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ABSTRACT 

The problems with which we are concerned in this paper are those of 

identifiability and strongly consistent estimates for a mixing measure of a 

finite mixture of discrete (and finite) distribution functions. We present an 

elementary proof for the fact that the identifiability is a necessary and 

sufficient condition for the existence of a strongly consistent estimate of 

the mixing measure. Several strongly consistent estimates of the mixing 

measure of finite and discrete distributions are proposed and their strong 

consistency is proven. Results of a small Monte Carlo study of the sampling 

distributions of the various estimates are given. 
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The problems with which we are concerned in this paper are those of 

identifiability and strongly consistent estimates for a mixing measure of a 

finite mixture of discrete (and finite) distribution functions. We present an 

elementary proof for the fact that the identifiability is a necessary and 

sufficient condition for the existence of a strongly consistent estimate of 

the mixing measure. Several strongly consistent estimates of the mixing 

measure of finite and discrete distributions are proposed and their strong 

consistency is proven. Results of a small Monte Carlo study of the sampling 

distributions of the various estimates are given. 

1. Introduction 

Mixtures of distribution functions are of considerable interest not only 

for their mathematical aspects but also for the large number of applied 

problems in which mixtures occur. Estimation of mixing measures of known com-

ponent distributions is of the most general interest, however, it is necess~y 
~ ·. . ' .... 

to investigate first the identifiability of mixing measures. 

In a series of recent papers, Teicher (1960, 1961, 1963) has investigated 

extensively the identifiability problem. In particular, Teicher (1963) has 
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given a necessary and sufficient condition for the identifiability of finite 

mixtures. In Section 2, we present an elementary proof for the fact tnat 

identifiability is equivalent to the existence of a strongly consistent (i.e. 

converging to the true parameter with probability one) estimate for the mixing 

measure of finite and discrete distributions. 

Pearson (1894), Rao (1952), Rider (196la, 196lb) and Blischke (1962, 1964) 

have considered the estimation problem for the parameters of the component· 
·:· 

distribution functions comprising a finite mixture and the mixing measure. 

All the authors have used t-lre method of moments to obtain the estimates for a 
. . ~ .. ' 

mixture of finitely many members of a parametric family of distribution 

functions. (Blischke (1964) has discussed the other methods also.) In Section 

,·i+ 

propose several estimates for the mixing measure • 
.. 

We prove that the proposed estimates are strongly consistent, i.e., they con-

y~rge with probability one to the true measure. In Section 4, results of.~ 

small Monte Carlo study are given to indicate the sampling distributions of 

the estimates proposed in Section 3· 

For extensive discussion with references on applications of mixtures of 

distributions see Blischke (1963). 

2. Equivalence of identifiability and existence of a strongly consistent 

estimate of the mixing measure 

Let f =(f. , a= 1,2,3,•••,m} be a known family of m discrete one­
J.a 

dimensional distribution functions for i = l,2, ••• ,r vrhere f . . :: 
l.J 

Pr(X = ila = j}. Let G = (g1 ,g2, ••• ,~)t be any column vector of positive 

real numbers whose sum is one. Then the new distribution function 
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m 
Pr{x' ;;;' i} ~'-p (i) = l: f ·if>, 

G cx=l J. a 
for i = 1,2, ••• ,r 

is called a G-mixture of f and G the mixing measure. If we let F denote the 

matrix (f. ), i = l, ••• ,r, a= 1,2, ••• ,m, then PG(i) the ith element of 
~a 

The problem is to find a strongly consistent estimate of G from n 

independent observations x1,x2, ••• ,xn with the common distribution PG. How­

ever, we must fi~st :Lnvestigate the question of identifiability. 

Let ~ denote the class of all such discrete mixing measures and u the 
in~ (yith respe~t to f) 

induced class of mixtures. Then u is said to be identifiable if G and G are 

any two mixing measures such that F • G = F • G then G = G. (i.e. columns of 

Fare linearly independent.) For the sake of brevity let us define, in this 

section, estimability to mean the existence of a strongly consistent estimate 

of the unknown G. 

Theorem 1. Identifiability (Le. u is identifiable) is a necessary and 

sufficient condition for estimability. 

Proof. Necessity is obvious. Sufficiency will be proven in the following two 

steps. 

(i) Identifiability~ m =rank (F). 

(ii) m = rank (F) ~ estimability. 

The proof of (i) is immediate from the definition of identifiability and 

the fact that the m-dimensional Euclidean space cannot have more than m 

linearly independent vectors. 
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The proof of (ii) depends on the result in Section 7 of Robbins' '{1964) 

that 

Estimability is equivalent to the condition (R): 

(R) If G == G are any two probability vectors such that for every set B.· 
m m 
Z gaQa(B) == Z gaQa(B), then G = G, where 

a=l a=l 

~(B) = Pr(XEB!a=k} = ~ fik • 
i€B 

From the definition of identifiability it follows that: 
m 

if Z x F (k) = 0 for all k(= 1,2, ••• ,r) where F (k) = 
a=l a a a 

then xa = 0 for all a(= 1,2, ••• ,m). This implies: 

m 

z f. ' 
iSk J.a 

if Z x [F (k) - F (k' )] = 0 for all k, k' such that k > k', 
a=l a a a 

then xa = o for ali: a, which implies ('R}. 
. ·~·I L .···. ·, ,~·. 

Hence, Identifiability ~ Estimability. 

The theorem could be deduced from Theorem 1 of Teicher (1963) and Section 7 of 

Robbins (1964). Nevertheless we have presented an elementary proof for com-

pleteness. 

3· Strongly consistent estimates of the mixing measure 

Let Fn be the emperical distribution of (x1 ,x2 , ••• ,xn)' or equivalently 

let ~(k = 1,2, ••• ,r) denote the number of observations xj which are equal to 

k. Then a sequence of vectors GCn) = (g;(n) : j = 1,2, ••• ,m} which minimizes 

r 
(El) = Z (PG(i) - n./n) 2 PG(i) 

. 1 J. J.= 

(Ch estimate) 

is a strongly consistent estimate of the true mixture G. Since we are assuming 

that every component of the true mixing measure G is positive we exclude from 
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~:.:.: . .. -:.~ ... ~r_f.(.-: 

,_<•0ur·cohsideratiori those GCn) every component of which approaches zero as n 

increases. 

· tet 6 (PG' Fn) denote the expression (El). Then, by definition 

(1) o(P ~ , F ) = inf o(PG' F ). 
G\n) n G n 

By the Glivenko-Cantelli theorem we have with probability one 

Hence by the Slutsky theorem [p 255 Cramer (1946)] 

with probability one as n ~ ~. 

Henc~·P¥ .. (1) 

with probability one. 

r 
o (P -lj , F ) 

G\n) n 
= L (P t (i) - n./n) 2 P t (i) 

i=l G\n) ~ G\n) 

r 
= ~ (P ~ (i) - PG(i) + PG(i) - n./n) 2 P ~ (i) 

i=l G\n) ~ G\n) 

r 
= L [(P t (i) - PG(i)) 2 + (PG(i) - n./n) 2 

i=l G\n) ~ 

Since ni/n ~ PG(i) with probability one, by the Slutsky theorem again, 

r 
(4) o(P -lj , F ) ~ ~ (P t (i) - PG(i)) 2P t (i) • 

G\n) n i=l G\n) G\n) 
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Sine~ the expression on left hand side of (4) approaches zero as n increases, 

so does the one on the right hand side. 

Since each term of: the expression on the right hand side of (4) is non-

negative, each term must approach zero. To wit, with probability one, 

(5) (P ~ (i) - PG(i)) 2 P ~ (i) ~ 0 
Gln) · Gln) · 

for all i, 

which implies 

(6) for all i. 

To see the validity of the implication, it is sufficient to consider the 

following case only. 

For all i, g.(n) converges and 
~ 

there exists k such that gk(n) converges to a positive number. 

Then the proof is immediate from the inspection of (5) (replacing 
m 

p ~ ( i ) by I: g . ( ) f . . ) • 
G\n) j=l J n ~J 

Now (6) implies: 

(7) for all j. 

In matrix notation (6) states 

lim F(GCn) - G) = 0 
n~o::. 

which is equivalent to 

F lim (GCn) - G) = O. 
n-PJ 

Since the rank of F is m 

lim (GCn) - G) = o, which is equivalent to (7). 
n-PJ 
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In the same manner, strong consistency can be easily proven for the 

estimate G(n) which minimizes any one of the following expressions: 

r 
(E2) ~ (PG(i) - n./n)~./n 

. 1 ~ ~ 
~:;:: 

(modified Ch estimate) 

r 
(E3) ~ (PG(i) - n./n) 2/PG(i) 

. 1 ~ 
~= 

(minimum x2 like estimate) 

r 
(E4) E (PG(i) - n./n) 2 n/n. 

i=l ~ ~ 
(modified minimum x2 like estimate) 

r 
(E5) ~ (PG(i) - n./n) 2 

i=l ~ 
(least square estimate) • 

A quite different kind of estimator of the mixing measures has been pro-

posed by Robbins (1964). According to Robbins' method, for instance, g1 is 

estimated as the (normalized) orthogonal complement of the projection Of the 
first column of F onto the 
space spanned by all but the first column of F. Robbins' estimate is also 

strongly consistent. It is also obvious from Robbins (1964) that the asymp-

totic distribution of Robbins' estimate is (multivariate) normal. 

4. Monte Carlo study of the various estimates for the mixing measure 

We are currently investigating the asymptotic distributions of the 

estimates proposed in Section 3· In this section the results of a small Monte 

Carlo study of the sampling distributions of the estimates discussed in 

Section 3 are given. For comparison, the mixing measures are estimated also 

by Robbins' method. Using pseudo-random numbers sets of independent obser-

vations are generated from a (g1 ,g2,g3) mixture of three Binomial distributions 

with the same ~and different p's. Then the various estimates are computed. 

The values of n gi's and pi's used in generating the observations are: 
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n = 8, 
l l. l 

pl = 2' p2 = 3' p3 = b 

In Table 1, the results from 300 samples of 32 observations each a.r-e.· 

summarized: means and variances of the various estimates of (g1 , g2, g3) are 

presented. Given in Figures 1 through 6 are the sampling distributions of the 

various estimates of g1 • It is very difficult to select any one of the esti­

mates from studying Table l and the figures. If' -vre use the sum of the vari-

ances as a criterion, the minimum x2 like estimate seems to be the best. 

However, a much larger Monte Carlo study is required before any one of the 

estimates can be chosen as the best. 

TABLE l (True value of g1 
1 = g = g ::; -) 

2 3 3 

gl g2 g3 Sum of the variances 

Robbins' estimates 

Mean • 3775 • 3318 ·3603 
Variance .0650 .1063 .0411 .2124 

Ch estimates (El) 

Mean • 3522 ·3129 ·3349 
Variance .0391 .0932 .0342 .1665 

Modified Ch estimates (E2) 

Mean ·3235 ·3525 • 3239 
Variance .0475 .0969 .0340 .1784 

Minimum X2 like estimates (E3) 

Mean ·3958 .2608 • 3435 
Variance .0359 .0695 .0237 .1291 
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Modified minimum x2 like estimates (E4) 

Mean .2589 .4120 • 3259 
Variance .0459 .0961 .0372 .1792 

Least square estimates (E5) 

Mean ·3471 • 3159 ·3463 
Variance .0401 .0850 .0332 .1583 
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FIGURE 6 
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