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ABSTRACT

The problem with which we are dealing in this paper is that of estimating
wixing measures of mixtures of known distributions. An estimator 1s proposed and
its strong consistency is proven. Asymptotic normality of the estimator for
finite mixtures is proven. The estimator is in the spirit of Wolfowitz's minimum

distance method.
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1. Introduction

The problem with which we>are concerned in this paper is that of estimating
mixing measures of mixtures of known distributions. Development of the strongly
consistent estimator (i.e., an estimator which converges to true values with
probability one) discussed in this paper results frém the consideration of the
minimum distance method of Wolfowitz (1957). Roughly speagking, the method of this
paper consists of choosing that mixing measure wﬁich is "closest" to the empirical
distribution function.

Since identifiability (i.e., one-to-one correspondence between mixing
measures and the induced distributions) is a necéssary condition for estimation,
it follows that, in many problems, ldentifiability implies estimability by the
method in fhis paper. For mixtures of finite distributions, it is obvious from
the result of Robbins -(1964) that identifisbility implies estimsbility. In a
series of papers, Teicher (1960, 1961, 1963) has iﬁvestiga‘ced the identifiability
p1oblem of mixtures of distribution functions.

Robbins (l96h) has proposed a strongly conslstent estimator of mixing measure:
Tor finite mixtures of distribution functions. (His estimater is asymptotically
xﬁitivariate—normal.) The estimator proposed in this paper is easier to compute
“han that of Robbins (1964) since our method only requires finding the minimum
nf a quadratic form. See Blischke (1963) for references on estimation problems

+'cr finite mixtures of parametric families of distribution functions.
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An estimator of the mixing measures is proposed and its strong consistency
is proven in Section 2. The asymptotic normality of the estimator for finite

mixture is proven in Section 3.

2. Estimator and its strong consistencye.

Let {F(x,0) 3 6¢ @} be a known family of distribution functions and G an
(unknown) probability measure on H). We shall assume that F(x,0) is continuous
and strictly increasing in x for each 6 and continuous in 6 for each x. The
identifiability is assumed since it is a necessary condition for estimation.

The problem is to estimate the nixing measure G from n independent obser-
vations x = (xl,xa, esey xn) from the common induced distribution (mixture)
PG(x) = f HF(x,e)dG(e). Denote the empirical distributiog function of x by

Fn(x). Then G*(n) which minimizes f [PG (x) - F_(x) ] dF_(x) is a strongly
(n) n n

consistent estimator of G, i.e. G?n) conveyes weakly to G with probability one.w
If~;§; consists of a finite number of points, then PG(x) - j§igj F(g,éj)
where g g =1, g, >0for j =1, 2, ses, ms Then o\ = (g ceey g% )
=3 3 (=) = Ly By g
will be an m~-dimensional probability vector. For all other cases, tﬁe support of
G%(n).consists of at most n + 1 points in (H). To see the validity of this

agsertion, consider the set C (in the n-dimensional Euclidean space) whose generic

element is

(fF(x(ln), 8)aa(e), - IF'(X(En), e:_)dG(e), cees fF(x(nn), G)dG(e)>EqF(x(i), 0)ac(s})
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vhere X(j‘n) is the i*® order statistic of .35n and G is any probabili’cy.measure
‘w\hos; subport is éontained in @. Then C is convex and compact. (Convexity is
obvicus., Take any sequence in C, {(JF(x(i), e)éc;l;(e)) ; k = 1, 2, } = S.

Since {Gk, k =1} is a sequence of distribution functions and F(x,8) is continuous
in 6 there is a subsequence {Gai, iz= l} such that JF(X( 1)’ e)deai(e) converges to

JF(x(i\ , ©)dG(8). This implies that S has a convergent subsequence.) Because
)

ﬂ:PG( )(x) - Fn(x)]z @F_(x) = = ;l UF(x(i s ©)ec(e) - ;{3]2 is a continuous
n 1= n

function on the compact set C, it achlieves its minimum on C. Since C is convex,
the point at which the minimum is achieved 1s a mixture of at most n + 1 extreme
points of C.

Proof of the strong congistency of G"(n)

(1) j[PG(x) - Fn(x)]2 an(x) =0 WeDe 1,

where G is the (unknown) true mixing measure.
~ Since Fn - PG uniformly w.pe. 1, the convergence follows from the following
fact:
fn 2 0 and measurable for all n -
uniformly, and f, bounded = an(x)dHn(x) - ffo(x)dﬁ(x).

:E'n"’fo

Hn = H in distribution
2
(ii) ﬂ:PG, )(x) - Fn(xﬂ an(x) -0 Ww.D. 1, and this implies
n i
PG,,{n)(x) - PG(x) WeDe Lo

The first assertion follows from (i), because (by definition)
L (s ) - 2T (x) - B (x) |

= Z [P X - ——] = f[P x) - F (x ] ar

Nyl G‘z‘n) (in) n G'zn) n n

< f[PG(x) - Fn(x)]z aF (x) = 11;- igl [PG(x(in)) - %3]2
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2
- > i
Consider a sequence {J.[PG_)(Ln)(x) Fn(x)] d.Fn(x), n l}. For given € > 0, .
we have for all sufficiently large n,

n i 2 n 12 -
ifl[PG n)(x(in)) - 'r'?] = _r]i i_fl[PG(x(in)) - 'ﬁ’]_ =€ .

Suppose [PG’{ )(x(i )) - -—Q 2 &2 for some 1o

(Case 1) PG'? )(x(io)) - if- 2 ¢

. €
1 < < 4 =
For all ln such that 10 in 10 + 5 n

WP L @
[ G*(‘n)(x(i )) - ”j T

because . .

Pcp‘(% )(X(i )) - }-I—l -3 P,Z_ )(x(1 )) - _E = PG%én)(x(io)) _ %(io + _g n) 2.29

Then
1 + —n :
i o i
1 l: n
—z mx.)--—]z- [ <x.>-—1
n G (n) (1n) n n (1n) n_
( 0 |
(Case 2) P (x -—=)< =€
G{n) (10) n
. € R
Take in such that iy - 5 n < in < 10 .
Then

. L
a [ G?n)(x(in)) - 32]

exactly as in (Case 1).
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i -2
We have shown that [P . (x ) - —’3] 2 @ for some i implies that
G? (1) n n
n) n
- 2 &2 ' - .
J[P (x) - F (x)] ar_(x) = & » - Then it follows that the probability of
G?n) n n
in 2

[PG (x(i )) - 7;] 2 & for infinitely many n is less than or equal to

) n

2 3
the probability of _H:PG (x) - F (x)] arF _(x) = f‘g for infinitely many n.
?n) n n

Since the latter probability is zero by (1), the former probability is

1 -2
zero. To wit we have Pr{[PG? )(x(i >) - 7?] z & for infinitely many np=0.
N n n

i
- Now, take any sequence {in} gsuch that 7? - p and x such that p = PG(x).

':(Sincé F(x,8) is strictly increasing in x, so is;PG(x). Hence x exists
uniquely.)
Then,

l;m PG,,{n (x(in)) =p= l:.lm PG(x( in)).

Because F(x,@) is continuous in x, the Dominated Cornvergence Theorem shows

that PG(x) is continuous.
Since x(i ) -+ X WeDs 1,
n

lim PG(x(i )) = PG(x) WeDe Lo
n n

Hence

Lim Py (x) = PG(X) WeDe 1o
n n
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(111) EPG.;En)(x) - Py(x) fof all x] =, [G"((’n) 5 G] ,

W
where = denotes weak convergence.

Iet & = {G l Jf ac(e) < 1} , and

Al
H= {PG(-) | PG(x) = [F(x,e) ac(6), Gez, xeXs
®
Let h be the function from . onto H defined by h(G) = PG(-) .

Then % is g compact space with the usual weak topology., Since H is a
topological space with its topology given by pointwise convergence of the
functions PG(n), it is a Hausdorff space. (If H is not a Hausdorff space,

there 1s a sequence {Eb(-), n = i} such that it converges to at least two
different functions fG(-), and %G(-)° Then there exists x,eX such that
fG(xo) # %G(xo). However, by the Helly-Bray theorem

Ebn(xo) *.fG(xo) and Ebn(xo) - fG(xo).
Therefore, £(x,) = %G(xo), vhich is a contradiction.)

Since h is a continuous (by the Helly-Bray theorem) and one-to-one
(by the identifisbility assumption) function of a compact space onto a

Haugdorff space, h has a continuous lnverse.
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. 3. Asymptotic normality of Gf,y when @)= {81, 8,5 v 61

Denote F(x,ej) by Fj(x). Then G?n) minimizes among all G = (gl, e, g

1 n in m 2
=z (-n—- Zngj(X(i ))) .
i=1 j=1 n
| Bl ) (@ Bemte )]
ZF (x,, (—— - Z g.F.(x )
o (L) N T LTS5 (E)
Tet i=1 n j=1 n
@ =% | Er ) (E- Zep
T (G) = = =P (x,, (———-—Zg.Fx.)>
n n sm1 20 ()7 VB T %)
n Z( ) in m (
L F (x,. (—-—Zg.F.x ))
=1 B(1)7 N T R (E))
- _
Then Tn(G(n)) 0.
‘ By the Taylor series expansion

T (¢) = T (G,) + '%n(GO)(G - Gg)

where G. is the true mixing measure and Tn(G) is the m X m matrix of the partial

0
derivatives of Tn(G) with respect to 85 Under the assumptions that F, are
continuous snd
=148
< } .
lei(x)l K [Fi(x) (l Fi(x))]
for some & > 0, ccnstant K and j = 1, 2, *++, m, it follcws from the results of -

1
Govindarajulu (1965) that 2;2 Tn(GO) converges in distribution to the normal .
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variable with mesn O and covariance matrix I(Z given below). Since
_ 1/ D |
() = - 5 (2 i) 7y(5)),

by the strong law of large numbers, Tn(G) converges to <- E [Fi(x) Fj(X)] ) with

probability one, Hence, by Pratt (1959),

/o (G, - 6p) = /o (- B[R0 7,0] ) Cre)) -0  wod,
vrovided (& [F,(x) 7,(X)] ) 1s not singuler. Therefore
5 (o, - 6,) = M0, T)
in atstrivution were
- (e [n,00 7)) 5 G @ n@])”

It remains only to show Zﬁ = (0,, ), where o, is the covariance

13 (n) 3 (n)

between the two random variables

n m n
z [klei(X(k)) :- Jzflgoxz, kilFi(X(k)) F,(’,(X(k))]

and
% - ggo z F (x(k>) F (X(k)):l

1 n
a [klej ROUE R

is given as follows:

After some computation, .o )
n

ij(

= cov(ai,cj) - cov(ai,dj) - cov(bi,cj) + cov(bi,dj)

O..
*(n)

where

covlage,) =5 | pru ) [1 - 2, u]P OEROEAOEAS

- °°<x<y<°°
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n

cov(aga)) =5 [ ] 7 G [1- B )] m () ar,6) arr )6)
- KLY <@

cov(bye) =2 [ ] e () [1 - PGo(xi OEACECERON
-y <P

corlosdg) = § [ ] E (o) [3 - 7 )] alem, )G ateyz ).
KLY <R
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