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Abstract

Hypothetical data are used to illustrate calculations of sums of
squares in the 2-way crossed classification having uneqﬁal numbers of
observations in the subclasses (unbalanced data) but all cells filled.
Sums of squares are illustrated for the classical analyses of variance,
for certain tests of hypotheses, and for certéin restricted models that

yield sums of squares usually found in other contexts.

1. Introduction

Full details are given in Searle [1971] of calculating the sumélof squares in
the classical analyses of variance of the 2-way croéséd classification having un-
equal numbers of observations in the subclasses (unbalanced data). Description is
also given there of the hypotheses tested when these sums of squares are used as
numerators of F-statistics. In contrast to these sums of squares a calculation
procedure for sums of squares for fitting reduced mbdels, as used in some computer
programs, is described and challenged in Searle (1972]. More recently, Hocking
and co-workers [1, 6, 7] have explained and extended these calculations. Detailed
numerical illustration of them is given in this paper, alongside that of the

classical sums of squares,
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The illustrations are based on a small set of}éimp;g, hypothetical data con-

sisting of 8 observations in 2 rows and 3 colums. Because description of the
procedures involved is available mainly inAmatrix terminology, and because most
numerical examples (e.g., Kutner [1974] and Snee [1973]) are sufficiently complex

as to benefit from using a computer, it is felt that a simple illustration in-
volving easy-to-follow numbers will be useful for many readers. The 1llustrations
demonstrate the meaning of some of the sums of squares in terms of hypotheses
tested when the sums of squares are used as.-numerators of F-statistics; and others
are explained by demonstrating their equivalence to some of the well-known classical

sums of squares.

Y

2. Mbdel and‘Notéfion

The usual model for the 2-way classification with interaction is

Vige TH YO TRyt ey L @

for i =1, »++, 8, j=1, ***, bandk =1, **-, nij 2 0. Detailed description is

available in many places (e.g., Searle [1971], Chapter 7). When the data are

written in vector form as

y=Xote (2)
the normallequations for E afe
X® =Xy (3)
where Eo is any solution
2= (X'07Xy ()

with (X'X)™ being a generalized inverse of X'X satisfying X'X(X'X) X'X = X'X. .
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The reduction in sums of squares due to fitting (2) is denoted by R(b) and

can be calculated as
o! 1
R(b) = b°'X'y (5)

inner product of solution vector
= ¢ and vector of right-hand sides of (6)

the normal equations (3).

Considerable use is made of this algorithm which we henceforth refer to as the

R-algorithm.

Suppose X and b of the model (2) are partitioned as in

bl
y =[x, x.] + e. (7)
~2
Then
y=Xb, (8)

is a sub-model of (2) with reduction in sum of squares

R(by) = BXjy = ¥ 5 (XX)) Kyy

corresponding to (5). Further, the reduction due to fitting (2) over and above

fitting (8) is defined as R(gglgl) given by

R(b,lpy) = R(pyb,) - R(py)

p’'X'y - b.X (9)

2 b X1y
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Particular uses of (8) and (9) applied to (1) are well-known. For example,

<.
¥

on rewriting (1) as

(=

Y=Lt Xe v Ee

L

?

,..3:{ + e ' (lO)

where 1 is a vector of 1's, and o, B and Y are the vectors of the a-, B- and

y-effects of (1), it is well-known that

R() = 92,
a L .
R(alu) = = ¥2 /o, - R(u) (11)
i=1
and
a .b
R(H;Q‘:E;X) = .z‘ -E: y?.J'/nlj
i=1l j=1
43 b ' . -a b
where y.. = Z¥.., Y = ZYy.. ,.¥ = 2y, ,,h, = Zn, ., and
ije k=1 ijk i 5=1 ij. . 1=1 i i. 5=1 ij
a
N=n = Zn . Searle [1971, Chapter 7] nas full details.
i=1 ~°
3. Data and Classical Analyses
The data to be used for the illustrations are as follows:
Table 1l: Observations Table 2: Totals
=1 J=2 J=3 Yij. Y.
i=1 7,9 6 2 16 6 2 2l
8 12 12 32
1= 2 8 }-",8 12 y.j. 2)+ 18 1}4’ 56 = y.'
Table 3: Numbers Table 4: Means
i . Vije i
2 1l 1 L4 8 6 2 6
2 1 4 8 € 12 8
n 3 3 2 8 =N §.3- 8 6 7 7=y,
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The easy sums of squares for the classical analyses of variance are then

R(w) = 197, = 8(7%) = 3%,
R(u,@) = £n; ¥5 = 4(6%) + 4(82) : = 400,
i
R(w,8) = 2o 52, = 3(8%) + 3(6%) + 2(7%) = 398,
J
R(u,Q,B,Y) = ZanJy = 2(82) + 62 + 22 + 82 + 2(6P) + 122 = L48§,
iJ
and
y'y = BEEyT. =72+ 9%+ 6%+ 2% 4+ 8% + 4% + 8% + 127 = L58.
ijk J
These lead to
R(alp) = 400 - 392 = 0,
R(glu) = 398 - 392 = 6,

and

SSE = y'y - R(w,@,8,Y) = 458 - L48 = 10.

The other term to compute is R(w,Q,B). We derive it most easily as
-1 -1

R(k,2,8) = R(p,p) + u'T u =398 +u'l "u

as in equation (69), page 297 of Searle [1971]. 1In this case g-l has order 1 with

t..=n,_ - Zn2 /n, =14 - (
1 5=1 13773

a check on which is provided by noting that

t12 = - Jg nl n23 3 L2(l) 1(2 + lg})] =

so giving tll t 10 = 0, as required. Also,
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ul = ylco z nljsr.j. = 21" - [2(8) + 1(6) + 1(7)] = "'5
J=1 ,
and |
3.
Us = ¥p,, ~ ji:lngjy.j. = 32'[1(8)+ 2(6) + 1(7)] = 5

with uq + Uy = 0, as expected. Then

iy = (- 2y L sy = 7
w'Tu = (-5)(12) 7 (-5)= 1353
and so .
R(u,0,8) = 398 + 13-L = 411-L,
TSR 11 11

A check on this result is to derive it in the alternative form

-1
'y

~

R(“)a;é) = R(“)g) + E'C-lg = Loo + I"g

as in equation (63), page 293 of Searle [1971]. 1In this case ¢! has order 2,

r~

coming from a 3 X 3 symmetric matrix whose elements are (loc. cit.)

_ 22 12\ _ .3 _ 2(1 1(2)7 _ _ 2(1 (1) _ =

°11'3‘<T T/ °12"’[1+ +_uz]"'l °13"[u +T:|"”=

_ 22 12\ s _ 1(1) , 2(1)7_ =

cp=3- (F+3) = ey--[HHEEH]- 4

- 12 + 1% _

ey =2 - (F) -

and it is easily seen that the check cj. = 0 is upheld for j = 1, 2, 3. Similarly
r, = 2h - [2(6) +1(8)] = &4
r, = 18 - [1(6) + 2(8)] = -k

ro =14 - [1(6) + 1(8)] = 0
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with the check ry + Ts + r3 = O'being‘satiéfied. Hence, usirg Ty and Ty and the
corresponding cjj,’s
1 12 oty "
' = - : = —
Z 9 £ [)-I- h] 3 _u llll ’

-1 1=
sO giving

= L= 1L
R(k,a,B) l;oo+11:Ll ullll

as before.

Having checked R(u,x,B), we then have

R(glu,g) = 1{11111 - 398 = 13%:,
- I = 7
R(glg,g) = hll‘—i-i - hoo = 11y
and
R(vlu,ap) = b8 - 4111 = 3644
~ u)~’~ ll ll E)

and all of these values can be assembled into the two partitionings of the total

sum of squares that are the basis of the classical analyses of variance.

Table 5: Partitionings of Total Sums of Squares

5a: Rows before Columns 5b: Columns befofe Rovws
Sum of - Sum of
Term d.f. Squares Term d.f. Squares
R(p) 1 392 R(p) 1 392
R(alu) 1 8 r(gln) 2 6
R(g|u,2) 2 11 | rGelwp) 1 1341
R(vlp,a,p) 2 365 | Rylu,a,8) 2 362
L )~)~ ll A “)~)~ ll
SSE 2 10 SSE 2 10
SST 8 458 SST 8 458
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L., Hypothesis Testing

4,1, General procedure

For hypothesis testing in the model (2), the general form of testable
hypothesis is H: K'b = m vhere K'b is estimable and K' has full row rank, s say.
Under normality assumptions, the numerator sum of squares for an F-statistic for

testing H is
Q= (£° - m) 'K (X0 KIHED - m) (12)

and the statistic is

Q/s6%,

F(H)

having, under H, an F-distribution with s and N =~ r(g) degrees of freedom where

A

= y'Ix - K@D F YN - 5]

with r(X) being the rank of X. In the case of the 2-way crossed classification
r(X) = N', the number of cells having data in them; and for all cells filled this

is, of course, r(X) = N' = ab.

4,2, TIllustrations

In the illustration

b’ (woay o, By By By Yyp Yip Vi3 Yop Yop Yas) (13)
and

o!
b .

[boo oo0oo0oo0 8 6 2 8 6 12] (1)

PO

and, using the symbol G for (gg'x)~ which in this case is diagonal,

n

G=(X'X)  =atagfoo o000 % 1 1 1 % 1} (15
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In illustrating the relationship of the sums of squares in Table 5 to testing

hypotheses, we consider only hypotheses of the form H: K’E = 0 and so Q of (12)

o~

reduces to
Q= KD°)(®'x) KD . (16)
By way of example we show that R(alu) is the numerator sunm of squares for testing
. Y
B:ay + 22(B) + vyq) *+ (By *+ ¥pp) * (By * Yy5)]

as given by equation (100), page 307 of Searle [1971]. Expressed as H: K'db =0,

the matrix g' for this is

i
hl
i
=

kK'=[o0 1-1 -3 0 % -5 -3) . (18)

Because in (14) the first 6 entries of b° are zero (for p°, 950 and go), and because

corresponding entries in G are also zero, using (14), (15) and (18) for (16) gives

K'p” = (8) + 1(6) + 2(2) - 1(8) - ¥(6) - }(12) = -2 (19)
and
K'& =3+ @+ @+ @+ @+ @7 = %. (20)
Hence in (16)
Q= (-2)(3)H(-2) = 8 = R(alu) . (1)

Thus it is, that using R(g_z‘u) = 8 of Table 5 in an F-statistic tests the hypothesis

shown in (17).

Similar use of R(g'u,g) as a numerator sum of squares results in testing the

hypothesis
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H: (3"}&2)‘3’1 ( E)Yll <l">“(21 <l+ u>‘32+'£"83 §Y12+’+Yl3+§y22 Ll; 23 ®

, ~o (22)
(3'111%2 (l'l%.e (2_1;)\(22 (4 h>51+'l'£'2‘53 pu’ bm i“’el LE;Y23

derived from equation (106), page 309 of Searle [1971]. Expressing this hypothesis

as IS‘E = 0, the part of K' corresponding to the non-zero elements of p° and G is

®w,

-3 -~z b -2 -2 3 -2 -1
o (23)

wi-

1 -3

and so
o 1] 4B8) - 2(6) - 2(2) + 3(8) - 2(6) - 1(12)| | ¥
K'b® = = -
ok p(8) +3(6) - 1(2) - 2(8) + b(6) - 2(12) | |-k
and .
—h —2~
-2 3
e oL 2 -2 -2 3 -1 -1 '2’1=_1_ 7 -b
~~~ 16/ 3 .1 -2 2 2| 3 -2 ¥l 7
-2 L
i
Hence

-1
T -k L

Q=14 -41| 2 = 116 = R(plu,a) ;
)+ -,—!‘ '7 l ~ ~

i.e., using R(g'u,g) tests the hypothesis in (22). .



4,3, pij-models

It is important to appreciate how much-easier this calculation and interpre-
tation of hypothesis testing is if, instead of the over-parameterized model based

on pu, &¢'s, B's and Y's, we use the model

Then the b.l.u.e. of the parameter vector E' = [“11 Hio u13 Hop Moo u23] is

o1

==y = (86 2 8 6 12], (25)

= >

the vector of cell means. The corresponding G is

(26)

2l
=
Cme?

-

G =adlag{F 1 1 1

Just the non-zero part of the G in (15) for the u, @, B and v model. Similarly,

the hypothesis (17) is
1 R
4(2“'11 + '-112 + “13) 4.(”21 + 2“22 + “23)

for which K! is

K'=[2 11 -1 -2 -1] (27)
corresponding to the last 6 elements of (18). Then from (25) and (27)
K'° = K'a = 2(8) + 1(6) + 1(2) - 1(8) - 2(6) - 1(12) = -8
and (26) and (27) give

g'gg =2+ 1+1+1+2+1=28
so that (16) gives
- -8(8)"1(-8) = 8 = R(a
q = -8(8)"X(-8) = 8 = R(alu),

as before.
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4.4, Important comment

Displaying these hy'pothgses is not to be taken as promoiing their use. Far ‘
from it. In par£icular, hypgtheses like (l?) and (22) have severe disadvantages
(asrindicated in Searle [1971], e.g., pages 303 and 31%5: they are not simple
functions of just a's or just B's, and the& é&é based og the nij's of the data and
hence are hypotheses that are dependent on the observed sample. Indeed, as hy-

potheses of practical interest they have little value whatever.

Their prime use and purpose is for connecting the sums of squares of Table 5
to the hypothesis testing concept. Having calculated such a table, it is an ir-
resistible temptation to many data analysts to go on and use the sums of squares
in F-statistics: assume normality,'calculate mean squares, and calculate ratios
of them to MSE = SSE/[N - r(X)]. Having done this, however, cne then needs to
know what hypothesis it is that each of the resulting F-statistics is testing.

Many people, based on their knowledge of analysis of variance of balanced (equal

subclass numbers) data, take it for granted, for example, that using R(g’u) of
Table 5 in this manner tests H: al‘: ae. But it does not. It tests the messy
hypothesis given in (17). And similar use of R(g|u,a) tests not H: By = By = B,
but the hypothesis given in (22). And the only reason that such sums of squares

test messy hypotheses like this rather than useful ones like "all rows equal or

"all columns equal" is that the data are unbalanced.

The appropriate use of hypothesis testing is, of course, that of setting up
a hypothesis about nature, collecting data to test it, and carrying out the test.
Statisticians have a strong conviction that, unfortunately, few data gatherers
operate this way, at least formally. Often, it 1s only after data have been
collected that hypotheses get carefully formulated, and sometimes only after

analyses have been made. The preceding discussion illustrates how useless the

hypotheses are corresponding to some of the F-statistics availsble in an analysis

of variance like Table 5.
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-

Normal Equations and Constraints on Sclutions

5.

The easiest procedure

5.1.

The equations of the model (1) for the data of Table 1 are

(28)
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(Dots in a matrix represent zeros.)

The normal equations (3) resulting from this are

(29)

o 1o efo Qlo Ho QJo

Fu._a I, o o aO,

R
Lo DSV L0 T B\ D 00
oo o o Qe Qe QI
> > > = >

-l e o, R
t 1
QA o« Uy oo 4 .
]
|
l” s N .
i
B
[ ]
l.l e i e — .
] [
artd oty -
O iy
N A HD . s @
L]
t
M N, e M
[} []
Nt Hom .
— e - —— e e mm = =
L4“ . ”1. o
'
=7 —~ o~

L] . Y 3
1
! . .
I
to. .
I
e o H
'
[
P ~ .
1)

Qd . .
[ «
1
' —~
'
tad . .

S
'

, . .
‘e A A

. «
[q\] -
—~ . .
. .
. . 1
« QJ .
—~ - .
~ q A
— N A




- 14 -

Writing down model and normal equations like this is well-known and easy. We do

it so as to have them available for what follows. ‘

The superscript zero on the parameter symbols in (29) emphasizes that'éhy
solution to these equations suffices for estimating estimable functions and the
residual variance. The easiest way to obtain a solution is to apply constraints

to the solution which easily yield a solution, in this case
w’=a? =a)=p=p]=p2=0 (30)
1 2 1 2 3 ?
and obtain the solution
°' ' =0 0 00 0.0 8 6 2 8 6 12]
as given in (14). Then, using the R-algorithm of (6),

R(u,2,8,Y) = 8(16) + 6(6) + 2(2) + 8(8) + 6(12) + 12(12) = Lu8 (31)

as obtained earlier.

Constraints other than (3) are, of course, permissible. (Searle [1971],
pages 212-213, discusses general limitations on what can be used as constraints.)
With all of them, best linear unbiased estimators of estimable functions are the
same, of course, invariant to whatever constraints are used, even though the
values of BO will be different. And with all of the constraints the sum of squares

R(p,2,8,Y) will be the same too, namely 448 as in (31).

5.2. A sub-model

Consider the model

=y o+ + +
Yige = H T % T Y55 T G

obtained from (2) by deleting B's. It is indistinguishable from the model for the ‘
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2-way* nested classification. The model equations are those of (28) but with B's

deletead:
r r T1r
T 1 !l . ;l e e+ e e e ] ]
' . b - e L] L] L4 &- B
9 1 :l ‘l 1
6 l : l . : . l . . . . f“g )
2 'y .'e . 1 . . . Y
1 ! 11
= + hd
8 P I N AN (32)
]
Ll‘ l : l | e . . . l . ’Yl3
[ [
! LI . . . .
hla_ -l : . l : . . . . . l- ‘Y22
| Y23
The corresponding normal equations are
8ah ki2 1 11 2 1lle’ | |56
Lok L2 11 .0 .. a ol
]
beo Wl . .1 21 aé 32
2'2 L2 . ... Yil 16
1'T .1 ... Yie =| 6. (33)
1'r .. .1 . . :
} ' YJ;3 8
l i . l ‘ L4 L] 1 l L2 L]
o ‘a1
2,. 2,. . . 2 Y22 12
1o, 1. .. 11 [ ¥a5 12

These, too, can be obtained by a "delete B's" operatibh{ from (29) delete the B's

and the B-equations. We return to this operation later.

A solution to (33) is
’'=[0 0 08 6 2 8 ¢ 127 (3k)

Then the R-algorithm applied to (34) and the right-hand side of (33) gives
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R(p,&,y) = 4k8 - (35)
Just as in (31).

Notice here from (31) and (35) that R(u,g,s,x) - R(“’Q:Z) = 448 - 448 = O.

This is no coincidence. It is, in fact, an identity
R(u,a,8,Y) - R(p,2,Y)'= 0 (36)

that is always true. It arises from the fact that the reductions in sums of
squares for fitting either the 2-way crossed classification model or the 2-way

nested classification model are ZIn Hence the identity (36) always holds.

-2
Y.
13 ij91ij-
This was the basis for the complaint in Searle [1972], that it is wrcng te calcu-
late R(u,a,B,Y) - R(u,a,Y) in any way that gives a value other than zero. That
statement is still correct — provided it is limited to unrestricted models, namely

¥
models that have no restrictions on the parameters.

The subtlety is that in restricted models the difference R(“’Q’E’X) - R(u,g,z)
can be calculated in a certain way as non-zero, snd Hocking and co-workers [1, 6,7]
have shown, for at léast 3 kinds of restrictidns, wﬁat.the meanings of these non-
zero values are, in terms of the restricted model. .We proceed with 1llustration

of these 3 cases.

5.3. Constraints and restrictions

In mentioning both constraints on solutions (of the normal equations) and
restrictions on models, the distinction between the two must be reiterated. They
are not the same; and a constraint does not imply the corresponding restriction.
For example, corresponding to 0’ =0of (30) would be the restriction p = 0; but
g = 0 is not implied by (30). Lengthy discussion of constraints and restrictions

is given in Sections 5.6.and 5.7 of -Searle [1971].
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Constraints are only an arithmetical gimmick required for dbtain;ng a solutiqn
to a set of less-than-full rank normal equatioms. Constraints do nqt:apply to the
parameters of the model; restrictions do. -Restrictions are customgrily used to
meke a model that is not of full rank become one that is of full rank; the normal
equations are then likewise, and so require no constraints. Their solution will,
of course, satisfy the same relationships as given by the restrictions. For
example, in a l-way classification restricted model yij =unta + eij with the
restriction Zai = 0, the solutions to the normal equations will satisfy Zaz = 0.
This is a consequence of the restricted model: it is not an artifact imposed on

solutions in order to derive those solutions.

6. The Z-restrictions

Restrictions on the model (1) that have traditionally been used for balanced

data are

b a A b
fg, =0, IZB.=0, ZVY,,=0V 3, and Zvy,.,=0V1i, (37)

i=1 j=1 9 i=1 j=1 1

To distinguish these from other restrictions that will be used, we refer to (37) as
the Z-restrictions. For unbalanced data the summations of the Y's are only for
those Yij's for which the correéponding nij’s are ndn-zero; i.e., only for the

cells containing data. When all cells afe filled they apply in the same manner sas

for balanced data.

With balanced data, the two parts of Table 5 are the same. And the effect of
the Z-restrictions is that R(g,u) can then be uséd to test H: a,'s all equal. With
unbalanced data, the two parts of Table Siéie distinct; but, provided all cells are
filled, the effect of the Z-restrictions is that, by an easy manipulation of the

normal equations, the sums of sQuares for the weighted squares of means analysis
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can be derived. The manipulation involved is that described and complained of in
Searle [1972]. At that time the ébmputing procedure was known but its interpre-
tation was not. It has since Been provided by Hocking and colleagues [1, 6, 7.

It is illustrated here.

»

6.1. The restrictions

The Z-restrictions (37) for the all cells filled data of Table 1 are as

follows:

a +a, = 0, implying o, = -a , S - (38)

By tBy *By =0  lmplying By =By - B, (39)
and

Vip T ¥y Y Y93 =0 Y17 Y11

Yop * Vpp * Vo3 =0 Yo = Y12

Yio ¥ Yoo =0 Yo1 7 "Y1

Y13 T Vo3 =0 Yoo = ~Y1o

Vo3 = Y11 * Yyo

In (40), the right-hand statements include the obvious Y11 = Yqp 804 Yy = Yoo

This is to emphasize that the set of restrictions, shown as the left-hand set of
statements in (40), can be restated so that all the Y's are in terms of just Yll
and Yl2' For the general case of a rows and b columns and all cells filled, there

will be a + b restrictions on the v's, which can be restated so that all Y's are

expressible in terms of just (a-1)(b-1) of them.

6.2. Model equations

The effect of the restrictions on changing the unrestricted model to the

restricted model is seen by applying the restated restrictions of (38), (39) and




- 19 -

(40) tc the model equations (28). The result is that the model equations for the

restricted model are

r~ - - . , ' "1
7 11,1 .+1
' . | o 9
9 RIS RIS RIS R
]
' |
6 l: 1. 1: .1 Aal
2 1 l; -1 —l:-l -1 Bl (
'
| = . ' < + e . Ll-l)
8 l. l' l o:"l ) BE ~
I
Ll )1, 1; . 1: e =1 B¥yq
8 l "l . l . "l
A R R | T
12 f1r-1'-1-111 1
6.3. Normal equations
The normal equations resulting from (41) are
B ' t ' A~ 7 7
8'0 +1 1.1 -1ifp 56
T . L 22
04811 -1:1 1{|& -8
- E e ——-— 4———— - - SN
1v1:5 2:1 0ffp, 10
ot : . : AT = | . Lo
1tz 5.0 LBy ||k (+2)
P N 0 2| 18
Ciido aie sl [
N - '
A Je12) [

Because these are full rank equations with just one solution, that solution is

denoted by f, Its value is

Br=lr -2 1 a2 2], (43)

6.4, Reduction in sum of squares

The reduction in sum of squares for this restricted model will be denoted by
R*(u,g,é,z)z; the superscript asterisk designates that it is for a restricted

model and the subscript £ indicates that the restrictions are the Z-restrictions.
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Its value is calculated by the R-algorithm as
R*(u,0,8,%)y = T(56) - (-8) + 1(10) - 1(4) + 2(18) + £(4) = Wb8.  (4)

The value of R*(p,g,g,z)z in (44) is the same as that of R(“’Q’Q’X)Z in (31).
This is no coincidence. The normal equatiens (42) have teen derived as those fer
the restricted model with Z-restrictions. They could also be derived from the
nermal equations (29) for the unrestricted model by applying L-constraints corre-
sponding to the I-restrictions (37) of the restricted meuel (e.g., g ag = 0).
This will be true for any set of restrictions that reparameterizes iﬂi unrestricted

model to a full rank restricted model; i.e.,

R(U)gyg":{:)' = R*(HJG)B)Y) : (""5)

for any appreapriate restrictions.

We are here dealing with restficted modgls rather than Just comnstraints on
solutions of normsl equations for unrestricted models. For this reason we prefer
to derive the normal equations for a restriéted medel from the basic model equations
for the restricted model; e.g., derive (42) from (41). In doing so, it must be
appreciated that the symbols for parameters in (41) do not represent the same
parameters as they do in (28). Those modeiléqdéfipns, (28), are for the un-
restricted model whereas equations (42) are for the restricted model. This point
would have been clearer had (38), (39) and (40) been written with symbols different
from ;, B, and Yiyo S8Y ai, Bg and Yﬁj' Then the model equations (41) would have

also been in terms of the starred symbols, their general form being
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E(ypy) = W + o} + 67 +¥];
B(yyp) = 1%+ o} + 85 4V,
By)g,) = w* + o) - BY - B3 - V) - v
E(ypy) = W* - o + 67 - v]; (+6)
E(Yppe) = W - 0] *+ 85 - Vi,
E(ypg) = W% - o - 8] - B3+ VI *+ VI -
The reduction in sum of squares would then be designated R(u*,g#,g*,~*) rather

than R*(u,g,ﬁ,x)z as in (4L4). The latter is used to avoid the profusion of symbols
that would ensue when we come to deal with restrictions other than the Z-restrictions
Our interest is in R( )-values, and R*(u,a,a,v)z is quite clear as to both the use

of restrictions and their nature.
T. A Sub-model

Having explained the equality of R*(u,a,B,Y)Z and R(u,2,B,Y), one may ask why
we gave such specific discussion to the notation R*(u,a,B,Y)z. It is because we
now come to discuss a term that might be denoted R*(u,a,y)z, which does not equal

R(p,2,Y); [and we recall from (36) that R(u,2,Y) = R(u,a,B,Y)l1.

7.1. The sub-model with Z-restrictions -

We consider the same sub-model as used earlier, namely (1) with Bj's deleted:

=ut+ta + e

Y15k 1 Vi Y gk
But now we consider it in a restricted form, with Z-restrictions. These re-
strictions, however, are not those of (38), (39) and (40) but are now, by virtue

of the model being indistinguishable from a nested model, of the form



o +a = 0,
+ + =
Yip ¥ Yo T Y30
and le
Yor * Yop * Vo3 = O

- 22 -.

implying @

2 1
implying Yl3 ==Yy, - Vo (47)
.. implying Yo3 = =Yo1 = Yoo -

The model equations for this restricted model come from adapting (32), those of

the unrestricted model, and are

P7 1,1
9 1,1
6 1,1
2 1:1
8]~ |11-1
L 1:—1
8 1,-1
12 10-1

and the corresponding normal equations are then

8, ., 1
., 811
1'.1:3
]
|
L i
0'.,~"
1-1, .
The solution is
g -7

and the corresponding reduction in sum of squares

;
1 . . M ]
1. ey
-1 -1 . . Y
o Yll te. (48)
v 12 ~
. . . Ygl
. ‘ . l _Y22J
AT, T
Ao alfa ][]
Rt Lo R
; . . ,gll i 1t 19)
L] L] AIZ“ .
. l Izl ",'l'
. g 0
4 L 22_ L
13 28 3 3 f (50)

is

R*(1,0,Y)y, = 7(56) - 18(-8) + 2B(1b) + 3(4) - B(-}) - 25(0) = kb8,
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the same as R(u,o,Y) of (35). Again, this is no coincidence; it is the same kind

of equality far the sub-model as R*(H,G,B,Y)z = R(u,2,B,Y) is for the full model.

7-2. The "Delete B's" operation on normal equations

In the unrestricted model, deleting B's from the model equations (28) for the
full model yields the model equations (32) for the sub-model. Similarly for normal
equations: deleting both B's and B-equations from the normal equations (29) for

the full model yields those for the sub-model, (3).

Suppose this "delete p's" operation is carried over from unrestricted models
to restricted models with Z-restrictions. The model equations for the restricted
full model are (41); and, by inspection, it is clear that deleting B's from those
does not yield the model equations for the restricted sub-model, namely (48).
Despite this observation, suppose that the "delete B"'operation 1s carried out on

the normal equations based on (41), namely (42). The result is

(81011 af[n] [ss
081 1f& | |-8
1?1;5 2| (3.7 8] (51)
-1i1 2 5|, 4

Although (42) are the normal equations for the restricted full model, (51) are not
those for the restricted sub-model which, we have seen, are (49). Nevertheless,
this is the operation that is carried out 1n some computer programs, ostensibly
with the objective of using the R-algorithm to calculate what might be called
R(u,g,x) —~ a sum of squares for fitting a model with B's deleted. But since we

know that R(p,a,Y) is the same as R(u,o,B,Y) = Zin , and also because the

=2
17913,
"delete B's" operation has been carried out not on a model (which is the proper

place for deriving a model without B's) but on normal equations, we introduce the
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symbol R*(p,g,é,!)z to dénote the result of using the R-algorithm on (51). Solving

(51) gives ’ ‘ ’ .
o' =7 -k 1l 17 .
b = [( 19. 19 19] . .- (52)

and then

R*(1,2,8,Y)5 = 7(56) - 1%(-8) + 1—';-(18) + 1%(4) = Me—i— . (53)

Two questions about (53) immediately arise: (i) what is the significance of
g in the symbol R*(u,a,ﬁ,v)z , and (ii) what is the meaning, if eny, of the calcu-

lated value?

The § symbol in.R*(u,a,ﬁ,Y)z indicates that B's and p-equations have been
deleted from the normal equations of the restricted full model (involving u, a's,

B's and Y's); and after solving the resultant equations, the R-algorithm yields

what is designated as R*(p,a,ﬁ,Y)Z.

The meaning of R*(u,a,ﬁ,Y)z is closely related to the weighted squares of

means analysis. Indeed, as Hocking and co-workers [1, 6, 771 tell us,

R(H;Q;Q,X) - R*(“:g)é:X)z = SSBW: (54)

where SSBw is the sum of squares due to columns in the weighted squares of means
analysis (Searle [1971], p. 361-373). Since R(p,0,8,Y) = R*(u,Ot,B,'Y)Z, we can

write (54) as
SSBW = R*(“’Q’E’X)Z - R%(“)?f;é)i!)z‘ (55)
which might also be symbolized as K'(p lu,g,x)z, provided one remembers that it is

expressed as the difference given in (55) and not as R*(p,g,g,x)z - R*(u,g,x)z,

which we know is always zero.
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The important thing is that R*(u,g,é,x)z and R*(u,g,x)z are not the same.
R*(u,g,é,x)z comes from using the R~algorithm on equations obtained by deleting
B's and B-equations from the normal equations of the restricted full model with
Z-restrictions. But R*(p,g,z)z comes from the normal equations of the restricted

sub-model.

T7.3. The weighted squares of means analysis

Expressions for the sums of squares for this analysis are given in Table 8.18

of Searle [1971]. Applied to our illustration they give

v BEep] 2§ me w-[gedT -2

(8/3)8 + (§/3)6 + 2(7) _ 15t _ .
| 8/3 + 8/3 + 2 22

-3
and

"’ SSB

8 2 8 2 ; 2 = _]_‘
e =30 - 12 g6 -T7)2x2(r - 7)7 =55,

Confirmation of (54) is now available: from (31) and (53)
R(N)Q)Q)X) - R*(H)(Z:é)x) = L48 - )4142% = 5% = SSBW)
so illustrating (Sk4).

7.4. Conclusion

For data having all cells filled, the following algqrithm is a calculation
technique for obtaining the sums of squares for the‘weigh£éd squares of means
analysis:

(1) Form the normal equations for the restricted full model with
Z-restrictions,

(ii) Delete B's and the B-equations from (i).
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(111) Solve the resulting equations, and calculate K*(1,a,$,Y)y using

the R-algorithm.

(iv) zzy®

lj'/ni;j - R*(p)g)éxz) = SSBWI .

T.5. Hypothesis testing

The hypothesis tested using SSBw as a numerator sum of squares is, analogous

to (68) of Searle [1971]), p. 371, H: Bj + ¥ , all equal. This is for the un-

J

restricted model. For the restricted model with Z-restrictions (and all cells

filled) it is H: Bj all equal.

7.6. Another example

As a second example we illustrate derivation of SSAw by this procedure:
(1) The normal equations for the restricted full model are (42).

(ii) Deleting the (sole) & and the @-equation leaves

841 1.1 ajlp_| |56
1.5 2.1 ofl|B 10
112 5.0 -1 By [=| 4f. (56)
el 2o Bo |71
1.1 0 2 18
1 : 0 -1 : Z 2 4
- ] - [} ‘Y
L J b ) L 12- L -‘

(v & -8 13 1%]

1 X%
n

and

1]

R (h,8,8,Y)5 = 7(56) + #(10) - (k) + 13(18) + 13(4) = k28.

(iv) Hence

SsA, = R(u,2,8,Y) - R*(u,4,B,Y) = 448 - 428 = 20.

Confirmation comes from noting that for the weighted squares of means analysis
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- L
1. 1.1 _ 18
1 Wy = [§(§ Tt I)] =5

=
I

and

5. . = (18/5)(36/3) + (18/5)(26/3) _ 42
(1] 18/5 + 18/5 2(3)

Hence

_ 18(16 2 . 18(26 2
SSA. = TT<?? - 7> + 5 ?; - 7) = 20,
as already obtained.

8. The O-restrictions

The X-restrictlons are popular, originating in their very reasonable and
useful application in balanced- data analysis. In unrestricted models, the Z-con-
straints on solutions (constraints corresponding to the Z-restrictions) are also
widely used. Other useful constraints are those which put some elements of the
solution vector equal to zero (e.g., Searle [1971], p. 213). We consider here the
consequences of using such restrictions, which we call O-restrictions, in the same

way that we have already used the Z-restrictions.

The particular set of O-restrictions considered by Speed and Hocking [1976]

is

"

@ =0 Y1j

0V j
} 0,,-restrictions. (57)
B

=0V i

]
O

Yi1

A generglization of these is:

for an arbltrarily chosen k and t

L}

% =9 %y

0V j
} th-restrictions. (58)

=0 v
By it

oV i



)
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We call these the Okt-restrictions. Then Speed and Hocking indicate that using

R(u:g,E:X) - R*(“,g,é’x)okt

as the numerator sum of squares in an F-statistic tests
H: Bj + ij equal YV j, in the unrestricted model.
In view of the restrictions (58) this is equivalent to a test of
H: Bj equal V j, in the restricted model.%

We demonstrate (58), (59) and (60) using the illustration.

Suppose (58) is

@ = 0 Y1

By =0 Ypp =0

(59)

(60)

(61)

equivalent to (57). The effect of these on the model equations (28) of the un-

restricted model is to eliminate columns of the X matrix corresponding to the

elements equated to zero in (61). The effect on the normal equations (29) is

deletion of the corresponding rows and columns, thus giving the normal equations

for the restricted model as

siu 3 _2i2_alf6 ] [se
wiklz 12 1]1& | |32
3!2:3 012 0 32 18
ei1io 2o 1B, |7 |1}
212 ie 0 i 2 0¥ 12
_1 i1 10 1.0 1_ | Vo3| L12-
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Solution of these is

'"=[8 0 -2 -6 0 10] -

oD

and use of the R-algorithm gives

R (1,2,8,Y), = 8(56) + 0(32) - 2(18) - 6(14) + 0(22) + 12(10)

11

448 = R(P:Q;Q)X))

as 1s to be expected.

Deleting B's from (62) gives equations

- . - ..jA - - -
81k 2 _af{p | |s6]

t ! A’
bk 2 1 aé 32
S -
2 : 2 : 2 0 Iéz 12

' [
_l | 1 ¢ 0 l- -Y23 _12_

Solution of these is

and the R-algorithm yields
R*(u,a,8,Y), = 6(56) + 2(32) - 2(12) + 4(12) = kek,
-1

so giving (59) as

R(H:Q)E:X) - R*(H)g;é;X)oll = 448 - L2k = 2L, (63)

The hypothesis (60) is
Bifyp *¥31 = B * Yo T B3 * Y3

which, for b of (13), can be written as
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0 0 01-201-1020 00

H:K'b = 0 for K'
- 0 001 0-110-1L0200

Then, for (16)

Ch® = 8 -6 i 2
- 8 -2 6
and
1 3 1
5 -1 off1 3 3
K'GK = -1 0f= ,
~ e~ 1 1 3
5 0 -1‘ 0 -1 5 3
so that (16) is
-1
% %‘- 2 3 -1 1
q=1[2 6] = 2(4)[1 3]% = 2.
i 3 6 -1 3] 3
2 2

Thus Q has the same value as (63), and so (59) and (60) are confirmed for this

example.

The reader can verify that R”(p,ﬁ,s,y)o = LU4B for the illustration, and
~ T M1l
confirm its value through considering the hypothesis H: ai + Yil equal for all i,

corresponding to (60).

9. The W-restrictions

The following set of restrictions, :which we call the W-restrictions,




Zn, o =0 Zn, (o, +v..) =0V
=1 31 j=1 * 4 S
W-restrictions (64)
b b
Zn B, =0 Zn,. (B, +v,.)=0VY 1
je1 97 j=1 13773 ij

is also considered by Hocking et al. (1, 6, 71. They_indicate that
R(1,%8,Y) - R (n,0,8,7), = R(glu) (65)

of the classical analysis of variance in Teble 5. This we now illustrate.

The W-restrictions for the illustrative data are as follows:

hal + haz = O; implying d2 = -ay g (66)
36 + 3By * 2By = o; | implying sé - -1%(p, * B,) (67)
and ‘ |
é(al : Yii) TGt Yy =0
@q ¥ 912 * 2(aé +-§22) =0
@ F Y3 * Gt Ve =0

2(By * Y1) * Byt Yy b Byt Yy 7O

+
i
(@)

all of which imply, in the nature of (40),

Y11 = Y91

Yo = Yo
Y3 = =(88) - BB, * vy * V) (68)
Yoy = -log *2vypy)
- g -
and X .
Yp3 = BBy - @Byt 2V TV, -
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Applying (66), (67) and (68) to the model equations (28) of the unrestricted model

yields the model equations for this restricted model, with W;restrictions, as

) . ¢
11, . ! . 7
+ | : - -
l: ll l ¢ l . IJ 9
] [}
1.1+, 1 : .1 |oy 6
I §
1y 1'-2 -11-2 -1 2
b ‘ 1. (69)
l ."2 ] l . :"2 . 32 8
' !
=%, v, -
1 3 ' 1! % Y L
1 :"% ; . l : . 'é le 8
1 - .
1:-1'-1 -2, 2 1 12
» ' - L o
The corresponding normal equations are then
8 : 1 : . L] E . . ﬁ 56
Sl v Sy T P -
S9 -l 1,2 <& la) -10
N4 e R Al -2
' s 1= 70
or ik 82 B | |c8
‘:‘ « N s
. : 212 -2 :lh L Xll 20
- :-é P 1o-1t L 35_ hYlE_ ] 10-
with solution
' =7 -1 1 -1 1 1}

and the R-algorithm gives
R”'(ﬂ:g:g:z)w = 7(56) +10+ 8+ 8+ 20+ 10=L4lk8 = R(“)%JE)X))

as is expected.

To demonstrate (65) delete B's and B-equations from (70) leaving




- 'L.-}F-Wi ﬁ'iz-l-‘,i~.1=\. .-
8 . . . u 56
h . ¢ 9% 2 '%' alx 1 M"l‘O:
A =
PR TR B E 20! *
. ;_ = All e ‘,5‘
co-E b 3% Y, 10

The solution to thése equations is

ARt S S ES

1o’)

and the R-algorithm gives

B ,0,8,Y)y = 7(56) - 13(-10) + 15(20) + 15(20) = bz,
Hence

R(“,Q)E:X) - R*(U)g:é::(;)w = 448 ~ b2 = 6 = R(Q‘p),

so illustrating (65). The reader can use (70) to verify R(dlu) in the same manner.
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10. Appendix: A Summary of Hypotheses

The sums of squares that have been discussediérovide tests of a variety of
hypotheses. Although thé%e‘hypotheses are detailed in éeveral places, different
notations and labels can meke cross-referencing cohfusing. Descriptive names for
the hypotheses, equivalent expressions for each of them, and for the corresponding
sums of squares, are therefore now listed, together with r;ferences coded as
follows:

HS : Hocking and Speed [1975)
K : XKutner [1974]

S : Searle [1971]

S' : Searle [1977], this paper
SH : Speed and Hocking [1976] .

SHH: Speed, Hocking and Hackney [19771.

The hypotheses are stated in terms of the two models

V.

igg T WO TRyt Yy Te

ijk
and

= +
Yigk = Mi3 7 Cigk ?

and numerator sum of squares are denoted by Q.
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1. "Rows equal”

Hypothesis

{Ei-ﬁi,. Vifa
ﬁi» equal V 1
Sum of “squares

Q= R(“;Q’E)X) - R*(U:é;g;X)z

= SSA
W

]

Rt g,y )

2. "Columns equal"

ngothesis

2 - y : s
"'/ B-+Y.~=B-'1+Y.-r VJ%J'
J J; J d

{ Bj + V.j'equal Y

L.=p ., Y i
{ By =g V3AS
ﬁ.j equal V j
Sum of squares
Q R(H:Q)E;Z) - Rﬁ(“:g:é:l)z

n

= SSBw

1}

(gl o,y

“[HA of.(2.é6) in HSJ

[(a) in K]

[H1 in SH]

[(68), p. 371, in s

H1l in SHH

[Sec. 7 in 8']

p. 371 in S
Table 3 in SHH

[Table 2 in SH]

[(B) in K]

" [H2 in sH]

H2 in SHH

[HB of (2.26) in HS]

[Sec. 7 in 8']

p. 370 in §
,rable 3 in SHH

[Table 2 in SH]

}/ In the restricted model with Z-restrictions the hypothesis is H: o all equal.
g/ In the restricted model with Z-restrictions the hypothesis is H: Bj all equal.
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"Weighted rows equal”

Hypothesis
b
Zn,.pu, . eualV i
n, 5=1 13713
b b
Zn .pu Zn,.u Z M
j=1 1571 3=1 23723 3 aj aj
n,, n,, n.
b n
ij = i'g '
Zni. p‘ij n, My Vifi
J=1 J=1
b b
Zn,.u /n, Vigi

Mg s/n, =
- 171301 §= 1 1M1y

b
a; + = I n,.(p. + Yij) equal V i

Sum of squares

Q= R(g'u)

= R(“)?:E:X) - R*(“:é)é;i)w
= R(a*|u*)

= m(o*u*, g,y (3)

_3_/ In the restricted model with W-restrictions the hypothesis is H: ¢

[p. 307 in S]

[(c) in K]
[HA* of (2.30) in HS]

[H5 in SHH]

((100), p. 307 in s]

[H3 in SH]

p. 307 in S
Table 4 in SHH
[sec. 9 in S']

[(Table 2 in SH]

[Table 2 in SH]

1 all equal.
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k., "Weighted columns equal"

Hypothesis
{ L @
o i: By 5Hi 5 equal V j [see p. 307 in s]
+j i=1
a a
izlnil“ iflniz“iz ? BipHip. : '
N = o = eces = _...___....__.n . [(D) in K]
ﬁ 1 .2 b
8
Z P13 Z Pigt 4o | r
Py T LE My V3¢ J . [Hpx of (2.30) in HS]
'=l -J .= OJ .
a a ]
In .= = o Y i A H6 in SHH
) 13M13/7. 5 i Pagehs s/ e YIFS (

Y ( B, + = Z nlJ(a Yy ) equal v [p. 308 in s]

J n.J 1=1 i

< Bj + }E ij %y }E i3 13

1=1
a a :
-n-.'a. n-'iY |
mppr Lite )AL vty (o)
\ j=1 Y i=1 9

Sum of squares .

Q = R(B’u) jo 308 in S
= Table 4 in SHH

= R(U;Q;QJX) - R%(u,g,é,“j)w [Sec. 9 in s']
= r(g*|u*) [Table 2 in SH]
= R(B*lu*,a*,v*)(3) [Table 2 in SH]

y In the restricted model with W-restrictions the hypothesis is H: Bj all equal.
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"

5. "Rows adjusted for columns

ngothes is

r (ni. y lenij/n j)“i

equal

( z nijni J/n )a

'#
b a b
+ X (ni - n?- /n.j)Yi. - L X (nij i /n )Yl'J 0

for i =1, 2, *++, a-1. [(107), p. 310 in S]

b b
n Zn2 /n )a + Z (n,. -n%,/n )v..
<i- J‘-L:LJ «J/1 5=1 ij 137737715

a
( T ng By J/n.a>(xi, E Z (niani’j/n-j)yi‘j

'#i j=1 141 3=1
\ for i =1, 2, *++, a-1. [H5 in SH]
/ Db n2
‘ i 137473 . . ]
Z(nij - -n—l-‘l Z Z iy = OV i [HA** of (2.31) in HS
3=1 "d 1'#1i j=1 K
- i
8 1 1
Zn._u..= Z Z 1313?3 ¥ i [H3 of Table 1 in SHH]
i35 :
= i'=1 j=1
Sum of squares
Pp. 310 in S
Q= R(glu,g) Table 4 in SHH

n

R(o¥| ¥, %) [Table 2 in SH]
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6. "Columns adjusted for rows" equal

ngothesis
[ ( 2 b, a y
n . - Z ny./ng ) .- X ( Zn,. ., n..>ﬁ.,
J i_l lJ J j'#j 1=l 13 l«j 1 J

a b
+ Z(n,., -02./n, J,. - I Z (n, /o, W.., =0
1=1 i3 ijf 1./t j'#j }=l ij 13 ‘1 ij
< for j =1, 2, +++, b-1. [(106), p. 309 in §]
2 = 2
(n.j - lilé /n ) . iEl(nij - nij/ni-)yij
2 (50,0 ./ P % (n,n /)
= Zn,.n n, ) . Z n..n..,./n. )Y
.#J 4=1 TdE3VL %j {=1 L3137 1.
\ for j =1, 2, *++, b-1, [H6 in SH]
—5-// a ng‘\ .
S A W z z 1 iJ - ; :
Z(nij ni./”ij i3 0V j [HBM of (2.31) in HS)
i=1 J'A3 i=1
< a b
ij iJ . . .
Z B sHy s Z Z "y Y5 [(H7 of Table 1 in SHH]
\ i=1 =1 i=1
Sum of squares
* P. 309 in S
Q= R(Blu,2) Table 4 in SHH
= r(g*|*,a*) ~ [Teble 2 in sH]

2/ There are two typographical errors in HB** of (2.31) in HS: the i of i=1 of the
first summation is erroneously j, and the j of j'#j of the second summation is

erroneously 1i.
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7. "Interactions"

Hypothesis
& [ \

Any column vector consisting of s-a-b+l

linear independent functions of the
< eij,i'j‘ =Ygy = Yyr3 = Ygg0 * Yyrg00 vhere such >= o [(110), p. 311 of 'S]

functions are either estimable 6's or

estimable sums or differences of ©'s.

[(E) in X ]|
H7 in SH
- - = ' i = 5!

HAB in HS

Sum of;sguares

Tables 3,4,5 in SHH

é. 311 in S I ‘

Q = R(X'“)g:ﬁ) [

= R(g*lu*,g*,g*) [Table 2 in SH]

6/ For all cells filled, s = N' = (a-1)(b-1).
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2.
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"Rows over a specified column"

Hypothesis: For an arbitrary t:

"

a vy, Vi #Fk

7 % * Vg
Hig = Hyrg Viga

Sum of squares

Q R(U:g:é}x) - Rﬁ(“;é:é:y_)o

kt

[

Rl g%, v*) ()

"Columns over a specified row"

Hypothesis: For an arbitrary k:

8 Byt =Byt Yy VIFS

=g TR

Sum of squares

n

Q = R(w,2,8,Y) - B"(1,2,8,Y),

kt

]

R(E*‘ u*;g*,ff*)@)

[H8 in SH]

[Hs in SHH]

[sec. 8 in 8']

Table. 2 in SH T
_Table 5 in SHH

[H9 in su]

.[HB in SHE]

[Sec. 8 in S')

‘Table 2 in SH
Table 5 in SHH

Z/ In the restricted model with Q , -restrictions the hypothesis is H: oy all equal.

kt

§/ In the restricted model with O, , ~restrictions the hypothesis is H: Bj all equal.

kt



The references given in the preceding list are summaiized in the following

table:

Table 6: Hypotheses and Thelr labels in a Varieﬁy of References

- L4o -

Reference
Hypothesis

S' HS K S SH SHH
Rows equal 1l HA ' A p. 371 H1 H1
Columns equal 2 HB B p. 370 H2 H2
Weighted rows equal 3 H,» c p. 307 H3 H5
Weighted columns equal L HB* D p. 308 HA4 H6
Rows adjusted, equal 5 HA** - p. 310 HS B3
Columns adjusted, equal 6 HB** - p. 309 H6 HT
Interactions 7 HAB E p. 311 HT H9
Rows over column t, equal 8 - - - H8 HL
Columns over row k, equal 9 - - - H9 H8
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11. Addendum: Hypotheses of "no interaction”

It is sometimes said that hypotheses of the form

i1 (A1)

H:Y..'Yiij'Yi 3

1J +Yi‘

j 1

are testing "no interaction". Or equivalently, that restrictions of the form

'Yo- -'Yi}. - Y

13 3 i3 + Yiljl =0 (A2)

reduce an interaction model to a no interaction model. These kinds of statements
are true in the case of all cells filled; but when some cells are empty, the situ-
ation is changed. Restrictions differing from (A2) have to be used. We illustrate

with 2 examples, one of filled cells, the other with some empty cells.

11.1. The 2 X 2 case with all cells filled

Represent this case by the grid

(a3)

where an asterisk represents the occurrence of data in a cell. Now consider the

interaction model

E Visg W YOt Byt Vyy e (ak4)
For data of the form (A3) we have

By =k +0 % B ¥ Yy

EVige =BT + By + Yo (35)

E¥oy SH* 0+ 6 + ¥y

E Voo =0+ Q2 * 8, + Yoy



o bl -

Consider the effect on this model of restrictions like (A2), of which there

is only one in this cacse, namely

- Yon =Y.,  +Y,,=0. (A6)

11 12 21 22

From it we can write

Y1 = Yo * Vo1 < Yoo o (a7)

On substituting (A7) into the first equation of (A5), adding and subtracting Yoo
in the third equation of (AB), and then re-arranging terms, ve can re-write those

equations as

Eyjm = H* (@ +v,)+ B, (38)
E¥py =0 ¥ {ay +¥p,) + (B) *+ Yy - Ypp)
EYpm = 0+ (@ + Yy0) + B
On defining
Ly = * —4 -
of = +v, P1 =By * ¥ - Yo (19)

. A -
&y = Gy *+ Yoo Bs = By

equations (A8) then represent a no-interaction model in terms of the starred
parameters of (A9). 1In other words, the restriction (A6) does reduce the inter-

action model (A5) to a no interaction model.

Note that (A7) is only one example of how (A6) may be used, léading via (A8)
to definition of new parameters in accord with (A9). Another example of using (A6)

is to rewrite it as

Yip = Y91 = Yop * Yoo o (A10)
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This leads, as 1s shown below, to a definition of new parameters different from

(A9).

This illustration of 2 rows and 2 columns extends directly to any numbers of

rows and columns when all cells are.filled.

same manner when there are empty cells.

11.2, An empty cells case

But it does not extend in quite the

Suppose there are data in 8 cells of a 3 rows and L columns case as follows:

Tw [
L

The model equations are:

BV =0T 76

BV =0+ +6

D Vope = B + a, + Bl-

B Voo TR T By
and

EVige "W T 7B

E Yoy = # ¥4a2 + By

E Vg =B 7 g *233“

EVqy =H T3+ By

Restrictions of the form (A2) can be applied

Yyq = Y

11

12

-y

21

+ Y

22

(A11)

(A12)

. ) (A13)

only in one way, namely

=0 (A1)

as in (A6). By the nature of the pattern of filled cells in (All) no other form
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of (A2) can be used. However, recall from Sec. 10.7, or from Searle [1971, p. 311,

the hypotheses that can be tested using R(X!H,G;E)- They are not only of the form

(A1) but also of the form

H =0 C - (a15)

. +
’ eij,i'j’ ers,r's’

where

eij’i'j'EYij-Yi'j-Yijl+’Yilj‘ L

and where, in (Al5), each 05,115 and © , may not be estimable but their sum
>

rs,r's
(or difference) is. This is just the case with the data pattern (All). Neither

Vi3 = Yo3 7 Yoy * Yoz (5 8yy po)

nor
Yo3 = Yo = Y33 * Vg (% 8p3 5)

are estimable (because cell 2,3 has no data), but their difference is. Using this .

difference as a restriction
Yip = Yoz = Yoy * Yoz = (Ypg = Yo = Y33+ ¥g,) =0 (A16)

together with (Al4) reduces the model equations (A1l2) to be those of a no inter-

action model.
First, (All4) used in the form (A10) reduces (Al2) to

By =0t oy +vyy) + By

Ey,y =0+ (0 +v,9) By - Yoq + Youo
12k 1 11 2 21 22 (A.17)

E Yoy = Bt (0 +Yy) + By

E Yo = bt (e + ¥py) + (B, - Yoy + Ypp)

in the same manner as equations (A8) were derived using (A6). We can then rewrite ‘
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(A13), using two of the parenthesized terms of (Al7), as

Eyjg =H* () *o¥pq) + By * Y13 - Yo
e e R SV R P P
E¥gge =0+ O3 * Byt g

EVag =0t O TRyt Y3y

Finally, on rewriting (Al6) as

Yi3 = Yaa T Yoy m Vo1 F Y33 7 Y3y

we can rewrite (A18) as

E yl3k. =M + (al + Yll) + (B3 + Yeh - Y2l + Y33 -
E yopy = b * (e + ¥py) * By *+ Y - Vo)
B ¥gg = b+ (g = Yy ¥ Yo ¥ Yg) + (By + Yy = Yoy + Yoq
B ygye = HF (G5 - Yy F Yoy Vg ) + By Yy - V)
Then, on defining
S 3
Gy =@ * Yy 1= 6
Oy = 0 * Yoy 57 B - Yoy T Voo
_ \ % - -
O =0y = Yy + Yy ¥ Vg, B3 = B3 * Yo - Yo * Y33

By = By * Yo - Yo

(A18)

Y3u)
(A19)

Y3h)
(A20)

- ‘Y3)+

(Al7) and (A19) represent a no-interaction reformulation of the interaction model

equations (Al2) and (Al13).

The emphasis here is that with data having empty cells it is not Jjust re-

strictions of the form (A2), exemplified by (A6) and (All4), that reduce the inter-

action model to the no-interaction model; restrictions like (Al6) are also needed.
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There is, of course, no unique way of deriving a reparameterization like
(A20). 1Indeed (Al5) is not the only restriction of that nature which could be

used. For example,

]
(@)

- - A - - - +
Yip = Vi3 = Yoo * Yoz = (Ypg = Yo - Yoz * Yg,)
is another, and so is

Yip = Yoy = Yoo * Yoy - (Vg - Yoy - Va3t ¥g) = 0

Each of these will lead to a reparameterization different from (A20), although

similar in nature.




(1]

(2]

(3]
(4]

[5]
(6]

{7l

Note:
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