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Abstract 

Thompson's (1969) iterative estimation method for unbalanced data in a 2-\vay 

classification without interaction is extended to the case with interaction. Spe-

cific computing formulae are developed. 

1. Introduction 

Iterative methods for es.timating variance components in the 2-way crossed 

classification mixed model from data l'lith unequal subclass numbers are developed 

by Cunningham and Henderson (1968) and corrected by Thompson (1969). This paper 

extends Thompson's method to include an interaction component beh1een the random 

and fixed effects of' the model. 

vJe follmr the notation of' Searle (1971) and re-vrrite the usual 2-way inter-

action model as 

+ v + e . . . . .1 1J 1J c 

in the more useful matrix form 

~ = Xb + Zu + Wv + e • (1) 
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The vector of observations, ~' has order n,, = N, its clements yijk fori= l, ••• ,a, 

j = l, ••• ,~J and 1:;; = l, ... ,n .. are random varia~Jles \-lith means given by E(y) = Xb 
~J 

and variance-covariance matrix 

V = ZZ 'cr2 + HW 'cr2 + Icr2 • 
u -- v - e 

The vector 1~ of order b has elements !.t + t3 ., the fixed effects, and the correspond
J 

ing incidence matrix X has full column rank. The vector u contains the random 

effects a. and v contains the random interaction effects Y .. for s filled cells 
·~ - 1J 

of the data. Thus in (1) ~ is N X b, Z is N X a and vl is N X s. 

2. Sums. of squares 

One problem in estimating fixed effects in a mixed model for known variance 

components is the practical one of having to invert var(~) = y, which is of order 

N X Nand consequently, often large. Henderson, et al. (1959) show that the solu-

tion to the general least squares equations 

-1 A -1 
X'V Xb = X'V y - - -

is identical to the solution of a substitute set of equations constructed from the 

normal equations of a fixed effects model, after adding the inverse of the variance-

covariance matrix of each random effects factor to appropriate submatrices of the 

normal equations [see Searle (1971), p. 460]. This modification to the normal 

equations for our model (1) is 
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" -;r t .... , X'Z. X'v' b t~ .<\._ -t· -
(12 -

A (2) z•x Z'Z + __£_.I Z 'H u = ~~~ 
(12 -
u a2 

A 

F'" ~'[I z W'H +' ...!Cr J v ~·~ • ..£-... - - 2- -(1 
v 

\.. 

TtJhen a2 , a2 and a2 are knovm, the estimator of b is b, the same as the solu·-
u v e - -

I -1 " I -1 tion to ~ y ~~ = ~ y ~· This estimator is also the maximum likelihood estimator 

under normality assumptions. Usually the variance components in (2) are urutnown 

and a solution is obtained by replacing them by estimates, often the fitting-

constants-method estimates. 

Although a2 , a2 and a2 ~be estimated by the fitting constants method of 
u v e 

estimating variance components (Henderson's Method 3), equation (2) provides an 

alternative method, iterative in nature, in the manner of Thompson [1969). This 

is based upon the reduction in sum of squares for fitting a model for which equa-

tions (2) would be the normal equations. By this we mean in general that for normal 

equations expressed as X 1Xf3° = X 'y for any X, the corresponding reduction in sum of - -- - - -
squares is ~~~(~'~)-~'~where (~'~)- is the generalized inverse of iC'X. Consequent

ly on Hriting 

'A = a2 / a2 and u e u 

the sum of squares vle consider here, based on (2), is 
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-1 
X'X X'Z X'Vl ?S'l 
Z'X Z'Z +), I Z'Vl ~·l - - u-

(3) 

H'X W''Z Vl'T.rJ +A I ~·~ -· - "' - v-

The matrix inverse in (3) exists because the effect of the linear dependencies 

among columns of X_, W, and Z is nullified when l and ~ are non-zero. - - ·-u v 

We define 

P = Z 'Z + A :I:, 
- - u-

S = X'TX 
-u 

and 

T = r - zp -lz ' = T ' - -
S = v1'(T- TXS-lX'T)H +A. I 
-v - - ---u - - - v-

(4) 

where P_, S and S are non-singular. Then it can be shown (see appendix) that 
-u -v 

from (3) 

The no-interaction model considered by Cunningham and Henderson [1968) and 

Thompson [1969] is, in terms of (1} 

~ = Xb + Zu + ~ (6) 

simply a swJ-model of (1) with Wv omitted. The reduction in sum of squares 

analogous to (5) is then 
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-1 

~~ 

r 
R (2,~) = (:(~ :'!'~) x'x X'Z 

Z'X Z'Z +X I 
l u-

X'y - - (7) 

(8) 

The difference between the reductions \5) and (8), which might be called a reduc-

tion due to interaction, is 

(9) 

In order to estimate cr2 , cr2 and cr2 ~~e need three quadratic. forms, of which one is u v e 

(9). A second is 

(10) 

~~here 

(11) 

"Ylhich is also the familiar reduction R(b) due to fitting E(;'!) = 1.'b. l\nd finally 

we use 

* * SSE = ~~~- R (~,~,y). (12) 
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3· ~ected values 

Equations for estimating a2 , a2 and cr2 are dei-ived by equating observed values 
u v e 

of (9), (10) and (12) to their e~~ected values. We assume normality and use the 

general result for ~ ~ N(~, ~) that 

In our case, the model (1), iJ._ = Xl_o_ and V = ZZ 'cr2 + vlW'cr2 + Ia2 so that 
u v - e 

= b 'X'Q.Xb + cr2 tr(H'Qp) + tr[(cr2 zz' + cr2 I}Q] 
- - --- v - -- u-- e- -

= b 'X'QA.'b + cr2 tr(W'QW) + cr2 tr[(ZZ' + A. I)Q] • 
- - --- v - -- u -- u- -

Deriving the expected values of the quadratic forms (9), (10) and (12) now involves 

using for ~ in (13), the matrices of those quadratic forms. For example, writing 

(9) as R*(~~~~~) = ~·~1~ we have 

and replacing ~ of (13) by ~l leads, as shown in the appendix, to 

a2 [ t r ( S ) - s A ] 
v -v v 

(14) 
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and 

* E (SSI!: ) 

where 

4. Estimation 
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(n .. 

= (n .• - b)a~, 

= ·"· !. £n . . j 
J 

I:n~. 
i l.J 

(15) 

(16) 

Equating the expected values on the right-hand sides of (14), (15) and (16) 

to observed values yields equations in a2 , a2 and a2 that cannot be solved ex-u v e 

plicitly. This is because the quadratic forms R*('!:l~}::), R*(~,-~~~) and SSE* in-

volve h = a2 1a2 and A = a2/a2 , through P, T S and S of (4). However, the u e u v e v - - -u -v 

equations can be solved iteratively. Writing them as 

and 

* ""' SSE a2 = 
* ~·~ - R (~'~''!) 

= 
e n - b ' . 

* R (vjb,u) 
(12 

v = tr(S ) - sl·v -v 

n - b 
(17) 

(18). 

(19) 
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we first take initial values of Au and "v' calculate (17), (18) and (19), use the 

results to get second values of Au and ~ and continue the process until some 

satisfactory degree of convergence is (hopefully) achieved. 

Note in passing that when cr2 = O, (17) and (19) reduce to Thompson's (1969) v 

results. [See also Searle (1971), p. 469.] In both cases, for balanced data the 

results are identical to that of the ANOVA method. 

5. Fixed effects 

Estimates of the fixed effects represented in the model by ~ are the solutions 

" b to equation (2). As shown in the appendix this solution reduces to 

" -1 -1 -1 b = S X'T[I- vlS vl'(I- TXS X'T)]y, 
-u - - - --v - - ---u - - -

(20) 

vlhich is calculated after a~, a~ and cr~ have been obtained from (17), (18) and (19). 

6. Computing formulae 

Easy ter.ms to compute are ~·~ and k4• 

and tr(S ). However, from the no-interaction case, Searle [1973~we have express--v 
* * * ions for R (~), R (~) and R (el~). These and the other terms needed are now listed. 

~~ = [nil··· nib)' including zero nij 's 

~(n!) =diagonal matrix of the elements of n! 
- -1 -1 

A1 (n:) = ~(n:) omitting the null rows (but not the null columns) 
- -1 -1 

N1 . ··- £4. omitting the null ro~'ls (but not the null columns) 
- ' 1 -J. 
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M_ . = M. omitting the null 1~ws and null columns --"2, ~ -~ 

'< \"'"I~. 
R" (b) = ; =-:J..:.. 

- L-1 n . 
j . J 

k4 = \' __!_ E n~ . 
L n . j ~J 
j . J 

''· y~ ··c)="' ~·· R '!: ;_. n. + ). 
i ~· u 

{ 
'C""I n .. y. j - \ ~J ~ •• 

C::.:),._Xl = ~·!~ = Y. J.. I + ~ 
IJ '-Ill. u 

i l• 

for j = 1, • · ·, b 

( c,~. )bXb = s = Dlln .1 -·· -u - • jJ 
{ 

n .. n .. , l 
- ~ n~J ~JA J for j,j' = 1,···,b 

~ l· u 

J. n .. y. J 
~ ~·· q = vT 'Ty = y. . - .2:.J.:: __ 

-sXl - -- l ~J· n. + A . fori= l,···,a and j = l,···,b 
in lexicon order 

= ~l(~i) 

~1(~2) 

t:. (n') 
-1 -a 

~· u 

~,1 

~,2 

~,a 
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G = \'l'TH 
-sxs 

= D{n . .} - I:+ M2 • 
- lJ i - '1 

S = G - HC-~' + A I 
-v - --'~'" - v-s 

. ' ~ .... . . ~" 

k = tr(S ) - SA ·"'* -v v 

* R (u, vjb) 
0'2 = --=--=-=- - '(;2 

u n -1'4 v 
• • Lj. 

Iteration commences by using pre-assigned values for A = cr2 /cr2 and A = cr2 /cr2 • with 
u eu v f!v' 

these, first estimates 02, cr2 and a2 are obtained from which new values r and~ are u v e u v 
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calculated and the process repeated. On convergence (hopefully), the fixed effects 

estimates are calculated from (20) as :,·:·,,·. 

;,) = -1 -L, -1 -1 ) 
~* ~* - ~* 11 ~v ( <J - ~~ ~ 
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.{W~endix 

lA.Introduction 

Uy the nature of the model (1) 

b * 
'r-{\ 1 } 
~ - !- ::n .• sXb 

j=l l.J 
for i = 1, ••• ,a (Al) 

z = f\n. 
i=l l." 

(A2) 

and 

w = I+ f +tn. fori= l, .•• ,a and j = l, ••• ,b in (A3) 
those nij i=l j=l l.j lexicon order and for only 

for which nij > o, 

+ b* 
v1here !: represents the operation of direct sum and I: :!. is a matrix of b columns, 

j=l-nij 
a direct sum of vectors t modified by the convention that the t'th coltnnn con

-nij 
tains no ~-vector when nit = 0 and so is null. Fbr example with, 

b* 

\ t = 
~ -n . 
j=l rJ 

nrj = 2,0,4,3,0,6 

1 ;;;3 

l 
• 
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These forms imply 

X'X = D(n .), X' Z'Z = D(n. } and ~v'vr = D[n • • } X (A4) 
- - - - · J u o - 1. • axa - l.J s s 

together v7i th 

1~ 'Z - f n ) 
- ij axb 

+ 
vi'Z = .E \}. 

i -l. 

(A5) 

(A6) 

for \1. being the vector fn .. } for j = l, .•• ,b and n .. f 0, i.e. w~th the zero 
-l. l.J l.J 

n .. 's omitted; and 
l.J 

., 

. ; 

(A7) 

fori= l, ••• ,a and j = l, ••• ,b, in lexicon 

order, for those (i, j) for which n .. f O, 
l.J 

and for k = 1, ••• ,,b, 

where o ., = 0 "'hen j f k and o "k = 1 when j = k. With 
J~C J ' 

(A8) 

and 

P = Z'Z + \ I= D(n. + \ }, 
u- - 1. • u 

(A9) 

and 

(AlO) 

we then have 

ZZ'T = ~~'(!- ~~-l~') = Z(I- Z'ZP-1)z' = Z[I- (P- A I)P-1]z' = ~ zp-1z• 
- - - -- - - - - u- - - u-- -

so that 

= ~ (ZP-lZ, + T) = h I ~y (AlO) . 
u -- - - u-

(All) 
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2A. Sums of squares 

On defining 

[!S'!S !~~] ' R' [!}nd L = R'W = [!'~] (Al2) K = = 
z•x Z'W - - - -

we ha.ve for (3) 

-1 
X'X X'Z X'W -1 

Z'X Z 'Z + ~ I Z'W = [!. ~·~: ~v!] - - u-
W'X W'Z W'W + )1. I - - - - v- .· 

= [~-l 
:] + [-~~\] S-1(-L'K-1 !) (A13) 

. 0 -v - -

where 

S = W'W + ~ I - L'K-1L = W'W + X I - W'ruc-1R'W • (A14) 
-v - - v- - - - - - v- - -- - -

Also, from (Al2) 

-1 [2 K = 
- 0 

0 ] [ I ] · - - -1( 
-1 + -1 ~ ~u ! 

P -P Z X - .. - -
(Al5) 

where 

S = X'X- X'ZP-1Z'X = X'TX. 
-u - - - -- - - - --

(4a.) 
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''h2 inverses in (Al3) and (Al5) are standard 1·esults for the inverse of a parti-

tioned matrix. To simplify (Al4) note from (Al2) and (Al5) that 

= I - T + TXS-1X1T - - ---u - -

so that (Al4) becomes 

S = W'(T - TXS-1X'T)W + 4 I 
-v - - ---u - - - v-

Using (Al2) and (Al3) we then have (3) as 

* Also, using (Al5), B (~,~) of (7) is 

-- - -1( 1 -1 S -L K ( K-lO) 
I 

-v . - -

(Al6) 

i"4b) 

; 8) 
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;sA. E?wected values 

We need to evaluate 

(13) 

for the values of ~ implicit in (9), (10) and (12). 

First note that, using (4a), 

(Al7) 

For R*C~l~,-~) = ~·~1~ we see from.(~) t¥-t , ' 
I 

so that in using ~1 for ~ in (13) we have from (Al7) 

b'X'Q Xb == O, 
- - -1--

(Al8) 

and also 

rr 2 tr(H'Q \v) = rr2 tr[W'(T- TXS-lX'T)WS-\T'(T- TXS-lX'T)tv] 
v - -1- v - - ---u - - -•v - - ---u - - -

) -1 = rr2 tr[S. - A IS (S - A I)) from (41:>) v -v v- -v -v v-

= <r2.tr(S - A I) - cr2 tr(I - A s-1 ), 
v -v v- e - v-v (A19) 

and 
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a::ltr[(z_z_' + Aui_)Q._1 J = a2 ).. tr[(I - xs-1x'T)Hs-\;f' (T - T~~s-1x'T) from(Al1), 
¥ u u - --u - - --v - - ---u - -

= a2 tr[s-1 (s - A I)] - a2etr(O_), from (4b) and. (..'1.17) 
e -v -v v-

.Adding (A18) through (A20) gives, for using ~1 in (13), 

= a2 [tr(S ) - SA ]. 
v -v v 

* For R q~'~'~) =t'~2~ we have from (5) and (9) 

Q = ZP-~ I + TXS-~'T + Q. 
-2 -- - ---u - - -1 

so that 

b 'X'Q Xb ;;;; b I (X'ZP-1z 'X + X'Txs-1x'TX + X'Q X)b 
- - -2-- - - -- - - - ---u - --- - -1- -

= b'X'Xb, from (A9). 
- - --

2 -1 -1 
a2 tr(~!'Q H) = a tr [:! 1 (ZP Z 1 + TXS X"1T )~l] + a2 tr(VT'Q l·l) 

v - -2- v - -- - . ---u - - - v - -1-

= a2 tr(I!'ZP-1z 'vT + W1 TV + A I - S ] 
v - -- - - v- -v 

+ a2 tr(S. : ~ I)-- cr2 tr(I - A s-1 ), from (4b) and (A19) 
v --v v- e - v-v 

(A20) 

(14) 

(A21) 
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= a2tr(H'(ZP-1z' + T)l<T] - a2tr(I- ~ 'S-1) 
v - -- • - - e - v-v 

-1 
= a;tr(!'~) - a:tr(! - ).v~v ), from (A9) 

= n a2 - a2tr(I - A s-1), from (A4). 
• • v e - v-v 

(A22) 

a2 tr[zz' + ).. I)CL 
u -- u .. -=2 

= a~tr[(~~' +Au!)(~~-~· + !~~l~'! + ~)] 

= a2tr((ZZ' + A I)(I ·· T + TXS-lX'T)] + a2 tr(I - A s·1), from (A10)&(A20) 
u -- u- - - ---u - - e - v-v 

= a2tr(ZZ' +A I· A I+ A XS-~'T) + a2tr(I - A s·1), from (All) 
u -- u- u- u--u - • e - v-v 

. .. . -1 
= n a2 + a2t~(L) + a2tr(I.- l S ) f1~m (4a) 

•• u e ~ e - ·v-v 

(A23) 

Substituting (A21) - (A23) in (13) gives 

* E R {b.u.v) = b'X'Xb + n a2 + n a2 + ba2 • - - - - - -- • • u • • v e (A24) 

b'X'Q Xb = b'X'X(X'X)-lX'Xb = b'X'Xb - - -3-- ~ - - - - - -- - - __ , (A25) 

a2 tr(W'Q W) =.a2tr[W'X(X'X)-1X'W) 
v - -3- v - - - - - -

(26) 

and 
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- ~2tr [Z "•(-" •-.r) -1" '7 J - v A ~ A A ~ 

u - - - - - -
'\ 2t ('' fv\ -1., I -.r + r, CJ r ".. J~ J ' _., J\. 

uu -- --

(1-\27) 

Hence, on adding (A25) through (P27) 

and so 

The t~ace operations needed here arc derived by first noting from (1) that, 

as in Searle [1973], 

Also, from (A4) and (A7) 

= \ ___!_ 
Ln .. 
j J 

F')~C:'~:f~c'vl = {n .. 5. L D {1/n .} {n .. c.1L' 
- - - - - - lJ Jkf - •J ~J JJ 

::: {nijo.iltl { J' --;:;--:--J n . . 5 . 
n.j l.J J 

so that 

2 52 In~. tr[~'~(~'~)-1~·~] =L: I Ln .. "k =I l.J ,] _ _y 
n .. - n. 

i j k J i j J 

En~ .• 
i ~J 

=I _L n . 
j 

• J 

(A29) 

2: n~. = k4. 
i l.J 
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Thus (A28) is 

(15) 

Finally, for E(SsE*) it is well known that 

so that on subtracting (A24) 

* E(SSE.) = (n - b)cr2 
•• e (16) 

5A. Fixed effects estimators 

" The solution to (2) for b is 

b = [first row of (Al3)] X' ~ (A30) 

Z' 

W' -
and in using (Al5) in (Al3) only the first row of (A.l5) is to be involved. Re

define K-l of (Al5) as 

-1. [!hl K = - . B 
-21 

D ] -12 

~22 
for ~21 = ~k • (A31) 
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Then from (Al2) 

+ ~12~, )l_! - [ ~1 l 
= I 

+ B Z' )1! F ~ 
-22- - I -2 : .. -

say, (A32) 

So that from (Al5) and (A31) 

F = s-1 (x' - X'XP-1z' )u = s-1~c'Tw· 
-1 -u - - -- - - -u - --

(A33) 

and 

(A34) 

With these values (A13) is 

0 l 
-1 !] ~11 ~12 -!:1 S [F' -F' - -v -1 -2 

.,., 
~22 0 + -F :?21 -2 

0 0 0 I - - - - .,.; 

so that (A30) becomes 

b = (~11~ 1 + ~12~·)~- ~1~~1<-!i~' - ~~~· + ~·)~ • 

But 

-F'X'- F'Z' + vl' = -F'X'- (H'- F'X')ZP-1z' + vl' from (A34) 
-1- -2- -1- - -1- -- - - ' 

= ~'! - !i~'!, using (AlO) 

1 . . 
= W'(T - TXS- X'T), from (A33) • 

---u - -
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Hence, using (A32) and (A33) 

(20) 

6A. Computing formulae 

To simplify (21) and {22) '·1e use the following_ results taken from Searle 

[1973]. 

T,y = fly"jk.- yi+·:-L fori= l, ••• ,a, j = l, ••• ,b in lexicon order 
-- 1 n. A J Xl l.• u s 

{ ~ n. jy •• •J 
X 'T,y = r = Y. . - l.h l. 
- -- ~ J" n. +>.. 

• l.• u J. . 

and, on also using {4a), 

(A35) 

for j = 1, ••• , b (A36) 

{ J { I n .. n. j , } 
S = X'TX = C = D n . - n~J+~ for j,j' = l, ••• ,b. (A37) 
-u - -- ;.v. - • • l. • u bXb 

].. 

Thus (21) and (22) are 

(A38) 

and 

(A39) 

with, from (4b ), 

(A40) 



-23-

To calculate (A38) - (A40) we need 

l·J'Ty = {y 
- -- ij· 

nijyi• '} 
n. +X fori= l, ••• ,a and j = 
l.' u sXl 

l, ••. ,b in lexicon order 
(A41) 

f1~m (A3) and (A35); 

= ~ {niJ -( fn)Au ~ix f\} from (A4), (A6) and (A9) 
l. 

and finally 

- -- - --- - -

(A43) 

from (A5), (A6), (A7) and (A9) • 

Define 

= i th row of Z 'X = {n .. 1. for i = 1, •.• , a and j = 1, ••• , b • 
- - l.jJ 
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:,~· 

~(~i} = diagonal matrix of the elements of ~i 

~ . . ~ 
~1 <~i} = ~<~i) omitting null rows (~ut not the rlull columns) 

ML • = M. omitting the null rows (but not the null columns) 
--;_, l. -l. . . . . 

M2 . = M. 
- 'l. -l. 

Then in (A42) and (A43) 

(w'n,T) 
- -- sXs 

II li II " and the null columns. 

. ·; 

(H'TX) x· = {A1 (ni') - M_ .l for i = 1, ••• ;a - -- s j.) - --J., if 

= ~l<~i) -1\ 1 
' 

41 <~2) - M:L, 2 

~1<~3) -.1\,3 • 

• • 

~(~) -M 1, a. 

(A44) 

(A45) 


