b

/Cgéi/ 5257y4//7 \ng,f;;ézéﬂl»,/{’[aévm. /&;@7>;. ;21/5 - ey

A GENERALIZED PROCEDURE FOR CONSTRUCTING FRACTIONAL REPLICATES

U. B. Paik and W. T. Federer

Cornell University

ABSTRACT

A generalized method of constructing fractional replicates from a complete
factorial is developed in the present paper. Special reference is made to the
construction of saturated fractional replicates for a specified set of para-~
meters. The method of construction involves a special ordering of the treat-
ment observations end of the single degree of freedom parameter contrasts.
Prior to presentation of the method, a generalized inverse method is used on
the estimates of parameters and the corresponding variances. Also, a Kronecker
product representation is given for the design matrix of any n-factor factorial
composed of linear contrasts and scme relationships between the design matrices
and corresponding orthogonal arrays are investigated. Various saturasted main

effect plans for 2* and 33 factorial are presented.
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SUMMARY

A generalized method of constructing fractional replicates from a complete
factorial is developed in the present paper. Special reference is made to the
construction of saturated fractional replicates for a specified set of para-
meters. The method of construction involves a special ordering of the treat-
ment observations and of the single degree of freedom parameter contrasts.
Prior to presentation of the method, a generalized inverse method is used on
the estimates of parameters and the corresponding variances. Also, a Kronecker
product representation is given for the design matrix of any n-factor factqrial
ccmposed of linear contrasts and scme relationships between the design matﬁices
and corresponding orthogonal arrays are investigated. Various saturated m;in

effect plans for 2* and 3 factorials are presented.

1. INTRODUCTION

Raktoe and Federer [1966] have shown how to obtain unsaturated and saturated
non-orthogonal main effect and resolution V plans wusing a single replicate of
a lattice design for 2% treatments in incomplete blocks of size two. A special

ordering of the 2n-l incomplete blocks was used. Then, from this ordering they
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obtained & set of fractional replicates. It is the purpose of this paper to
present a method of construction of saturated and unsaturated fractional

replicates for any specified set of r rameters from any complete factorial.

First we shall need to develop and define a notation. Then, some of the
results of Banerjee and Federer [1963, 1964, 1966] on the estimates of para-
meters and their variances will be obtained using a generalized inverse pro~
cedure, This alternative development mey be useful in other connections. 1In
the next section the single degree of freedom contrast design matrix will be
presented as a Kronecker product of the linear contrasts of the levels of each
of the n factors. ©Special orderings of the observations and of the parameter
contrasts are used in this Kronecker representation, and some relationships
between the design matrices and corresponding orthogonal arrays are investi=-
gated. With the Kronecker representation, the method of construction of frac-
fional replicates is then developed and illustrated with several examples,
Various saturated non-orthogonal main effect plans for a 2* and a 33 factorial

are given.

2. NOTATION

Let Y represent a column vector of N random observation variables
V2¥0s® sV let B represent a column vector of N unknown parameters

b, ,b~,***,b_, and let the known linear orthogonal comparison matrix X (treat-

12722" "7y
ment design matrix) in the complete factorial be composed of N rows and N

columns. Then, the observational equation may be represented as:

Y=XB+e , (2.1)

@



where e is an N x 1 column vector of random error components, €15€55° %58

E(Y) = XB, E(ee') = I¢®, and I is the N x N identity matrix.

Consider the following expression

Y = [Xl Xel + e , (2‘2)

where Eé = [bl,be,"°,bp] is a given parameter vector, p < N, X, is an N x p

1
matrix, and X, is an N x (N-p) matrix. Since r(X) = N and r(Xl) = p, then

there exists at least one non-singular p x p matrix Xll in Xl.

After rearranging row orders in Y, [Xl X2] and e respectively, we obtain

the following matrix equation

YP Xll X12 Ep ep
= + ’ (243)
. t
INop Xo1 %op By-p EN-p
where Xll is a non-singular p x p matrix. Then,
B
Yp = [Xll X12] . + 'ep (2.4)
=-p

and the observations in Yp yield a saturated fractional replicate for the

given parameters in Ep'



3. USE OF GENERALIZED INVERSE

Banerjee and Federer [1963, 1964, 1966] have shown how to obtain estimates
of parameters and corresponding variances from a non-orthogonal fractional

replicate. We shall obtain their results using a generalized inverse method.

Theorem 1. For a given parameter vector _]_3__p, there always exists a fractional

replicate as given by equation (2.4) from a complete factorial replicate equa~-

. -1
tion (2.1), and X3
1
1 %12 Byp

Yp is the best linear unbiased estimator of the §P +

Xy

Proof: Existence of a fractional replicate given the parameters is obvious
from the section 2. To show estimability, using the least squares method, the
matrix expression of the normal equations for the fractional replicate given ‘

by equation (2.4) is:

B
=P
X.. X 1" [X.. X.,] _ BT
11 12 11 712 ﬁ = [Xll X12] Yp
—N_P
(3.1)
1 1 N 1
X1 %1 *11 %2 Ep X1
1 ' 2 B 1
X Xll X12 X12 —-B-N-p X12
X' X X! X
One of the generalized inverses G of R 12 is

1 t
X0 %91 Xp%yp



4
(Xll Xll) 0
G = (3.2)
0 0
The proof of (3.2) follows easily, i.e.,
1 t t 1
X1 ¥ *n ¥ ¥ X1 e
G
1 1 4 t 1
X1 X131 Xp Xpo X1 ¥n X X
13 1
Xll 11 Xll Xl2
4
Xl?. Xll 12 ll( 11 ll) ll 12
Since Xll is non=-singular
-1 _ w1 =l o ml
X (Xll ll) ll ll Xll ll
then
= X! .
12 (Xn X)) 11 ¥12 = X1 ¥pp
Hence, (3.2) is proven.
We Hefine
T = '
I (X5 X9) 7 Xgy Xgp
— 1 _
H= G, Xp1 (X Xpp) = ; (3.3)



then
B X!
=P - 11
. G Yp + (H - INxN)
t
§N—p X1.2
(x1, %,)7 X (1, %07
1111 11 ll ll 12
= Y + z* ok
g (3.4)
0 -1
(N-p)x (N¥-p)
From equation (3.4)
7%= -EN—p (3.5)
then
gp + (X]y 11) X1 12 Byp = (X34 11) SIS (3.6)
or
A _l ~ _ _l
+ xll X5 EN—p = X7 Yp . (3.7)
Then, X -1 Y is the best linear unbiased estimator of the B+ X l

11 p -p 1 %12 —N-p
and the theorem is proven.

Since X'X is a diagonal matrix, if X3} exists, then X))

11 exists and we may

write (Banerjee and Federer [19641]):
X1 %
X = B where X = =X

MXy, o Xy

w1
12 ¥p2 -



-1
3 3 1
Since (xl xl) Xt X I

1% 7 “pxp
X
11
(xr x)"% [xro®Ad =1
171 11 11 PXp
13
A Xll

and
1) o e L
Hence, we rewrite (3.7) as follows:
B+ (k] XN XL (T4 Xyp By

-1
= 1 !

From Searle [1966], e.g., we note that

,\ -1
1 4
=N eSTRSEY
var = QG =
EN_p O

then

va.r(ﬁp) = (x, xll_)':L P .

(3.9)

(3.10)

(3.11)

(3.12)

These results are equivalent to those of Banerjee and Federer [1963, 1964].



4. KRONECKER PRODUCT CONSTRUCTION OF THE DESIGN MARTIX X

Consider a 3 x 2 factorial arrangement of treatments, an@lsuppose factor
A is represented at the three levels 0, 1, and 2, and factor B at the two
levels O and 1; then, in Table 4.1, we obtain the coefficients for the 6
orthogonal contrasts among 6 treatments by using the Kronecker product of

the two matrices Ly and L, (e.g., see Yates [1937] and Robson [1959]) where
8

A 2

1 -1 1 1 -1
= _2 d_ ‘ =
L3A 1 0 an L28
1 1 1 1 1

Table 4.1. The coefficients for single degree of freedom
comparisons in a3 x 2 factorial.

comiraeion | M B A MDAy A
00 1 -1 -1 1 1 -1
o1 1 1 -1 -1 1 1
10 1 -1 0 -2 2
11 1 1 0 -2 -2
20 1 -1 1 -1 1 -1
21 1 1 1 1 1 1

% Later on, we shall use the notation A°B®, A°B*, A'R°,

AJ'BL, A°E° and A°B' to replace M, B, A'L’ AI.B’ AQ,’ and AQB

respectively.

If we represent the matrix of coefficients given in Table L.1 by L3x2’

then

= ®
L3x2 L3A L28 ’



vhere ® refers to the Kronecker product. L3X2 is the design matrix X of a

ccmplete 3 x 2 factorial for the parameter vector B.

In general, if we denote the contrast matrix as th, where G4, refers to

the number of levels associated with the h'® factor Fh, the representation of

the design matrix is:

X=10 0L _ =1L (4.1)

and define the product order as follows:

n
I L =1 9 ( H ® L ) = ® L ® ( H ® L ) (k+.2)
h=1 an Q h=2 ( >

where

@ = (%.3)

| Yau-1,0  You=1,1  °77 Vgu-1,qu-1

where v, o =1 for i=O,l,"',qh-l, and
J

Gy -1

}i‘Ynglk =0 for j #k and Jyk = 0,1,***,qy-1 .
i=0

Particularly, if q == for h=1,2,***,n, then
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— a——y

Lsn—-l 'YOlLSn—l YO, s-lLS'”'l

L n~1 YllLSn—l Yl, S-lLSn”]'
X=L, = (ko)

s . . L d L]
L] L] . L]
L] . . .

Lgam1 Ygop,0bgem1 ot Ys-l,s-lLsn'l_

The column vector corresponding to the n factor interaction component

C-
Fl g2

c
1 Fp eee Fnn in X, say g, may be written as follows:

- =
YOCh
n chh
g= 18 (k.5)
h= .
| Yan-1,0y_

If ¢;=J, J #0, for i=h and c;=0 for i F h,

Y03 Yo3 “u ]
Y13 Y13 Ly
= ® ® = ® .
gj(h) 1, ] 1, =1 . (4.6)
Y - . Y - P
h-1
where it is a t x 1 column vector with all elements equal to one, t = .qui
1=
n -
and u = 1 q - If ¢, = 0 for i=1,2,***,n

i=h+1
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The ordering of the treatments (it may be called a combination or an
assembly) in the treatment combination array [Y] is as follows: Set the
first n-1 factors at the first level and run through all levels of the n*®
factor consecutively; then set all levels of the first n-2 factors at the
first level and set the level of the n-1°' factor at the second level and run
through all levels of the n'® factor in consecutive order; continue this pro-
cess until all levels of the n-1°' factor have been exhausted in consercutive
order; then run through levels of the n-2"% factor in the manner for the n-1°*
factor; continue this process for the n-3"¢ up to and including the first
factor which exhausts all the combinations in the n-factor factorial. The
parameter order is such that the mean and n*® factor contrast appear first,
then the first contrast of the n-1%* féctor and interaction with the n'® factor

contrasts appear next, etc.

- If the'h'® factor F, has g levels, then the h'" column vector of the N x n

matrix of subscripts of the observations in [Y], say ;h, may be expressed as

follows:
0 (0) 1,
- , 1 _ (1) 1
Eh —1t<8 : ®1u-—1t® u (4.8)
_.qh“l.'. ‘ ‘ _(qk-l) 1‘1._

The k+1°' treatment yield subscript in [Y] and k+1®' parameter may be



expressed as:

(O‘l)ag) e )O‘n) (4.9)
Q Oy o
Fi »Fy 57 F, ; respectively (%.10)

where

n
[kj—l/ I . q] for j=1,2,:++,n-1
=J+

Q
n

n kn-l

Q
]

n n
where [k, 1/ Il qh] denotes the largest integer less than or equal tok.,/ 0T g
7 k=j+1 J h=j+1 B

n
and ko =k and ky » =k, ; (mod hgth).

5. REARRANGING THE TREATMENT ORDER

If we recall the solution (3.7) or (3.10), we note the inverse of Xj, or

X22 is needed to obtain the solution. Also, we see later that if the size of

n-1 n-l

the fraction is less than s in an s factorial, then we can use the s

x &t orthogonal matrix Xi¥, (in the sense that ( ?l)'xil is diagonal) instead

n

of the s™ x s” matrix to obtain a solution such as (3.7) or (3.10). Also, we

shall see in this case that the method of constructing a saturated fractional
replicate resolves itself into the problem of selecting the smallest number of

treatments from those corresponding to the orthogonal matrix X Here we also

* .
11
recall that, in (4.4), L~y is already an orthogonal matrix; then, we can con-

n-1

struct a saturated replicate from the first s treatment observations in the
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vector Y. However, in this case, the mean effect will be confounded with the

main effect'Fl. This is the reason for rearrangipg the treatment order in the
vector Y with scme higher order defining contrast before constructing a frac-

tional plan; i.e., the mean effect is required to be unconfounded with the

main effects.

Now consider rearranging the treatment order in vector Y with scme defin-
ing contrast in the s factorial (s is a prime number). If we use the expres-
sion (4.9) for the treatment combinations, then the mmbers o take on values
from O to s-1. The s°=1 degrees of freedom among the s? treatment combinations
may be partitioned into (s"-1)/(s-1) sets of s-1 degrees of freedom. Each set
n-1

of s-1 degrees of freedcom is given by the contrast among the s sets of s

treatment combinations specified by the following equations:

Gl Fop ket t oy =0
cl0y + oty + '.f¢+ ?ﬁ“n =1 N
(5.1)
C.O. + C O + **° + c O = s=1
nn

11 272

where the right-hand sideé of these equations are elements of the Galois
Field GF(s){ The ci's are positive integers between O and s-l, not all equal
to zero, and all addition and multiplication is done within the Galois Field
C1 G

c
1 F2" vee an corresponds to the equation whose

left-hand side subseript is cixl ey +oees F .

GF(s), then the interaction F
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For a defining contrast

. 1 _C Cn
M & F] R, P,

where = means confounded with (cl is always 1 for convenience) the identity

relationships are written as:

(5.2)

2 % LR
M, 5 (F) F F )

Let the set of treatments for fixed a,=8, p=0,1,°-*,s-1, be {B,az,--',an},
then, from (5.1) and (5.2) we find the following relationships: If the k'®
treatment corresponds to M; in the set of [O,OLQ,"',Ozn}, then the (k + Bsm-l)“‘

treatment corresponds to Mi . in the set of {B,a2,-'-,an], where j is an

P=j
element of the Galois Field GF(s).

It is understood that an orthogonal array of strength d, of size N¥, with
n factors each at s levels, consists of a set of N¥* treatment combinations
from an s® factorial arrangement with the property that all sd treatment com-
binations corresponding to any 4 factors, chosen from n, occur an equal number

of times, say A\ times, in the subset. The orthogonal arrays are denoted by:

(N*: n, s, d, )\) .
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Then it follows that:

N¥* = XSd. .

Let {y}i whose elements are in [Y], be an %1 % n matrix corresponding
. Cz
to M, = (F F,

c .
N cos an)i, then {y}i is an orthogonal array such that

(sn-l, n, s, d = at least 2, 1) (5.3)

for i=0,1,¢*°*,s-1 .

Theorem 2. In an s" factorial (s is a prime number or power of prime number),

if the treatment order ig Y is rearranged Eg correspond Eg the defining contrast

f(p 72 ... g .

M, = (Fl By  eee F )i’ as follows:
(v},
v},
.
vl

then the following form of the corresponding linear orthogonal ccmpariscns

matrix X% can be obtained by rearranging the row vector order in X, i.e.,

3% 3 cee % )
Xil X12 Xls
X X? see X
2 2
X% = {l 8 (5.4)
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where Xil =L~ 8nd ng, i,j=1,2,**+,s, are all s"”! x s"7! matrices.

Proof: Let Lé?)l be a matrix corresponding to {B,az,-'-,an} in LSn and let
{k(B)}i be the sequence of the row order numbers in ngzl corresponding to Mi'

Suppose one of the elements of the [k(B)}i is equal to one of the elements

of the {k(g)}i for B,d such that B < & where B,5 = 0,1,°**,s-1. Then

i+ (8-B) =1 mod s .
This implies

B-B-——‘I‘S ) I‘=o,l,"'

while B and & are positive integers such that 8 < s and & < s. Then r = O and
this implies B = 8. This contradicts the assumption. Hence, any element of

the {k(B)}i is not equal to one of the elements of the {k(a)}i if B £ b,

From the fact that {y}i is an orthogonal array such as (5.3), each number
of elements of the {k(B)}i is the same for B, i=0,1,***,s-1. Then the set of

sequences

{{k(o)}i’{k(l)}i,...,{k(s'l)}i} , given i, (5.5)

consists of sn"l positive integers less than or equal to s"”*, and none of the

integers is equal to another one. Then

{1, 0 D) = {9, 6@, @)

(5.6)



- 17 -

. Let {}E(B) ' (B)

]i be the set of the row vectors corresponding to Mi in L

sn"l’
-~"then
—{-15(0)}1 - r{l{(o)}o -
AR T I RTR O MO
: : °
‘—{:E(S-l)}i_ L-.{-15(0)}8--1”

where the notation ~ means that if we rearrange the row vector order properly

in the left-hand side matrix of the ~ notation, then this matrix will be the

(0)

same as Lsn_l. This proves the theorem.

n i ¥z [XEL XE eee X4 n-1 . 0
Theorem 3. In an s factorial, let Xl- [Xll. ¥ Xls] be the s X S

fay - C
. matrix corresponding to {y}o with defining contrast M, = (Fl an ~'dg;.‘;an)o,

where at least two of Cpy**®,C, BIE not zero, then mean and main effect columns

in X:;’E. are orthogonal to each other.

Proof: From (4.8) and (4.6), we find the following correspondence between the

colunn vector f, in [Y] and the column vector &; (h) in X:

ES g4(n)
"(0) 1, ] “osta
(1) 1, Y15 1y
1, ® : 1 3 . (5.7)
L_(S-l) 1u_ | Ys-1,3 1u__‘
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Let Ull be amatrix which is constructed using the mean and main effect columns
Cy

in X"l’f. and _1_13 (h) be the column vector corresponding to Fh in Ull’ and define

EO = 15.

Since {y}o is an orthogonal array such as (5.3), (i) in each column of
{y}o, each level number occurs an equal number of times, say p times; (ii) all
s® treatment combinations correspond to any two factors, chosen from n, occur

an equal number of times, say vV times, in the {y}o.

Then, from (5.7), in U, the following holds:

s-1
Y Ea(h) =“Z Yij(h) =0 for j=0,1,***,s~1 ; h=l1,2,°**,n
i=0
s-1
Ej(h) ‘ Eg(h) =M 2 Yij(h)yig(h) for j.f g3 J,8=0,1,°**,s-1 ; and
i=0 ,
h_—_—-_l’z’coo’n
5=1 s-1
() - m () =V ) ) vy Wy (k) for b Ak 5 3,g=0,1,00,6-1 5 and
i=1 m

h,kzl,e,.",n L]
The theorem is proven.

Example 5.1. 3% factorial.

Let
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2 2 2
vhere £ o, = £ B, =0and £ a, B, =0 , then { and U

i=0 1 1=0 1 1=0 1 1 ’ y}O
contrast M = ABC® are as follows:

11 with deflnlng‘

{rl, U1

A°BCc® M pEecP ﬁf&_ﬁﬁ& APRRC®  ACRPCr APROCP

AoBoc s o) wy(a)  w () (8 w(C) wy(c)
0 o0 O] 1 o, Bo o, Bo a Bo |
0 1 1 1 @y Bo oy By oy By
o 2 2 1 o, Bo Qs By Qp Bs
1 0 1 1 o) By N By ay By
1 1 2 <> 1 ay N a By o5 Bs
1 2 0 1 ozl Bl e 52 ao 50
2 0 2 1 5 62 ozo 50 ay Bo
2 1 o0 1 a, Bs @y By %y Po
(2 2 1] L % Ba % Pa % By ]
then
Uy Ej(h) = 0 and Ej(h) . Eg(k) =0 for j,e=l,2 and h,k=A,B,C.

Theorem 4. Let Xy, = [Xi"l ng] be a o%1 2% patrix corresponding to {y}o
o

. s . ¢ o = — .
with defining contrast MO = (Fl Fé Fn )O’ cl-l, ch—O or 1 for h # 1, in

a o factorial, then the Xf' can be rearranged as follows:

[Xfl + X (5.8)
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where the parameter order in (5.8) is M, FpotesFpFy oo Fo5 W, PN
ol

0-',F£W, where W = Fl

ce LN cn
Fs F

Proof: In a 2" factorial, (4.5) becomes as follows:

YOCh
5 = n ® (5‘9)
chh

where YOch =1 if cy = 0 and YOch = =1 if Cy = 1 and chh = 1 for all h. Define

a product of two matrices A = (a,.) and B = (b,,) such as:
mxn ij mxn ij

a1 P13 Bp byttt e, By
a.. b 8.~ b v a~_ b
A . B = 21 21 22 22 2n 2n s (5.10)
_aml bml ame bm2 "t amn bmq_
then (5.9) may be expressed as follows:
-1 Yoc, Yoc,
5 = ® 125_1 . 12 ® M cee - 12n—1 ®
1 1 1
(5.11)
~Lon-a Yoo, lon~e Yoc,
= 12 ® : ) " oo 12!&"1 ®
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From (5.7)

Erg() g @ g ) (5.12)

then, if C, = 0

Bo (W) = 1y - (5.13)

On the other hand, from (4.8)

Ozn—h
5= 12“*1 ® ’ (5.14)
12n~h
then, if ¢, = 0
e, Ly = Ops (5.15)
where O is a 2n X 1 column vector with all elements equal to zero.
2[\
Let
£ =£l~+ cofy +oere e £, mod 2,
then
. 02.“."1 l-o2n—2 ) 0
H = ® o % i &
f ' . 1t 12 . c, + +1,. @ ¢, mod 2.
on=l l_ 2n"2 Cn
(5.16)

Let G and F* be the 2" x n matrices such that
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(]
]

(g, (1) &, (2) =»- g (n)]

e ol o, )

and suppose m of ch's are zero, then m column vectors in G may be 12n.

If the k*® element of f* is 0, then the k'™ row vector in F* has an even
number, say r, of 1 elements, and the corresponding k*® row vector in G may
have (n-m-r) of (-1) elements from (5.1), (5.10), (5.11), (5.13), and (5.15).
From (5.12), the k** element of g is (-1)*™F = («1)™™, Then, if n-m is an

even number,

YM = 12:1"‘1 2

c Cy
. a=1 - J = cee + 3%
where Wy is a 2 column vector corresponding to W Fl F2 Fn in Xl- .
Hence
= % - = ¥
I i‘n : 12“"1 ' in

= %

c 1., = %
H293:"’:n =2,35°**,n ert =2,3,***,n

where w_,***,V, are the 2°71x 1 column vectors corresponding to the
-n —2,3,%**,n

vee Cl Csa cee Cp s 3 5 L eee yi
effect W, F W, s By F3 | F W in X5 respectively and f¥, ’Eé,3,"°,n

are the 2°7! x 1 column vectors corresponding to the effect Fn,--o,FCQ F2 -a. Fﬁ“

2 73

in Xfl respectively.

If n-m is an odd number, then

My = ~loumy -
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Hence

This proves the theorem,

6. CONSTRUCTION OF FRACTIONAL REPLICATES

We shall consider mostly the method of constructing saturated main effect
plans in an ‘sn. factorial. Although we could always construct various saturated
: non-orthbgonal plans for any given iaaramete; set, the general steps of the
construction method may not be too instructive. The following steps, however,
will be common in constructing any fractional replicate for the specified para-

meters. Special cases will be illustrated in the following exemples.

Step 1. Given the design matrix and parameter and observation vectors
XB = E(Y) in any fashion and not necessarily that of the previous secticn, we
now rearrange the parameteré rﬁatrix sﬁéh that the p paremeters, p < N, are ar-
ranged to have the p parame%bers of interest first and N-p parameters not of

interest last to obtain B rearranged (g%ﬁ‘gi)\]fip). This also resrranges the columns

of X such that

X# B = E(Y) (6.1)

B+

(Xg“i X5 ) = E(Y) (6.2)
B::

Nxp Nx(N-p) | =N-p
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Step 2. Search through rows of Xf fntil there is an Xll’ P X p, which is

non~-singular,

Step 3. Corresponding to the rows in Xll

tions in Y. Rearramge the observations in Y into

will be rows in Xf and observa~

T
P

iy
%

corresponding to the rows in Xll from Xi . The observations in Yb yield a

saturated design for the parameters in §§. This obtained set is one of the
possible sets. All possible sets are found by defining all Xll which have an

inverse.

Example 6.1: Saturated main efféct plans in a 3 x 2 factorial.

From Table (4.1), we obtain a matrix Xi for parameters M, AL, AQ? B as

1
follows:
1 -1 1 17
1 -1 1 1
1 0 =2 =1
=11 0 2 1
1 1 1 =1
1 1 1 1]

Let Eij be the row vector corresponding to treatment combination (ij) in

X#

¥ then by using the Schmidt method of orthogonalizing the rows, we obtain
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8o = Zoo
t%. =1t - M t
-01 <01 Ilt nz =00
200
=2 (1 -1 1 3)
b =t 200 " B ¥t
-10 =10 Ht ”2 =00 ~ Ht Hz -0l
00!
=3 (¢ -1 -5 0)
PP/ S Ao N6 WUV L S S A
e T i T
=00 ~01 -10
=(0 0 0 0).
Then Ell is not orthogonal to the set of vectors tOO’ tOl’ and 310'
Take vector 320.
v —g .00 %o o Ho o,
20 =20 Ht ”2 -=00 “t*l o1 H‘t* ‘12 -=10
~00 =01" =10
=$— 2 3 1 0).

Hence one of the saturated main effect plans in a 3 x 2 factorial is:

v = O O
o O K+ O
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Example 6.2: Saturated main effect plans in a 2* factorial.

If we consider a 2% factorial design matrix L24 with the defining contrast

M = ABCD, then the alias scheme is as follows:

=
I

ABCD, A =RBCD, B = ACD, C = ABD, D = ABC

&

CD,  AC = BD, BC Z AD.

After rearranging the rows and columns under consideration of the above alias

scheme and from Theorems 2 and 4, we obtain the following matrix X¥:

1
|

1-1-1 1-1 1 1-1 1-1-1 1-1 1 1-1

1 1 1 1-1-1-1-1 1 1 1 1-1-1-1-1

1-1 1-1 1-1 1-1 121 1-1 1-1 1-1

1 1-1-1 1 1-1-1 1 1-1-1 1 1-1-1

1-1 1-1-1 1-1 1 1-1 1-1-1 1-1 1

1 1-1-1-1-1 1 1 1 1-1-1-1-1 11

1-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1

o 111111171 11111111

X = - _ _ ) (6.3)

Xg, X “1-1 1-1 1 1-1 -1 1 1-1 1-1-1

e i i = i
. _ 4
'.-'
.—_I
1
i._i
!
'—l
!
'_.l

1
1

«1-1 1 1-1-11 <11 1-1-1 1 1-=-1
1 -1 -1+1=1<1+«1-1-1
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where the treatment order is

0000, 0011, 0110, 0101, 1010, 1001, 1100, 1111;

(6.4)
1000, 1011, 1110, 1101, 00l0, 0OOO1l, 0l00, and 0111,
and the parameter order is
M, D, C, CD, B, BC, BC, BCD;
(6.5)
ABCD, ABC, ABD, AB, ACD, AC, AD, and A.
Consider the following fraction of a 2* factorial
= X% < .
Yp X¥ 3B+ ey s P 8 (6.6)

where Yb is a p x 1 vector frem the vector Y, B is a column vector of N = 16
unknown parameters reordered such as (6.5), Xﬁ. is a design matrix for given

Yb and B, and ep is a p x 1 column vector of randem error ccmponents.

Suppose the following partition matrix of X is possible after rearrenging

the column vectors in X%,

Xy X1 X
X = -
Xa Xo1  *eo
1 e ! *ooe
!
= | %2111 Xeomn v ¥oppo (6.7)
------- b v = -
¥2121 *ozo1 ! ¥opoz |
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where parameter order corresponding to columns in X is as follows:
M, A, B, C, D, CD, BD, BC; ABCD, ECD, ACD, ABD, ABC, AB, AC, AD,

Let

X117 %en |
X#, = (6.8)

X

%5111 Foo1n

. < i . '
where Xll is a p x p (p < 8) non~-singular matrix, X2111 and Xl2ll are each

p x (8-p) matrices, is an (8-p) x (8-p) matrix, and X},,, are each

Xo111 %2101
8 x p matrices, and X5pp, 80d X}, are each 8 x (8-p) matrices.

We know from theorems 3 and 4 that

1012 = X991 Xpp57 5 (6.9)

and since X#!Xi¥.  is diagonal, if X is non-singular, then X is also non-

11711 11
singular, and frcm (3.9)

2211

-1 — H -1 t t '
X1 = (UllUll) Xll(l + "1"1) (6.10)
where
X
Uy = . (6.11)
2111

and
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B -1
M= =X1015 Xop1y (6.12)
then
, — L] .
X1 (T K = X§g (TRA]) [Xppy ¢ Xpy ¢ XKooy
— t 1 . * 1
= (X9 (TR oy 3 8Ly ¢ X9 (TN)X 50,0

.then, from (3.7) we will obtain the following solution for (6.6):

2 ' -1 1 1 . R ' A
By * (U1pUp0) 7" DXy (TN Ky 3 8T 2 Ky (T A Xm0y ] Brgy

= (U, )" X (Tt (6.13)
= WVii'n 11V MM T

This solution indicates that the solution depends only on hl' This :further

means that the solution depends only on X2211'

Now consider the saturated main effect plans in a 2* factorial. Let the
treatments be arranged such as (6.4) and the corresponding row vectors in X be

numbered 1,2,+++,16 respectively, end let

11
1.1 1
Xpo11| 1 -1 -1

e = | = -1 1 -1 (6.14)
2011 101 -1
1 -1 -1
A1 o-1 1
11 1]
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In the matrix U12 , we can find easily three independent r<ws, i.e., the .

following combinations of rows make non-singular 3 x 3 matrices.

(1,2,3), (1,2,%), (1,2,5), (1,2,6), (1,3,%), (1,3,5), (1,3,7), (1,4,6),
(l)h}'?)) (1}5’6)) (155,7)) (l)6}7)7 (2,3,&), (2’3’5)) (2}3,8)’ (2’,4')6),
(2))4')8)} (2)5’6)’ (2’5}8)) (2)6)8)) (3’)4"7)’ (331")8)’ (3,5)7)) (3,5’8)}

(3,7,8), (4,6,7), (4,6,8), (4,7,8), (5,6,7), (5,6,8), (5,7,8), (6,7,8),

where the numbers indicate the row numbers in matrix U12’ then the following 32

treatment combinations will be the saturated main effect plens in a 2* factorial

(1) (2) (3) (%) ) (6)
0101 0110 0110 0110 0011 0011
1010 1010 0101 0101 1010 0101 .
1001 1001 1001 1010 1001 1001
1100 1100 1100 1100 1100 1100
1111 1111 1111 1111 1111 1111

(7) (8) (9) (10) (11) (12)
0011 0011 0011 0011 0011 0011
0101 0110 0110 0110 0110 0110
1010 1010 1010 0101 0101 0101
1001 1100 1001 1100 1001 1010
1111 1111 1111 1111 1111 1111

(13) (1) (15) (16) (17) (18) (6.15)
0000 0000 0000 0000 0000 0000
1010 0101 0101 0110 0110 0110
1001 1001 1010 1010 1010 0101
1100 . 1100 1001 1100 1001 1100
1111 1111 1100 1111 1100 1111
(19) (20) (e1) . (e2) (23) (2k)
0000 0000 0000 ) 0000 0000 0000
0110 0110 0011 0011 0011 0011
0101 0101 1010 1010 0101 0101

1001 1010 1001 1001 1001 1001
1100 1100 1111 1100 1111 1100 .
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(25) (26) @7) (28) (29) (30)
0000 0000 0000 0000 Q000 0000
0011 0011 , OQll 0011 0011 0011

-TT010L 0110 0110 0110 0110 0110
1010 1010 1010 1010 0101 0101 -
1100 1111 1100 1001 1111 1100

(31) (32)
0000 0000
0011 0011
0110 0110
0101 0101
1001 1010

Let (nl,n2,n3,nu,n5), where n, is the treatment order number in (6.4), ve
one of the above 32 plans, then by recalling theorems 2 and 4 we know the fol-
lowing treatment combinations are also saturated main effect plans in a o*

factorial, i.e.,

(nl+8, n2+8, n,+8, n, 43, n5+8) : (6.16)

3

Fram (6,16) and (6.7) we know, for exeample, that the 10%, 11", 12", and

the 16'® row vectors in X form a set of independent row vectors; then, by

2121

adding another independent row vector to this set from Ull’ we can construct the

following eight satruated main effect plans:

0000 0011 . 0110 0101
1011 1011 1011 1011
1110 1110 1110 1110
1101 1101 1101 1101
0111 0111 0l11 0111
1010 1001 1100 1111
1011 1011 1011 1011
1110 1110 1110 1110
1101 1101 1101 1101 o

0111 0111 0111 0111
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Example 6.3: Saturated main effect plans in a 3P factorial.

In a 3° factorial, after rearranging the row order for the defining cone

trast M = ABCZ, we obtain the following matrix:

X# o= X8 XE XY R (6.17)

where each Xg.L‘(-j is a 9 x 9 square matrix and the treatment order is 000, 011,
022, 101, 112, 120, 202, 210, 221, 100, 111, 122, 201, 212, 220, 002, 010, 021;
200, 211, 222, 001, 012, 020, 102, 110, and 121, and the parameter order is M,
Cro Cqr Bry B Bl By Blps BeCqs Apy Aoy B Cqo AR ALB.LCL’ ALBrCq
ArBqr ABlrr ALBQlai fAor A1 AP AqBrs AQBrlrs AqPrly AqBp AgBelry end
A.B.C

B’ but we could not obtain a solution such as (6.13), because the effects

BLCL, BLCQ’ BQ,CL’ and BQCQ are confounded with both main effects AL and AQ,

respectively, i.e.,

.1, 21
Bl =-34, 534
BC. %-Xpa 2_2a
e =" 3% Q
BC & SA : A
L= 34 Q
BQCQ= -A.L'= AQ .

However, we will find that each X;_%j is a non~singular metrix and if we rearramge
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the column order to obtain M, AL’ AQ BL, BQ, oo Q’ B CL, BL Q’ *++, and let the

first 9 x 9 matrix of the rearranged matrix be All’ then

=
=
oo
jse}
td

L A B By O S BCL By

1 -1 1 -1 1 -1 1 1 -1

1 -1 1 0 -2 0 =2 0

1 -1 1 1 1 1 1 1

1 0 -2 -1 1 0 -2 0©

A= 1 0-2 0 -2 1 1 O (6.18)

1 0 -2 1 1 -1 1 =1 =1

1 1 1 -1 1 1 1 <1 -1

1 1 2 -1 1 0 0
1 1 1 1 1 0 -2 o -2

If we use the symbols N, AL’ Q? BL, BQ, CL’ CQ, B C and B as the symbol

1°Q

of each corresponding column vectors respectively, then, from the theorem 3,

the column vectors M, AL’ Q’ B Q’ L’ and CQ are orthogonal to each other

and also M, B

and BLCQ are orthogonal to each other. Hence,

we can say that matrix A,. is non~singular, and then we can make B_C_ and B C

1 ° L'L LQ

orthogonal vectors with the first 7 column vectors. Let such new vectors of

BL 1’ BLCQ be Z and ZQ

orthogonalizing the columns we obtain:

respectively, then by using the Schmidt method of




1 -1
-2
1
1 1
1 1

[z, 2,1 = 1 -1 ignoring the common factor. (6.19)

-2 0
-2

- l -l_

Now,lif we find a non-singular 2 x 2 matrix from the 9 x 2 matrix, then we can

construct a corresponding information matrix X.. for saturated main effect plans.

11
Consider the partitioned matrix X27x27
Xl Xll X12
X = =
Xo Xo1 %02

. < ?
where X, is p X p (p <9), X,, and X

5, 8re D X (27 - p) each, Xyp is

@7 - p) x (27 - p)-

Now, ccnsider the following fraction of a 3a factorial

Y =XB+e , DP<I

where Yi) = (000, 011, 022, 101, 112, 120, 202), then from (3.7)

A -1 A -1
B, + Xy Xpp Boy =Xy Y (6.20)




. Now, let

MOA A B By O % %
1 -1 1 -1 1 -1 1 -1]
-1 1 0 -2 0 =2 0
-1 1 1 1 1
-2 -1 1 0 1 1 Xll Zl2
¥ = - - - =
All 2 0 <2 1 1 -1
-2 1 1 -1 =2 0 X1121 Z22
-1 1 1 =2
0 -2 =1 1
. 1 O -1 ]
1 1
w1 A% 4 . - R et
then All All is diagonal and 222 . is non~singular. Hence,

-1 ' -1 1 1
11 = (U13Uy9) 77 X1, (Th?)

<
|

where

11

(e
I
-

11
1121

W= -290%00 s

then (6.20) beccmes
B+ (U0 )7 X1 (Tt )X B
Zp 11°11 11 12227-p

® g oo
—_ ? 1 ?
= (UllUll) Xll(I+up )Yp .



The follewing 27 saturated main effect plans are constructed from the set

{(ABCZ)O} in a 3 factorial:

(1)

022
101
112
120
202
210
221

(7)

000
101
112
120
202
210
221

(13)

000
011
101
112
202
210
221

(19)

000
011
022
112
120
o2
210

(2)

011
101
112
120
202
210
221

(8)

000
022
112
120
202
210
221

(14)

000
011
101
112
120
210
221

(20)

000
011
022
101
202
210
221

(3)

011
022
112
120
202
210
221

(9)

000
Q22
101
120
202
210
221

(15)

000
011

101 -

112
120
202
210

(21)

000
011
022
101
120
210
221

(25)

000
011
022
iol
112
120
221

=36 -

(&)

011
022
101
112
202
210
221

(10)

000
022
101
112
120
202
221

(16)

000
o1
022
120
202
210
221

(22)

000
011
022
101
120
202
221

(26)

000
011
022
101

120
210

(5)

011
022
101
112
120
210
221

(11)

000
oz2
101
112
120
202
210

(17)

000
011
oz22
112
202
210
221

(23)

000
011
022
101
112
202
221

(27)

000
011
022
101
112
120
202

(6)
011
022
101
112
220
202
221

(12)

000
011
101
120
202
210
221

(18)

000
011
022
112
120
210
221

(24)

000
011
022
101
112
202
210
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As stated in the introduction to this section, the method presented is
useful in constructing fractional replicates from any 9 X G X °°° X 9,
factorial. Two special cgéés were considered in that saturated main effect
plans were constructed frég:én and 3n factorials. The method is applideble
directly to s" factorials. If saturated main effect and two-factor interaction
plans were desired, the same general procedure would be applicable. For example,
11 treatments would be needed to obtain a saturated main effect and two-factor

interaction plan from a 2* factorial.

Special attention has been given to saturated fractional replicates, but
the procedure applies equally well to the construction of unsaturated fractional
replicates. For example, suppose that it is desired to construct a 2 replicate
of a 2* factorial or % replicates of 3* factorial for the paremeter set involve

ing, mean, main effects, and two-factor interactions. This could be accomplished

follewing the above procedure.

Criterie for goodness of fractional replicates would need to be developed
to determine which of the several fractional replicates is "best". Considera-

tion of efficiency (see Banerjee and Federer [1963, 1964, 1966], aliasing

'Strucﬁﬁre, equality of variance for effects of a given order, ete. would need

to be considered. The use of any criterion above, or athers would need to be

Jjustified.
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