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Abstract 

Hypothetical data are used to illustrate calculations of sums of 

squares in the 2-way crossed classification having unequal numbers of 

observations in the subclasses (unbalanced data) but all cells filled. 

Sums of squares are illustrated for the classical analyses of variance, 

for certain tests of hypotheses, and for certain restricted models that 

yield sums of squares usually found in other contexts. 

1. Introduction 

Full details are given in Searle [1971] of calculating the sums of squares in 

the classical analyses of variance of the 2-way crossed classification having un­

equal numbers of observations in the subclasses (unbalanced data). Description is 

also given there of the hypotheses tested when these sums of squares are used as 

numerators of F-statistics. In contrast to these sums of squares a calculation 

procedure for sums of squares for fitting reduced models, as used in some computer 

programs, is described and challen~ed in Searle [1972]. More recently, Hocking 

and co-workers [1, 6, 7] have explained and extended these calculations. Detailed 

numerical illustration of them is given in this paper, alongside that of the 

classical sums of squares, 
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The illustrations are b"ased on a small set of simp:;t._e, hypothetical data con­

sisting of 8 observations in 2 rows and 3 columns. Because description of the 

procedures involved is available mainly in matrix terminology, and because most 

numerical examples (e.g., Kutner [lgr(4] and·snee [1973]) are sufficiently complex 

as to benefit from using a computer, it is felt that a simple illustration in-

volving easy-to-follow numbers will be ~~~~1 for many readers. The illustrations 

demonstrate the meaning of some of the sunw of squares in terms of hypotheses 

tested when the sums of squares are us.ed ·as. :numerators of F-statistics; and others 

are explained by demnstrating ·their equi.:v:alence to some of the well-known classical 

sums of squares. 

· :.rY " ,, ., · 

2. Model and Notation 

The usual model for the 2-way classif.:i;cation with interaction is 

Y ijk = 1-l ~ .~-; + _13j + Yij + eijk 
·"·I '• '• ~- I o ·• 

(1) 

fori= 1, ···, a, j = 1, ···,band k = 1, ···, n .. ~0. 
l.J 

Detailed description is 

available in many places (e.g., Searle [1971], Chapter ~(). vlhen the data are 

written in vector form as 

y. = Xb.,o+ e 
,... ~,., ""* (2) 

the normal equations for b are -
(3) 

0 where b is any solution ... 

(4) 

with (X'Xf being a ,generalized inverse of X'X satisfying X'X(x•xrx•x = X'X. - - .. -- ---- -- --
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The reduction in sums of squares due to fitting (2) is denoted by R(£) and 

can be calculated as 

{
inner product of solution vector 

= and vector of right-han~ sides of 

the normal equations (3). 

Considerable use is made of this algorithm which we henceforth refer to as the 

R-algori thm. 

Suppose X and b of the model (2) are partitioned as in ... ... 

Then 

is a sub-model of (2) with reduction in sum of squares 

( 5) 

(6) 

(7) 

(8) 

corresponding to (5). Further, the reduction due to fitting (2) over and above 

fitting (8) is defined as R(£2 1~ 1 ) given by 

0 ... = b 'X 1y - b X'y 
- 1'1,.., ~loii'Wl'""" 

(9) 
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Particular uses of (8) and (9) applied to (1) are well-known. For example, 

on rewriting (1) as 

(10) 

where 1 is a vector of l's, and a, S andy are the vectors of the a-, S- and 
rv - ,.., ~ 

Y-effects of (1), it is well-known that 

and 

nij 
where y .. = .E y. "k' Yi .. == 

~J. k=l ~J 

a 

b 
I: y. -

. 1 ~J· J= 

a b 
= .E .t-1!./n .. 

i=l j=l ~J· ~J 

·a 
}• y :::: .E y. ' . .. ~ .. 

1=1 

Q 

n. = I: ni.' 
~· j=l J 

N = n = I: n. 
1=1 ~· 

Searle [19'71, Chapter 7] has full details. 

3· Data and Classical Analyses 

The data to be used for the illustrations are as follows: 

and 

Table 1: Observations Table 2: Totals 

j = 1 j = 2 j = 3 yij· 

i == 1 ~(, 9 6 2 16 6 2 

8 12 12 

i = 2 8 4,8 12 y . 24 18 14 • J. 

Table 3: Numbers Table 4: Means 
-

nij n. 
~- yij· 

2 1 1 4 8 6 2 

1 2 1 4 8 6 12 

n . j 3 3 2 8 = N - 8 6 y. j . 7 

(11) 

y. 
~ .. 
24 

32 

56= y . . 

-
Yi .. 

6 

8 

7 = y .. 
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The easy sums of squares for the classical analyses of variance are then 

:;:: 392, 

= 4oo, 

= 398, 

( ) - -2 R IJ.,a,(3, y - D:n .. yi. 
- - - .. ~J J• 

~J 

= 448, 

and 

These lead to 

R(ai!J.) = 4oo 392 .... = c, 

= 6, 
and 

SSE ~ y'y - R(!J.,a,~,y) = 458 - 448 = 10. 
""'* rot# ,.., ,.,. -

The other term to compute is R(!J.,a,~). We derive it most easily as --

as in equation (69), page 297 of Searle [1971]. In this case T-l has order 1 with -
3 (~ ~ ~) 5 t = n - I: n2 ./n = t~ - - + - + - = 1-

11 1• j=l lJ • j 3 3 2 6 ' 

a check on which is provided by noting that 

tl2 = - ~ n .n /n . = [2(1) + 1(2) + 1(1)] = -12 ' 
j=l lJ 2j • J 3 3 2 6 

so giving t 11 + t 12 = 0, as required. Also, 
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3 
u - y - ~ nl.y . = 24- - [2(8) + 1(6) + 1('"()] :::: -5 1 - 1·. j=l J •J• 

and 
3 

[~(8),+ 2(6) + 1(7)] u2 = Y2. • - ~ n2.y . = 32 - = 5 
j=l J • J. 

with u1 + u2 = 0, as expected. Then 

and so . 

::: 398 + l3.l 
11 

= 4ll.l. 
ll 

A check on this result is to derive it in the alternative form 

R(~,a,~) = R(~,a) + r'C-1r = 400 + r'C-1r - - ~ ~ ~ ~ ~ ~ ~ 

as in equation (63),· page 293 of Searle [1971]. -1 In this case £ has order 2, 

coming from a 3 X 3 symmetric matrix whose elements are ( loc. cit. ) 

c 11 = 3 - ( ~ + t2) = 1~ c = - [2(1) + 1(2)] = -1 
12 4 4 . 

( 12 + 12) 
c = 2 -

33 l!-
= 1~ 

and it is easily seen that the check cj. = 0 is upheld for j = 1, 2, 3· Similarly 

r 1 = 24 - [2(6) + 1(8)] = 4 

r 2 = 18 [1(6) + 2(8)] = -4 

r 3 = 14 - [1(6) + 1(8)] = 0 
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vlith the check r 1 + r 2 + r 3 = 0 being sati~fied. Hence, usir.g r 1 and r 2 and the 

corresponding c .. t t s 
JJ 

[
Jl 

-4] 
-1 

so giving 

R(~,a,f') = 4oo + 11~ 
- - 11 

as before. 

Having checked R(~'~'~), we then ha.ve 

ancl 

= l~ll~ - 398 
11 

= 4ll.l - 400 11 

R(YI~,a,f') = 448 
,.. ,... -

~( 

1111' 

= 13 7 
11' 

= ll~i 

a.nd a.l1 of these values can be assembled into the b1o partitionings of the total 

sum of squares that are the basis of the classical analyses of variance. 

Table 5: Partitionings of Total Sums of Squares 

5a: Rows before Columns 5b: Columns before Rows 
I 

Sum of Sum of 
Term d. f. Squares Term d.f. Squares 

R(~) 1 392 R(~) 1 392 

R(::l~) 1 8 R(~~~) 2 6 

R(~l~,~) 2 7 R(al~,f') 1 7 
1111 ... ... 1311 

R(YI~,a,f') 
,.. ,.. - 2 - 4 

3611 R(:i'~'~'~) 2 - 4 
3b11 

SSE 2 10 SSE 2 10 

SST 8 1~58 SST 8 458 
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4. Hypothesis Testing 

4.1. General procedure 

For hypothesis testing in the model (2), the general form of testable 

hypothesis is H: K'b = m where K'b is estimable. and K' has full row rank, s say. - - - . -
Under normality assumptions, the numerator sum of squares for an F-statistic for 

testing H is 

(12) 

and the statistic is 

having, under H, an F-distribution with s and N - r(~) degrees of freedom where 

a2 = y'[I - X(X'X)-X')y/[N - r(X)] - - - - - - - ~ 

with r(~) being the rank of ~· In the case of the 2-way crossed classification 

r(~) = N', the number of cells having data in them; and for all cells filled this 

is, of course, r(~) = N' = ab. 

4.2. Illustrations 

In the illustration 

b' = (13) 

and 

O' [o o 0 0 0 0 8 6 2 8 6 12] b = (14) 
~-. 

' 

and, using the symbol G for (X'X)- which in this case is diagonal, - ........ 

G = c~·~r = diag{O 0 0 0 0 0 ~ 1 1 1 :t 1}. z (15) 
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In illustrating the relationship of the sums of squares in Table 5 to testing 

hypotheses, we consider only hypotheses of the form H: K 'b = ;2 and so Q of (12) 

reduces to 

Q = (K'b0 )'(K'GKf~'b0 • (16) - ~ - -- - ~ 

By way of example we show that R(al~) is the numerator sum of squares for testing -

(17) 

as given by equation (100), page 307 of Searle [1971]. Expressed as H: ~ '~ = 2' 
the matrix K' for this is 

~ I = [ 0 l -1 % -i 0 ~ i i ~i -~ -i J • (18) 

Because in (14) the first 6 entries of b0 are zero (for ~0 , a0 and ~0 ), and because - - -
corresponding entries in~ are also zero, using (~+), (15) and (18) for (16) gives 

and 

Hence in (16) 

~'~0 = ~(8) + t(6) + t(2) - :i(8) - ~(6) - i(l2) = -2 

= ,;),. 2 • 

(19) 

(20) 

(21) 

Thus it is, that using R(~l ~) = 8 of Table 5 in an F-statist::.·:! tests the hypothesis 

shown in (17). 

Similar use of R(~j~,~) as a numerator sum of squares results in testing the 

hypothesis 
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(22) 

derived from equation (106), page 309 of-Searle [1971]. Expressing this hypothesis 

as ~'!;: = ~' the part of!' corresponding to the non-zero elements of £0 and~ is 

[_; ~ -?i 1 -i -± J r 4 
-2 -2 3 -2 -l] -z - - 1 (23) 

3 .1. -l" 1 --~ = 4 --2 3 -1 -2 4 -2 4 -4 

and so 

K'b - -
0 1 [ 4(8) - 2(6) - 2(2) + 3(8) - 2(6) - 1(12)] [ 4] 

- - - 4 -2(8) + 3(6) - 1(2) - 2(8) + 4(6) - 2(12) - -4 

and 

4 -2 

-2 3 

[ 2 
-2 -2 3 -1 -l] -2 -1 

" ~ [_: -l K'GK = 1, 
- -- 1b -1 3 -1 -2 2 -2 3 -2 ~r 

-2 4 

-1 -2 

Hence 

i.e., using R(~lll,S:) tests the hypothesis in (22). 
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It is important to appreciate how much ·-easier this calculation and interpre-

tation of hypothesis testing is if, -~ps.tead of the over-parameterized model based 

on ~' a's, ~'s andy's, we use the model 

(24) 

Then the b.l.u.e. of the parameter vector~~ = [~11 ~12 ~13 ~21 ~22 ~23 J is 

bor A 

= i' [8 6 8 6 12], = .!::' = 2 (25) 

the vector of cell means. The corresponding ~ is 

G = diag{~ 1 1 1 
1 

1), 2 (26) -
just the non-zero part of the G in (15) for the ~' a, f3 and\ model. Similarly, .... 

the hypothesis (17) is 

for ·which K' is 

~I = [2 1 1 •l -2 -1] (27) 

corresponding to the last 6 elements of (18). Then from (25) and (27) 

K'b0 = K'~ = 2(8) + 1(6) + 1(2) - 1(8) - 2(6) - 1(12) = -8 
,..., - - ~ 

and (26) and (27) give 

K'GK = 2 + 1 + 1 + 1 + 2 + 1 = 8 

so that (16) gives 

as before. 
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4.4. Important comment 

Displaying these hypotheses is not to be taken as promoting their use~ Far 

from it. In particular, hypotheses like ( rr) and ( 22) have severe disadvantages 
: ... 

(as indicated in Searle [19(1], e.g., pages 303 and 317): they are not simple 

functions of just a's or just ~'s, and they are based on then .. 1s of the data and 
~J 

hence are hypotheses that are dependent on the observed sample. Indeed, as hy-

potheses of practical interest they have little value whatever. 

Their prime use and purpose is for connecting the sums of squares of Table 5 

to the hypothesis testing concept. Having calculated such a table, it is an ir-

resistible temptation to many data analysts to go on and use the sums of squares 

in F-statistics: assume normality, calculate mean squares, and calculate ratios 

of them to MSE = SSE/[N - r(X)]. Having done this, however, one then needs to 

know what hypothesis it is that each of the resulting F-statistics is testing. 

Many people, based on their knowledge of analysis of variance of balanced (equal 

subclass numbers) data, take it for granted, for example, that using R(~l~) of 

Table 5 in this manner tests H: a1 = a 2• But it does not. It tests the messy 

hypothesis given in (17). And similar use of R(~l~,~) tests not H: ~I= ~2 = ~3 , 

but the hypothesis given in (22). And the only reason that such sums of squares 

test messy hypotheses like this rather than useful ones like "all rOv7S equal" or 

"all columns equal" is that the data are unbalanced. 

The appropriate use of hypothesis testing is, of course, that of setting up 

a hypothesis about nature, collecting data to test it, and carrying out the test. 

Statisticians have a strong conviction that, unfortunately, few data gatherers 

operate this way, at least formally. Often, it is only after data have been 

collected that hypotheses get carefully formulated, and sometimes only after 

analyses have been made. The preceding discussion illustrates hmv useless the 

hypotheses are corresponding to some of the F-statistics available in an analysis 

of variance like Table 5. 
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5. Normal Equations and Constraints ·on So-lutions 

5.1. The easiest procedure 

The equations of the model (1) for the data of Table 1 are 

7 1; 1 1 1 
I 

9 1~ 1 1 . ' 1 
I 

6 1'1 I 1 1 • I . 
' I I 

2 1; 1 I 1' 1 • I . . 
i 

I 

8 
:::: l:::: Xb + e :::: 

1: 11 . 1 • I . t 

i I 

4 11 . 1, . 1 • I . 
I 

8 1' 11 1 
I . . • I . 

12 1: . 1 1: . . 

(Dots in a matrix represent zeros.) 

The normal equations ( 3) resulting from thi.s are 

8 :4 4:3 3 2:2 1 1 1 2 1 
- -· - -r;- - - ~ - - • - - """- - - - - - - - - - - -
4 I 4 I I 

1 , I 2 1 1 1 2 1 1 
I _ I . J 

4 . . ., 4 I 1 2 ·r ·, . . . 1 2 1 
. - '- . - - - '- - - - - - - ... - -- - - - - - - - - -
· 3 I -2. 1 ~ · 3 • ~ 2 1 

I 
I 

• I • 1 2 3 
I 

211 11 .. 2, .. 1 .. 1 
- -I. - - - L. - - - - - , - - - - - - - - - - - ·-

212 .'2 .. ,2 ..... 
I I 

I 

1 11 

1 

2 1 • 

I 

• I • 

. ' . 
I 

1 o1 

1 

2 I, 2 
I 

• I • 1 

1 1 

1 

• I • 2 

1 1 

1 

1 

1 

1 

56 

24 
32 

24 

18 
14 
16 
6 

2 

8 

12 

12 

ll 

0:1 

~g_ 
131 

+ e • 
132 

(28) 

133 

Yii 
yl2 

yl3 

y21 

y22 

y23 

(29) 
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Writing down mode~ and normal equations like this is well-known and easy. We do 

it so as to have them available for what follows. 

The superscript zero on the parameter symbols in (29) emphasizes that any 

solution to these equations suffices for estimating estimable functions and the 

residual variance. The easiest way to obtain a solution is to apply constraints 

to the solution which easily yield a solution, in this case 

(30) 

and obtain the solution 

b01 = [0 0 0 0 0. 0 8 6 2 8 6 12] 

as given in (14). Then, using the R-algorithm of (6), 

R(~,a,~,y) = 8(16) + 6(6) + 2(2) + 8(8) + 6(12) + 12(12) = 448 (31) -- ... 

as obtained earlier. 

Constraints other than (3) are, of course, permissible. (Searle [1971], 

pages 212-213, discusses general limitations on what can be used as constraints.) 

With all of them, best linear unbiased estimators of estimable functions are the 

same, of course, invariant to whatever constraints are used, even though the 

values of £0 will be different. And with all of the constraints the sum of squares 

R(~'~'~'y) will be the same too, namely 448 as in (31). 

5.2. A sub-model 

Consider the model 

yl.. J"k = ~ + a. + Y. . + e . "k 
J. l.J l.J 

obtained from (2) by deleting ~'s. It is indistinguishable from the model for the 
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2-wa;• nested classification. The model equations are those of (28) but ui th 13 1 s 

deleted: 

I I 
~r 111 • I 1 

I I 

9 1:1 • I 1 
I I 

6 111 'I 1 

2 111 I 1 . I • I 

8 = 
1 : • 

I 
1 1 o 1 

4 
I I 

1 I • 1 I • 
I 

8 1 I • 1 I o 
I I 

12 1 : • 1 I • 
I I 

The corresponding normal equations are 

8:4 4:2 1 1 1 2 1 
- -, - - - - I - - - - - - - - - - - -
4·4 •1211 

I 

4·. 4: ... 1 2 1 
:l -': - - - - - - - - - - - .::.. - - .... ·-
2'2 I,-, 

I • t ~ 

1 1 1 
I 

1 1 1 
I 

1 I o 

I 
2 I • 

I 
1 I o 

1 t • 
"I 

2 I • 

11 
I 

1 

1 

1 

2 

• 

1 

1 

1 

0 

ll 

ll 

al 

~g_ 
yll 

yl2 

yl3 

y21 

y22 

y23 -

56 

24 

32 

16 
6 
2 

8 

12 

12 

+ e (32) 

(33) 

These, too, can be obtained by a "delete 13 's 11 operation: from (29) delete the f3 1 s 

and the 13-equations. We return to this operation later. 

A solution to (33) is 

b01 ~ [0 0 0 8 6 2 8 b 12]. (34) 

Then the R-algorithm applied to (34) and the right-hand side of (33) gives 
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R(fl;d,y) = 448 (35) 
,... -

just as in (31). 

Notice here from (31) and (35) that R(!l,a:,f3,Y) - R(!l,a,'r) = 448 - 448 = O. ,.,,.,,_ ,.._ 

This is no coincidence. It is, in fact, an identity 

(36) 

that is always true. It arises from the fact that the reductions in sums of 

squares for fitting either the 2-way crossed classification model or the 2-way 

nested classification model are r:En1 "Y.f ... 
ij J J• 

Hence the identity (36) always holds. 

This was the basis for the complaint in Searle [l5rf2], that it is wrcng to calcu-

late R(!l,a,f3,Y)- R(!l,a,y) in any way that gives a'value other than zero. That 
,... -- --

statement is still correct - ~rovided it is limited to unrestricted models, namely 
i l 

models that have no restrictions on the parameters. 

The subtlety is that in restricted models the difference R(!l,a,f3,Y) - R(!l,a:,y) ~ --- --
can be calculated in a certain way as non-zero, and Hocking and co-workers [1, 6, 7] 

have shown, for at least 3 kinds of restrictions, what the meanings of these non-

zero values are, in terms of the restricted model. .we proceed with illustration 

of these 3 cases. 

5.3. Constraints and restrictions 

In mentioning both constraints on solutions (of the·· normal equations) and 

restrictions on models, the distinction between the two must be reiterated. They 

are not the same; and a constraint does not imply the corresponding restriction. 

For example, corresponding to 1-1° = 0 of (30) would be the ree·~riction 1-1 = 0; but 

1-1 = 0 is not implied by (30). Lengthy discussion of constraints and restrictions 

is given in Sections 5.6-and 5.7 of Searle [1971]. 
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Constraints are only an arithmetical gimmick required for obtaining a solution 

to a set of less-than-full rank normal equaticm.s. Constraints do not ~:tPPlY to the 

parameters of the mdel; restrictions do.. · Restrictions are customarily used to 

make a model that is not of full rank become one that is of fu~.rank; the normal 

equations are then likewise, and so require no constraints. Their solution will, 

of course, satisfy the same relationships as given by the restrictions. For 

example, in a l-1vay classification restricted model yiJ" = J.1. + a. + e .. with the 
~ ~J 

restriction rai = 0, the solutions to the normal equations ·Hill satisfy .La~ = 0. 

This is a consequence of the restricted model: it is not an artifact imposed on 

solutions in order to derive those solutions. 

6. The E.-restrictions 

Restrictions on the model (1) that have traditionally been used for balanced 

data are 

a 
E a. = o, 

i=l ~ 

b 
Ef3.=0, 

j=l J 

a 
Ey .. =OVj, 

i=l ~J 

b 
and E y i .. = 0 V i 

j=l J 

To distinguish these from other restrictions that will be used, we refer to (37) as 

the E.-restrictions. For unbalanced data the summations of the y's are only for 

those Y .. 's for which the corresponding n .. 's are non-zero; i.e., only for the 
~J ~J 

cells containing data. When all cells are filled they apply in the same manner as 

for balanced data. 

With balanced data, the two parts of Table 5 are the same. And the effect of 

the E.-restrictions is that R(~l Jl.) can then be used to test H: ai 's all equal. \vi th 

unbalanced data, the t1v0 parts of Table 5 are distinct; but, provided all cells are 

filled, the effect of the E.-restrictions is that, by an easy manipulation of the 

normal equations, the sums of squares for the w·eighted squares of means analysis 



- 18 -

can be derived. The manipulation involved is that described and complained of in 

Searle [l9'r2]. At that time tfte computing procedure was known but its interpre­

tation was not. It has since o·een provided by Hocking and colleagues [1, 6, 1]. 

It is illustrated here. 

6.1. The restrictions 

The Z-restrictions (37) for the all cells filled data of Table 1 are as 

follows: 

and 

= o, 

~1 + ~2 + ~3 = 0 

yll +yl2 + yl3 = 0 

y2l + y22 + y23 = 0 

yll + y21 = 0 

= 0 

= 0 

implying ~3 = -~1 - ~2 ' 

Yu_ = Y11 

yl2 = yl2 

implying yl3 = -Yll - yl2 

Y21 = -Yll 

Y22 ::: -Yl2 

y23 = yll + yl2 . 

(38) 

(39) 

(40) 

In (4o), the right-hand statements include the obvious Y11 = Y11 and Y12 ::: Y12 . 

This is to emphasize that the set of restrictions, shown as the left-hand set of 

statements in (40), can be restated so that all the y's are in terms of just y11 

and y12 • For the general case of a rolls and b columns and all cells filled, there 

will be a+ b restrictions on the y's, which can be restated so that ally's are 

expressible in terms of just (a-l)(b-1) of them. 

6.2. Model equations 

The effect of the restrictions on changing the unrestricted model to the 

restricted model is seen by applying the restated restrictions of (38), (39) and 
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(40) tc the model equations (28). The result is that the model equations for the 

restricted model are 

I 

1: 7 11 1 • I 1 
I 

I I 

9 11 11 1 I 1 ll 
I I I 

6 11 1' . 1: . 1 al I 
I I I 

2 11 1 '-1 -11-l -1 !31 I t I 

8 = 1 1 -1 1 • '-1 1 !32 I I I 

4 I I 1' -1 11-11 .. 
I . ,:ytl 

I I I 

8 11-11 11 . -1 'Y12 
I I I 

12 1:-1:-1 -11 1 1 

6.3. Normal equations 

The normal equations resulting from (41) are 

8 0 I 1 1 I 1 -1 -.-1-- - "T"- ----,-----

0 I 8 I 1 -1 I 1 1 -- ,.., :-- '-:_- ~ - - - -- ; - - - - -
1 I_ 1 I 5 2 I 1 0 

I I I 

i" r~1 I 2 5 1 0 -1 
1 I I 

- - -, - - -, .. -- - - r -- -- ... 
1-.·1 1 1 0 5 2 

I 

-1 I 1 : 0 -1 : 2 5 
I 

+ e .... 

56 
-8 

10 

::4 

18 
4 

Because these are full rank equations with just one solution, that solution is 
A 

denoted by b. Its value is 

1 -1 ~0 ~] • 

6.4. Reduction in sum of squares 

(41) 

(42) 

(43) 

The reduction in sum of squares for this restricted model will be denoted by 

R*(l..l,~'~'~)E; the superscript asterisk designates that it is for a restricted 

model and the subscript Z indicates that the restrictions are the E-restrictions. 
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Its value is calculated by the R-algori thm as 

10 10 10 
R*(~'~'~'~)z = 7(56) - ~(-8) + l(lo) - 1(4) + 15(18) + ~(4) = 448. (44) 

The value of R*(~,~~~ 1 ~)z in (44) is the same as that of R(~'~'~'~)E in (31). 

This is no coincidence. The normal equations (42) have been derived as those f~r 

the restricted model with Z-restrictions. They could also be derived from the 

nermal equations (29) for the unrestricted model by applying E-constraints corre-

spending to the Z-restrictions (37) of the restricted mcttel (e.g., 
a o 
z ai = o). 

i=l 
This will be true for any set of restrictions that reparameterizes the unrestricted 

model to a full rank restricted model; i.e., 

(45) 

for any a.pprflpriate restrictions. 

We are here dealing with restricted models rather than just constraints on 

solutions of normal equations for unrestricted models. For this reason we prefer 

to derive the normal equations for a restricted model from the basic model equations 

for the restricted model; e.g., derive (42) from (41). In doing so, it must be 

appreciated that the symbols for parameters in (41) do not represent the same 

parameters as they do in (28). Those model equations, (28), are for the un­

restricted model whereas equations (42) are for the restricted model. This point 

would have been clearer had (38), (39) and (40) been written with symbols different 

from ai, ~j and Yij' say a1, ~j and Y1j· Then the model equations (41) would have 

also been in terms of the starred symbols, their general form being 
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E(yllk) = 1-1* + ct! + s* + y'* 1 l 11 

E(yl2k.) = 1-1* + a* + s* + y* 1 2 12 

E(yl3k) = 1-1* d! *" * * + 1 • sl - S2 - Y11 * yl2 

E(y2Jk) = 1-1* * * al + 131 - * yll 
(46) 

E(y 22k) = 1-1* a* + s* - * 
1 2 yl2 

E(y23k) = 1-1* a*- s* s* + Y''t + Y;~ 
1 1 2 11 12 

The reduction in sum of squares would then be designated R(ll*,a*,si•,y*) rather - ... -
than R*(IJ.,~1 ~ 1 :f)2: as in (44). The latter is used to avoid the profusion of symbols 

that would ensue when we come to deal with restrictions other than the E-restriction: 

Our interest is in R( )-values, and R*(IJ.,~,~~~)E is quite clear as to both the use 

of restrictions and their nature. 

7. A Sub-model 

Having explained the equality of R*(IJ.,~,~~~)l: and R(!-1 1 ~ 1 ~ 1 1), one may ask why 

we gave such specific discussion to the notation R*(ll,~'~'1)E. It is because we 

now come to discuss a term that might be denoted R*(ll,~,~)E' which does not equal 

R(!J.,a,Y); [and we recall from (36) that R(!J.,a,y) = R(ll,a,s,y)]. 
~ - ~ ~ ~ N -

7.1. The sub-model with E-restrictibns · 

We consider the same sub-model as used earlier, namely (1) with Sj's deleted: 

But now we consider it in a restricted :form, with 2:-restrictions. These re-

strictions, however, are not those of (38), (39) and (40) but are now, by virtue 

of the model being indistinguishable from a nested model, of the :form 
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yll + yl2 + y13 = o, (47) 

and ,·-.: 

The model equations for this restricted·model come from adapting (32), those of 

the unrestricted model, and are 

7 1: 1' 
I 

1 
.. 

I 
9 1, 11 1 J.l 

6 11 I 

I 1, . 1 a1 
2 1' I -1 

I 1 ,:·~~ y11 
+ e (48) 8 = 1 I -1 I . 1 yl2 

I I 
4 1 t-1 . 1 y21 I 

8 1 I -11 . 1 y22 I I 

12 1 I -11 . -1 -1 
I ' 

and the corresponding normal equations are then 

8 
I I "' 56 I . I 1 1 J.l 

--~---,----- ----- ;;...-- ---
• I 8 I 1 -1 a -8 --.---·-- ----- ---- -1-

"' 14 l I 1 I 3 1 yll 
"' = 4 I 1 2 .:Yl2" . I . 
"' -4 . I ,: . 2 1 y21 I 

11 I "' 
I -1 I . 1 3 y22 0 

(49) 

The solution is 

(50) 

and the corresponding reduction in sum of squares is 

R*(J.J.,~,~)z = 7(56) - li(-8) + 2!(14) + !(4) - i(-4) - 2f(o) = 448, 
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the same as R(~,a,Y) ~f (35). Again, this is.no coincidence; it is the same kind 
. --

of equality f~r the sub-model as R*(~,~,e~~)E = R(~,~~~,y) is for the full model. 

7.2. The "Delete S's" operation on normal equations 

In the unrestricted model, deleting S's from the model equations (28) for the 

full m::>del yields the model equations (32) for the sub-model. Similarly for normal 

equations: deleting both s's and s-equations from the normaJ. equations (29) for 

the full model yields those for the sub-model, (3). 

Suppose this "deleteS's" operation is carried over from unrestricted models 

to restricted models with E-restrictions. The model equations for the restricted 

full model are (41); and, by inspection, it is clear that deleting s's from those 

does ~yield the model equations for the restricted ~b-model, namely (48). 

Despite this observation, suppose that the "delete S" operation is carried out on 

the normal equations based on (41), namely (42). The result is 

8 I I 

--- _!__o_.!. ~- -=-~ 
0 : 8 : 1 1 -- - ... -- - --- --
1 I 1 : 5 2 

I 

-1 : 1 I 2 5 

_tl __ 56 
-8 
18 
4 

(51) 

Although (42) are the normal equations for the restricted full model, (51) are not 

those for the restricted sub-model which, we have seen, are (49). Nevertheless, 

this is the operation that is carried out in some computer programs, ostensibly 

with the objective of using the R-algorithm to calculate what might be called 

R(~,a,y) -a sum of squares for fitting a model with S's deleted. But since we ... -
know that R(!l,a, y) is the same as R(~,a,s, y) = EEn .. y~j , and also because the 

- - - - ~ ~J ~ • 

"deletes's" operation has been carried out not on a model (which is the proper 

place for deriving a model without S 's ) but on normal equations, we introduce the 



- 24 -

symbol R*(~,~'~' y)r. to denote the· result of' u-sing the R-algorithm on (51). Solving 

(51) gives 

and then 

.·(53) 

Two questions about (53) immediately arise,: (i) what is the significance of' 

~ in the symbol R*(~,~~~~Y)r. , and (ii) what. is the meaning, if' any, of' the calcu­

lated value? 

The~ symbol in R*(~,~~~~~)r. indicates that ~'s and ~-equations have been 

deleted f'rom the normal equations of' the restricted full model (involving ~' a's, 

~'s andY's); and after solving the resultant equations, the R-algorithm yields 

what is designated as R*(~,~~~~~)r.· 

The meaning of' R*(~'S:'~'Y)r. is closely related to the weighted squares of' 

means analysis. Indeed, as Hocking and co-workers [1, 6, 7] tell us, 

(54) 

where SSB is the sum of' squares due to columns in the weighted squares of' means w 

analysis (Searle [1971], p. 361-373). Since R(~'~'~'~) = R~'(!l,::'~'))r.' we can 

write (54) as 

(55) 

which might also be symbo.~ized as Ir:'(~l!l,~,y)r., provided one remembers that it is 

expressed as the difference given in (55) and not as R~~(~,~~~~~)r. - R*(~,S:,~)r., 

which we know is always zero. 
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The important thing is that t~(~,~~!~~)E and R*(~,~~~)E are not the same. 

R*(~'~'~'~)~ comes from using the R-algorithm on equations obtained by deleting 

~'s and ~-equations from the normal equations of the restricted full model with 

E-restrictions. But Ri~(~'~'~)E comes from the normal equations of the restricted 

sub-model. 

7·3· The weighted squares of means analysis 

Expressions for the sums of squares for this analysis are given in Table 8.18 

of Searle [1971]. Applied to our illustration they give 

and v = 
3 

= (8/3)8 + (8/3)6 + 2(7) = 154 = 7 
8/3 + 8/3 + 2 22 

and 

SSB = ~ ( 5 - 7) 2 + ~ ( 6 - 7) 2 + 2 ( 7 - 7) 2 = 5]: • 
w 3 3 3 

Confirmation of (54) is now available: from (31) and (53) 

so illustrating (54). 

7.4. Conclusion 

For data having all cells filled, the following algorithm is a calculation 

technique for obtaining the sums of squares for the weighted squares of means 

analysis: 

(i) Form the normal equations for the restricted full model with 

E-restrictions. 

(ii) Delete ~'s and the ~-equations from (i). 
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(iii) Solve the resulting equations, a~d calculate R*(~'~'~'~)z using 

the R-algorithm. 

(iv) ZZy~. /n .. - R*(~,a,~,y) = SSB 
~J· ~J - -- w 

7.5. Hypothesis testing 

The hypothesis tested using SSB as a numerator sum of squares is, analogous 
w 

to (68) of Searle [1971], p. 371, H: f3. + Y j all ·equal.· This is for the un-J • 

restricted model. For the restricted model with Z-restrictions (and all cells 

filled) it isH: f3. all equal. 
J 

7.6. Another example 

As a second example we illustrate derivation of SSA by this procedure: 
. .. w 

(i) The normal equations for the restricted fuli model are (42). 

(ii) Deleting the (sole) a and the a-equation leaves 

8 ~ 1 1 : 1 -1 -- - _, - - - - - - - - - - - -
1 : 5 2 : 1 0 

• I 
1 j 2 5 . 0 -1 

----r ------,------
1 I 1 0 I 5 2 

I 

-1 I 0 -1 1 2 5 
t 

(iii) The solution is 

and 

(iv) Hence 

j,J. __ 59. 
10 

4 

18 
4 

SSAw = R(~,~~~,y) - R'"'(~'~'~' ::0 "" 448 -· 428 = 20. 

Confirmation comes from noting that for the weighted squares of means analysis 

(56) 
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= w = [~<~ + ~ + ~)] = 18 wl 2 9 2 1 1 5 

and 

Hence 

as already obtained. 

= ( 18/ 5 ) ( 16/ 3 ) + ( 18/ 5 ) ( 26/ 3) 

18/5 + 18/5 

8. The 0-restrictions 

42 = -= 7· 
2(3) 

The ~-restrictions are popular, originating in their very reasonable and 

useful application in balanceQ data analysis. In unrestricted models, the Z-con-

straints on solutions (constraints corresponding to theE-restrictions) are also 

widely used. Other useful constraints are those which put some elements of the 

solution vector equai to zero (e.g., Searle '[1971], p. 213). We consider here the 

consequences of using such restrictions, which we call 0-restrictions, in the same 

way that we have already used the ~-restrictions. 

The particular set of 0-restrictions considered by Speed and Hocking [1976] 

is 

a = o 1 

t3 = 0 1 

A generalization of these is: 

ylj = 0 v j 
} o11-restricti~ns, 

yil = 0 v i 

for an arbitrarily chosen k and t 

=O'Ifj} 
9kt-restrictions. 

= 0 v i 

(57) 

(58) 
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We call these the ~t-restrictions. Then Speed and Hocking indicate that using 

as the numerator sum of squares in an F"statistic test~, 

H: ~j + Ykj equal~ j, in the unrestricted model. 

In view of the restrictions (58) this is equivalent to a test of 

H : ~ j equal ~ j, in the restricted model.,. 

Vle demonstrate (58), (59) and (60) using the illustration. 

Suppose (58) is 

a = o 1 

~ = 0 1 

y = 0 
11 

y21 = 0 

(59) 

(60) 

(61) 

equivalent to (57). The effect of these on the model equations (28) of the un-

restricted model is to eliminate columns of the ! matrix corresponding to the 

elements equated to zero in (61). n1e effect on the normal equations (29) is 

deletion of the corresponding rows and columns, thus giving the normal equations 

for the restricted model as 

I ' 

8 I 4 ' 3 2 I 2 1 
.._ - r - - -• - - - - - , - - - - -
4:4:2 1:2 1 

.. -- i-- ... , -- - --- -: - - - --

3 1 2 '3 0'2 0 
I 1 I 

I I I 

2•1·0 2·0 1 
""' - ..L - - -1 - - - - ... -· - - - - -

2:2:2 o:2 o 
' 1 1 •o 1, o 1 

I 

= 

J§_ 
32 

18 
14 
12 

12 

(62) 
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Solution of these is 

"·, r b = b8 0 -2 -6 0 10] 

and use of the R-algorithm gives 

R*(~,a,~,y)0 = 8(56) + 0(32) - 2(18) - 6(14) + 0(12) + 12(1o) 
,.... - - 11 

= 448 = R(~,a,~,Y), -,.... ,.... 

as is to be expected. 

Deleting ~·s from (62) gives equations 

I • 8 I 4 I 2 1 ------------ _5§_ 
1 I A' 

4 I 4 1 2 1 
.. - -.- ... -~- - .. - ,;.. - a' 32 

~~2- = 

Solution of these is 

and the R-algorithm yields 

2 I 2 I 2 0 
I : 

1 I 1 I 0 1 
l I 

y· 
22 

" y23 

"• J b = [6 2 -2 4 

12 

12 

R*(~,a,,e,y)0 = 6(56) + 2(32)- 2(12)+ 4(12) = 424, 
- - - 11 

so giving (59) as 

The hypothesis (60) is 

R*(~,a,,e,y)0 = 448 - 424 ::; 24. 
- - ,.... 11 

which, for~ of (13), can be written as 

(63) 
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-[: 0 0 1 -1 0 1 -1 0 0 0 :] . H: K 1b • 0 f()r K' - ... ,.. 
0 0 1 0 -1 1 0 -1 0 0 

Then, for (16) 

[8 -
:] = [:] 

KlbO = 
-- 8 

and 

1 -1 0 1 1 1 1 
2 2 2 

K 1GK = -1 0 = 
1 0 -1 0 -1 

1 3 
2 2 2 

so that (16) is 

3 1 
-1 

2 2 2 3 -1 1 

Q = [2 6] = 2(4 )[1 3]! = 24. 
1 3 8 
2 2 6 -1 3 3 

Thus Q has the same value as (63), and so (59) and (6o) are confirmed for this 

example. 

The reader can verify that ~(~,~,~,y)0 = 448 for the illustration, and 
- - - 11 

confirm its value through considering the hypothesis H: o:. + Y .1 equal for all i, 
J. J. 

corresponding to (6o). 

9. The W-restrictions 

The following set of restrictions, ,.,.,hich we call the W-restrictions, 



a 
~- n1 .a1 = 0 

i=l. . 

b 
L. n .(3. = 0 

j=l •J J 

- 31 -

a .· , .... , 

L:n. (a. +y .. )=OifJ 
i=l J.J J, l.J 

W-restrictions 
b 
L:n. ((3. +y .. )=Oifi 

j=l l.J . J . l.J 

is also considered by Hocking et al. [1, 6, 7]. They indicate that 

of the classical analysis o:f variance in Table 5. · This we no,., illustrate. 

The W-restrictions :for the illustrative data are as follows: 

implying a = -a 2 l 

implying 

and 

2(al ~+ ~~1) + a2 + Y21 

ai + "~12 + 2(a· + y ) ' :2 . - . 22 

al + Y13 + a2 + Y23 

2Ct\ + yll) + (32 + yl2 + 133, + yl3 

(31 + y21 + 2((32 + y22) + 133 + Y23 

all of which imply, in the nature of ( 40), 

and 

yll = yll 

yl2 = yl2 

y13 = -\~1 - ~2 + 2Y11 + yl2) 

Y21 = -(al + 2Y11) 

Y22 = i(al - Y12) 

= 0 

= 0 

= 0 

-- 0 

:::. 0 

(64) 

(65) 

(66) 

(68) 
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Applying (66), (67) and (68) to the model equations (28) of the unrestricted model 

yields the model equations for this restricted model, with W-restrictions, as 

1 1 1 I 1 
11 1 1 . I 1 1..1. I 

I 

1: 11 1 I 1 0:1 
I I 

1 1 I -2 -1 l-2 -1 131 I I 
I = 1 :-2 1 . •-2 132 

I 
I 

1 I-~ I 1 I -i yll . 
I I 

1 : -t I 1 -i y12 
I 

I 

1 J -1 '-1 -2 2 1 
I I 

The corresponding normal equations are then 

I I 
8 • . ' . . . • - - r .:- - t - - - - - -· - - - - - -

-~ I ~ : -1 1 : 2 -i 
"' 1..1. 

- -~ - - - - - - - - T - - - - -
. : -1 : 8 4 I 2 1 

1 I I 

• : 1 : 4 8 :-2 -1 
-- i- -- i .,._-----------

• : 2 : 2 -2 :14 4 
: -i l 1 -1 4 3t 

with solution 

"'I ] b = [7 -1 1 -1 1 1 i 

and the R-a1gorithm gives 

as is expected. 

~r 

9 
6 
2 

8 

4 

8 
12 

56 
-10 

8 

-8 

20 

10 

To demonstrate (65) delete l3's and f3-equations from (70) leaving 

(69) 

c~ro) 
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8 
·~ 

56 1..1 

% -i·. " 2 0:1' ·' 
-10: 

14 4 
A = 2 Yu 20 

-~ 3~ 
A . 

10 4 yl2 ~-:. 

The solution to these equations is 

and the R-algorithm gives 

Hence 

so illustrating (65).· The reader can use (70) to verif'y R(~!l..l) in the same manner. 
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10. Appendix: A Summary of Hypotheses 

The sums of squares that have been discussed ~rovide tests of a variety of 

hypotheses. Although the~e hypotheses are detailed in several places, different 

notations and labels can make cross-referencing confUsing. Descriptive names for 

the hypotheses, equivalent expressions for each of them, and for the corresponding 

sums of squares, are therefore now listed, together with references coded as 

follows: 

HS Hocking and Speed [1975] 

K Kutner [1974] 

s Searle [1971] 

S' Searle [l)r((], this paper 

SH Speed and Hocking [1976] . 

SHH: Speed, Hocking and Hackney [1977]. 

The hypotheses are stated in terms of the t'~o models 

and 

and numerator sum of squares are denoted by Q. 



1. 11Rows equal 11 

- - -~ = ~ = ..• = ~ 1· 2· a· 

a. + Yi { ~ - . 
a1 + Y. 

~· 

= ai I + Yi ~. 

equal V i 

~ - v 1 1= i' 
{ ~i• : ~i I • 

~i· equal V i 

~ 
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Vi/=1 1 

Q = R(~,~~~~~) - R*(~,~~~~~)z 

= SSA w 

2. "Columns equal" 

- -
~.1 = ~.2 = -= ~ ·b 

+y. =tL1 +y ·I 

•J"!. J •J 

+ :Y . equal V j 
• J 

~ =~·I Vj.t.j' {-·j •J r 
r • enual V J . ..... j ~ 

= SSB w 

= R(t3*1~"'",a*,y*)(l) 
,.. ... -

Vjf=jl 

[(A) inK] 

[Hl in SH] 

[(68), p. 371, in sJ 

.. ·rHA of_(2.26) in HSJ­
Hl in SHH 

(Sec. 7 inS'] 

[
p. 371 in S ] 

Table 3 in SHH 

[Table 2 in SH] 

[{B) inK] 

[H2 in SH] 

[~ of (2.26) in HSJ 
H2 in SHH 

[Sec. 7 in S 1 ] 

[ P· 370 1n:s . J 
~able 3 i!\ SHH_ 

[Table 2 ~n SH] 

y In the restricted model with .t-restrictions the hypothesis is H : a1 all equal. 

5/ In the restricted model with .t-restrictions the hypothesis is H : t3. all equal. 
J 



3· 11Weighted rows equal11 

~ 

1 b 
- I: n.jJli. equal V i 
ni· j=l ~ J 

b b 
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_z nljlll. I: n2· 112· Zn aj 11aj J=l J 
= 

j=l J J 
= ... = j 

nl· n2· n 
a· 

b b 
\ nij = \. ni 1 j 
L n. 1-lij L n , 111 1 j v i ~ i' 

j=l ~· j=l i . 

b 
Z n .. IJ.1 ./n1 = 

j:;::l ~J J • 

b 
Z n1 1 .IJ.. , ./n. , 

j=l J ~ J ~ • 
vi~ i' 

1 b 
ex~ +- En .. (~. + y1J.) equal Vi 

"" ni · 1 ~J J • J= 

b b 
\' n. 1 .~. L n1 1 • Y 1 1 • 

+ L ~ J J + J J 
n.' ni, ~ . . 

j=l j=l 

Q = R(cx!IJ.) -

= R(a* !11*, ~*, '0'"') (3 ) - - -

vi} i' 

[p. 307 in s] 

[(c) inK] 

[HA* o~ (2.30) in HS] 

[H5 in SFlli] 

[(100), p. 307 in s] 

[H3 in SH] 

[
p. 307 in s ] 
Table 4 in SHH 

[Sec . 9 in 8 1 J 

[Table 2 in SH] 

[Table 2 in SH] 

1/ In the restricted model with W-restrictions the hypothesis is H: cxi all equal. 



4. 11Weighted columns equaln 

l a 
- .E nijll·. equal V j 
n,j i=l ~J 

a 

1~1nil11il 
= 

n.l 

a 
\' nij = 
L n . 11ij 

i=l 0 J 

a 

1: 1ni211i2 
= 

n.2 

a 
\' nij' 
/..., n . 1 11ij 1 

i=l •J 

- 37 -

'f . J. . I 
J. r J 

a 
t3J. + _!_ .E n .. (a. + y1 .) equal V j 

n.j i=l ~J ~ J 

a a 
\ n .. a1 \ n1 .Y1 j 

t3 J. + L ~J + /..., ____.J.__~ 
n . n . 

i=l •J i=l •J 

= R(~"~~l!l*) 

= R(t3~~ I 11* ,a*, y*) (3) - ,., ""' 

v j r j' 

[&ee p. 307 in s] 

.. [¥ of (2.30) in HS] 

[H6 in SHH] 

[p. 308 in s] 

(H4 in SH] 

[
p. 308 in 8 ] 

Table 4 in SHH 

[Sec. 9 inS'] 

[Table 2 in SH] 

[Table 2 in SH] 

l_j} In the restricted model with W-restrictions the hypothesis is H: t3 .. all equal. 
J 
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5. "Rows adjusted for columns" equal 

~ 

(n1 • - .~ n~j/n.j)ai - ~ ( ~ n1jn1 , ./n •. )a1 , 
J=1 i ''/:i j=1 J J 

b a b 
+ _E (n1 j- nfj/n.j)y1J. - E E (n1jn1 , ./n .)y. 'j::.: 0 

J=1 i'pi j=1 J •J l. 

for i = 1, 2, 

b b 
( n. - r. n2ij /n •. \...i + r. (ni. - n2ij/n . )y .. 

1.• j=1 J? j=1 J • J l.J 

... a-1. [(107), p. 310 in s] 

" 

= ~ ( ~ n1 .n1 ,./n •. 'pi, + t ~ (n1 .n. 'j/n .)yi'j 
i'f:i j=l J J J i'Fi j=1 J l. ·J 

b 2 a 

I (nij 
nij) - I - n-:,1-lij 

j=l • J i'f:i 

= R (a:* I f.l *' f3* ) - -

fori= 1, 2, •••, a-1. [H5 in SH] 

b L nijni' j 
n . 

j=l • J 
j.li'j = 0 v i [HA** of (2.31) in HS] 

[H3 of Table 1 in SHH] 

[
p. 310 in S ] 
Table 4 in SHH 

[Table 2 in SH] 
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6. "Columns adjusted for rows" equal 
" 

'21 

~ 

(n.- ~ n~./n. )s.- ~ ( ~ n .. n .. ,/n. )13., 
•J i=l ~J ~- J j'~j i=l ~J ~J ~· J 

( n . -• J 

for j = 1, 2, 

a ) a 
E nf./n1 f3. + E (n .. - nfJ./n1 .)y1 J. 

i=l J • J i=l ~J 

_:.· 

b-1. [(106), p. 309 in s] 

b a ) b a 
= Z ( Z n1 .n1 . ,/n. f3., + Z Z (n.jn .. ,/n. )Y .. , 
j'~j i=l J J ~· J j'fj i=l ~ ~J ~· ~J 

a 2' 

L (nij 
nij'\ 

- ni.Jilij 
i=l 

a 

I nijl-lij 
i=l 

b 

\ = !... 

b 

I 
j '~j 

= R(f3* I 1-l;~ ,a*) - .... 

for j = 1, 2, 

a I nijnij' 
1-Lij' = 0 v j n. 

i=l ~· 

Yf j 

, b-1. [H6 in SH] 

[H'( of Table 1 in SHH] 

[
p. 309 in S ] 

Table 4 in SHH 

[Tab~e 2 in SH] 

'2/ There are two typographical errors in HE~~ of (2.31) in HS: the i of i=l of the 

first summation is erroneously j, and the j of j'fj of the second summation is 

erroneously i. 
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7· "Interactions 11 

Any column vector consisting of s-a-b+l 

linear independent functions of the 

eij,i'j' = Yij- Yi'j- Yij' + Yi'j" ,.,here such = 0 [(110), p. 311 of s] 

functions are either estimable e' s or 

estimable sums or differences of e's. 

~ij- ~i'j- ~ij' + ~i'j' = o vi F i', j = J' 

(E) inK 

H7 in SH 

H9 in SHH 

HAB in HS 

[ p. 311 in S I 
Tables 3,4,5 in SHH 

= R(y*l~*,a*,~*) [Table 2 in SH] ... - -

~ For all cells filled, s = N' = (a-l)(b-1). 
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8. "Rows over a specified column" ·· 

~: For an arbitrary t: 

vi I= i' 

9. "Columns over a specified row" 

~: For an arbitrary k: 

1-l:kj = ~j I v j I= j' 

= R(B*'~*,~,y*)( 2 ) - - -

[H8 in SH] 

[H4 in SHH] 

[Sec. 8 in S'] 

rTab~- 2 in SH J"" 

LTable 5 in SHH 

[H9 in SH] 

[H8 in SHH] 

[Sec. 8 inS'] 

[
Table 2 in SH ] 

Table 5 in SHH 

1/ In the restricted model with Okt-restrictions the hypothesis isH: a 1 all equal. 

~ In the restricted model with Okt-restrictions the hypothesis isH: Bj all equal. 
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The references given 1n the preceding list are s~~~j-~ed in the following 

table: 

Table 6: Hypotheses and Their Labels in a Variety of References 

Reference 
Hypothesis 

S' HS K s SH SHH 

Rows equal 1 HA A p. 371 Hl Hl 

Columns equal 2 l13 B p. 3°(0 H2 H2 

Heighted rows equal 3 HA~~ c p. 307 H3 H5 

Vleighted columns equal 4 ~* D p. 308 H4 H6 

Rows adjusted, equal 5 HA** - p. 310 H5 H3 

Columns adjusted, equal 6 HB** - p. 309 H6 H7 

Interactions 7 HAB E p. 3ll H7 H9 

Rows over.column t, equal 8 - - - H8 H4 

Columns over row k, equal 9 - - - H9 H8 
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ll. Addendum: Hypotheses of "no interaction" 

It is sometimes said that hypotheses of the form 

(Al) 

are testing "no interaction". Or equivalently, that restrictions of the form 

reduce an interaction model to a no interaction model. These kinds of statements 

are true in the case of all cells filled; but when some cells are empty, the situ-

ation is changed. Restrictions differing from (A2) have to be used. We illustrate 

with 2 examples, one of filled cells, the other with some empty cells. 

11.1. The 2 x 2 case with all cells filled 

Represent this case by the grid 

1:]:1 (A3) 

where an asterisk represents the occurrence of data in a cell. Now consider the 

interaction model 

E yijk = 1-l + ex. +(3.+Yi .• 
~ J J 

(A4) 

For data of the form (A3) we have 

E yl1k 1-l + cxl + (31 + yll 

E yl2k = 1-l + cxl + (32 + yl2 
(A5) 

E y21k = 1-l + cx2 + (31 + y2l 

E y22k = 1-l + cx2 + (32 + y22 
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Consider the effect on this model of restrictio~s like (~2), of which there 

is only one in this case, namely 

(A6) 

From it we can write 

(A7) 

On substituting (A7) into the first equation of (A5), adding and subtracting Y22 

in the third equation of (A5), and then re-arranging terms, we can re-write those 

equations as 

On defining 

E yllk = ll + (al + yl2) + (t31 + y21 - y22) 

E y = 
l2k ll + (a1 + v12) + t32 

E y21k = ll + (a2 + Y22) + (t31 + y2l - y22) 

E y22k = ll + (a2 + Y22) + 

cti = 0 1 + Yl2 

a~= 0 2 + Y22 

t32 

(AS) 

(A9) 

equations (AS) then represent a no-interaction model in terms of the starred 

parameters of (A9). In other words, the restriction (A6) does reduce the inter­

action model (A5) to a no interaction model. 

Note that (A7) is only one exa.n:q;>le of how (A6) may be used, leading via (AS) 

to definition of new parameters in accord with (A9). Another example of using (A6) 

is to rei·Tri te it as 

(AlO) 
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This leads, as is shown below, ·to a definition of ne1~ ·parameters different from 

(A9). 

This illustration of 2 rows and 2 columns extends directly to any numbers of 

rows and columns when all cells are-.-filled. But it does not extend in quite the 

same manner '1-Then there are e~ty cells. 

11. 2. An empty cells case 

Suppose there are data in 8 cells of a 3 rows and 4 columns case as follows: 

·ll- * * 
* * * (All) 

* * 

The model equations are: 

E yllk = ~ + al + ~1 + Yll 

E yl2k = ~ + al + ~2 + Y12 
(A12) 

E y = ~ + a2 + ~1 .+ y21 21k 

. E Y221c = ~ + a2 + ~2+ y22 

and 

~ yl3k = ~ + al + ~3 + yl3 

E y24k = ~ + a2 + ~4 + y24 
(Al3) 

E y33k = ~ + a3 + ;133 · + Y33 

E Y3i~k = ~ + a3 + ~4 + Y34 

Restrictions of the form (A2) can be applied only in one way, namely 

(Al4) 

as in (A6). By the nature of the pattern of filled cells in (All) no other form 
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of (A2) c:e.n be used• However, recall from Sec. 10.7, or from Searle [1971, p. 311], 

the hyp~heses that can be tested using R(YI~,a,~). They are not only of the form ~ - - .... 
(AJ.) but also of the .form 

H: eij,i'j' ± 9rs,r's' = O· (Al5) 

where 

and where, in (Al5), each e1j,i'j' and ers,r's' may not be estimable but their sum 

(or difference) is. This is just the case rlith the data pattern (All). Neither 

nor 

are estimable (because cell 2,3 has no data), but their difference is. Using this 

difference as a restriction 

(Al6) 

together with (Al4) reduces the model equations (A12) to be those of a no inter-

action model. 

First, (Al4) used in the form (AlO) reduces (Al2) to 

E yllk = ~ + (al + Yll) + t31 

E y12k = ~ + (al + Yll) + (t3 -
\ 

y21 + y22 1 2 (Al7) 
E y21k = ~ + (a2 + Y21) + t31 

E y22k = ~ + (a2 + Y21) + (t32 - y21 + y22) 

in the same manner as equations (A8) were derived using (A6). We can then rewrite 
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(A1.3), using two of the parenthesized terms of (Al~r), as 

E yl3k = ll + (a;l +'¥11) + (33 + yl3 - yll 

E y 24k = ll + ( 0:2 + y 21) + f'4 + y 2!~ - y 21 

E y 33k = ll + a;3 

E y 34k = ll + a;3 

Finally, on reHriting (A16) as 

we can revrri te (A18) as 

E yl3k = ll + (a;l + yll) 

E y24k = ll + (a;2 + y21) 

E y33k = ll + (a;3 - y24 + y21 + y34) 

E y34k = ll + (a;3 - y24 + y21 + y34) 

Then, on defining 

a;-l:· = a; + y 
1 1 11 

~ = 0:2 + y21 

~ = 0:3 - y24 + y21 + y34 

+ 133 + y33 

+ (34 + y34 

+ (f33 + y24 - y21 + y33 - y34) 

+ (f3!~ + y24 - y21) 

+ (f33 + y24 - y21 + y33 - y34) 

+ ((34 + y24 - y21) 

(3{~ = f3 
1 1 

(3~ = (32 - y21 + y22 

(33 = (33 + y24 - y21 + y33 - y34 

·~ f34 = (34 + y24 - y21 

(Al8) 

(Al9) 

(A20) 

(Al7) and (Al9) represent a no-interaction refornru.lation of the interaction model 

equations (Al2) and (A13). 

The emphasis here is that with data having empty cells it is not just re-

strictions of the form (A2), exemplified by (A6) and (Al4), that reduce the inter-

action model to the no-interaction model; restrictions like (Al6) are also needed. 
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There is, of course, no uni~ue way of deriving a reparameterization like 

(A20). Indeed (Al6) is not the only restriction of that nature which could be 

used. For example, 

is another, and so is 

Each of these will lead to a reparameterization different from (A20), although 

similar in nature. 
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