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SUMMARY 

Considered are the asymptotic distributions of the Kolmogorov-Smirnov 

goodness-of-fit statistics when the hypothesized distribution is discrete. 

Each of these statistics is shown to have the same distribution as a contin-

uous functional of an associated empirical process on the unit interval. 

Using known weak-convergence properties for the empirical process, the 

asymptotic distributions of the Kolmogorov-S:mirnov statistics are derived. 

A discussion and example concerning the use of these results is included. 

Some. Ke.y Wando: Kolmogorov-S:mirnov statistics; Goodness-of-fit tests; 

Limit distributions; Discrete distributions. 

1. INTRODUCTION 

Several authors have recently recommended the use of Kolmogorov-Smirnov 

statistics for testing goodness-of-fit to a completely specified discrete 

distribution. See Conover (1972), Horn (1977), and Pettitt and Stephens 

(1977). In particular, Coberly and Lewis (1972) and Conover (1972) both 
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give formulas for calculating the exact distributions of the one-sided 

Kolmogorov-S.mirnov statistics. Conover (1972) also gives an approximation 

to the distribution of the Kolmogorov-Smirnov statistic. These computa­

tions, however, are not feasible for large sample sizes. Considered here 

are the asymptotic distributions of not only the one-sided Kolmogorov­

Smirnov statistics but also the Kolmogorov-S.mirnov statistic when the 

underlying distribution is discrete. 

Schmid (1958) first examined the asymptotic null distributions of these 

statistics when the hypothesized cumulative distribution function possessed 

a finite number of discontinuities and was increasing between the discontinu­

ities. It was conjectured by Schmid that his results could be extended to 

purely atomic distributions and distributions with a countable infinite num­

ber of discontinuities by appropriate limiting procedures. Applying a result 

due to Billingsley (1968) on the weak convergence of the sample distribution 

function, we derive the limiting distributions of the Kolmogorov-Smirnov 

statistics directly and thereby circumvent these limiting procedures and, 

hence, their justification. The limiting distributions, while not given 

in closed form, are presented in Section 2. A discussion and an example of 

how to use these results for computing significance levels is found in 

Section 3. 

2. RESULTS 

Let x1, .•. , Xn be independent and identically distributed random vari­

ables with common cumulative distribution function, F. We wish to test 

H0 : F(x) = H(x), -oo < x < oo, where H is the hypothesized, discrete distri­

bution with all parameters, if any, specified against alternatives of the 

form 
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Ell F(x) ~ H(x), with F(x) > H(x) for some x , 

H12 F(x) s H(x), with F(x) < H(x) for some x , 

or 

H13 F(x) f. H(x), for some x 

Our test statistics are based on the sample cumulative distribution function 

F (x) = (# of X. 's ~ x)/n, -~ < x < ro 
n ~ 

In particular, for a fixed x0, Fn(x0 ) is a binomial proportion with proba-

bility of success equal to F(x0 ) . 

estimator of F, uniformly in x . 

Further, F is a strongly consistent 
n 

Corresponding to each of the alternatives given above, an appropriate 

measure of discrepancy between the observed sample distribution function 

and the hypothesized distribution and, hence between F and H, is 

D+ 
~ 

= supx n"Z[F (x) - H(x)] n n (2.1) 

~ 

D = supx n2[H(x) - F (x)] , n n (2.2) 

or 
~ 

D = supx rliF (x) - H(x) / n n (2.3) 

the Kolmogorov-Smirnov statistics for testing ~l' H12 and H13 respectively. 

Since F and H are both step-functions, 
n 

~ 

D+ =max n"Z[F (x) - H(x)] , 
n XEJ n 

(2.4) 

~ 

D = max n2 [H(x) - F (x)] , 
n XEJ n 

(2.5) 



and 

D 
n 
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~ 

=:max n2 jH(x) - Fn(x)j , 
XEJ 

where J is the set of discontinuity points of H 

(2.6) 

Historically, these distance measures have only been used for goodness-

of-fit tests to absolutely continuous distributions, while the chi-square 

test has commonly been employed for discrete data. Horn (1977) gives a 

comprehensive review of both and their competitors. The chi-square test 

statistic may also be written as a measure of discrepancy between F and 
n 

H • However, it is one which does not take into account the natural order-

ing among the observations, a fact exploited in analysis of attribute data. 

To be more specific, the chi-square test statistic is invariant to per.mu-

tations of the cell labels. In contrast, the Kolmogorov-Smirnov test 

statistics are sensitive to the overweighting or underweighting of any tail 

or segment of the empirical distribution relative to the hypothesized 

distribution. It is from this fact that the Kolmogorov-Smirnov test sta-

tistics derive their greater powers. 

One advantage of the chi-squared test is that for a fixed number of 

cells, it is asymptotically distribution free. It is well known that the 

Kolmogorov-Smirnov statistics for absolutely continuous distributions are 

strictly distribution-free. However, the relationships between (2.1)-(2.3) 

and (2.4)-(2.6) indicate that this is not true for discrete distributions. 
Q 

In particular, letting W denote the tied-down Wiener Process on [O,l]; 

i.e., for every k and 0 ~ t 1, ..• , tk ~ 1, [W.(t1 ), .•. , w·(tk)}' has a 

.multivariate normal distribution with zero mean vector and 

E[W.(t.) · w•(t.)} = min(t.,t.) - t.t., 
l J l J lJ 
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we have that under the null hypothesis 

THEOREM. The .t.<..m<.tin.g d.i.J.,.tfU.but.£ol't6 on D + (D-) a.n.d D Me g-tven. by n n n 

max [Wo{H(x)}J a.n.d max IWo{H(x)}l ~~pectivefy. 
XEJ XEJ 

As an example, suppose that the number of discontinuities of H is 

finite, say r . Then, for any A > 0, 

lim Pr(D > ~) 
n->eo 

Pr[max IWO{H(x)}l >A] 
XEJ 

= 1 - Pr[max IWo {H(x)} I :s; "-] 

XEJ 

where (z1, ... , Zr_1 )' is a multivariate normal vector with 

E(Z.) = 0 
l 

and 

E(Z. • Z.) = min{H(x. ), H(x.)} - H(x. )H(x.) 
l J l J l J 

Even though this .multivariate normal probability is neither known in 

(2.7) 

closed form nor computationally tractable, for a given h it can be esti-

mated quite readily by Monte Carlo simulation. See Section 3· 

Now we will present the proof of the theorem. 

PROOF OF THEOREM. Letting J* = [ t : t = H( x), x E J}, we can write 

+ .1. 1 
D =max rf [F {H- (t)} - t] , 

n tEJ* n 
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and 
~ 1 

D ==max n~jF [H- (t)} - tj , 
n tEJ* n 

where H-1(t) = inf[x : H(x) ~ t} 
-1 

Note that for every tEJ*, FoH (t) is 
n 

equal to the sample distribution function of s. == H(x. ) , i == 1, · · ·, n, say 
l l 

H (t) . Denoting the distribution function of s. by ~ we also have that 
n l 

H*(t) = t, for every tEJ* . Since the maximums are to be taken only over 

points in J*, 

and 
1 

D =max n2JH (t) - ~(t)! 
n tEJ* n 

1 
From Billingsley (1968), Theorem 16.4, we find that [n2[H (t) - H*(t)} 

n 

: 0 ~ t ~ 1] converges weakly to WoHi~ in D[O,l] . It immediately follows 

from the continuous mapping theorem that the limiting distributions of 

D+ (D-) and D are given by 
n n n 

sup Wo [Hi~( t )} = sup Wo [H(x)} 
tEJ* XEJ 

and 

sup jWo [H*(t)} J ==sup jwo[H(x)}j 
tEJ* XEJ 

respectively. 

The approach which we have taken to derive the limiting distribution 

of the Kolmogorov-Smirnov statistics can also be used to derive asymptotic 
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results for other EDF goodness-of-fit test statistics commonly used only 

with continuous distributions. For a discussion of EDF statistics, see 

Stephens (1974). We only require that the statistic can be written as a 
1. 

continuous functional of the empirical process n2 [F (x) - x), -= < x < oo, 
n 

1. 
which then can be replaced by a corresponding functional of n2(H (t) - H*(t)}, 

n 

O!!:t::s;l. 

3. AN EXAMPLE 

Horn (1977) recommends the use of the one-sided Kolmogorov-Smirnov 

statistic D- to test goodness-of-fit of health impairment scale data for 
n 

insulin-dependent diabetes patients to a maximum acceptable standard dis-

tribution. Table 1 gives the relative cumulative frequencies both observed 

and expected under the maximum acceptable standard distribution, where the 

ordered categories range from "no impairment" to "death". Since the 

Kolmogorov-S.mirnov statistics are independent of the spacing between dis-

continuity points, it is unnecessary to assign numerical values to these 

categories. 

Table 1. 1n.6uU.n. Ve.pe.n.den.t V.<.a.be.teJ.> Va.:ta. 

Health Impairment Level 

1 2 3 4 5 6 

Observed C.D.F. 0.000 0.500 0.633 0.867 0.933 1.000 

Hypothesized C.D.F. 0.033 0.600 0.833 0.933 0.961 1.000 

The one-sided Kolmogorov-Smirnov statistic, D-, applied to this data 
n 

gives an observed value of 1.095 with exact significance level (n = 30) of 
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.026 • To calculate the asymptotic significance level of this value, say 

P, we need to estimate 

lim P(D- ~ 1.095) 
n 

D--+co 

1- P(z1 < 1.095, ···, z5 < 1.095) (3.1) 

where (z1, ... , z5)' is a multivariate normal (MVN) vector with zero mean 

vector and covariance matrix~ given by (2.7) with Has shown in Table 1. 

Ten thousand independent MVN vectors were generated with zero mean 

and this covariance structure. Each vector was checked to see if it fell 
A 

in the region (3.1). The estimated significance level P was found to be 

.0143. 
~ ~ 

Noting that fi2F takes jumps of size n-2 , an obvious finite sample 
n 

~ 

correction factor is to reduce the observed value of D- by in-2 . This re­
n 

sults in an estimated significance of .022 which is closer to the exact 

significance level. 

In this case, as in .many situations, the order of ~ is small. This 

means that MVN vectors are relatively easily generated. One commonly used 

method is to decompose ~ into UU' where U is a lower triangular matrix; i.e., 

Cholesky Decomposition. For details see Forsythe and Moler (1967), Section 

23. Then if ~ is MVN(g, I 5x5), UY is MVN(O, ~) . 

For the example discussed in this section, ten thousand vectors were 

generated. In many hypothesis testing situations, less accuracy in the 

estimate of P is required; e. g.' P is much less than -90 Therefore we 

suggest at least a two-staged procedure to estimate P . The first stage 
A 

yielding a rough estimate P from which it can be decided if a more accurate 

estimate is needed and, if so, the number of simulations required. 
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