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Abstract 

A unified method is given for handling certain problems relating to quadratic 

forms of normally distributed random variables, especially in the case where the 

variance-covariance matrix is singular. Necessary and sufficient conditions for 

a quadratic form of jointly distributed normal variables to have a non-central 

chi-square distribution are obtained, as well as conditions for the independence 

both of two quadratic forms and of a linear and a quadratic form. 
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Gra¥bill (1961), in his fourth chapter, gives sev~ral theorems relating 
, _:, 

to the distribution of quadratic forms. His The~rem 4.9-states that if! is 
.· ~· -· - -r' .·.-:· 

a vector of normally distributed random variables .. having vector of means~ and 
.' I •o .).:, '. • • ~.>·~··9 

variance-covariance matrix V, then the quadratic form ! 1 ~ is distributed as 

a non-central chi-square with q degrees of freedom and n~n-centrality parame­

·.ter ~J..L'AJ.t if and only if AV is idempotent, q b~'ins;:_the rank of A. Implicit .. .... . --

in the proof of the theorem is the non-singularity of the variance•covariance 
·. r ... ._ ·'J'": • e matrix C. We here extend this theorem to the case.when V is singular and 

consider implications thereof. 

1. Preliminary results. 

If Y is a vector of r random variables having a multivariate normal .. . ~) : '-~- :}: -~· .. :·· .. ,', ·: -~-: . . : .. -: ..... ~ .:; -

distribution with mean· vector ~ and variance-covari~ce ~t~ix L then since ~he 
. ··. ' -

integral of a probability distribution fUnction is unity, it follows th~t 

C) C) -1 l. 

J • • • J exp -~(l - l!) 1 L (l - l!)d~ = (2 rr)2 r ·J-j 1-~- • 
•ctl _co 

A consequence of this is, that for any linear function of the elements of l~ ~'l 
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Cl Q:l -1 ' 

S • • • J exp [-i ¥_ 1 T,. ~ + ·~·i_i· J'~ (2 ~)"Er J ! I I exp( ~~ 1 I~) e (1) 
-00 -Q:) 

-1 

(Putting & = Z: ~in the first result achieves this.) The identity (1) plays 

a fundamental role in obtaining the results ·that follow. Another expression of 

importance is the moment generating functioD of~ ·a non-central X2 distribution 

having p degrees of freedom and non-centrality.parameter A (see for example 

Graybill 1961): 
2A.t 
l-2t -;'"P 

M(t) = e (l-2t) • 

Expansion and collection of like terms shows that the k 1th cumulant KJt of the 

non-central x2 is 

k-1 
= 2 (k 1)!(2k\ + p) 

Throughout this paper ~nXl will represent a vector of ft random variables 

having a multivariate n6Tma.l distribution with mean vector !:!- and variance 

covariance matrix v. In particular we consider the case when V is singular, 

not of fUll rank, and we therefore refer to ~ as having a singular multivariate 

normal distribution, abbreviating this by saying that~ is SN(~,V). (Non­

singular V will be considered as a special case.) 

(2) 

(3) 

Whether V is singular or not it is, by nature, always positive semi-definite. 

Hence, when the rank of V is r ~ n, a matrix L can always be found such that 

V = LL', where L is n X r of rank r. Then, if !r X 1 is a vector of normal 

variables having zero means and variance-covariance matrix I, we can always write 

X = ~ + Ly. This result is often taken to be the definition of the singular ... - -
multivariate normal d:i.stribution (Anderson, 1958, for example.) By this means, 
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problems involving X can . -be put in terms of Y. - . -
2. Conditions for non-central x2 • 

Consider now the· quadratic form Q = ~~~-\lhere ~ is SU(f.::, V). In terms 

ot Y we can write 

Q = ~I~ = .! I L I AL.! +. 2~ I AL.! + }; I AH 

so that the roment generating function of.Q is 
- . ~ . \ 

C1) , 

f ••• 
-·2r J {2 n) eJCP(-r"~'X'l + t_;y-'L'A!y ~ 2t~'~I· + !:'A.!::Jdz 

.. co 

which by a simple applicati~n of (1) is 

-~ -1 
I .. 2tL' AL I exp[ t!:!: 1 A£ + 2t2 H: 1 AL(I-2tL 1 AL) L' AH J • 

We seek the k 1th cUinulan£ of Q, to identify it with (3). From (4) we see 

that the cumulant generating function (c.g.f.) of Q is 
•:- ·, 

-1 
-tlog!I- 2tL'AL! + tH: 1 AH + 2t2H:'~~(I- 2tL'AL) L'~ • 

_,·_· .. 

Now, it is easily established by diagonalizing L'AL [see Lancaster (1954)] that, 

for t sufficiently small, 

where in general, tr(M) is the trace of the square matrix M, the sum of its 

~ diagonal elements. Also, for sufficiently small t, direct expansion gives · 

co 
-1 '\' j 

{I .. 2tL'AL) = L (2tL'AL) ' 

j=O 

(4) 

(5) 

(6) 
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using the standard result that the .zero power of any matrix is the identity matrix. 

Hence the last term in the c.g.f. of Q is 

00 

-1 { :\"' j+2 j 
2t2J!'AL(I'- 2tL'AL) L'f-iE ;,.. ~I~':' L· (2t) AL(L'AL) L'A}!:!: • 

j=O 

Combining (5) and (7) gives the c.g.f. ·of Q1 ali·~ 

t[!:!:'AH + tr(L'AL)] 

co 
- . j j-1 '· : :> . j-2 j 

+ L t 2 [!:!:'AL(L'AL) L'AH + tr(L'AL) /j ]. 
j=2 

Now, utilizing V = LL' and the gene~ai res~li(tr(~) = tr63A), it is easy to 

establish (by induction) that in the second term of (8) 

j-2 . j-1 . 
AL(L' AL) L' A :::' A(VA) 

and 
j j 

t:r(L 'AL) = .tr(VA) • 

Hence the c.g.f. of Q becomes 

(X) 

.. j j-1 j-1 j 
t[~-t'A!-l + tr(VA)] + J. t 2 [!:!:'A(VA) !:!: + tr(VA) /j] 

j=2 

or, more simply, 

00 

.- j j-1 j-1 j 
2_. t 2 [,!!'A( VA) !:!: + tr{VA) / j • 

j=l 

It follows that the k'th cumulant of Q is 

(7) 

(8) 

(9) 
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k!2k-l[~ 1 A(VA)k-l~ + tr(VA)k/k] 
l. 

:f'or k = 11 21 ••• • 'l,le note that although the c.g •. f. •. of Q was originally written 

i~ terms of Lit is not, in fact, dependent on L at all, as seen in.(9). 

Since the moments, or equivalently the cumu1ants, uniquely determine the 

distribution when their respective generatin~~ctions exist we have the 

following theoren4 

(10) 

Theorem 1: If X is SN(~1 V), a necess~J and sufficient condition that the quadratic 

torm~'A! has a non-central x2 - distribution ~~th q degrees of freedom and non-
. 1 

centrality parameter zH'~ is that 

k-1 k 
kH 'A( VA) H + tr(VA) . = kH·~~ + q for k = 1, 2,... • (11) 

Proof: E<!ua.te the cumulant ·expressions (3) and (10) • 
• ·: t 

U~ly, in applications (11) is not readily amenable to verification. 
' ''• ; '. . ,: :.:~~··_·;;:·h 

Equivalent, but more appealling conditions will therefore' be derived, based on 

the result (11). First, by putting k = 1 in (11) we have 

tr(VA) = q. 

Second, since A is non-negative definite it can be written in the form A = ~Al , 

where A1 is n X p. With A in this form it is easy to show that 

A(VA)k-1 = ~(A{VA1)k-1Al 

........ ., :'"• 

and 
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Hence (11) can be written as 

Let us now take P as an orthogon~ ~trix ~\l<?~ t~1.at P' Aj_V~l' = i~ is diagonal with 

diagonal elements A- 1, i == 1,2, ••• ,p. Then, for y = P'AiH having elements 

yi for i = 2, •••. p. (11) becomes 

p p 

k \ ~().~.;;1-1) + \ (:x.~-1-l)A.. = 0 
LJ. J. L. J. l. 

j=l i=l 

p 

or \ (..,;; + ft../k)(ft.~-l -1)"= 0 • L J. J. J. 

i=l 

Since this equation must hold for all integer values k, it is clear that the only 

permissible values of the ~i are ones or zeroJ (and when ft.1 is zero so is the 

corresponding yi ). This, coupled with the. ~esult tr.(AJ._VA1 ) = q indicates that 
,-1 

the characteristic roots of Aj_VA1 must consist of q l's and p-Q. zeros·. Since 

the non-zero characteristic roots of Aj_VA are identical to those~f VA, the latter 

must each be unity, there being q of them. Thus, returning to (11) we see that 

it holds if, and only if, 

and 

kH: I A(VAl-\ = k~ I All 

tr(VA)k = q • } fork = 1, 2, ••• • 

And with V = LL' it is clear' that the non-zero characteristic roots of L'AL 

must also be unity, so making L'AL idempotent. Hence, for k ~ 2 

H:'A(VA)k-lH: = H:'AL(L'AL)L'Aj: = ~'AVAVAJJ.. 

(12) 
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Thus (1~) can be replaced by the equivalent ·_conditions 

lr 
(L'AL idempotent) (13) tr(VAt' = q for allk 

-· ... 

J!'AVAH = !l 1Ail (14) 

H'AVAVAH_ = fl 'A!J. (15) 

~. A theorem of Rao 1s . -: ; . -~-

Rao'-~1966) has stated the "foi1ow!ifng~ t:he6re~ 

Theorem 2:-(Rao) When! is SN(i;V) nece"Ssary and sufficient 'conditions that 

_! 1 /JX has a non-central x2 <liErtribtl'ti-on with q_ degrees of freedom and. non-centrality 

parameter ~H 1 AH are that 
-~· 

- .• ·-. 

(16) L'AL be idempotent or (16)' VAVAV = VAV 

(17) H:'AH = .J:!:'ALL'AJ! or (17) f .t:'A!-!:1 = H 'A~~!: 

(:1.8) L'.AJ-!, belong .to the space of L'AL or ( 18 )_ 'V~ ,b.elcng to the space of VAV. ..... ' . -. . 

We now show the equivalence of' these conditions to those of Theorem 1. Obvio~sly 

(16) and (17) are idE?~tica~ ~9;: .. (l3) and (14) •.. Condition (l8)i~~p~i:s that there 

exists a vector_ ~ such . that_ L 'AH = L' A~. When this is substit"U.~ed :\.~to 

H:'AVAH, we get (15). Conversely, if' (15) is t~e, ~ = L'AH sat-if3f'i~f?y:iY.~:~l:!: = L'ALc. 

To see this, write L 1 AH; = L' ALL' At! + .§ and observe that when (:1.5) is true, 

.§ = L'AH: ~ L'ALL'A~ has ze~o length, i.e., ~ = ~· Hence (15) and (18) are 

equiva.l,ent, and the two tl'!e.~rems are eq_uiva1ent. 

The conditions of' Tr.eorem 2 allow us to write 

!' ~,-= (L! + B) I A(L! + J!) = (_! + ~) 1L1 AL(! + 5;_) 

where c satisfies L 'Af:: = L 1 All:!. Thus we have 
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Theorem 3: If ~ is SN(13;, V) and '!_ is N(Q, J:), .a necessary and sufficient condition 

that X'AX has a noncentral x2 distribution is that there exist a c for which 

X'!~= (Y + c)'L'AL(Y +c) • - ~·- - -

with L'AL idempotent. 

The necessary condition of theorem 3 provides an interesting geometric 

(19) 

characteristic of quadratic forms involving less than full rank normal variables. 

If ! has zero mean, ~ = ~ so that (19) is satisfied. Otherwise, ! can be regarded 

as a translation of the vector ~ = _! -:_>!:: ~rom, ~-e origin to H: in n-space. The 

only way that the quadratic form X'AX = (z + J-4)'A(Z + !l), in the translated 
. ' . - - - -· - -

variable ~ + H:, can be x2 is for there to exist a corresp?nding translation of 

Y to Y + c in r-space such that Y + c is the projection of ! in r-space. 

4. Three Corollaries 

Three usefUl corollaries ca.n be derived 'from the preceding conditions that 

a quadratic form has a x2 distribution. The first relates to the case when V 

is non-singular. 
·.I. 

Corollary 1. If X is N(J:, V) with V non-singular, a necessary arid sufficient 

condition for~~~ to be non-central chi-~quare with q = tr(VA) d.f. and non­

centrally parameter ~ll'A~ is that VA be. idempotent. 

Proof: 
. k 

The condition is sufficient because (VA)2 = VA implies tr(V~) = q 

for all k; and because V is non-singular :!.t also implies AVA = A. Thus (11) is 

satisfied. Necessity follows because, as shewn after (12), L1AL being idempotent 

is a necessary condition &~d therefore so is 

L1 ALL' P.L = L' AL ; 

i.e. LL' ALL' ALL' = LL' ALL 1 
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Thus 

VAVAV = VAV 

and again using the non-s~ngularity of V this implies idempotency of VA. Thus 

thia oo~y, which is equivalent to Graybill's Theorem 4.9 (1961), is proven. 

We note here a distinct difference between the non-singular and singular 

!'l.Ormal distributions. In the non-singul~-- case (Graybill, 4.9) the necessary and 

s\lfficient condition is that VA must be idempotent, whereas in the singular case 

(Theorems 1 and 2) the necessary and sufficient condition is (11), or equivalently 

(12) or (13)-(15) or (16)-(18). 

In applications V is most likely to be singular because ! is of the form 

X= KX. 
- -1 

. . . . 
!13:lis happens when ! is a vector of n variables built UlJ from r linearly 

in~ependent variables~ by adjoining to ~1 n-r linear'functions of x1 • 

sueh ··cas.es, x1 is N(H1, v11) with v11 non-sin~i~ .:ahd · 

In 
,_.····--:...: ... ' 

P\lrthermore, since V = · 1'J) :~'-K•v11K there must exist a non-singular matrix T 
:j. ' ~. 

such that L = KT. This property is used in proving the following corollary. 

·.·'r;,• · .. 
'·l .. , .. ... ;· ..... 

_9orollary 2; When!= ~;.t. as above, a necessary and sufficient con~_ti:~~::i.rat 
. . ~ ; 

X'AX has a non-central x~ distribution with degrees of freedom q = tr(VA) and 
- - . . . :+iiE 

non-centrality parameter~.!!'~ is tha.t K'AVJX = K'AK; or equivalently that 

VAVAV = VAV. 

Proof: The condition K'AVPX = K'PX implies idem.potency of L'AL because L = KT! . . . , 
,;; ..... : " 

thus (16) is satisfied. In addition, with ~ = K~1 (17) is satisfied; and bec~~se 

~ =:,L(T.-iH~) so. ia···(i~). He~~~ ~y Theorem (2) K1AVAK = K'.AK is a n~~es~a.ry ~d 
.. . : :'· !.. . ., "f.~~:~ --..c.·· .. 

sufficient condition. The equivalency of this condition to VAVAV = VAV is seen 
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by noting that from the latter 

L(L' AVAL)L' ~::.L(L' AL)L' • 

Therefore L'L(L'AVAL)L'L = L'~(L'AL)L'L • 

But (L'L)•l exists, by the definition of V = LL', ·and hence L'AVAL = L'AL. Pre-

·11 -1 ··... -1 
and post zuultiplying by T and T respectively and using K == LT gives 

K 'AVAIC"" K 1 .AK. The converse follows similariy··· and thus the corollary is proved. 

So far we have considered conditions- that 'are :both necessary and sufficient. 
r . . ·, ! 

We now consider a simpler condition which is suffi~'ient .. only. This has appeal 

beeause in ~liea.tion one is more~llkely to be t·nterested in conditions which 

lead to !'A! having the non-central x2 dis.trl.bution iather than in consequences 
• t -...· 

of it being so distributed. The· coildi tion is given' ln the form of a corollary. 

Coroll!!Z.J: If! is distributed SN(,1:1 V) then a sufficient condition for!'~ 

to have a non-central x2 distribution with non-centrality parameter~~·~ and 
' .. . '··"'" -

degrees at freedom q = rank of VA is that AVA = A. 

Proof: Clearly, .~.AVA= A1 VA is idempotent with its rank and trace equal, and 

(ll) is then satis:f!i~d. 

I:f, as is done in Searle (1966) 1 aJJy matrix V for which AVA = A is defined 

as a generalized inverse of A, then by this corollary we see that V being a · 

generalized inverse of A is a sufficient condition for X'AX to have a non-central 

x2 -diatribution. 



· .• 1. 

e .. 
to that developed in Corollary 3. But as a necessary condition AVA = A does not 

eon<tur with (11) when .16 == o. For then the necessary condition is tr(VA)k = t:f(VA) 

for aJ.l integer values of k, and this does not imply AVA = A. 

,.. - ;-
where v ' 2 0 -2 

I and if A= 1 ! 16 6 5 s:: i l -. -~ ' ,_ '~ --
l 16 l .··~..,:·· 

--

! 0 2 -2 I 6 4 3 .. ,. 

~ 
,-.. :. 

... 2 -2 4 I 5 3 2 
' .i;, ..,j ... 

then 

As a consequence ot V, x3 .~· -(x1 + x2), ~hich,;reduces x.'ffr~~ x'Ax == ~-x~. Since 
·' -~ 

e E(x1 ) = 0 and var(~) = 2, it is clear that x'Ax is xi . The necessary condition 

tr(VA)k = tr(VA) must tiierefore hold. 
l 1-

6 6 -, VA:::::-! 22 
161 

2 2 
i 

' 2 ' 
i ' 

L24 
~ 

-8 -8 
.L -' 

'By dire~ mul'tiplication we 

and (VA)2 = _!_ ~-352 96 
256' 

r . .,_ d· i.I · 'Qk.::-
1 
i 

l-352 -96 
!-

Hence tr(VA)2 • ..!...(256) = :C ~ -~(16) = tr(VA) , 
256 16 

- ,. ; 

but 
1 l 244 68 6i1 F A. AVA = -

256 I 
\ 

68 20 20 I 
.,--; \ 
.:~: 68 20 20 il 

;.. 
t: .. · 

find.c-.that -

' + 0:\: 

i 
-96! 

.· .-:;-

Thus with !' ~ _distrib~t~d. ~ .1<i the necessary cond.i tion of (11) is upheld, but 
. .:.. - . . . .. . ' . . 

that sugges~ed by Rao (~961), nalllely AVA = A, is not. We ~ght aJ.so notice at 

+ 
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this point that, as mentioned earlier, in contrast to Graybill's Theorem 4.9 

for non-&ingular v, the mt~trix VA is not idempotent. 

6. Independence of two quadratic forms. 

Co~ider two q_u~dratic forms Q1 = !',~ ~d Q2 c !'~ where ! is SN(H, V). 
) .~ 

There is nc loss of generality in assuming A and B to be symmetric. Using (8) 

with tA. replaced by t 1A + t~ (t1 and t 2 b~ing ~sufficiently small that the norm 

e:f t~ + t 2B is less than unity for the analogUe- of expansion (6) to hold) we 

see that the joint c.g.f. of Q1 and Q2 is 

On the other hand the sum of the c.g.f. for Q1 an~ that for Q2 is 

c:> 

+ L 2j-l{ll: '[tlAIJ(tl L' AL)j-2L't~ + t2BL(-t2L'BL)j-2L't2B]~ + tl t~(,~'AL)j /~ 
j=2 

. '\ 

+ t 2tr(L'BL)J/jJ 

Fxom expanding the term under the summation sign in (20) it becomes clear 

(21) 

that if AVB = 0 (20) is identical to (21). Hence AVB = 0 is a sufficient condition 

for Q1 and Q2 to be independent (for then tbGir_joint c.g.f. reduces to the sum ~ 

of the marginal c.g.f.'s). Conversely, if Q1 and Q2 are independent then (20) 

must equal (21). For j = 2 in both expressions such an equality implies 
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•• .r ~"" i. ~ ·~ 

With A and B being non-negative definite this implies 

. ' 

and:_·· tr(L' AVBL) - O. 

Since A and B can be w:ritten as A= ~~ and B = B1Bi this means 

and hence Aj_tt'B1 = 0 and so AVB =· o. T11~-s AVB = 0 is a.l.so a necessary condition 

for the independence of Q1 and Q2t Hence we have 

~eorem 4: If ! is SN(_!:, V) the non-negative quadratic.,f<?rms Q1 = ~~·~_and 

e Q2 = _!'B! are independent if a,nd only i:f AVB = O. 

7. Independence of _li~ar and quadratic forms. 

Th~ method developed in the :"Jreceding !'?f::l,~tion 1s ?OW used to find the necessary 
.• l' ,.. ~~ • ; :··_ : • , • • ~, r_ ~~: 

and sufficient conditions for the independence of linear and. quac~atic forms. Let 

a ser1es 1 ~f li~e~ forms be represented by c~. 
rr , .. ·!~C.;::..~_~;; -

Then, utiltzing (1) with 
:. . .• 

corresponding to!'~ and~· is a vector of dummy variables appropriate to c~, it 

can be shcrwn that the joint moment generating function of ~ and X1.AX is 

, 
-·~ ... 

II- 2tlL'ALI exp(~'C!!; + tl!!:'AH: + H2tlt::'l.J:.. + ~'CL)(I-2tlL'AL)-1(2tl~'~'CL)t] • 

On the other hand, the product of the moment generating functions for ex and 

for X' .AX is 
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1. 
--:.o 

lr - 2t1L1ALI -e::q;{~.'C.!:!: + ~!'CVC'! + t1#)~:+ 2t~E'AL(I - 2t1L'AL)-~'AH)· 

For equaJ.ity of these two expressions it is necessary and suf'ficient that 

v<hich. reduces tc 

it 'CL(I - 2t L' AL)-~'C 1t - ~";·t "CVP't -t 2t 1J ':AL(.I - 2t L1 AL)-lr.•c 't = O. - 1 - - . - . . 1- . . . . 1 -

Ueing (6) this becomes 

i~•ci[r +I (2t1L'AL) 1 Jt•c·~ ... ~~·eve·~ +2t1t.:t'AL [I +I (2t1L'AL) 1]t'c~ = o (22) 

i=J.... i=:l: 

in which every term involves the factor 

Thus it is necessary that CV~ = 0 for (22) to be true-. Hence CVA == 0 is a 

necessary condi~ion for the independence of C~ and~·~; and obViously it is a 

sufficient condit:ton. Thus "ls obtained 

Theorem 5: If ~ is SN(f..l, V) the linear forms C~ and the quadratic form~~~ are 

independent if and only if OVA = o. This is akin to Graybill 1 s (1961) theorem 

4.17, only more general. 
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