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ABSTRACT 

Extended generalized right-angular designs were introduced to 

obtain generalizations of generalized right-angular designs and to 

enlarge the scope of confounding for asymmetrical factorial designs 

In this paper, it is shown how to construct two series of this class 

of experimental designs and how to use these two series of designs 

in constructing confounded asymmetrical factorial designs. The 

relative loss of information due to confounding on each of the 

interactions is also presented. 
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Definition 

With a view to enlarge the scope of confounded asymmetrical factorial ex-

periments, Raghavarao and Aggarwal (1971) introduced extended generalized right­

angular (EGRA) designs, which are further generalizations of generalized right-

angular (GRA) designs of Tharthare (1965). 

* To define EGRA association schemes, let there be v = uv st symbols arranged as 

u symbols on each of the t branches of v*s trees. Let the v*s be arranged in an 

* s X v rectangular array. Let the t branches of each tree be numbered 1,2, ••• ,t 

from left to right. Two branches of different trees will be called parallel 

branches if they bear the same number, otherwise they will be called non-parallel 

branches. * For u = 2, v = 3, s = 2, t = 2, the 24 symbols will be arranged as 

follows: 
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Now two symbols will be called 

(1) first associates, if they occur on the same branch; 

(2) second associates, if they occur on different branches of the same tree; 

(3) third associates, if they occur on parallel branches of trees in the same row; 

(4) fourth associates, if they occur on non-parallel branches of trees in the 

same row; 

(5) fifth associates, if they occur on parallel branches of trees in the same 

column; 

(6) sixth associates, if they occur on non-parallel branches of trees in the same 

column; 

(7) seventh associates, if they occur on parallel branches of trees which are not 

in the same row and colunn; and 

(8) eighth associates, otherwise. 

For example, the 8 associate classes for the symbol 4 are (5), (6, 7), 

(0,1,8,9), (2,3,10,11), (16,17), (18,19), (12,13,20,21), (14, 15,22,23). 

Clearly the n. parameters of EGRA schemes are 
J. 

n1 = u-1, n2 = u(~-1), n3 = u(v*-1), n4 = u(t-l)(v*-1), 

n5 = u(s-1), n6 = u(t-l)(s-1), n7 = u(v*-l)(s-1), ns = u(v*-l)(s-l)(t-1). 

i The Pjk parameters of this scheme can be derived easily and are given in 

Aggarwal (1972). 

If we replace the u symbols on every branch by a single symbol, the EGRA 

association scheme reduces to the extended group divisible association scheme with 

7 associate classes discussed by Hinkelmann and Kempthorne (1963). 

r 
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Eigen Values and vectors of NN' 

Let N be the incidence matrix of EGRA designs. . Then it can be verified that 

NN 1 have the eigenvalues e. with respective multiplicities a. (i = 0, 1, .•• ,8). 
~ ~ 

e2 = r->.1 + (nl+l)(>.l-\3) + n2(A.2-\4) + n5(A.5-X7) + n6(X6-A.8), * a2 = v -1; 

e3 = r-A. + (nl+l)(A.l-)..2) + n3(X3-X4) + n5(>.5-X6) + ~(X7-X8), a3 = t-1; 1 

e4 = r->. + (nl+l)(>.l-)..5) + n2(>.2-X6) + n3()..3-)..7) + n4(X4-A.6), a4 = s-1; 1 

e5 = r-71.1 + (nl+l)(Xl-A.2:)..3+>.4) + n5(A.5-A.6-A.7+A.8), a5 = (v*-l)(t-1); 

e6 = r->.1 + (nl+l)(Xl->.3-)..5+>.7) + n2(>.2->.4-A.6+A.8), a6 = (v*-l)(s-1); 

e7 = r-X1 + (n1+l)(X1->.2 -x5+x6 ) + n3(x3-x4 ->.7+x8 ), a 7 = (t-l)(s-1); and 

* e8 = r-x1 + (n1+1)(x1-x2-x3+x4->.5+x6+x7-x8 ), a8 = (t-l)(s-l){v -1) 

The eigen vectors associated with the eigen values e2 through e8 can be seen to 

be the vector of coefficients of treatment combinations corresponding to main 

effects and interactions of an asymmetrical factorial experiment v* x t x s . 

Constructions of two series 

Let there be v = v*smtn symbols and let them be identified by the treatment 

combinations of a pseudo factorial experiment v* x sm x tn . Let s,t be primes 

or prime powers. Let the factors of the pseudo factorial experiment be F, G1, .•. ,Gm' 

Hl, ... ,Hn; F being at v* levels, each G being at s levels and each H being at t 

levels. Let z1 be some pencil which can be confounded among the factors Gi 

(i = 1,2, ••• ,m) and let the pencil z1 partition the sm treatment combinations into 

s-flats x0, x1, ••• ,X8 _1 each containing sm-l treatment combinations. In a similar 

way, let the pencil z2 partition the tn treatment combinations into t-flats 

Y0, Y1, ••• ,Yt-l each containing tn-l treatment combinations. 
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* * * * * Let there exist a BIB design-with the parameters v , b , r , k and ~ . We 

identify the v* levels of ~his BIB.design with the v* levels of the factor F. We 

associate the flats x0, x1, ... , X8:.i with the v* levels of factor F as described by 

-- - * 
Tharthare (1965) and get a GRA design with b s(s-1) sets. If S. is a set of the 

~ 

original BIB design, then the GRA design will contain a pair of the form 

(1) 

j,j' = O,l, ••• ,s-1; jfj'; 

where S. ®X. is the symbolic Kronecker product of the symbols of S; with the 
~ J ... 

treatment combinations of X. and S. is the complementary set of S. with respect 
J ~ ~ 

* to the v symbols of the BIB design. 

From the pair of sets of the form (1) we generate t(t-1) sets by extending 

the technique and forming the sets 

(2) (si ® xj ® Yk, si ® xj I ® Yk, 

s. ® X . I ® yk" §. ® . X. ® yk I); 
~ J ~ J 

k,k' = O,l,·~ •• ,t-1; ktk' · 

In the GRA design obtained in the beginning, there are b*s(s-1)/2 pairs of 

sets of the type (1) and every pair of these sets contributes t(t-1) sets of the 

EGRA design. Thus there are in all b*s(s-l)t(t-1)/2 sets in the EGRA design. The 

other parameters of this EGRA design are given by (3) and can be verified easilY. 
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* n4 = u(t-l)(v -1), 

* n., = u(s-l)(v -1), 

n5 = u(s -1), n6 = u(s -1)( t -1), 

* n8 = u(t-l)(v -l)(s•l), 

* * * >..1 = r, >..2 = O, A.3 = (s-l)(t-1) [b -2(r -A. ) ), 

* * * A.4 = 2(s-l)(r ->.. ), >..5 = 0, >..6 = b , 

* * * * * >..7 = 2(t-l)(r -h ) and x8 = b -2(r -h ), 

m-1 n-1 where u = s t . 

Another series of EGRA design with parameters is 

v = v*smtn, b = st(s-l)(t-1), 

* m-1 n-1 r = (s-l)(t-1), k =v s t , 

(4) n1 = u-1, n2 = u(t-1), n3 = u(v* -1), 

n4 = u(t-1)( v* -1), n5 = u(s -1), 

* n6 = u(s-l)(t-1), n7 = u(s-l)(v -1), 

* n8 ~= u(t-l)(v -l)(s-1), x1 = r, 

m-1 n-1 * where u = s t exists when v < s,t and s,t being primes or prime powers and 

the construction is as follows: 

We identify the symbols v* smtn with the treatment com't.inations of a pseudo 

factorial experiment v* x sm x tn and define Xj (j = O,l, ••• ,s-1), Yk (k = O,l, •.• ,t-1) 

as in the first case. 

Since v* < s, a prime or a prime power, a partially balanced array A in v* 
. - . . : 

constraints,s sJmbols ot strength two in s(s-1) assemblies exist with >..(x,y) = 0, 
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if x = y and 1 if x F y. Let the symbolic inner product of two vectors (a1,a2, .•• ,a8 ) 

and (~1, ~2 , ••• ,~8 ) be defined as (a1~1, a2~2, ••• ,a8 ~s). Then the s(s-1) columns, 

of the symbolic inner product of (O,l,: •• ,v*-1) with each column of the partially 

balanced array A treated as sets, gives an EGD design with perameters 

v = v*s, b = s(s-1), r = s-1, k = v*,·· 

(5) * * n10 = v -1, n01 = s-1, n11 = (v -1)(s-1), 

A10 = AOl = O, All = 1 • 

Again a partially balanced array B exists in v* constraints, t symbols of strength 

two in t(t-1) assemblies with A(2,y) = 0 if x = y and 1, if x F y. By taking the 

symbolic inner produce of t(t-1) of B with the sets of the design (5) we get 

anotber EGD design with parameters 

* v = v st, t = st(s-l)(t-1), r = (s-1)(t-l), 

* * k = v , n100 = v -1, n010 = s-1, n001= t-1, 

(6) * * n110 = (v -l)(s-1), n101 = (v -l)(t-1), 

* n001 = (s-l)(t-1), n111 = (v -l)(s-l)(t-1), 

* Let the v st symbols of the EGD design (6) be represented by i j k 

* (i = O,l, .•• ,v -1; j = O,l, ••• ,s-1, k = O,l, ••• ,t-1). Replacing symbol i j k by 

the set of symbols i ® Xj ® Yk in the design and association scheme of EGD design 

we get nn EGRA design. 

ApPlications 

The first series of EGRA designs can be used as confounded asymmetrical 

* m x tn · t · bl k f · * m-ltn-1 v x s exper~en s ~n oc s o s~ze 2v s . The relative loss of 
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information on each of (s-1) degrees of freedom of z1 is b*(s-2)(t-1)/2r; on 

each of (t-1) degrees of freedom of z2 is b*(s-l)(t-2)/2r; on each of (s-l)(t-1) 

degrees of freedom for the interaction z1z2 is(v*b*[(s-l)(t-1) + 1] - 2st(v*-l) 

(r* -A~ )/2v*rand on each of(v* -l)(s-l)(t-1) degrees of freedom for the interaction 

* * * Fz1z2 is at(r -A )/v r . 

For the second series of designs used as confounded asymmetrical factorial 

experiments, the relative loss of information on different interactions is: 

interact ion df 

s-1 

t-1 

(s-l)(t-1) 

(v* -1) (s-1) 

(v* -l)(t-1) 

* (v -l)(s -l)(t-1) 
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