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The maximum likelihood procedure of Hartley and Rao [1967] is modified by 

adapting a transformation from Patterson and Thompson [1971]. This partitions the 

likelihood under nor.mality into two parts, one of which is free of fixed effects 

and so provides estimators of the variance components that are invariant of the 

fixed effects. A further transfor.mation, adapted from Hemmerle and Hartley [1973], 

reduces computing requirements to dealing with matrices having order equal to the 

dimension of the parameter space rather than that of the sample space. These same 

matrices also occur in the asymptotic sampling variances of the estimators. 

1. Introduction 

The maximum likelihood procedures derived by Hartley and Rao [1967] lead to 

simultaneous estimation of both the fixed effects and the variance components that 

occur in an analysis of variance model involving both fixed and random effects--a 

model customarily called the mixed model. In particular, estimators of the variance 

components depend upon the fixed effects. In contrast it has been suggested (e.g. 

Rao [1971] and La Motte [1973]) that a useful class of estimators of variance com­

ponents consists of those that are invariant to changes in the fixed effects, i.e. 

are invariant to changes in translation of the underlying variable. We call these 

translation invariant estimators. Adaptation of a transfor.mation used by Patterson 
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and Thompson [1971] leads to a partitioning of the likelihood function into two 

parts: one part is entirely free of the fixed effects, and maximization of this 

provides what we call translation invariant maximum likelihood (TIML) estimators 

of the variance components. These TIML estimators are not only invariant to the 

fixed effects but also, for ba,lanced data (having equal numbers of observations 

in the subclasses), they reduce to the familiar analysis of variance estimators 

for such data, a property not generally possessed by the maximum likelihood esti-

mators of Hartley and Rao [1967]. · 

Adaptation of a transfor.mation described by Hemmerle and Hartley [1973] that 

simplifies computation of the Hartley-Rae estimators greatly aids the computing of 

the TIML estimators and also simplifies derivation of their large-sample variances. 

Maximizing that portion of the likelihood not used for the TIML estimators 

provides estimation of the fixed effects • 

2. The Model 

The model for y, a vector of n observations, is specified in ter.ms that closely 
N 

follow the notation of Hartley and Rao [1967], Hartley and Vaughan [1972] and 

Hemmerle and Hartley [1973]. We take 

+ ••• + U b + e 
-C-C 

where y is an n-vector of observations, -

(1) 

X is an n X k matrix of fixed effects for k ~ n and of full column rank, 

e is a k-vector of unknown constants, 

U. is ann X m. design matrix associated with the ith random factor 
-~ ~ 

with m. ~ n levels, 
~ 
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b. is an m.-vector of random variables which are i. i. d. N(O,a~), 
.... J. J. ... 

with the b.'s being mutually independent, 
-J. 

e is ann-vector of random variables which are i. i. d. N(O,a2 ) and 

independent of the b.'s • 
~J. 

Hence y has a multivariate normal distribution with mean and variance ... 

E(y) = X~ and var(y) = Ha2 (2) 

where 

(3) 

The symbol ~ for fixed effects emphasizes the generality of the model insofar 

as fixed effects are concerned. ~ is a vector of the maximum number of linearly 

independent estimable functions of the fixed effects. The simplest such vector 

has as its elements the population means of those of the sub-most cells of the fixed 

effects factors that contain data. The corresponding X of (1) then has a simple 

form. Define y as being the observations ordered so that all those within each 

sub-most cell of the fixed effects factors follow one another sequentially. If 

there are k such cells containing data, with the t'th one having nt f 0 observations, 

then 

1 
... nl 

0 ... 0 

0 1 ... 0 k+ 
(4) X= -na = z 1 

t=l ... nt 

0 ... 

where i is a vector of nt ones and \'There z+ represents a direct sum of matrices • 
... nt 

For example, if the fixed effect factors form a 2-way crossed classification with 
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the r'th row effect represented by a and the s'th column effect represented by 
r 

~s and the interaction term by Yrs' then~ has elements (ar + ~s + Yrs) for those 

of the cells having data in them. 

3· The Estimators 

The logarithm of the likelihood for y ,.... N( 1-L, Ha2 ) of ( 2) is - - -

To partition this into two parts one of which is free of 1-L, Patterson and Thompson 

[1971] suggest the singular transformation 

where 

and S = I - X(X'X)-1x• ...... 

where J is an nt X nt matrix with every element unity. Then, with S being sym­-nt 
metric and idempotent and 

sx = 0 ' -
z has the singular multivariate normal distribution 

(6) 

(7) 

(8) 

(9) 
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It is clear from (9) that the distribution of Sy is free of the fixed effects ,._ 

~ • The likelihood function for Sy therefore forms the basis of our derivation of 

translation invariant maximum likelihood estimators of the variance components in-

volved in Hcr2 • However, to avoid the singularity of SHS in (9), arising from the 

form of S shown in (7), we use an alternative derived from S by deleting its nl. 'th, -
( ~ +ns ) 1th, (~ +na +na ) 'th, • • • 1 and (n1 +rla +• • • intt ) 1th rows. Such a matrix ha.s order 

(n - k) X n, and denoting it by T, we have 

k 

T = r [~nt-1 01 ) -1 
X nt] ... nt.-1 - nt. ~ (nt. -1) 

t=l 

k 
~ (! - -1 -1 ) = '- nt. J 1 .. Ilt. !nt.-1 nt -1 -nt"" 

t=l 

(10) 

where J( l) x is a matrix of order(nt-l)X ~whose every element is unity. From 
... nt- Ilt 

X of (4) it is readily seen that 

TX = 0 ... (ll) 

analogous to (8); and by the nature of T itsel:t'1 it is easy to show that -
T'(TT')-~ = S - - • (12) 

As a result of (ll), the distribution of [;]is just like (9) only with s re­

placed by! • Hence the log likelihood of (5) becomes ~ = hl + ~ where 

~1 =- ~(n-k)log2n- ~(n-k)logcr2 - tlog!THT'j - iY'T(THT')-lT'yjcr2 (13) ,..,#"'<#_ - - __ ,..., 

and 

- ~(y- X~)'H-1X(X'H-1X)-1X'H-l(y - X~)ja2 
- -~ - - - - ~ - - - --

(14) 
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The estimators of cr2 and the 'Y. 's that we call translation invariant maximum 
~ 

likelihood (TIML) are, following the method of Patterson and Thompson [1971], those 

values of cr2 and the "(. 's that maximize ~1 • Differentiation of (13) gives 
~ 

ohl. 
-= (15) 
ocr2 

and 

-= 

for i = 1, 2, •••, c (16) 

where tr(A) is the trace of a matrix A • 

Equating (15) and (16) to zero gives the TIML estimators. The resulting equa-

tions clearly have no analytic solution and have to be solved numerically. An 

iterative procedure is to first assign initial values toY'= {Y1 ,•••,Ye} and then -
(i) solve 

82 = y'T'(THT')-1Ty/(n-k) (17) 
""'* ,. _..,,.. ,..,~'># 

based on (15), and (ii) use the Y-values, and 82 from (17), to calculate new 

Y-values that make (16) closer to zero. Repetition of (i) and (ii), ending at (i), 

is continued until a desired degree of accuracy is attained. 

Although Patterson and Thompson [1971] give a procedure based on Fisher's 

iterative method for c = 1 and suggest how to use it for c > 1, the Newton-Rhapson 

technique is well suited to the problem of finding successive values of Y that ... 
zeroize (16), and has been effectively applied by Hemmerle and Hartley [1973] to 

similar equations of the Hartley and Rao [1967] maximum likelihood method. We use 

their application here, first adapting a transformation they use, which simplifies 

notation and computing procedures. 
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4. The W-Transfor.mation 

The Newton-Rhapson technique for finding values of the elements of y that 

zeroize (16) utilizes the second-order partial derivatives of ~ with respect to 

the Y~s. These are, using (16) 
J. 

for i,j = 1, 2, •••, c 

(18) 

The matrix products in (16) and (18) are summarized in the following transformation 

to W suggested by Hemmerle and Hartley [1973] • ... 

Define 

and 

w = I W. )_ 
... l.!J.jJ 

U = [11, !:_Ja • • • ;;!c J 

for i,j = 1, 2, •••, c+l 

so that 

W. j = u1'T'(THT')-1Tuj, of order m. X m., for i,j = 1, ···, c 
... J., ... - --- -- J. J 

W. +l = w. = U!T'(THT')-1Ty, a vector of order m., fori= 1, ·•·, c 
-~,c NJ. -J.- ,.,__ ...... l 

W = w = y'T'(THT')-1Ty, a scalar • ... c+l,c+l _ ... --- ...... 

(19) 

(20) 
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Then (16) and (18) are 

and 

-;;:: - t tr(W.i) + t w!w./cr2 
... ~ ,..]._...1 

0~1 
---;;:: ~ tr(W.jW!j) - w!W .. w./cr2 for i,j = 1, •••, c • 

-~ ... ~ -~~J-J ?J"Y.oY. 
~ J 

Additionally, (17) is 

f12 = w/ (n-k) 

To use the elements of Win (21)- (23) we need, from (20), the inverse of ,.. 

(21) 

(22) 

(23) 

THT ', which has order n - k • For many data sets this will be impossibly large for 

the computing of (THT')-1, but the following development reduces the inversion to 

c 
that of a matrix of order m = Z m. , the total number of levels of all random 

• i=l ~ 

effects in the model. Although this itself may also be impossibly large for some 

data sets, it is always less than n - k, frequently much less, and in many instances 

will be such that the inversion is computable. Defining 

c 
D = I:+ Y. I (24) 

i=l :L...mi 

and 

(25) 

recalling that Yi is by definition positive, we have from (3) 

H = I + zz I (26) 

so that 

THT' = TT' + TZZ'T' • --- ----
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Then similar to the well-known result 

(27) - -,.., ,... -
we have 

(THT')-l = (TT')-l- (TT')-~Z[I + Z'T'(TT') .. J..rzJ-1z'T'(TT')-l (28) 
~ ~ _,..., --

which, when used in conjunction with (25), leads to T1 (THT')-1T of (2~being 

T 1 (THT I) -lT = s - SUM-1u•s - --- ~ - -~- - -
for 

M = D-l + U'SU, of order m ........... 

#"<# ,._,.,_ -

... 

c 
= t m. 

i=l ~ 
• 

Now define 

y] = [~00 ~01 
w' w 
-0 ...Oj 

which, because of (12) is W with H replaced by I • Then from S of (7) 

W = U'SU = U'U - U'X diag(l/n1 • • • 1/nk )~'~ 
-00 - ,.,.,.. r- ~ 

(29) 

(31) 

(32) 

where U'U is the familiar "coefficient matrix" for the random effects; (i.e., if 

~ were null and the random effects were in fact fixed, the normal equations for them 

would be U'Ub o = U'y ). And in (32) a typical sub-matrix in U'X is 

~i~ = (ni(j),t) for j = 1, ••• 1 mi and t = 1, ••• , k, 

an mi X k matrix whose typical element ni(j),t 

is the number of observations in the j'th level 

of the i'th random effects factor and the t'th 

sub~st cell of the fixed effects factors. 
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Also in (31) 

w = u'sy = (u!sy}, m2. x 1, fori= 1, ··~, c 
~o -~-~ 

From (7) Sy = z is the vector y with each observation replaced by its deviation - -
from the cell mean of the sub-most cell of the fixed effects factors in which it 

occurs: 

k 
z = Sy = y - ( !: + nt-l J ) y = y - [ {yt .1 } for t = 1, 

-- ... 't=l -D-t ~ - .... nt 
... , k] • (33) 

Hence 

w = (U.z} ={an m. X 1 vector of totals of the z's, totalled over ... o ... J.... l. 

each level of the i'th random factor} (34) 

fori= 1, ••• , c 

and 

w0 = y'Sy =total sum of squares of the z's 

= within cell sum of squares of the y's for the k sub-most 

cells of the fixed effects factors. 

and on using (29) in (20), W becomes 

= [~00 
w' 
....0 

-

w 
0 

-1 ] - W M w ... oo.., ... o 
-1 ... w' M w 

-0 ...... o 
• 

(35) 
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Notice also, from (24), (30) and (32) that 

c+ 
= ~ (1/Y ) I + U'U - U'X diag{l/n1 

i=l i ~1 
... 

In this wa~ W of (20) for use in (21) -- (23) is obtained from (36) using W of 
- _o 

(37) 

(31) (35) and M-l from (37). Since M-l has order m it is more readily computed 
• 

than is (~')-l of order n -kin (20). 

With these expressions, implementation of the iterative solution of equations 

formed by equating (15) and (16) to zero can be carried out exactly as suggested by 

Hemmerle and Hartley [1973]. 

5. Estimation of Fixed Effects 

The likelihood (5) has been partitioned into two parts hl + A2 in (13) and 

(14), the first of which has provided the preceding TIML estimators of the variance 

components. Maximizing the second part, A2, with respect to ~ provides an estimator 

~ = (X'H-1X)-lx'H-ly 
~ - - - ~ - N 

( ) -l . ( ) f t of the fixed effects. SUbstituting from 27 for H and us1ng 25 or Z he terms 

of this expression are 

and 
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X'X = diag{n1 ,•••,nk} --
!'! = {Yt.} fort = 1, ••• , k, a k X 1 vector of the cell 

totals Yt. of the sub-most cells of the fixed effects 

factors 

U'y is an m X 1 vector of y-totals for each level of the --
random effects factors 

and where X'U is described below (32) and D-l + U'U is, from (37), part of M • -
-1 With the TlML est:ima.tors of the 'V. used in D , an estimator of ll based on those 

1 - --estimators is obtained. If H is the value of H when the TIML estimator 'V is used 

-in place of Y in H the corresponding estilnntor of f.L will be 
N -

The true covariance matrix of this estimator is 

and if the TIML estimators are used for H and a2 this becomes -

the covariance matrix of~ using.Ha2 in place of ~2 • ... - ... 

6. Large Sample Variances 

The preceding TIML estimators of a2 and of 'Vi= a1/a2 fori= 1, •••, c have 

been derived from (13) which is the logarithm of the likelihood of Ty • They are --
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therefore the maximum likelihood estimators based on Ty • Define 

and 

(40) 

Then, because Ty ~ N(O,THT 1a2 ), the covariance matrix of the large-sample maximum 

likelihood estimator of a2 is, from Searle [1971], 

with 

2 -1 f l-1 var ff = 2P = 2tP. 
- - 1j 

for i, j = ~, 1, 2, •••, c • 

The elements p .. are readily obtained from 
1J 

of (3). Thus 

p0 j = tr[ (1/ a2 )(~~') -l~~~' (l/a2 )(~~ 1 )-~~j;!j~ 1] 

= l/a4 tr[U 1T1 (THT')-1TU.] 
_j_ --- --J 

= tr(W .. )/a4 from (20), for j = 1, •••, c 
-JJ 

(41) 

(42) 
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:p = tr((J../cr2 )(THT')-l!lru U'T'(J../cr2 )THT'TU U!T'] ij --- _NiNi_ --- __ j_J_ 

= tr(W .. Wi'j)/cr4 from (20), fori, j = 1, •••, c • 
-J.J-

(n-k)/cr4 

var(cr2 ) = 2 

{tr(~jj)}/cr4 

I 

{ tr(~jj >}' / cr4 

{tr(W.jW~ .)'l../cr4 
-J. -l.J 'J -

fori, 

-1 

j = 1, ~ •• ' c • 

so that from (40) 

{ tr(!jj )}i cr2 
-1 

(12 (n-k)/ cr4 

var = 2 -y {tr<w. >}I cr2 {tr(W .. W~ .)} ... Jj -J.J-lJ 

fori, j = 1, ••• , c 

(44) 

These results can also be obtained from second differentials of (15) and (16), by 

taking expectations and changing their signs. Estimators of (42) and (43) are ob-

tained by using the TIML's in place of cr2 andY • 

Note in passing that because the matrix in (44) is positive definite, the value 

of var(cr2 ) obtained from (44) will exceed 2cr4 /(n-k) which is the variance of a2 of 

(17). This result is not unexpected since (17) as it stands assumes Y known whereas 

(44) is based on estimating a2 and the c elements of Y • 
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APPENDIX: The Iterative Procedure 

Implementation of the Newton-Rhapson technique follows Hemmerle and Hartley 

[1973] very closely. 

Since by definition the parameter Y. is positive, negative values are avoided 
~ 

in the iterative process by defining 

We then have 

and 

QJ.l ct-1 
-=2T­
'::> i '::,'\/ 
o'Ti u'i 

ot..l 
+ 2o .. 

~J '\/ 
chi 

(45) 

(46) 

(47) 

where o .. is the Kronecker delta. The iterating is done on the T. and at each round 
~J ~ 

Yi is taken as T~ • On defining, from (21) and (22), 

f*(Y) = !~ll = {-itr(W .. ) + h!w /o2L, c X 1 
- - ~y J -~~ -~-i J 

i 

(48) 

a2A. 
G*(Y) = { ll = {iatr(W .. W~ .) - w~W .. w./o2} 
- - oY. oY? -~J-~J -~~J-J 

~ J 

(49) 

for i, j = 1, •••, c 

and 

and 

D (Y) = diag{oA1 ••• o'A.1l = dia.J f*(y) ••• f*(y)l , 
... 2 - oYi oY~ ~L 1 - c ... 'f 
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we then have from (46) and (47) 

(50) 

and 

o2A 
~(::) = {0 01} = 4~1 (!)~(~)~1 (!) + 2~2(!) 

,.i ,.j 

(51) 

Suppose y(r) is an approximate value of ::i that makes f*(y) of (48) null and - - -
hence (21) zero, and a2 '(r) is the corresponding value of a2 from (23). Let "(r> be 

the vector of values ~ Then the Newton-Rhapson method is based on the ap~roxi-
~ 

mat ion 

f(,-<r+ll +AT!: f(-r(r)) + G(T(r) )A-r 

- -
so that if the left-hand side is to he zero, which is what we want, 

(52) 

and 

(53) 

and 

(54) 

Using (54) in (23) gives a2(r+l>, and the approximation can be repeated. The itera-

tive procedure is therefore initially 

(i) to calculate W from (31) -- (35) 
-0 

and (ii) to assign initial values y< 1 > to 'Y , 

and then the r'th round of the iteration consists of the following steps. 
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Calculation 

M and M-1, using y<r> for y - -
w ... 
112 ( r> = (w - w'M-1w )/ (n - k) 

... o .o ... -0 

f*(y{r)) a.nd G*(-(r)) 
#W ,., - ,.., 

--
A!, !' r+l.) , and ';$< r+l > 

Return to step 1 

Equation 

(37) 

(36) 

(23) and (36) 

(48) a.nd (49) 

(50) and (51) 

(52), (53) and (54) 

The (r+l)'th iteration ends after step 3, and the procedure is complete whenever 

sufficient accuracy has been obtained. 

The estimators are designed to maximize the likelihood Al given in (13). If 

02 satisfies (17) then (13) becomes 

~l = -i(n-l)(log2rr+l) - ~[(n-k)log0'2 + log I~!' I] • (55) 

Since the estimates are calculated by iteration it will be of interest to evaluate 
A 

Al at successive rounds of the iteration. Clearly, from (55) we need only look at 

(n-k)log02 + los!THT'I --- (56) 

which can be expected to decrease at each round. To evaluate I THT' I we use the --
determinant of a partitioned matrix. 
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M U'T'(TT')-l 

= I M II ( THT I ) -l, by ( 28 ) ,., ,.., __ 

- I<TT')-111M- U'T'(TT')'"1TT'(TT'l-~UI 
-~ - - - -- -- -- --

Hence 

ITHT'I = IMIIDII~T'I 
~- - ~ --

and so (56) becomes 

(n-k)log~ + logjMI + logiDI (57) 

since log~~~~~ is constant insofar as successive iterations are concerned. This 

in turn is 

C A A 

(n-k)log82 + E milog~. + log!MI • 
i=l ~ -

(58) 


