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Graybill (1961), in his fourth chapter, gives several theorems relating
to the distribution of quadratic forms;' His Theérem L, g'states that if X is
a vector of normglly distributed random varlables hav1ngrvector of means p and
variance-covariance mgtrix V, then the quadraxlc form X AX is distributed as
a non-centrsl chi-square with g degrees of freedom and'ppn-centrality parame=-
“texr -%E'AE if and only if AV is idempotent, g being.the i;nk of A. Tomplicit
in the proof of the theorem is the non-51ngularity of the varianceacovariance

matrtx C. We here extend thls theorem to the case when V is singular and

consider implications thereof.

l. Preliminary results.

If Y is a vector of r random variables having a multivariaxe normal

distributlon with mean vector u and variance—covariance matrix L‘then since the

integral of a prdbability diatribution function is unlty, it follows that '
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A conseqﬁence of this is, that for any linear function of the elements of ¥, £'¥

say,
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(Putting ¢ = Z u in the first result achieves this.) The identity (1) plays
a fundamental role in obtaining the results - that follow. Another expression of
importance is the moment generating functiomn of:a non-central X2 distribution
having p degrees of freedom and non-centrality parameter A (see for example
Graybill 1961):

20t

T2t -5
M(t) = e  (1-2t) . (2)

Expansion and collection of like terms shows that the k'th curulant Kk of the

non-central ¥xZ is SRR , .
k=1 .
K, = 2 (k- 1)z +p) (3)

Throughout this paper ?_Cn will represent a vector of xa random varlasbles

X1
having a miltivariate normal distribution with mean vector p and variance
covariance matrix V. In particular we consider the case when V is singular,
not of full rank, and we therefore refer to ?_( as having g singular multiveriate
normal distribution, abbreviating this by saying that X is sm(g,v). (Non~
singular V will be considered as a special case.)

Whether V is singular or. not ii: is, by nature, always positive semi-definite.
Hence, when the rank of V is r < n, a matrix L can always be found such that

V = 1L/, where L is n X r of rank r. Then, if Y is & vector of normal

r X1

variables having zero means and variance-covariance matrix I, we can always write

X =pu + Lye. This result is often taken to be the definition of the singular .

mltivariate normal distribution (Anderson, 1958, for example.) By this means,



problems involvirng X can-be put in terms of Y. . .

2. Conditions for non-central x=.

Consider now the'quadratic\form Q = X'AX here X is SN(u,V). In terms

of 1 we can write
Q = X'AX = Y'L'ALY + 2u'ALY + p'Ay

so that the moment generating‘function of-Q is

@x© @0 -
-

,.r f (21n) expf~iy'y + ty'L'Aly + 2tu'ALy + p'Apldy

-0 -0

which by a simple application of (1) is

& 1
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P'I - 2¢n'aL | expl tp'Ap + 2t2p'AL(I-2t1'AL) L'Ap ] .
We seek the k'th cuimlant of Q, to identify it with (3). From (4) ve see
that the cumulant generating function (c.g.f.) of Q is

-1
~5log|I = 2tL'AL| + tu'Au + 26%ut2L(I - 2tL°AL) L'Au

Now, it is easily established by diagonalizing L'AL [see Lancaster (1954)] that,

for t sufficiently small,

-

X
§ 101 s
-%loglI - ZtL’ALg = Z 'b323 tr(LiAL)u

=1 J

where in general, tr(M) is the trace of the square matrix M, the sum of its

diagonal elements. Algo, for sufficiently small t, direct expansion gives -

-1 3
(I - 2¢L'ALY) =) (2tL'aL) ,

J=0

“1 8
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(5)

(6)



using the standard result that the zero power of any matrix is the identity matrix.

Hence the last term in the c.g.f. of Q is

-1 . i Jj*e J 1
2ty 'AL(T - 2tL'AL) L'Ap ‘=~'%u'.{ :'Z--(zt) AL(L'AL) L'A | p . (7)

&

Combining (5) and (7} gives the c.g.f. of Q' a5’ ™

N B L ST - S
tlptap + tr(L'AL)] + R [pran(rran) L'ap + tr(L'AL) /51, (8)
j=2

Now, utilizing V = LL' and the general res&lfﬁtr(ﬁB) = tr(BA), if is easy to
establish (by induction) that in the second term of (8)

j=2

J j-1. -
AL(L'AL) L'A

S
A(va)

and

J
tr(va) .

3
tr(L'AL)

Hence the c.g.f. of Q becomes

R I O 3-1 ]
tlu'ap + tr(va)] + ) ¢ 2 [p'a(va)  p+ tr(va)/y]
j=2

or, mcre simply,

J J=1 J-1 J
t 2 [p'a(va) p+ tr(va)/j. (9)
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It follows that the k?th‘cumulant of Q is
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F L - 1)1 0euta(VAY Y + tr(va)s], (10)

for k = 1,2,ee. o We note that although the c.g.f. of Q was originally written
in terms of L it is not, in fact, dependent on L at all, as seen in .(9).

Since the moments, or equivalently the cumulants, uniquely defermine the
distribution when their respective generating functions exist we have the
following theorem,
Theorem 1: If X 1is SN(P_,V) , a necessary and sufficient condition that the quadratic
form X'AX hés 8 non~central x?- distribution _'wi;thi q degrees of freedom and non-

centra]:ity parameter %‘E’AB is that
k' AVAY N + e (VA = kptap + g for k = 1,2,... . (11)

Proof: Equate the’ cumulant expressions (3) and (10).
Unfortama-bely, in appllcat:.ono (11) is not readlly amenable to veriflcation.

Fquivalent, but more appea.'!ling conditions wil_l therefore be derived based on

the result (ll) Flrst, by puttlng k=11in (1.1) we have

tr(VA) = q. LT
Second, since A is non~negative definite 1t can be written in the form A = A‘.LAi s
where Al is n X p. With A in this form it is easy to show that

A(VA)k"1 = Al(A]’_VAl)k'l !

.A1

T

and tr(va)E = tr(AJVA, )



Hence (11) can te written as T

k-1

1 t 1 1A, k = t 1 1
kA, (A1VA, )AL 4 tr(AIVAl),V__?‘{,’ ku'A Ay + tr(A}VA, ).

Let us now teke P as an orthogonal matrix such that P'AJVA,P = (. 1s diagonal with

* e e

dlagonal elements )\i’ i=1,2,40eyps ... Then, for y = P'A]'.H having elements
Yy for i =2,,..p (11) becomes
- P 5 P
k= Z k-1 _
kaﬁ(Ai =1) + ), (7= =0 .
=1 i=1 :
D
k-1 -
or Z (v +2/K)( " -1)=0. .

i=1

Since this equation must hold for all integez; values k, it is clear that the only .
permissible values of the X i’ are ones or zercé (and vhen A 5 is zero so is the

. corresponding Yi)’ This, coupled with the }result ’cr-(AiVAl) = g indicates that

the characterisfié roots%fi Ai%iAl st coriéist of g 1's and p-q zercs . Since

the non-zero characteristic roots of AiVA are identical to those -of VA, the latter
mist each be unity, there being g of them. Thus, returning to (11) we see that

it holds if, and only if,

' AVAY Ly = wptay

’ . } T =
and tr(VA)k =q . J" for k l) 2; ees o (12)

And with V = IL' it is clear that the non-zero characteristic rcots of L'AL

must also be unity, so making L'AL idempotent. Hence, for k = 2

W AVAY Ly = ptAL(L'AL)L'Au = p'AVAVAp.
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Thus (12) can be replaced by the equivalent conddtions

It
tr(VA)” = ¢ . for all k (L'AL idempotent) (13)
pAVAY = ptap (14)
plAVAVAL = p'ap . (15)

3. A theorem of Rao's ol e

Rao {1966) has stated the Tollowiis theorem.

Theorem 2:(Rao) When X is SN(u,V) necéssary and sufficient conditions that

X'AX has a non-central XZ aibtribution with g degrees of freedcm and non-centrality

parameter 3u'Ay are that o

S
3

(16) L'AL be idempotent or (16)' VAVAV

VAV

H

(17) p'Ag = p'ALL'Ap or  (17)" p'ap' = plAvAR

, (18)3 L'Ap belong to the space of L'AL or (18)'VAu belong to the space Of VAV.

e
T

We now show the equivalence of these conditions to those of Theorem 1. Obvipptsly
(16) ana (17) axe identical 1‘19;5_,‘(13) and (14). Condition (,18),:211@1195 that there
exists a vector’ ¢ such ‘that L'Ay = L'Alc, When this is subst..i_tm_}er_i‘_ipto

u'AVAL, we get (15).4 Conversely, if (15) is true, ¢ = L'Ap sati,sfiﬂef%;;,z@g = L'Alc.
To see this, write L'Au = L'ALL'Au + ¢ and observe that when (15) is true,

€= L4 ‘-‘ L'ALL’!{E hasg z_er‘o‘]-.‘ength, i.e., €= 0. Hence (15) and (18) are
equivalent, and the two theorems are equivalent.

The conditions of Theorem 2 allow us to write

X'AX = (LY + p)'A(LY + p) = (¥ + ¢)'L'AL(Y + ¢)

where c satisfiles L'Ay = L'AI_q. Thus we have
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Theoren 3: If X is SN(w,V) and Y is N(0,T).: necessary and sufficient condition

that X'AX has a noncentral x° distribution is that there exist a ¢ for which

XUX = (Y + ) 'LUAL(Y + ¢) (19)

with L'AL idempotent. ‘ -

The necessaxry condition of theorem 3 provides an interesting gecmetric
characteristic of quadratic forms involving less than full rgnk normal varisgbles.
If X has zero mean, ¢ = O so that (19) is satisfied. Otherwise, X can be regarded
as a translation of the vector 2 = X - B g;om:qhe origin to p in n-space. The
only way that the quadratic form X'AX = (Z +'g)§A(g + u), in the trenslated
varisble Z + y, can be %2 is for there to exist a corresponding translation of

YtoY+ ¢ in r-space such thet ¥ + c ie the projection of X in r-space.

L, Three Corollaries

Three useful corollaries can be derived ‘from the preceding conditions that
a quadratiec form has a Xz distribution. The first relates to the case when V

is non-singular.

Corollary l. If X is N(w,V) with V non-singular, a necessary and sufficient

condition for X'AX to be non-central chi-square with q = tr(VA) d.f. and non-

centrally parameter 3p'Ap is that VA be idempotent.

Proof: The condition is sufficient because (VA)? = VA implies tr(Va) = q
for all k; and because V is non-singular it also implies AVA = A, Thus (11) is
satisfied, Necessity follows because, as shown after (12), L'AL being idempotent

is a necessary condition and therefore so 1is

L'ALL'AL

i}

L'AL

ie€e ILPALLYALLY = LL'ALL! .




Thus
VAVAV = VAV

and again using the non-singularity of V thls implies idempotency of VA. Thus
this corallary, which is equivalent to Graybill's Theorem 4.9 (1961), is proven.

We note here s distinct difference bétween tho non-singular and singular
rormal distributions, In the non-singular case (Graybill, 4.9) the necessary and
sufficient condition is that VA must be idempotent, wheress in the singular case
(Theorems 1 and 2) the necessary and sufficient condition 1s (11), or equivalently
(12) or (13)-(15) or (16)-(18). |

In epplications V is most likely to be singular because X is of the form
X = KX;. This happens vhen X is a vector of n variables built up from r lifiearly
independent varisbles _}_gl by adjoining to —}Sl D=T lirféar ‘functions of Xl' In

sueh cases, X; is N(u,V,;) with Vj; non-singular “and

a?.'ld V=,K'V K .

X =KX Ku 115

£ T 828y, B =R

M- 2
o

Furthermore, since v = LI} K'VllK there must exist a non-smgular matrlx T

ar

such that L = KT. Thls property is used in proving the following corollary.

Corollary 2; When X= KX:L as above, g necessary and sufi‘icient condition that

X'AX has a non-central X distnbution with degrees of freedom q= tr(VA) and
Y s

non~centrality parameter Zu'Au is that K'AVAK = X'AK; or equivalently that

VAVAV = VAV,

Proof: The condition K'AVAK KK 1mplies idempotency of L'AL becaase L K’I‘- ‘

thus (16) is aatisfied. In addition, with p = Ky, (17) 1s satisfled and because
L('I' ul) so 18’ (lg) Hence by Theorem (2) K'AVAK = K'&K is & necessa.ry a.nd

> o
sufficient condition., The equiva.lency of this condition to VAVAV = VAV is seen
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by noting that from the latter

‘L(L'AL)L' .

..

(L' AVAL)L

L'L(L'AL)L'L .

Therefore L'L(L'AVAL)L'L

But (L'L)"" exists, by the definition of V = LL', and hence L'AVAL = L'AL. Pre-
and post multiplying by 1’ and T"T respectively and using K = ot gives
K'AVAK = K'AK., The converse follows similari%f"‘and thus the corollary is proved.
So far we have considered conditlons that are both necessary and sufficient.
We now consider a simpler condition which is suffiégéﬁ%"%nly. This has appeal
beeause 1n gpplication one is moref'iikely to be interested in conditions IWhich
lead to X'AX having the non-central %z dis.tributidﬁ rather than in consequences
of it being so distributed. The cohdition is givén in the form of a corollary.
Corollary 3: If X is distributed SN(p,V) then a sufPicient coﬁdition for X'AX
to have a non-central xZ distribution with non-centrality parameter Fu'Ay and
degrees of freedom q = ramk of VA is that AVA = A.
Proof: Clearly, if AVA = A, VA is idempotent with its rank and trace equal, and
(11) is then satisfied. T 3
If, as is done in Searle (1966), any matrix V for which AVA = A is defined
as & generslized inverse of A, then by this corollary we see that V being s -

generalized inverse of A is a sufficient condition for X'AX to have a non-central

yZ~distribution,

5. A lemms by Rao

Corollary 3 brings to mind & paper by Rao (1961) in which (as Lemma 6) it is
implied (by means of his Lemma 1) that if X is SN(O,V) then X'AX is distributed

as chlesquere if and only if AVA = A, The sufficient condition here is identical




to that deyeloped in Corollary 3. But as a necessary condition AVA = A does not

eonour with (11) when jy = O, For then the necessary condition is tr(VA)k = tr(Va)
for a1l integer values of X, and this does not imply AVA = A,
Example: If x''= (x; x, x,) is N(o,v) ¢
T r -

vhere V = ; 2 0 -2 e _and if A = 16 6 5 3

Lo 2 -2 { 6k 3 |

b o 4 ﬁ | 5 3 2

b -l 1 -
then XIAX = é‘- (8x§ + 2:§ + x§ + fxyx, + Sx;_x3 + 3}:2¥3) .

As a conmsequence of V, x %,-(xl + xg). which reduces x'Ax to x'Ax = Ex2, Since

3.

E(xl) = 0 and var(x,) = 2, 1t is clear that x'Ax is x5 . The necessary condition

tx(VAYE = tr(VA) mst therefore hold, By direct mult{plic&tion we find-that.

10 B 17 ¥

VA = =1 22 6 6 a (va® = = ' 352 6 96
Y i a.n‘ (va) 256 %2 9 |

Lok -8 -8 | -2 96 96 !

but - -
' AV=—1-'-—$21+1; 68 681 g
256 ! 5

68 20 20 I

'i,s\ L. X
68 0 20 20

Thus with X'AX dlstributed as x5 the necessary condition of (11) is upheld, but

that suggested by Rao (1961), namely AVA = A, is not. We might also notice at



12

-

this point that, as mentioned earlier, in contrast to Graybill's Theorem 4.9

for nonesingular V, the matrix VA is not idempotent. ’

6. Independence of two quadratic forms.,

Consider two quadratic forms Q = X'AX and Q, = X'EX wﬁere X is SN(y,V).
There is neo loss of generality in assuming A and B to be symme‘cnc. Using (8)
with tA replaced by t,A + t.B (tl and 1, bging":sufficiently small that the norm
of t,A + £,B is less than unity for the analogue of expansion (6) to hold) we

see that the joint c.g.f. of Q; and Q, is "
! It 12 =0 Y Ce. B
o (‘blA + teB)E + tr(thA + ’§2VB) [T . :

2! l{p (t A+t B}:[L'(t A+t B)L“ L’(t A+t 1%)lu + trCL‘(t A+t B)LJ/‘,I (20)

+

Li~7s

On the other hand the sum of the Cegef, for Ql and that for Q2 is

tou'Ap + tQE'BE *t tr(VA) + t,tr(VB)

1

- .- r '- .- v e o ‘.-.
+) od-1 E‘[tlAL(tlL'AL)J 214 J 2L't2}3]_g + tltr(L'AL)‘j/j

3=2

E 1
A taBL(,_teL BL)

+ tatr(L‘BL)j/J}

From expanding the term under the summation sign in (20) it becomes clear

that if AVB = 0 (20) is identical to (21). Hence AVB = O is a sufficient condition

for Q; and Q, to be independent (for then their joint c.g.f. reduces to the sum ‘
of the marginal c.g.f.'s). Convergely, if Q, and Q, are independent then (20)

mst equal (21). For j = 2 in both expressions such an equallty implies



tltg[g' (AVB +-BVA)y + %&(ﬂ*mfé}n; L'BVAL)] =
With A and B being non-negative definite this implies
p'AVB =0 and - tr(L'AVBL) =

Since A and B can be written as A = AlAl and B = BlBi this nmeans

) | tr(1 A, A1L) (L3, BIL) =0
i.e. tr(AiLL'Bl)(BiLL*Al) =0

- and hence AiLL'Bl = 0 and 80 AVB = 0, Thus AVB = 0 is also aynecessary condition
for the independence of.Ql and ng Hence we have
Theorem 4: If X is SN(u,V) the non-negative quadratic forms Q, = X'AX and

Q2 = 5’35 are independent if gnd only if AVD = O,

T. Independence of 1inear and quadratic forms.

The method developee 1n tbe Dreceding seetion 19 “ow used to find the necessary

. A .4-

and suffleient conditions for the 1ndepeﬁdence of linear and quadratlc forms. Tet
8 series of llnear forms be represented by CX. Then, util;zing (1) with

L= 2t u’AL + t’CL and Z =71~ 2t L'AL where t igs the dummy variable

1 v
corresponding to X'AX and t' is a vector of dummy variables appropriate to CX%, it
can be shown that the joint moment generating function of CX and X'AX is

4

-
IT - 2t,L0AL]  exp{t'Cu + tou'Au + 3(26,u"AL + £'CL)(T-26,1'AL) H(2t u ' AL#E'CL) ']

1

On the other hand, the product of the moment generating functions for CX and

for X'AX is



AL

L'an] exp{ticu + Btiove's + 4y ulhg + 265 'AL:(I S ATAA s AT B ®

11-2t1

For equality of these two expressions it is necessary and sufficlent that
32t AL CL) (126, L'AL) (26, AL 1CL) " = 1t 410VC ! £+2t 2 AL( I-26, L*AL)” Inray
whieh reduces to

FLCL(T - etlL’AL)'lL’C‘_‘E - TLYCVC't + 2t uWAR(T - 2tlL'AL)‘lL'c'3 = 0.

14
Using (6) this becomes Browe s
«Q . @®
Bt'CI{I +2 (%lL‘AL)l]L‘C'_‘p_ - BE'CVE't + 2t AL [I +L (2tlL'AL)1]L'c§_ =0 (22)

i=%. o i=%

in which every term involves the factor
s 3 = 1 17Tt = t
CL{L'AL)L'C = CIL AJATLIC cva, (cml) .

Thus it is necessary that CVAl = 0 fdr (22) ﬁo be 'tfué. Hence CVA = 0 is a
necessary condition for t;,k;e independence of CX and ‘_}S’Aj_)_(; and obviously it is a
sufficient condition. Thus is obtained . -

Theorem 5: If X is SN(u,V) the Linear forms CX and the quedratic form X'AX are
independent if and only if CVA = O, This is akin to Graybill's (3.961) theorem

4,17, only more general.
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