1 R(B/u,7)=1.5 1.500 0.06
Education + error 5 234,16 - -
Education level adj. 2 R(7/u,B)=153.66 76.83 2.86
Education level means . Standard errors of a difference between
Regression 2 adjusted means
unad justed adjusted y coefficients J
- - 2 - Adjusted Adjusted treatment mean
y,,=713 % =3 737 by 3/ 61/ treatment
mean
vy, =78 %, =3 782 b, =40/40/T=T 882 782
e 2 7 T 7 7
2
- - 2 T73= 6. 34h k. 729
=8 = 88_
V3,799 %555 = 7
- - 2
y..=79 x_  =25/T - 762 6.687 -

Average standard error of a difference between adjusted means

6.3442 + 4 7297 + 6.68

Efficiency of covariance

L) [a(3+3) s (3+3)] /550 -
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Table 3.1. (Cont'd)

Residuals
v, y Adjusted ¥, = éijy - bESin

g11y =1 gllx = 0 1

812y = -5 ngx = 1 -11/2
€l3y = L 813x = -1 9/2
gBly =2 821x = -1 - 3/2
822y = 2 g22x =1 3/2
831y = -k 831X = -1 - 7/2
8. = & 8., =1 7/2

®30y 30x%
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Table 3.2. Covariance analysis for a randomized complete block design from Snedecor and
Cochran, Statistical Methods, pages 427-428.

Source of Degrees of Sum of products

variation freedom vy Xy x2 F
Total 23 v 'y-R(1)=18,678.50 1485.00  181.33 -
Block 3 R(p/p) = 436.17 8.50 21.67 -
Variety 5 R(t/p) = 9,490.00 559.25 45.83 1.21
Error 15 y'y-R(1,0,7)=8,752.33 917.25  113.83 -

Adjusted sum of squares Mean square F
Error adjusted 1k v'y-R(u,p,7,B) = 1,361.07 97.22 -
Error regression 1 R(B/u,p,T) = 7,391.26 7,391.26 76.03
Variety + error 19 4 587.99 - -
Variety adjusted 5 R(t/u,p0,B) = 3,226.92 645.38 6.64
Variety means
unadjusted adjusted y Regression coefficients

51. = 173.00 il_ = 2k.00 191.8 by, = 917.25/113.83 = 8.058
52' = 182.25 22. = 25.25 191.0 by, = 559.25/45.83 = 12.203
y3. = 19%.50 X5, = 26.50 193.1
y),. = 23.75 x,. = 28.00 219.3
Y5, = 201.00 Xs, = 27.75 189.6
Yg. = 215.00 Xg, = 26.50 213.6
y.. = 199.75 x.. =793 -
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Table 3.2. (Cont'd)

Standard errors of a difference between 2 adjusted means

Adjusted variety Adjusted variety mean
mean 191.8 191.0 193.1 219.3 189.6
213.6 7.345 7.067 6.972 7.109 7.067
189.6 7.786 7.%21 7.067 6.976 -
219.3 7.891 7.345 7.343 - =
193.1 7.345 7.067 - - -
191.0 7.067 - - - -

Average standard error of a difference between 2 adjusted means

45.83

V7 or2) {2 v gy ) - o2one - 1k

Efficiency of covariance

12(8,752.33)/4(15) (52.519) = 556%
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Table 3.2. (Cont'd)

Residuals times 12 Adjusted residuals
Ty %53 Siiy 7 PEeigx = i
Slly = 413 allx = Lo ej; = T7.557
812y = - 61 Elgx = -10 e, = 1.632
813y = 169 813X = 22 ei3 = - 0.690
81hy = -521 814x = =52 el) = - 8.499
821y = -382 821X = -35 ey, = - 8.331
@22y = 260 ooy = 23 el = 6.222
@23y = 202 823X = 19 eés = k.o75
824y = - 80 824X = -7 el = - 1.966
831y = - 13 831X =-2 el = 0.260
832y = - 179 832X = -16 elp = L.161
833y = -161 833X =-8 eéS = - 8.045
83uy = 253 834X = 26 eé)+ =  3.625
8uly = -316 Sulx = -56 ey, = 11.270
842y = 1k Chpy = 1k ey, = - 8.234
€L3y = 16 €h3x = 10 ej3 = 5382
@uhy = 286 ghhx = 32 ey, = 2.346
€5ly = 77 éslx = 19 eél = - 6.342
852y = -2kl 852X = -7 elp = -15.363
853y = - 83 853x = -35 ely = 16.586
€5uy = 247 §5hx = 23 eéh = 5.139
' €6ly = 221 P el = - h.ulk
862y = 107 862x =- L efp = 11.603
863y = -143 863X =-8 eé3 = - 6.545

Couy = -185 Sy = 22 eéh - 0.64k
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Table 3.3. Covariance analysis for a latin square design from Federer, Experimental

Design — Theory and Applications, pages 490-495. ’

Source of Degrees of Sum of products

variation freedom y2 Xy 'S F
Total 35 v'y-R(p) = 73.268 -10.175 134.750 -
Row 5 R(p/n) = 1.906 4. 708 29.583 -
Column 5 R(y/u) = 10.010 3.358 17.583 -
Hybrid 5 R(7/u) = 32.413 -25.208 19.917 1.18
Error 20 ¥'y-R(4,p,Y,7)=28.939 6.967 67.667 -

Adjusted sum of squares Mean square F
Error 19 yv'y-R(u,p,Y,T,B)=28.222 1.485 -
Error regression 1 R(B/,p,Y,T)=0.717 0.717 0.48
Hybrid + error 2k 57.553 - - .
Hybrid adjusted 5 R(7/uW,p,Y,B8)=29. 331 5.866 3.95
Hybrid means
unadjusted adjusted y Regression coefficients

¥.q. =7-08 x,;. = 17.00 7.09 by = 6.967/67.667 = 0.103
V.o, = 8.22 X5, = 16.33 8.30 bp = 25.208/19.917 = -1.266
5.3. = 7.08 i_3. = 17.00 7.09
Y., =762 x,), = 16.67 T7.66
V.5, = 7.5 % g, = 16.83 7.60
5-6- = 5,18 i‘é_ = 18.67 5.02
y... = T7.125 x,,, =17.08 -




Table 3.3. (Cont'd)
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Standard errors of a difference between 2 adjusted means

Hybrid mean

Hybrid mean 7.09 8.30 7.09 7.66 .60
5.02 0.746 0.711 0.706 0.705 L7554
7.60 0. 70k 0.705 0. 70k 0.763 -
T7.66 0.706 0.708 0.7k6 - -
7-09 0. 70k 0. 784 - - -
8.30 0.711 - - - -

Average standard error of a difference between 2 adjusted means

‘ 3.9834

22 2y ) = ol

Efficiency of covariance

2(28.939)/6(20)(0.5243) = 92%



Table 3.3.

- o4

(Cont'ad)
Residuals times 6
Tni Xnij
g111y = 8z g11:Lx = 13
8122y =-8.2 gl22x = 2
i3z = MO Bgg= 0
Clny T - L5 By, = -1
8155y = 6.k 8155X = -10
Slpey = 7 03 Fige = 2
Sopry = 728 Sy = 2
8232y = ,u'6 8232X = -11
Sopay = 36 Soug = -8
825uy = -10.8 825hx = 1b
6265y = k.5 8265x = 12
So16y = 09 Coigy = -9
S3qy = 792 Eygyt o0
C3ay = 83 Eypp 72
Sy = T 22 Bz = o T
83643,- = 2.9 83&X = 6
sy = T BT By = o T
8346y = 1.9 3346x = 1k
ahhly = 0.6 fy.= 0
Cugey = 7 98 Sygex = 10
Chpgy = 58 Sz = 6
Saby = 9 By =0
3&35y = 4.3 8h35x = 16
8456y =-538 g456x =-e
ooy = 20 Esmiy =70

Adjusted residuals

N

®hijy ~ bEghijx = i
eill = 1.14k
ei22 = -1.k01
ei33 = -0.852
el = -0. 0kk
ei55 = 1.238
ei66 = -0.08k4
eé2l = -0.501
3o = 0.955
eé43 = 0.737
eéSh = -2.040
e2'65 = 0.54k4
eé16 = 0.304
eéSl = -1.448
e§52 = 1.%00
eélS = -0.247
eéé& = 0.380
eéeS = -0.163
eéua = 0.076
eﬁul = 0.100
eﬁ62 = -0.709
eﬁ23 = 0.864
eﬁlh = 0.236
eg35 = 0.442
eﬁ56 = -0.932
eé51 = 0.419



Teble 3. 3.

(Cont'd)

shkay

>

©563y

>

52ky

>

€515y

>

€536y
661y =
g612y
g653y
63hy ~
6hsy ~

C626y =

- 3.7
- 2.5
10.2
-12.6
6.6
1.2

4.8

- 1.7

3.3

5hox

>

€563x%

€50l x

>

€515%

>

©536x
C661x
8612x
g653x
®63hx

Cehsx T

©606x

- 25 -

= -0.805

-0.k17
1.683
-1.997
1.117
0.286

0. 560

= -0.085

= -0.215

-0. 064

= -0.482
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Table 3.L4.
Station Reports 1931, page 142.

Covariance analysis for a split plot design from the Rothamsted Experiment

Source of Degrees of
variation freedom y2 Xy xZ F
Total 35 3,239. 9hkk 1,959.8611 2,988. 6528 -
Block 5 975. khlh 219. 3611 205. 0695 -
Variety = V 2 118. 0277 - 144.8056 224 ,1111 3.95
Error (a) 10 370.4723 18%.8056 283. 7222 -
Fertilizer = F 3 1,262.3888 1,435.2500 1,638.8194 Lo.81
FXV 6 23.1946 23.9167 34.5556 0.43
Error (b) 4s L9o. 4166 241.3333 602. 3750 -
Adjusted sum of squares Mean square F
Error (a) adjusted 9 250.0971 27.7886 -
Error (a) + variety 11 485. 349k - -
V:J;islfy(zc;jée?r > 235.2523 117.6261 k.23 ’
Error (b) adjusted Ll 393.7297 8.948L -
Error (b) + fertilizer L7 498,593k - -
Error (b) + F X V 50 Lo3.1477 - -
Fertilizer adjusted 3 104.8637 34,9546 3.91
F X V adjusted 6 9.4180 1.5697 0.18
Error (a) regression 1 120. 3752 120. 3752 4. 33
Error (b) regression 1 96. 6869 96. 6869 10.80
Regression coefficients
b, = 184.8056/283.7222 = 0.65136; b, = -144.8056/224.1111 = -0.64613;
by = 2l1.3333/602.3750 = 0.4006k, by = 1435.2500/1638.8194 = 0.8758; and
b. = 23.9167/34.5556 = 0.6921.
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Table 3.4. (Cont'd)
Oat Variety
M G v
Fertilizer unadjusted adjusted | unadjusted adjusted| unadjusted adjusted
Yoy Ty Yeag | Vees ey Yy (Ve3g %3y YVesg
1 21.67 28.50 25.66 |20.00 30.17 22.47 |17.83 31.00 19.83
2 27.17  34%.00 28.96 |2k.50 36.50 2k.k4k | 22.17 36.50 21.96
3 29.33 36.17 30.26 |28.83 L40.83 27.03 |27.67 L41.33 25.52
4 31.67 39.17 31.39 |31.17 44,00 28.10 |29.67 L45.00 26.05
V;Ziity 27,46  3W.46  29.07 |26.12 37.88 25.51 |24.33 38.46  23.3h
Fertilizer mean
Fertilizer unadjusted adjusted
37..1 }_("l 3-[..]_
1 19.83 29.89 22.65
2 24,61  35.67 25.12
3 28.61  39.44  27.60
In 30.83 k42,72  28.51
Variety
mean 25.97 36.93 -

Standard error of a difference between two adjusted whole plot (variety) means

M : 29.07 G : 25.51
Vi 23.34 1.970 1.533
G : 25.51 1.860 -
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Table 3.4. (Cont'd)

Average standard error of a difference between 2 adjusted variety means .

5(57. 7856 5ol 1111 3 )
«/ A {1 * 5(283.7202) } = 3.230305 = 1.797

Standard errors of a difference between 2 adjusted fertilizer means

1 : 22.65 2 : 25.12 3: 27.60
4 : 28.51 1.855 1.316 1.07k
3 : 27.60 1.533 1.098 -
2: 25.12 1.221 - -

Average standard error of a difference between 2 adjusted fertilizer means

' . n
“/12_8 (8.948%) {1 + 31682-53%2 } = 1.895933 = 1.377

Standard error of an adjusted mean difference between 2 fertilizers for a given variety

Variety M 1 : 25.0k4 2 . 28.34 3 : 29.6k4
b s 30.77 2.162 1.752 1.733
3 : 29.6k4 1.96k4 1.73% -
2 : 28.34 1.900 - -
Variety G 1: 22.71 2 : 24, 67 3: 27.27
4 . 28.33 2.413 1.95k4 1.770
3 27.27 2,161 1.806 -
2: 2k, 67 1.892 - -
Variety V 1: 20.21 2 : 22.3k4 3: 25.90
L . 26.43 2.428 2.01k 1.784
3: 25.90 2.137 1.825 -
2 22.3k4 1.853 - -
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Table 3.4. (Cont'd)

Average standard error of a difference between 2 adjusted fertilizer means for one variety

2(8.948L (1638.8194+34.5556) _ _
J EEFE o Ul e dtansdl 1 - 5.90978 - 1.976

Efficiency of covariance

Variety or whole plot: 2(370.4723)/24(10)(3.230305) = 96%
Fertilizer or split plot:  2(490.4166)/18(45)(1.895933) = 649
Fertilizer within variety: 2(490.4166)/6(45)(3.903478) = 93%
Residuals for whole plots times 36 = ra/b Residuals for adjusted v, .
/Siihi- /B'ihi- /B(ahiy - bAghix)

ally = -203 allx = - 30 -5.0599

ﬁlzy = 73 812X = 28 1.5212

313y = 130 §l3x = 4 3.5387

any = 289 lex = 256 3.3959

aggy = -173 gEEx = -206 -1.0783

823y = -116 a23x = - 50 -2.3176

a3ly = 127 331X = 148 0.8500

832y = -119 332X = ke -4.1378

833y =-8 233x = -194 3.2879

ahly = -197 8,, = =22 -5.8703

auey = - 65 ghzx = -152 0.9446

ah3y = 262 au3x = 130 L. 9256

gBly = -155 aSIX = -28k4 0.8330

852y = 175 352X = 226 0.7720

353y = - 20 353X = 58 -1.6050

861y = 139 861X = -110 5.851k

362y = 109 862X = 58 1.978k4

363y = -2L8 363x = 52 -7.8297
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Table 3.4. (Cont'd)
Residuals

2k 8hijy 2k ghijx ghijy - bEghijx
hj i=M i=G i=V i=M i=G i=V i= i=G i=v
11 7 51 - 12 - 31 5 89 0.809 2.042 -1.986
12 - 77 - 57 28 - 67 - 75 - 43 | -2.090 -1.123 1.88k4
13 87 - 65 - 32 121 61 - 15 1.605 -3.727 -1.083
14 - 17 71 16 - 23 9 - 31 | -0.32k 2.808 1.184
21 - b1 - 15 66 17 - 61 131 | -1.992 0.393 0.563
22 67 1] - 62 53 99 - L9 1.907 4. 222 -1.765
23 39 -39 F | -7 -5 75 | 2.k10  -2.375 2.665
2k - 65 - 67 - 98 - 23 - 33 -157 | -2.32k4 -2.2h1 -1.h62
31 61 135 - 66 b1 179 - 97 1.857 2.637 -1.131
32 - b7 -21 - 50 - L3 - 69 59 | -1.24k1 0.277 -3.068
33 21 - 77 106 kg - 5 15 0.057 -3.125 L. 166
3k - 35 - 37 10 - b7 -105 23 | -0.67k4 0.211 0.033
L - 17 51 - 30 - b9 - 7 - ko 0.110 2.24h2 -0.k32
Lo 67 - 81 - 38 35 - 15 179 2.207 -3.125 -4 571
43 -105 103 - 2 - 65 1 - 57 | -3.290 L. 275 0.868
Lk 55 - 73 70 79 21 - 73 | 0.973  -3.3%2 k.135
51 1 -117 48 - 19 11 - 1| 0.359  -5.059 2.017
52 - 35 15 Lo -7 - 69 -85 | -1.341 1.777 3.086
53 9 79 -140 13 19 - 57 0.158 2.974 -4.882
5k 25 23 52 13 39 143 0.825 0.308 -0.220
61 - 11 -105 - 6 b1 -127 - 73 | -1.143 -2.255 0.969
62 25 3 82 29 129 - 61 0.558 -2.028 b 435
63 - 51 19 - 26 - 71 - 71 39 | -0.9%0 1.977 -1.734
o 37 83 - 50 1 69 95 1.525 2.306 -3.669




- 31 -

4. Adequacy of Package Programs to Obtain the Desired Computations

The desired computations from covariance analyses of four standard experi-
ment designs have been discussed in previous sections. In this section we
follow Heiberger's (1976a) format. The computations desired are listed on
the left hand side of Table 4.1 for the randomized block and latin square
designs with one covariate, and Table 4.2 for the split plot design with one

covariate, with a summary of performance in Table L. 3.



Table 4.1. Printed output features of statistical package program
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Randomized block design with one covariate
Latin square design with one covariate

for:

Version/Date

ANOVA table for unadjusted y

for x
Sums of products for xy

Adjusted ANOVA table for y

Sums of squares for covariates,
Error regression

Significance tests

Observed significance of test
(Probability)

Treatment means
Adjusted treatment means
Standard error of differences between

adjusted means

Average standard error of differences
between adjusted means

Single degree of freedom contrasts
Effects (coefficients, solutions)
Regression coefficients for covariates

Residuals for: unadjusted y

X

adjusted y

Estimate efficiency of covariate adj.

BMD GENSTAT SAS SPSS
P2V ANOVA GLM ANOVA
eil 76.6 H 7.02
1977 1977 1978 1977
X 0 X X
X 0 X X
tions default
0 0 SS 2,3,4 Op )
3 7,8,9
0 0 SS 2,3,4 Options 7,9
S S RU R q
0 - 0 0
X 0 0 D
with
0 tion 9
c 0 < not in GIM > p P
earlier versions
- - T -
- 0 - -
- 0 - -
- 0 7 -
0 0 0 Options 7,8,9
0 0 -
- 0 - -

®
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Notes: O = the program has the features in One procedure call

X = the program has the feature, but requires an eXtra procedure call,

e.g., ANOVA without covariates

- = the program lacks the feature

W = Wrong or inappropriate value given which the user would be tempted
to use

R = all effects tested against Residual

S = appropriate test determined from Specifications

U = User-specified numerator and denominator for F-tests

D = expressed as Deviation from the mean

C = (Cell means

T = does not give standard errors, but Tests the difference of 2

adjusted means and gives p values
Z = solution with Zero constraints (e.g., last factor level set to 0)

the SS are for whole plot means and so are 1/b times the SS for

1

L

o'l
Il

observations. The F-tests are correct, with the scale factor

cancelling.

P = Pool block by subplot interaction with residual to get subplot error

BMDP2V and GENSTAT ANOVA

Give the correct analysis from the design specifications.

SAS GLM options for sums of squares.
Type 2, 3, 4 are identical with orthogonal data models without interaction.

Type 1 gives sequential sums of squares and so is dependent on the order

of variables specified in the model statement.

The default option gives types 1 and 4 sums of squares.
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SPSS ANOVA options

Default and 10 fit covariate first and give regression coefficient for

total line.

The default option for SPSS ANOVA would be more appropriately set to
option 7.

The order of specification within the factor set and covariate set is
irrelevent for the default, 7, 8 and 9 options, but is relevant

for option 10.

It cannot handle nested designs, e.g., split plot.



Table 4.2 Printed output features of statistical package programs for split plot design with one covariate (with possibly different whole and subrlot regressions).

.L..J‘

BMD GENSTAT SAS

p2v ANOVA L

hool 76.6

Version/Date 1977 1977 1978

Analysis 1 Analysis 2 Analysis 1 Analysis 2 Analysis 3
ANTVA tebdle : unzdjusted y (o] X hasd
for x X 0 X el
Sums cf products ror xy¥ N - - - - -
Adtusteld ANIVA table for yv:

f" rlot treatment A W 0 ) W 2,3 x[2,3,47 W
. 1 A W 0 0 W 0 x| o I3 ¥
(2) regression - (o] 0 - W )f~2,3,1¢_l W
L trestment B 0 W 0 3,4 3,4 w
{ 0 W 0 2,3,4 2,3,% kK
B 0 P 0 o] ‘0 P
iE:‘rcr (v) regression 0 W 0 2,3,k 2,3,4 "
Significence testis R S S RU =S e
Cocerved significence test {Probability) 0 - 0 0 W
Whole plot 0 0 0 W
Trestient Jgerlit plot X 0 0 o 0 W
______ Srlit plot within whole plot X o] 0 o] -
Adiusted l"n'hcle tlot - WeC (o] \U X W
treitment < Split rlot C we 0 0 0 w
Feans 13;11: rlot within whole plot We 0 W W -
l".\“nole olot - - WT XT -
j t - - T T -
\ - - WT WT -
f ) : ) ) ]
- 0 - - -
ISubplot within whole plot - (o] - - -
degree of freedom contrasts - (o] - - -
Whole plot - o] W Z -
ficients solutions) | Subplot - 0 z z -
Whole plot - 0 0 - X -
ba {Subplot (o] 0 0 4] w
fL'r.ad:usted Y: VWhole plot X (o} - X -
! :  Subplot X o] X X -
Residusls < X: Whole plot X o - X -
o } :  Subplot X 0 X X -
I Azjusted Y: whole plot - 0 - X -
k :  Subprlot 0 0 0o 0 0 -
whole plot - 0 - - -
S { ssbplot ; ° . ] )
{ Subplet within whole plot - 0 - - -

w
«



Table 4.3. Summary of package capabilities for split plot design with covariate.

BMD GENSTAT SAS SPSS

P2v ANOVA GIM ANOVA

L, o1 76.6 H 7.02

Version/Date 1977 1977 1978 1977

Analysis 1 Analysis 2 Analysis 1 Analysis 2 Analysis 3
Features available 0's etec. 9 10 33 14 16 15 1
Available with extra

procedure calls X ° 8 © b H 13 2
Not available - 17 13 5 13 12 8 22
Wrong or inappropriate W 3 7 0 7 6 o 13

calculation

_QE—



Nt e

M ~Ams:.vm.¢..m&«m¢nuw B S T

. e,

T

SPECIFICATION OF SPLJY PLOT ANALYSIS WITH COVARJATE
— e upp o e em - - e - A
ANALYSIS 1 - COVARIATE ACJUSTED ON ERROR(B) LINE
/PROBLEM TITLE IS *SPLIT PLOT CESIGN WITH COVARIATE®,
___/INPUT _ VAFIARLES ARE Se . L ) )
’ TUFORMAT IS *(F1.042F2,042F3,0)Y, T T T T s e
/VARIABLE NAMES ARE PLOCKoVAPIETY NITROGEN¢X4YIELDW
/DESIGN GROUPING ARE 14243,
o DEPENDENT 1S S,
COVARIATE 1S 4.
INCLUDE IS 14293912423,
RESIDUAL = MEAN. T
_ . PRINT, O
° - - - —————— —— e e - - - o—— — e e - -
TTTTT 7T U DATA - Tt ) -
e e e . - .. - - - — ——— -~ - - —— e —— - s o e — o —— e —
6 3 2 36 23 )
TTTTTETETYTAs 24 D
& A S RS e
o __ ANALYSTS - REPEATED MEASURES FORMULATION o o
/PROBLEM TITLE IS *SPLIT PLOT WITH COVARIATE USING REPEATED MEASURES®e
T 7INPUT TTTTT T VARIAELES ARE 10, T T T TS ’ ’ TrTmrm s T

FORMAT IS

*(FleBsF2.048F3.0)°,

/VARIABLE ~ = NAMES ARE BLOCK9VARIETY «X14Y19X24Y24X34Y34X4,Y4,

/DESIGN GROUPING ARE BLOCKyVARIETY.
T T "7 DEPENDENT ARE 44646410a. - B o
COVARIATE IS 3454749,
LEVEL IS4, 777 7T - -
NAME IS NITROGEN.
- EXCLUDE IS 12, 7 7T - T
RESIDUAL = MEAN,
‘‘‘‘‘‘ TTUPRINT. T T . Tt T T T
/END
11 24 16 28 18 38 27 35 25
1 2 2820 31 20 41 24 42 32 e
- 173 32716732 22 38 25 41 29
e T =TT i e e e e -
DATA
TTTTTTTé1 30 24 35 31 33 2039 36 o . ) - T
6.2 27 18 44 27 40 32 49 37 _ o e o
6 3 30 15 36 23 45 24 51 25
GENSTAT ANOVA
YREFERENCE® SPLIT_PLOT
Tttt OPAGE' o T o mmmTT T T T - "
_..'CAPTION® [ [
"
__SPLIT PLOT DESIGN
TTWITH 1 COVARIATE o -
e
- 'UNITSI”" ° s’ 72 T TTTT T o :H—“"”- T o e - -
SNAMES® VARLEVELS = MARVLOUSy GOLDRAINs VICTORY
T NITLEVELS = 0-CWTy 0e2-CWTy De8~CWTy O.6-CWT ' -
*FACTOR? BLOCKS $ 6 .
¢ TTITT UTPLOTS ¢ 3T T Tt -
: SUBPLOTS $ &
T "TVARIETY $ VARLEVELS ~ T - - . T
: NITROGEN $ NITLEVELS

T YGENERATE® BLOCKSy PLOT
*READ/P4PRIN=DEMFLEV=F?
TTYBLOCKSY T BLOCKS / PLO
*TREATMENTS® VARIETY » N

" *COVARIATES® X

S+SUBPLOTS

VARIETY. NITROGEN, Xy YIELD $ S 9 1Xs &

TS/ SuePLOTS
ITROGEN

*ANOVA/ PR=123134 PRX=10013y PRYU=10013"*

*PAGE"
TRUNY

~ YIELD

T 2416 T T
1122818
113 38 27
OATA

6 3 2 36 23
6 3 3 45 24
6 3 4 51 25
*Cone

R TN 1 o



e are gt e

SAS GLM .
i COMMENT o o )
SPLIT PLOY DESIGN ' - T
. WITH 1 COVARIATE o o ) S
DATA ORIGINALS ’
_____INPUT BLOCK_VARIETY NITROGEN X YIELDS
CARDS:
111 24 16 o . e
171 2 28 18
3 3B 2T
DAYA
6 3 2 36 23
_____ 6 3 3 45 24 7 - T T T T T T T T - Tt T
6 3 4 51 25
T PROCTPRINTS
TITLEL SPLIT PLOT DESIGN 3
TTTTTYITLE2 T CWITH 1 COVARIATE 30 T T T - T
PROC GLM DATA=ORIGINAL;
TTTCLASSES BLOCK VARIETY NITROGEN; 7~ . - T

MEANS VARIETY: o
MODEL™ X YYELD = BLOCK VARIETY BLOCK*VARYETY NITROGEN VARIETY*NITROGEN 7P §

,
TEST H = VARIETY E = BLOCK*VARIETY;
g T e e e R e e
T T T 7T TTANALYSIS 1 - COVARIATE ADJUSTED ON ERROR(B) LINE - -
PROCTGLNMS
CLASSES BLOCK VARIETY NITROGEN;
- TMEANS VARIETY; T T T T T T T T T
MODEL YIELD = BLOCK VARIETY BLOCK+VARIETY X NITROGEN VARIETY+NITROGEN
T TUTUToToomTTTT T T T JUXPX SOLUTION POSS1 SS2 SS3 SS4d
TEST H = VARIETY E = BLOCK*VARIETY:
T USMEANS TVARIETY /ETSTDERR PDIFFS
PAGE 3 :

_ ANALYSIS 2 - ADDITIONAL COVARIATE OF WHOLE PLOT MEANS =~ _.

PROC SORT; BY BLOCK VARIETY;
PROC MEANS; BY BLOCK VARIETY;
VAR X3 .
T OUTPUT MEAN=XBARS -
PROC MATRIX;
TUFETCH XM; )
ONE& = 1/1/1/1:
XK= XM @ ONE4}
_____OUTPUT XK OUT=XMEAN(RENAME=(COL3=XA))3 _ )
DATA COMPLETE: : T
___MERGE ORIGINAL XMEAN} o
PROC PRINT:

T TPROC GLM3
CLASSES _BLOCK_VARIETY NITROGEN;
MEANS ~ VARIETYS
_MODEL __ YIELD = BLOCK XA VARIETY BLOCK*VARIETY X NITROGEN VARIETY+NITROGEN
— / XPX SOLUTION P SS1 SS2 SS3 S$S43

TEST W = VARIETY E = BLOCK*VARIETY;
TTTLSMEANS TVARIETY / E STDERR PDIFF3
TANALYSIS 3 - ANALYSIS OF WHOLE PLOT MEANS AND OBSERVATIONS

T PROC SORT: BY BLOCK VARIETY:
PROC MEANS; BY BLOCK VARIETY; o e
VAR X YIELD; .

OUTPUT OUT=W_PLOT MEAN=WP_X WP_YIELD:

PROC PRINT: ’

PROC GLM DATA=W_PLOT}

T T eLASSES BLOCK VARIETY3 ~— 77 T ) -
_______MEANS VARILCTY: ) e
MODEL WP_YIELD = BLOCK WP_X VARIETY

/_SOLUTION P SS1 _SS2_SS3 SS43

TUSMEANS VARIETY 7 STDERR PDIFFS

PAGES - L o
7777 PROC GLM DATA=ORIGINALS
CLASSES BLOCK VARIETY NITROGENS ) o
T MEANS  VARIETYS
MODEL YIELD = BLOCK*VARIETY X NITRCGEN VARIETY#NITROGEN

LSMEANS VARTETYNITROGEN NITROGEN / STDERR PDIFF:

"/ SOLUTION P SS1 SS2 SS3 SSwy .

S — o —— -

_ DGES NOT HANOLE SLIT PLOT DESIGN AN‘Q OTHER NESTED DESIGNS B



5. Recommendations

In general, the labelling of each SS in the output should be made more
explicit and informative. Source A is not an acceptable label to describe
Afuy A/u,B; A/p,X,B; the SS for A from the weighted squares of means analysis,
and many others, for factors A and B and covariate X. Ideally; the R( ) nota-
tion should be followed, where applicable, using the variable names rather than
the corresponding parameters. The additional complication of restricted models,
with different sets of constraints imposed on the model (rather than just on the
solutions) can also be denoted by including a symbol to denote the constraint.
For example, Searle (1977) uses R*(O/p,B,y)Z, the T denoting the £ or usual
constraints and the ¥ designating it is for a restricted model, to denote SSAW,
the SS from the weighted squares of means analysis. The corresponding variable
names with U to denote usual constraints gives the equivalent (A/MU,B,AB)U which
could be used in output. In designs with a large number of factors, interactions,
or covariates further compromises might need to be made so that, for example,
A/FACTORS, X/COVARIATES and A/COVARIATES, FACTORS could denote A adjusted for
all other factors, X adjusted for all other covariates and A adjusted for all
covariates and all other factors, respectively. When space limitations preclude

the use of the variable name, use first letter as in BMDP2V, could be used.

Of the four packages investigated, the user is well advised to use GENSTAT
ANOVA for an almost complete analysis of orthogonal designs and designs with
balanced or partial confounding, with its block and treatment formulation giving

a succinct description of the design.
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