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ABSTRACT 

The problem with which we are dealing in this paper is that of estimating 

mixing n:easures of mixtures of known distributions. An estimator is proposed a::1c":. 

ics strong consistency is proven. Asymptotic normality of the estimator fer 

finite mixtures is proven. The estimator is in the spirit of Wolfowitz's minimuK 

di_stance method. 
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The problem with which we are concerned in this paper is that of estimating 

mixing measures of mixtures of known distributions. Development of the strongly 

consistent estimator (i.eo, an estimator which converges to true values with 

probability one) discussed in this paper results from the consideration of the 

minimum distance method of Wolfowitz (1957). Roughly speaking, the method of this 

paper consists of choosing that mixing measure which is 11closest" to the empirical 

distribution function. 

Since identifiability (i.e., one-to-one correspondence between mixing 

measures and the induced distributions) is a necessary condition for estimation, 

it follows that, in many problems, identifia~i~ity implies estimability by the 

method in this paper. For mixtures of finite distributions, it is obvious from 

the result of Robbins ·(1964) that identifiability implies estimability. In a 

;;sries of papers, Teicher (1960, 1961, 1963) has investigated the identifiability 

l;1·oblem of mixtures of distribution functions. 

Robbins (1964) has proposed a strongly consistent estimator of mixing measure::. 

"':'r finite mixtures nf distribution functions. (His estimatcr is asymptotically 

-~· . t 1) -','~ -~ v~Varl.a e-norma • The estimator proposed in this paper is easier to compute 

~han that of Robbins (1964) since our method only requires finding the mini~um 

of a quadratic form. See Blischke (1963) for references on estimation problems 

,_'cr finite mixtures of parametric families of distribution functions. 
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An estimator of the wixing measures is proposed and its strong consistency 

is proven in Section 2. Tbe asymptotic normality of the estimator for finite 

mixture is proven in Section 3· 

2. Estimator and its strong consistency. 

Let (F(x,e) ; 9€ .!)} be a known faiT'.ily of distribution functions and G an 

(unknown) probability measure on ..:!!) • We shall assume that F(x,e) is continuous 

and strictly increasing in x for each 9 and continuous in 9 for each x. The 

identifiability is assumed since it is a necessary condition for estimation. 

The problem is to estimate the mixing measure ·a from n independent obser­

vations x = (x1,x2, ••• , x ) from the common induced distribution (mixture) ....n n .. 

PG(x) = J F(x,9)dG(e). Denote the empirical distribution function of x by @ 2 ~ 

Fn(x). Then G*(n) which minimizes J [PG(n) (x) - Fn(x) J dFn(x) is a strongly 

* consistent estimator of G, i.e. G(n) conveyes weakly to G with p~obability one._ 

If.@ consists of a f-inite number of points, then PG(x) = E g. F(x,a.) 
. j=l J J 

m 
where E gj= 1, g. > 0 for j = 1, 2, ••• , m. 

j=l _J 
* Then G(n) = (gf , ~- ••• , S: ·) 

(n) (n) (n) 
., 

will be an m-dimensional probability vector. For all other cases, the support of 

G*(n) .consists of at most n + 1 points in @. To see the validity of this 

assertion, consider the set C (in the n-dimensional Euclidean space) whose gene~ 

element is 
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v7here x( i ) is the it h order statistic of ~n and G is any probability. mea~ure 
. .. n 

whose support is contained in @. Then C is convex and compact. (Convexity is 

obvious. Take any sequence inc, {(JF(x(i)' -e)aci~'(e)) ; k = 1, 2, o o ·} = s. 

Since (Gk' k ~ 1} is a sequence of distribution functions and F(x,e) is continuous 

in e there is a subsequence {aa.' i ~ 1} such that JF(x(i)' 9)dGa. (e) converges to 
~ ~ 

JF(x(.'' e)dG(e). This implies that S has a convergent subsequence.) Because 
~, . 

J[PG (x) - F (x)l2 dF (x) = ~ ~ [JF(x(i )' e)dG(e) - ~nl2 is a continuous 
(n) n - n n 1=1 n n ...J 

function on the compact set c, it achieves its minimum on c. Since C is convex, 

the point at which the minimum is achieved is a mixture of at most n + 1 extreme 

points of C. 

Proof of the strong consist~ncy of G(n) 

(i) J[PG(x) - Fn(x)]2 dFn(x) ~ 0 w.p. 1, 

(ii) 

where G is the (unknown) true mixing measure. 

Since Fn ~ PG uniformly w.p. 1, the convergence follows from the following 

fact: 

f ~ 0 and measurable for all n 
n 

fn ~ f 0 uniformly, and f 0 bounded 

H ~ H in distribution 
n 

J[PG~ (x) - F (x)l2 dF (x) ~ 0 
~n) n ~ n 

w.p, 1, and this implies 

w.p. 1. 

The first assertion follows from (i), because (by definition) 

i ]2 
- nn • 
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we have for all sufficiently large n, 

Suppose 

(Case 1) 
io 

P ~ (x(. )) --- ~ € 
Gl,.n) ~0 n 

For all i such that i ~ i ~ i + ~ n n 0 n 0 2 

because 

Then 

i i 
p * (x( ) ) - -E ~ P -lf (x(. ) ) - -E ~ P ·" (x( . ) ) - ~( i + ~ n) ~ -2€ ~ 

G(n) in n Gl,.n) ~0 n G~n) ~0 n 0 2 

1 n [ n L: PG~' (x(i ) ) 

. + e 
~ -n 

i ]2 1 0 2 [ i 2 
.. 2: ~ - L: P .• (x(. ) ) .. _g l 

. i=l ~n) n 
~ j ,. . . 

n n 1 . G~ ) ~ n _j 
=~ t..n n 

0 

(Case 2) 
io 

P -lf (x( ) - --) < - € 
Gl,.n) 10 n 

'Then 

exactly as in (Case 1). 
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[ 
i 2 

PGCn) (x(in)) - nnJ ~ i2 for infinitely many n is less than or equal to 

Since the latter probability is zero by (i), the former probability is 

zero. To wit we have Pr{[Patn}(x(in))- ~n]2 ~ €2 for infinitely many n}~o. 
i 

Now, t~~e any sequence (in} such that nn ~ p and x such that p = PG(x). 

(Since F(x,e) is strictly increasing in x, so is 'pG(x). Hence x exists 

uniquely.) 

Then, 

Because F(x,e) is continuous in x, the Dominated Convergence Theorem shows 

that PG(x) is continuous, 

Since x(i ) -+ x 
n 

Hence 

w.p. 1. 

w.p, 1. 
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L' PG* (x) _. PG(x) for all x] ~. [G~(1t- ) ~ G -~ 
(n) n -

w 
where ~ denotes weak convergence. 

Let~= {a l J dG(e) ~ ll d J ' an 

~~ 

H = {PG(·) I PG(x) = J F(x,e) dG(e), G~~, x€X} 

·~H 
·~ 

Let h be the function fromg onto H defined by h(G) = PG(•). 

Then ~ is a compact space with the usual weak topology. Since H is a 

topological space with its topology given by pointwise convergence of the 

functions PG(•), it is a Hausdorff space. (If His not a Hausdorff space, 

there is a sequence {PG(•), n ~ 1} such that it converges to at least two 
n 

different functions fa(•), and fa(·)~ Then there exists x0€X such that 

fG(x0) f fG(x0). However, by the Helly-Bray theorem 

PG (x0 ) ~ fa(x0) and PG (x0) -t fa(x0). 
n n 

Since h is a continuous (by the Helly-Bray theorem) and one-to-one 

(by the identifiability assumption) function of a compact space onto a 

Hausdorff space, h has a continuous inverse. 
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3. Asymptotic- no:rmality of G(n) when @= [ e1, 82, • · ·, 9m} • 

Denote F(x,ej) by Fj(x). Then G(n) minimizes among all G = (g1, 

1 n (i 
L: ..E -

n 1=1 n 

Let 

m )2 
L: g.F.(x(. )) 

j=l J J ~n 

T (G) 1 --n n 

By the Taylor series e~pansion 

n i m 
L: Fl(x(i )) (:- _L: g.F. (x(i ))) 

i=1 n J=l J J n 

n i m 
.t: F2(x(i )) (:- ~ g.F.(x(' ))) 
~=1 n j=l J J ~n 

n . (~n-
m 

L: F (x(' ) ) .t: g.F.(x(i ))) 
i=l m ~n J=l J J n 

"lvhere G0 is the true mixing measure and T (G) is the m X m matrix of the partial n . 

derivatives ofT (G) with respect to g .• Under the assumptions that F1 are 
n J 

continuous and 

for some 5 > o, ccnstant K and j = 1, 2, ···, m, it follcws·from the results of 

~ 

Govindarajulu (1965) that E-2 T (G0) converges in distribution to the normal 
n n 
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variable with mean 0 and covariance matr:ix 

T (G)=-~ ( ~ F1(x.) F.(~:)), 
n n k=l K J K 

I(~ given below). 
n 

Since 

by the strong law of large numbers, ¥n (G) converges to (- E [F 1 (X) F j (X) J ) -v;i th 

probability one, Hence, by Pratt (1959), 

In (G~n)- G0)- In(- E [F1(x) Fj(x)] )-1(- Tn(G0 )) ~ o w.p. 1, 

in distribution where 

It remains only to show ~-!r = (cr. . ) , where cr is the covariance 
n lJ(n) ij(n) 

between the two random variables 

and 

1 [n k m n J n E F.(X(k)) n- EgO£ E F.(X(k)) F£(X(k)) , 
k=l J £=1 k=l J 

Af'ter some computation, cri. is given as follows: 
J(n) 

cr.. = cov(a.,c.)- cov(a.,d.)- cov(b.,c.) + cov(b1,a..) 
~J (n) ~ J ~ J J. J J 

where 

cov(a.,c.) = ~ I I PG (x) [1- PG (x)l PG (x) PG (y) dF.(x) dF.(x) 
~ J n 0 0 - 0 0 ~ J 

-OJ<:Jr.<y<oo 
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cov(a.,d.) = _g f l PG (x) -L1- PG (y)] PG (x) dF.(x) d(F.PG )(y) 
~ J n J v 0 0 0 ~ J 0 

- aJ<::x.<y<CD 

cov(b.,c.) = g J I PG (y) [1- PG (x)J PG (y) dF.(y) d(F.PG )(x) · 
~ J n u o 0 0 J ~ 0 

-ro<.x<y<m 

cov(bi,dj) = ~ J J PGO (x) [1- PGO (y)] d(FiPG0 )(x) d(FjPG0 )(y). 
• aJ<::x.<y<.CD 
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