ON THE EQUIVALENCE OF KIRKMAN-STEINER TRIPLE SYSTEMS
AND SETS OF MUTUALLY ORTHOGONAL LATIN SOUARES*

A. HEDAYAT AND B.L. RAKTOE

Cornell University and University of Guelph

ABSTRACT

It is shown that for every Kirkman-Steiner triple system of order $n \equiv 3 \pmod{6}$, there exists at least one pair of orthogonal Latin Squares of order n.

1. BASIC DEFINITIONS

In the following we need the following concepts: (i) Let Σ be an n-set, n \equiv 1, 3(mod. 6). Then a Steiner triple system of order n on Σ is a collection of unordered triplets (x,y,z), x, y, z in Σ such that every pair of distinct elements of Σ belongs to exactly one triple.

For example:

 $S = \{(0,1,3), (1,2,4), (2,3,5), (3,4,6), (4,5,0), (5,6,1), (6,0,2)\}$ is a Steiner triple system on $\Sigma = \{0,1,\ldots,6\}.$

(ii) A triple system of order n ≡ 3 (mod. 6) is said to be a Kirkman-Steiner triple system of order n if it is a Steiner triple system of order n with the following additional stipulation. The set of triplets can be partitioned into r dis-

BU-211 - also BU-317-M

^{*} Research was supported by N.R.C. Grant # A-07204, University of Guelph.

joint classes such that the totality of elements in each class exhausts the set Σ on which the system is defined. For example:

$$K = \begin{cases} (1,2,3) & (1,4,7) & (1,5,9) & (1,6,8) \\ (4,5,6) & (2,5,8) & (2,6,7) & (2,4,9) \\ (7,8,9) & (3,6,9) & (3,4,8) & (3,5,7) \end{cases}$$
class 1 class 2 class 3 class 4

is a Kirkman-Steiner triple system of order 9 on $\Sigma = \{1, 2, ..., 9\}$.

(iii) Let Ω be an m-set. Then L is a Latin square of order m on Ω if L is an mxm matrix with the property that each row and column of L is an m-permutation of elements of Ω . A collection of m cells in L is said to form a transversal (directrix) for L if the entries of these cells exhaust the set Ω and every row and column of L is represented in this collection. Two transversals are said to be parallel if they have no cell in common. Let L_1 and L_2 be two Latin squares of order m on the m-set $\Omega_1 = \{a_1, a_2, \ldots, a_m\}$ and $\Omega_2 = \{b_1, b_2, \ldots, b_m\}$ respectively. Then we say L_2 is an orthogonal mate for L_1 if upon superposition of L_2 and L_1 , a_1 in L_1 appears with b_1 in L_2 for all $i, j=1, 2, \ldots, m$. In the following a set consisting of two orthogonal Latin squares of order m will be denoted by O(m, 2).

For example:

$$\left\{\begin{array}{ccc} 123 & 123 \\ 231 & 312 \\ 312 & 231 \end{array}\right\}$$

is an O(3,2).

2. THE RESULT

Let K be a Kirkman-Steiner triple system of order $n \equiv 3 \pmod{6}$ on an n-set Σ . Then we prove the following theorem

THEOREM. $K \Longrightarrow O(n,2)$.

To prove the theorem we need the following Lemma:

LEMMA. If L is a Latin square of order n, then L can have
an orthogonal mate if and only if it has n-l parallel transversals.

Since L is a Latin square then n-l parallel transversals implies n parallel transversals. Now the proof that L can have an orthogonal mate follows directly from the definition of parallel transversals and orthogonality of Latin Squares.

PROOF OF THEOREM: Let A be an nxn square. Associate with every row and column of A a unique element of Σ . Put in the cell corresponding to row x and column y the element z, where z is that element of Σ which together with x and y form a triple. Put x in the cell with row and column indices x. Call the resulting square H. It is easy to see that H is a Latin square of order n on Σ . We now show that H has n parallel transversals. Let r = (n-1)/2 and partition K into r disjoint classes C_i , $i=1,2,\ldots,r$ as described earlier. Consider the v-th class and denote an arbitrary triple in this class by (x_{vj}, y_{vj}, z_{vj}) , $j=1,2,\ldots,n/3$. Identify

three cells in H by the 2-tuples $(x_{\nu j}, y_{\nu j}), (y_{\nu j}, z_{\nu j})$ and $(\mathbf{z}_{\nu \mathbf{j}}, \ \mathbf{x}_{\nu \mathbf{j}})$, the components of each 2-tuple being the row and column indices respectively. The entries in these cells are then, by the definition of H, z_{vj} , x_{vj} and y_{vj} respectively. Now let j run through all the n/3 triples in $\mathcal{C}_{_{\mathrm{N}}}$, then the corresponding 3.n/3 = n cells determined by the preceding rule form a transversal in H. Denote this transversal by t_{v1} . Another transversal t_{v2} is obtained by considering the three cells in H described by the 2-tuples (y_{vi}, x_{vi}) , (z_{vj}, y_{vj}) and (x_{vj}, z_{vj}) and letting j run through the values 1,2,...,n/3. These exhibition rules guarantee that t_{vl} is parallel to $t_{v,2}$. Since there are (n-1)/2 classes, we may in this way obtain from every class \mathcal{C} , a pair of parallel transversals t_{i1} and t_{i2} . Moveover, t_{ik} (k=1,2) is parallel to $t_{i\,k}$ (k-1,2) if $i \neq i$ ', since every pair of distinct elements of Σ appears exactly once in the whole triple system. Hence, we have shown that H contains 2 (n-1)/2 = n-1 parallel transversals so that by the lemma it has an orthogonal mate. Finally from the definition of H the reader should note that the n-th transversal is determined by the n cells with row and column indices (x,x).

DISCUSSION. Latin Square H and its orthogonal mate constructed by the preceding theorem have very peculiar combinatorial structures. For instance, every triple determines a sub-Latin square of order 3 in H, and H itself contains n(n-1)/6 sub-Latin Squares of order 3, because the Kirkman-Steiner triple

system has this many triples. We hope to discuss this matter in more detail in a later paper. The sufficiency of n = 3 (mod. 6) for the existence of a Kirkman-Steiner triple system of order n has been shown, though in a long paper, by Ray-Chaudhuri and Wilson [1]. Presently we are working towards an alternative and possibly shorter proof for the existence and construction of Kirkman-Steiner triple systems via orthogonal Latin Squares.

ACKNOWLEDGEMENT. One of us (A.H.) wishes to express appreciation to Professor H.B. Mann for encouragement while at Mathematics Research Center, University of Wisconsin.

REFERENCES

- D.K. Ray-Chaudhuri and R.M. Wilson, "Solution of Kirk-man's Schoolgirl Problem", Proc. Amer. Math. Soc. Sympos. On Combinatories, Los Angeles (1968).
- 2. H.J. Ryser, "Combinatorial Mathematics", (1963), Wiley, New York.