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An exposition of analyses of variance procedures used in sequential 

experimentation with sequential hypothesis testing and with sequential esti­

mation is presented. Several sequential test procedures, ~· a single F 

test in the analysis of variance, a set of F tests involving orthogonal single 

degree of freedan contrasts, and a set of t tests (or F tests) for all possible 

differences between pairs or contrasts or means, are presented for data from 

an experiment designed as a completely randomized design. Also, several error 

rate bases are considered. A numerical example is utilized to illustrate the 

procedures. Following a discussion of these procedures illustrating their 

extension to other exper~ental designs, analyses using a single F test are 

described for the randomized complete block design with blocks added sequentially, 

single v X v latin square added sequentially, v treatments designed in b blocks 

of size k (k usually but not necessarily less than v) with each treatment occur­

ring r times and with sets of blocks being added sequentially, and k-row by 

b-column design for v treatments with r replicates on each treatment and with 

rows and/or columns added sequentially. The analyses presented were for fixed 

effects which was followed by a discussion of random and mixed effects cases 

for each of the designs presented. 

Under sequential estimation a two stage sampling procedure is discussed 

along with results relating fixed sample size estimation procedures to sequen­

tial sampling estimation procedures. Same discussion is presented relative to 

unsolved problems in the sequential selection of an exper~ental design, the 

sequential selection of an analysis, and of the scale of measurement, or 

transformation. All of the discussion relates to sequential design and analysis 

of experiments with no presentation being made of sequential procedures for 

selecting treatments as, e.g. levels of the independent variate in regression, 

of levels for a dosage response, and related phencmena. 
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1. INTRODUCTION 

Late in July, 1952, a number of pre:- and post-doctoral students of 

statistics were gathered together .with the late Sir Ronald A. Fisher to dis-

cuss research in and the future. of statistics. I asked him what line of 

research he Y.Jould :p1..rrsue in l;ife if he were one of us starting a career in 

statistics. He stroked his beard in a thoughtful manner and ~ter a mcment 

he replied, "This fellovr Abraham 'ivald i>Ias a very ingenious person. His ideas 

on the _sequ~ptial ~spects of experimentation are very important. Yes, if I 

v1ere a young maJ:7- starting a career in statistics, I ivould vrork on the sequential 

design of experiments." This cannent vias made over 15 years ago; where do we 

stand today? Do we have anything like a coherent theory of sequential design 

of experiments which can be applied in practice? The purpose of this paper is 

to investigate these questions and to illustrate sane available procedures. 

We shall first take a look at sequential procedures for hypothesis test-

ing under both fixed and randcm effects models for various experimental designs. 

In section 3 we shall consider sequential estimation procedures. In section 4 

we shall discuss the relevance of scme usual properties of sequential pro-

cedures fran the experimenter's point of view. 

The author undertook this subject not because he knows this field, but 

because he feels that it is very important for people to be thinking about 

sequential design of experiments and that it was important for him t,., learn 
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scmething more about this topic. The works of Johnson [1953,1961], Wetherill 

[1965], and Hall, Wijsman, and Ghosh [1965], were _utilize,d extensively in 

preparing the following. The first tv1o references are expository and attempt 

to cover the field. The last work is a ccmprehensive and sound theoretical 

justification of the work on hypothesis testing. These three references are 

in the must read class for anyone wishing knowledge in this area. No attempt 

was made to present a coverage of the topics in sequential design {see Jackscn 

[1960] and Johnson [1961]), to assign priorities, etc. A few selected papers 

·uere utilized as reference material. 

Furthermore, the discussion is confined to sequential design of experi­

ments rather than to the sequential selection of treatments or levels of treat­

ments. Selection of dosage levels, of the X values in regression, of varieties 

or drugs in screening experiments, and other treatment designs are not considered 

in the present discussion. 
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2. H-;iFOTHESIS' TESTING 

The relevance of hypothesis testing in experimentation is not being sup-

ported because a presentation is made of sequential procedures for doing this. 

To the contrary, the author is fairly well convinced that experimenters are 

often quite certain that the null hypothesis is untrue. Otherwise, they would 

not conduct the experiment. Then, since the null hypothesis is often not 

applicable, it is nonsense to test it. The same comm,~nts hold for a "region 
. : 

of indifference". However, hypothesis testing can be justified within the 

realm of the subject of Statistics and is required to ccmplete the entire sub­

ject. The statistician's dil.enmn arises when he begins to believe that the 

Real World always conforms to procedures for which he has solutions. 

We shall approach a~l _analyses of data frcm experiments taken in a sequen-

tial manner via analysis of variance procedures under the assumption that the 

linear, additive model >-lith independent effects is valid. This means that an 

error variance for linear contrasts of effects is available frcm the analysis 

of variance. No discussion appears to have been made of sequential procedures 

involving different error rate bases (e.g. see Tukey [1953], ~artley [1955], 

Federer [1961], etc.). Although it vwuld appear that the straightforward 
.. 

extension of the fixed sample procedure as pre~ented herein vTould be permissible, 

this r~quires justification. 

Also, there is the problem of sequential stopping procedures when the v-1 

treatment degrees of freedcm have been partitioned into 1 < k ~ v-1 contrasts. 

This is a simultaneous test of the k contrasts and a decision on composite 

hypotheses is required on each of the k contrasts. If the k contrasts have 
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unequal·,veights this could be compensated for by altering the error of select-

ing the wrong hypothesis. Presumably, the sampling would need to be continued 

until decisions were reached on each of the k contrasts. For unbounded sequen-

tial sampling procedures, the sample size would then be the maximum cne for 

the contrast requiring the ~argest number of samples. For bounded procedures, 

the maximum sample size would be less than or equal to the largest sample size 

allO\·l.able. For k ).arge the maximum .munber would often be achieved, and we 

would have essentially a fixed sample size procedure. 

The simultaneous test of k hypotheses is in sharp contrast to the discus-

sion of ccmposite hypothesis testing as discussed by Hall, Wijsman, and Ghosh 

[1965], Hall [1965], Wetherill [1966], etc.; these authors consider composite 

hypotheses of the type e = e0 and e = e1 apd e < e0, e0 ~ e ~ a1 , and e > e1 . 

A simultaneous test of k such ccmposite hypoth~sis would be more to the point 

in exper~1entation. 

2.1. Fixed Effects 

. The general regression procedure outlined by Johnson [1953] and Ray [1956] 

will be utilized in the following. exi3mples. Basically these and later writers 

use a series of sequential F tests with unbounded sampling. Some empirical 

results on sample size is available; relative to this the ccmment by Wetherill 

[1966], page 59, is interesting, "An outstanding feature of sequential t-tests 
- : '1 . 

is our state of ignorance concerning their properties.". The same comment 

would hold for sequential F-tests. Despite this, many experiments are naturally 

taken sequentially and the experimenter would like to reach a conclusion. Hence> 

a procedure may necessarily be used regardless of its statistical properties 
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and will continue to be used until one vrith more desirable statistical properties 

is available. 

Example 2.1. Ccrnpletely randcmized design with fixed effects. 

Random samples of 5 observations each were obtained fran a near nonnal 

population with mean 30 and variance 100 ( Snedec0r [1956], tab:le 2. 3.1). Letters 

A,B,C,D, and E representing treatments were assigned to the samples as drawn. 

The sample drawing is sequential in nature. The data are given.in table 2.1. 

A number of situations were examined with the experiment being terminated at 

various stages depending upon the treatment ccmparisons made. These will be 

discussed individually below. 

The linear model is Y .. = fl + T. + E .. , given that the T. are fixed effects 
lJ 1 lJ 1 

and the E .. are randcm, independent, normal variates with mean zero and variance 
1J 

a2 , .i=l,2,···,v, j=l,2,··· ,r. 
E 

Accept either ~ ~ ~ the ~l hypothesis. We shall utilize the procedure given 

by Johnson [1953] and Ray [1956]. The first step in the procedure is to specify 

v 2 2 a value of 5 = E -r./va • In most cases, Lt. is set equal to zero. If this is 
i=l 1 E 1 

so, then the average treatment effect in standard deviation units is the item 

of interest. Although the experimenter may not like to think in these terms 

this is the way the test procedure was constructed. Ray [1956] has constructed 

tables for 5 = i, 1, and 2 for the statistic G(vr=N) = Among treatments sum 

of squares divided by the within treatments sum of squares, i.e., 

(2.1) 
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Let A.(N) = A(vr) = vro; then the test procedure is: 

-·A (N)/2 { vro:l v-1 t..(N)G(H) 2 ~ l-(3 "Accept H1 if e M -- 2 ; J ~-2 l+G N a 

.. 

accept H0 if -A. (N)/2 l'.t { vr-1 v-1 f..(N)G(N)/2 } , (3 e 1 -- 2 ; 1-+G(N) . :o. 1-ct 2 

Otherwise take a further set of v (or mv) observations, 

one (or m) on each treatment." 

v 
H0 is that T; = 0, H1 is that ~ 1. = a specified value such that E ~~ = vif2o 

..._ i=l 1 E 

for a specified o, a and ~ are the (approxn1ate) chances of erroneously reject-

ing H0 and H1, respectively, and M(X, Y, ;~) is the confluent hypergoemetric 

function which has been tabled by Rushton [1954], Rushton and Lang [1954], and 

Slater [1960]. Let the upper l~11it be G0 (N) be the solution for G(N) in the 

following equation: 

-A.(N)/2 ... { (vr-1) = e L'l 2 
v-1 
2 

; f.. (N)G(N)/2 } 
l+G(N) (2.2) 

Let the lower limit .Qx (N) be the solution for G(N) obtained from the equation: 

v-1 
2 

t. (N)G(N)/2 1 
l+G(N) J 

(2. 3) 

The values in tables 2.2 and 2.3 which are reproduced frcm Ray's [1956] paper, 

may be obtained frcm tables of the confluent hypergecmetric function, provided 

extensive tables are available. In these tables a = (3 = .05 \'las used. Other 
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Table 2.1. Example of a completely randomized design with five treatments(A,B,C, 

D ,E) and 'I'Iith one observation per treatment added in a sequential 

manner. 

tage A I B I 
I 
I 

~~j I YCj ~~j YAj YA• I YBj YB• 

l 30 30 900 29 29 841 39 
2 19 49 1261 42 71 2605 27 
3 19 65 1517 41 ll2 4286 37 
4 17 82 1806 30 142 5186 24 

5 47 129 4015 33 175 6275 17 
6 I 17 146 43o4 - 23 198 68o4 31 

7 
I 41 187 5985 26 224 7480 19 

8 20 207 63851 28 252 8264 39 

I 

Source d. f. r=3 

Total 5r 12550 
CFJ:.1 1 11316 
Among treatments . 4 747 
~ithin treatments 5(1"-1) 487 

G(N) - 1.53 
F( 4, 4 ( r-1)) - 3.83 

. 

Treatment 

c D E 
-

2 ~~j Yc· EYCj YDj YD• YEj YE• 
. ;,- . .. . . ..). 

39 1521 17 17 289 12 12 
66 2250 25: '42 . 914 22 34· 

103 3619 31 

127 4195 28 

144 4484 33 
175 5445 39 
194 5806 32 

233 7327 43 

s f umo 
i 

r=4 r=5 

16324 21841 

14906 19881 
6c8 33§. 
810 1624 

0.75 0.21 
2.81 1-03 

fl. 
I . 

terminates 
for 5=1 

7J -1.875 25 
101 2659 35 
134 3748 29 

173 5269 30 
205 .6293 27 
248 8142 30 

squares 

l 

! 

r==6 I r=7 

26o41 30512 
23801 28003 

280 .169. 

1960 2340 

0.14 ·-· 

0~89 -
. ~. I 
'tcenniilates 

for o-~ 

59 

94 
123 

153 
180 

210 

~~. 
. J 

144 
628 

1253 
2478 

3319 
4219 

4948 
5848 

---
r=B 

35966 

33062 

219 
2685 

-
-
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levels of a and ~ could be obtained in the manner described by Ray [1956) for 

constructing tables 2.2 and 2. 3. 

Table 2.2. One-way classification by groups (true limits). v =number of 
treatments; r = number per treatment; A = rv6; 6 = o. 5; Q = t3 ::::: 0.05. 

v=2 v=3 v=4 
··--- ------- ··-t·----··------ --·--··-·· - - -r A. G G r A. G G r A. G G - - -
4 4 5-390 5 7-5 0.037 1.319 4 8 0.065 1.825 
6 6 0.002 1.091 7 10.5 .072 0.696 6 12 .110 0-770 
8 8 .025 o.639 9 13.5 .089 .497 8 16 .126 • 521 

10 10 .o4o .471 11 16.5 .099 .4oo 10 20 .131 .411 
12 12 .050 . 385 13 19-5 .105 .]44 12 24 .134 • 350 

14 14 0.059 0-333 15 22.5 O.lo8 o. 306 14 28 0.136 0.310 
16 16 .o66 .]00 17 25.5 .110 .280 16 32 .138 .282 
18 18 .072 .276 19 28.5 .112 .261 

20 20 .076 .258 21 31.5 .115 .245 

30 30 o.c89 0.205 

v=5 v=6 v=7 
.... -~--- ·-----

G: -r ;, G G r f... G r f.. G G - - - ----------- --

3 7-5 0.072 4.176 2 6 o.oo8 3 10.5 0.184 2.407 

5 12.5 .142 o. 927 4 12 .168 1.272 5 17-5 .211 0.784 

7 17.5 .155 .568 6 18 .183 o.646 7 24.5 .207 -512 

9 22.5 .158 .4 32 8_ 24 .183 .464 9 31.5 .199 .401 
11 27.5 .159 • 360 10 30 .180 -377 

13 32.5 0.159 0.317 12 36 0.176 o. 327 

15 37.5 .157 .287 
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Table 2. 3. One-\vay classifica.ticn by groups. v = number of treatments; 

r = nunber per treatr,.ent; :\ = rvo; o = 1.0; a: = ~ = 0.05. 

v=2 v=3 vdt 
- - -r A G G r A G G r A G G - -

4 8 0.052 2.390 3 9 0.124 4.760 2 8 0.144 -
5 10 .d32 1. 380 4 12 .169 L79 3 12 .231 3-13 
6 12 .105 1.016 5 15 .195 1.174 4 16 .266 1.498 
7 14 .121 0.826 6 18 .210 0.902 5 20 ·~76 l.o40 
8 16 .135 -710 7 21 .221 ·762 6 24 .284 0.838 

' 

10 20 0.150 o. 578 9 27 0.234 o.6o5 8 32 0.287 o.637 
12 24 .166 -5o4 11 33 .240 .522 10 4o .286 .540 
16 32 .187 .424 13 39 .244 .471 12 48 .284 .482 
20 4o .199 .383 15 45 .247 .436 16 64 .280 .424 

30 6o 0.215 0.333 21 63 0.251 o. 377 20 So .277 -391 
6o 120 .235 -300 31 93 .251 -334 30 120 0.271 0.342 

I 51 153 .251 • 306 50 200 .266 • 306 I ·-

v=5 v=6 I v=7 
- .. 

r A G G r A.. G G r A G G 

3 15 0.331 2.469 2 12 0-381 24. o42 3 21 o.469 1.925 
4 20 -345 1-332 3 18 .405 2.133 4 28 .447 1.175 
5 25 .340 0.973 4 24. • 398 1.23( 5 35 .420 0.888 
6 30 • 335 ·792 5 30 . 384 0.920 6 42 .405 -745 
7 35 • 331 .687 6 36 -373 -763 7 49 .387 .645 

9 45 o. 322 0.565 8 48 o. 354 o.6o1 
I 9 63 o. 365 0.552 

11 55 -314 .498 10 6o .340 .521 11 77 -349 .494 
13 65 .3c8 .456 12 72 . 330 .473 13 91 • 338 .456 
15 75 • 303 .428 14 84 • 322 .440 15 105 .328 .430 

25 125 0.288 o. 360 20 120 o. 307 o. 386 21 147 0.315 o. 384 
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Table 2. 3~~ (Continued) 

v;;:fJ v=9 ' V=lO --r----r \ G G r ' G G r \ G G A. 

--------- ----~-----~----------~~·-· 

2 16 0.566 7-500 3 27 0.565 1.684 2 20 0.709 5.066 

3 24 • 518 1.792 4 36 .510 1.085 4 4o • 534 1.06 

4 32 .479 1.120 5 45 .470 0.845 6 6o .457 0.705 

5 4o .448 o.865 8 8o .415 • 575 

6 48 .424 • 730 7 63 0.421 o.635 10 100 • 389 -506 

9 81 . 392 .540 

8 61~ 0.391 0.585 11 99 • 372 .485 16 160 o. 347 0.414 

10 8o . 371 • 512 20 200 • 332 • 384 

16 128 • 336 .414 15 135 o. 347 0,425 

20 160 • 324 .:/37 21 189 • 325 0 380 30 300 o. 312 o. 348 

31 279 .306 . 345 4o 4oo • 300 • 329 

30 240 0.306 o. 348 41 369 .296 . 328 

40 4oo .288 • 318 

Utilizing the statistic in equation (2.1) we may now proceed with the 

sequential testing approach. !ve note from tables 2.2 and 2. 3 that the minimum 

sarnple size for v=5 treatments is r=3. The "among groups" and "within groups" 

analysis of variance is computed at each state for r=3, r::::4, r=5, etc. This 

is given in the lower part of table 2.1. Using table 2.3 for 5=1, the sampling 

terminates cit r=5 samples, and "re accept H0; using table 2.2 for 5~, the 

sampling terminates at r=6 samples. 'l'hese results are indicated in the bottcrr, 

part of table 2 .1. 

Single degree of freedcm contrasts. Suppose that we partition the four treatment 

degrees of freedom into four orthogonal contrasts each with a single degree of 
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freedcm. Contrasts 10, 11, 12, and 13 in table 2.4 foTJTl such a set, i.e., 

treatment D vs. E, D+E vs. c, C+D+E vs. B, and B+C+D+E vs. A. Now the sum of 
v 

squares for any linear contrast of treatment means, say ~ c.y. , on a per Unit 
i=l 1. l" 

( v )2 /v ·· 
basis in the analysis of variance is r 2:. c .y. I I ~ c~. Corresponding to 

i=-~1 1. 1.· I i=l 1. 

this S"L.lrJ of ,s,J-ce.re:::.: .• ';7~1ich would be the St of equation (2 .1), He r.~0ed a dencmi-

nator s·c:;m of ~:f'o:uares for two treatmentso . An e.vere.ge SU!ll of sq_ual'es._ for this 

procedure could be obtained by multiplying S = v-ri thin groups sum o'i' squares e 

for v t:ceatnlc;:c:t.; by the factor 2/ v. This is justifiable if t~e vl:i.th::n treat-

ment ~v-a,::..·iane;c:." are 0.11 estimates. of the same 

the statistic · 

v /2 v 

G(2r) 
I l c.y.· 

\ c~S (2. )+) == vr \ ) 
- . 1. l• ka l e 

i=l i=l 

G(2r) would be ccmpared with tabled values of upper and lower limit values of 

v 
The upper and lower limits for the contrast ~ c.y. , ignoring sign, 

i=l 1. l• 

v1oulq be cbta,ir:.ed s,s 

2~c~ 
l 

vr 
(2. 5) 

to yield a linewise error rate of size a. &~ experimentwise error rate would 

be o_?tained by using aj (v-1) vihere there are v-1 orthogonal single degree of 

freedcrn contrasts. One could also have an experiment1vise error rate of the 

Scheffe [1953] type by utilizing Ga(vr) instead of Ga(2r) in equation (2.5) 

to ccmpare each single degree of freedom contrast. 
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Tab1e·2~4. Linear contrasts of means. 

No. ·Contrast r=3 rd.t r=5 r=6 r=7 r:::8 

1 A-B -15·7 -15.0 -9.2 -8.7 -5-3 -5.6 
2 A-C -12.7 -11.2 -3.0 -4.8 -1.0 -3.2 
2 A-D -2.7 -4.8 -1.0 -4.5 -2.6 -5.1 
4 A-E 2.0 -3.0 1.2 -1.2 1.0 -0.4 
5 B-C 3-0 3.8 6.2 3.8 L~. 3 2.4 
6 B-D 13.0 10.2 8,2 4.2 2.7 0.5 
7 B-E 17-7 12.0 10.4 7. 5 6.3 5.2 
8 C-D 10.0 6.5 2.0 (),3 ··1, 6 -.1.9 

9 C-E 14.7 8.2 4.2 3·7 2.0 2.9 
10 D-E 4.7 1.8 2.2 3·3 3.6 4.8 

lower (2) 2.9 4.6 5.2 5·7 6.0 
upper (2) 19·7 18.9 16-3 14.9 13.8 

11 2C-D-E 14.8 6.2 4.0 o.4 
1Ner (6) 5.0 8.0 9-1 9·9 
upper (6) 34.1 32.8 28.2 25.7 

·----
12 3B-C-D-E 26.0 24.8 15.5 13.3 

lower (12) 7-1 11.3. 12.8 13-9 
upper (12) 48.2 46.4 39-9 36.4 

--,··------· 

13 B+C+D+E-4A 34.0 12.0 19.2 7·9 
lower (20) 9·2 14.6 16.6 18.0 
upper (20) 62.2 59-9 51.5 47.0 

q. 0 5 , 5 , ( r-1) (lower (2)) 4.2 6.6 7·5 8.1 
q.05,2,5(r-1) 

q.05~5,5~r-l) (upper (2)) 28.5 27.2 23.2 21.1 
q.05,2,5(r-l) 



- 13 -

In a similar manner, suppose that the v-1 treatment degrees of freedom 

are partitioned in sets of degrees of freed~1 (e.g. as in a factorial) greater 

than or equal to one. Any given contrast with p-1 degrees of freedcm, say, 

could be compared in the same manner as described for single degree of freedcm 

contrasts except that p/v would replace 2/v and ix(pr) would replace Ga(2r) 

in equation (2.5). 

To illustrate the procedure with the data in table 2.1, suppose that 

contrasts 10 to 13 in table 2.4 are the ones of interest, th£::.:; 5 = 1.0, and 

that a = 13 = 05. The upper and lower limits are obtained. i -:.>..:· E.-~ .,::n cc;.T;:; :rast 

using equation (2.5) and the tabulated values in table 2.3 for Ga(2r). For 

contrast 10 two means are involved and E c~ = 2. The l~ver and upper lllnits 
~ 

for this contrast are denoted by lowe;r- .(2) and upper (2), respeetivel:,r. For 

this contrast, sampling would have stopped at r=4 samples, For contrast 11, 

E c~ = 6 and the limits are denoted as lower (6) and upper (6); 5 samples would 
~ 

have been sufficient to reach a decision in favor of H0 on this contrast. For 

contrast 12, 3B-C-D-E, E c~ = 32 + (-1)2 + (-1)2 + (-1)2 = 12; the upper and 
~ 

lmver limits are denoted as upper (12) and lower (12), respectively, and are 

obtained frcm equation (2.5). Seven samples would have been required to reach 

a decision. The fourth single degree of freedcm contrast, number 13, is the 

one involving the mea~ of A versus the others. The E.c~ = 20 and the upper 

and lower limits are denoted as upper (20) and lower (201 respectively, in 

table 2.4. A decision in favor of H0 given that 5=1 would have been r~~9~ed 

for n=5 samples. Thus, the largest number of samples required for any contrast 

'i'Tas 7, and if the process is terminated at this point we are assured that a and 

13 are less than the prescribed value, .05 in this case, for a single degree-of-

freedcmwise error rate base. 
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In connection with the above sequential procedure, we note that a deci-

sion in £aver of H0 was reached for contrast 13 for r=5 samples and that r=6 

samples indicates no decision for this contrast. If the sampling had terminated 

when r=6, the ·experimenter might be in a dilemma. However, if one uses the 

rule that any contrast will not be reconsidered once a decision has been reached, 

this dilemma will not arise, and the properties for a and ~ mentioned in the 

prece.ding paragraph still hold. 

Comparison ..£!: ~ possible differences ~ pairs .£! ~E.· In certain cases 

it is desired to compare differences between all v(v-1)/2 peJ.rs of means. If 

a comparisonwise error rate is desired then the use o£ the upper and lower 

values obtained from equation (2.5), e.g. lower (2) and upper (2) in table 2.4, 

would sufficec For our example, the 5(5-1)/2 = 10 contrasts are thoGe numbered 

1 through 10 in table 2.4. II1. order to reach a decision in favor of either H0 

or H1 for o=l it would have been necessary to use 8 samples, and H0 would have 

been accepted for all pairs. 

If, on the other hand, an experimentwise error rate had been desirable, 

the upper (2) and lower (2) values would be multiplied by the factor 

a_ I a 2 ..,, '>~here the a f values are obtained from the extensively tabu-u,v,f! -o:, ,.~. -o:,v, 

lated tables o£ studentized ranges and where .f is the number of degrees of 

freedcm associated with the within groups sum of squares. Proceeding in this 

fashion we obtain the values in the bottom part of table 2.4. E.g., 

q.05,5,l5 -- 4.37_ -- 1.4·5 d .. 2 90(1 45) 4 2. an • • = • • 
q.05,2,l5 3•01 . 
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Similarly, we could use J (v-l)Fa (v-1, f)/Fo: (1, f) as a multiplier to obtain 

an exper:i..mentwise error rate of the type discussed by Scheffe [1953]. 

Example ~· Randomized ccmplete ~ design with ! blocks, ! treatments, 

rv observations, and fixed treatment effects. 

The yield equation for a randcmized complete block design of the following 

form is considered here: 

v1here the 't" • , E •• 1 i and j are as defined in example 2.1 and the p . may be 
~ ~J J 

either fixed or random effects as this does not affect the test procedure. The 

test statistic comparable to the one in equation (2.1) will be S/Se equal to 

v v r 

G(rv) = ( I ~./r - Y: ./rv) L I (Yij-yi• -y.j+y)2 (2.6) 

i=l i=l j=l 

where yi·' y·j' andy are the treatment, block, and over-all means, respectively, 

Y. = treatment totals, and Y = grand total. This ratio is the treatment to 
~· .. 

error sums of squares from the analysis of variance. In the same manner as in 

example 2 .1, the sequential procedure is defined by~ 

i) accept H1 if G(rv) > ~(rv) 

ii) accept H0 if G(rv) < ~(rv) 

iii) otherwise add another (or m) block(s) to the experiment. 
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2a(rv=N) is the solution for G(H) frcm the equation: 

= -~,(N)/2 M ( r(v-1) v-1 A.(N)G(N)/2 ) 
e 2 ' ~ ; l+G(N) 

-~ (rv=N) is the solution for G (N) frcm the equat:ipn: 

v-1 
2 

A. (rr)G(N)/2 ) 
; l+G(N) 

; (2. 7) 

I ' : 

(2.8) 

These are of the same form as equations (2.2) and (2.3) for the ccmpletely 

randomized design; the parameters L~ the confluent hypergecmetric function 

change, necessitating different tables. Tables for the randomized complete 

block design have been constructed by Ray [1956] for o = 0.5, 1.0, and 2.0 for 

limited values of r and v. Here, as for the one-way classification, additional 

tables could be constructed from tables of the confluent hypergeometric func-

tion. 

Provided tables are available, no additional diffi~ulties over a completely 

randomized design are encountered in the analysis of experiments deisgned as a 

randomized ccmplete block design. The various procedures described in example 

2.1 may be applied directly here. 

Example 2.3. £~of v X v ~squares~:!.. treatments, r =number 

replicates, nv2 observations, and~ treatment effects. 

The yield equation considered for an experiment designed as n sets of 

v X v latin squares is: 
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where i=l,2,··· ,v, h=l,2,· .. ,nv,. j=l,2, ... ,v, -r. are fixed effects, Eh .. are 
1 1J 

randcm independent, normal variates with mean zero and variance ~' and the ph 

and y. may be either fixed or randcm effects. At each stage (1,2, • • • ,n) an 
J 

experiment designed in a v x v latin sguare design is conducted with the v 

additional rows being added in the v columns. Thus, v observations on each 

treatment are added at each stage. Treatment e_ffects are orthogonal to rows 

and to columns in this design. The same procedures as used in example 2.1 may 

be used here provided suitable tables are available. (They need to be computed.) 

The statistic required is: 

G(nv2:;:N) = 

( ~ y2. /nv-'1?- /nv2 ) 
i=l • ~ 0 

••• 

(2. 9) nv v 
L: L: (Yh .. -yh -y . -y .+2y)2 

. l.J •• •1.• ••J h=l J=l 

which is the treatment sum of sguares with v-1 degrees of freedcm divided by 

the residual sum of sguares with (nv-2)(v-l) degrees of freedom. The sequential 

procedure _is as defined for the previous two examples. The upper limit, 

Ga(rv=nv2=N), is obtained as a solution to the following equation: 

l-f3 __,.... 
a 

= -f.. (N)/2 M ( (b-1) (k-1) v-1 
e 2 '2 

; "A (N)G(N)/2 ) 
l+G(N) (2 .10) 

The lew limit .~(rv) is obtained as a solution to the eguation: 

_§__ = -/.. (N)/2 M ( (b-1) (k-1) v-1 ,· /,. (N).G~N)/2 ) 
1-a e 2 ' 2 1 +G\N) (2 .11) 
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Example 2.4. ! treatments designed 2:E; .£ blocks of &:h2ie. ~ ~ ~ .E replicates 

of each treatment with fixed treatment effects. 

If the v treatments are arranged in b blocks of size k (k usually but 

not necessarily less than v) with each treatment appearing r times in the 

experiment and if the treatments are properly randcmized in their allocation 

to blocks and within blocks, we have a class of experimental designs which 

includes the balanced and partially balanced incomplete block designs as well 

as many others. The yield equation considered here is of the form 

Y •. = n .. (1-l+'t'.+t'.+E .. ) 
~J ~J ~ J ~J ' 

where the T. and~. are fixed effects, n .. = 1 if the ith treatment appears in 
~ J . ~J 

the jth block and equals zero otherwise. (This could easily be made more 

general if desired.) e .. are random, normal, independent variates with zero 
~J 

mean and a cc.mmon variance d2, i=l,2,···,v, and j=l,2,·••,b. Intrablock 
€ 

"' analysis is considered to be appropriate. If T ~ are the solutions for the T. 
~· ~ 

"' obtained·from the normal equations given that, e.g • .E T.=O, and if Q. = Y. 
~ ~· ~· 

b -
E n. ,y . where Y. 

j=l 1J •J ].• 
= treatment total and y . = block mean, then the sum of 

"J 
v A 

squares due to treatments (eliminating block effects) is St = .E T.Q. • Like­
i=l ~ ].• 

V b A ~ 2 
wise, the residual sum of squares is S = .E En .. (Y .. -T.-(1-l+~.)) , then we 

e i=l j=l 1J 1J J. J 

. ('b(k-1) v-1 A (N):J(N)/2) may proceed as in the previous sections except to use M 2 , ~ ; l~G(N) , 

for N = rv = bk, as the confluent hypergecmetric function instead of the one in 

equations (2.7) and (2.8), e.g. 
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If it is desired to have single degree of freedom contrasts among the~., 
~ 

v V A A 

say ~ L.~ for ~ L. = 0, then the estimate of this contrast is~ L.~. = t'~, 
i=l ~ i=l ~ ~ ~ 

say, and its variance is L'V(T)L where V(~) is the variance-covariance matrix 
A 

of the~ .• One could then proceed as described for example 2.1. 
~ 

It should be noted that r need not be a'constant and that n .. could be 
~J 

the number of times, 0,1,2,•••, that the ith treatment occurs in the jth block. 

No new ideas are encountered but the arithmetic is more difficult. The recovery 

of interblock information introduces special difficulties, and is not considered 

here. 

Example 2.5. k-row 1ZX b-column design~ :y, treatments~! replicates .£!l 

each treatment. 

Whenever k and b are multiples of v we essentially have the situation 

discussed under example 2.3. Therefore, the interim steps obtained by adding 

rows (and/or columns) one at a time given that b is a multiple of v should be 

am~nable to the same procedure as for the orthogonal case. If the test in 

section 2. 3 terminates with probability one then this one would have to terminate 

also as the former is embedded \dthin the framework of the present one. Thus 
A 

solutions, ~. s~, of the~. in the normal equations would be obtained and a 
~ l. 

sum of squares for treatments eliminating 
VA 

Puted as St= E ~ .Q. where Q; · = Y. -
i=l ~ ~·· ~·· ~·· 

row and column effects would be com-

k - b - -
Z· n. . y . - ~ n. hy . h .+ ry for 

j=l ~J· •J• j::::l ~· •• 

Y- . = J·th row mean y- h = hth column mean, y = over-all mean, n.. =number 
• J ~. . . ' • • ~J. 

of times treatment i occurs in row j, ni•h = number of times treatment i occurs 
.. :" .. · . '.·' 

in coluinn.li, Y. = total for treatment i, and th.e yield observation is 
~·· 

Y. 'h =- n .. h(~-L+'r.+p.+yh+€ .. h). In the yield equation 11, ~..;, pJ., and yh are 
~J ~J ~ J ~J • 



- 20 -

fixed effects for over-all effect, treatment effect, rov1 effect, and column 

effect, respectively. The E. 'h are random, independent, normal variates vlith 
~J 

mean zero and variance ~· nijh = one if the itil treatment occurs in the jc-. 

row and ht~ column and equals zero othen~ise. 

k b r. A A A 2 
The residual sum of squares is equal to ~ ~ (Y .. h-~-~.-p.-~h) = S. 

j=l h=l ~J ~ J e 

The resulting test statistic would be of the form G(rv=bk=N) :;:: S/Se. New 

tables would need to be computed using the confluent hypergeanetric function 

b (k-1) v-1 . A. (H~(N)/2 \) 
2 ' 2 ' l+G~ • Then, using these tables the test pro-

cedures of the previous sections v;ould apply. 

2.2. Random Effects 

Several procedures (e.g. Johnson [1953,1954], Wetherill [1965], Hall, 

Wijsman, and Ghosh [1965]) are available concerning test of hypothesis on the 

ratio of two variance components in the analysis of variance. We shall con-

fine our discussion to one of the procedures described by Johnson [1953], and 

to the situation vlherein H0 is the null hypothesis that the treatment variance 

component is zero. For this procedure and for designs having treatment effects 

orthogonal to the blocking effects, the tables may easily be constructed fol-

lmving the method described by Johnson [1953]. 

Example 2.6. The ccmpletely randcmized design with ~ treatments and r replicates 

on each treatment with randcm treatment effects. 

Suppose that the yield equation for a ccmpletely randcmized design with 

v treatments and r replicates is of the form Y .. = ~~.+E .. vrhere ~ is a con-
~J ~ ~J 

stant ccmmon to all observations, '!. and E •. are random, independent, normal 
~ ~J 
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randcm variates "lith means zero and variances rf2 and cf2, respectively, 
T € 

i=l,2,••·,v, and j=l,2,···,r. Let 8::::: if2jo~ and let H0 be~~~= e0 = 0 

and H1 be that ~/ ~ = e1 a specified value. In this formulation 9 = if2j ifZ 
T E 

v 
in the randcm effects case plays the role that E -r~/vaF played in the fixed 

i=l l E 

-
effects case. The upper, GR(N), and loiTer, ·2R(N); linits as given by Johnson 

[1953] are: 

Johrison [1953] pre.sents tables for various . .values of v and r for e1 = 1 and 

a = ~ = .05 and .01. These tables are easily cc.mputed, even on a desk calcu-

lator. Therefore, extenpive tables for various values of e1 , a, and ~ are 

readily available should they be desired. 

For the test procedure compute 

v ~v r 
GR(rv=N) = ( \ ~ /r-Y?- /rv\ \ \' (Y .. -y. )2 

L 1· •• A L k lJ 1· 
i=l i=l j=l 
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and proceed. as follmls:'·-

i) Accept Ho if ~(N) < _QH(E) 

ii) Accept Hl if GR(N) > ::;R(N) 

iii) Otherwise add ancther (or m) obse:;_"'i2.ti6n(s) to each treatment 

group. 

Example 2.7. The randcmized ccmpJ_ete block c'cesign -v;:i_th v treatments, r complete -- - ----- ·--- --~- - ------ -- - ~.;__;..;;....;..:;_~ 

Suppose that the yield equation for a randomized ccmplete block design 

for v treatments in r complete blocks is of the form Y. . ;;;; 1-l +'r. +p . +e _ . where 
l.J ]_ J l.J 

j.l+p _ is the mean of the jt h block, 't'. are randcm, independent, normal variates 
J ]_ 

with zero mean and ccmmon variance d2, e .. are randcm, independent normal vari-
't' l.J 

ates with mean zero and common variance d2, i=l,2,••· ,v, and j=l,2,···,r. e 

The test procedure is the same as for example 2.6 except that 

v ~v r 
GR(N) :;;: (\':f. /r-Y?- /rv \ \ \ (Y. --Y- -y .+y)2 

k 1.· •• ~ ~ L lJ l· "J 
i=l i=l j=l 

' 
(2.16) 

n "'(L)2/r(v-l) ( 1 )(r-l)(v-1)/~(v-1) 
- 1~ l+re1 

• (2 -17) ' 

TI:;: (l-t3)2/r(v-l) (-1 -)(r-l)(v-1)/r(v-l) 
a l+re1 ' 

(2 .18) 

and one (or m) complete block(s) would be added at each stage. Tables would 

need to be ccmputed but this would be an easy task. 
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Example 2.6. E sets of-~ latin squares ~ ! treatments, r = nv repli­

~' n~· observations, ~ random treatment effects. 

Suppose that the yield equation is of the same form as in example 2.3 

except that the treatment effects are random, independent, normal variates 

viith meari. ·zero and ccmmon variance ~· The test procedure would be the same 

as for the previous two examples except that sJse ·Hould equal 

v nv v 

~(N) = (I~. jr-~. jrv) f, \ ( -· - - -)2 I y ... " -y -y +2y 
J...· ijh '"i·· ·j· ··h ' 

(2 .19) 

i=l h:-=-l 

n :=: (..L)2/(nv-l)(v-l) ( 1 )(nv-2)(v-l)/(nv-l)(v-l) 
1~ l+re1 ' 

(2. 20) 

and 

n::::: (1-(3)2/(nv-l)(v-1) ( l )(nv-2)(v-l)/(nv-l)(v-l) 
a l+re1 

(2 .21) 

Example 2. 9· Other situations. 

A test statistic and procedures for other experimental designs may be 

computed in the same manner prescribed for examples 2.4 and 2.5. Tables could 

be ccmputed as described for the preceding three examples. However, before 

doing this the various properties of these procedures should be examined. 

Certainly, all designs with treatment effects orthogonal to the blocking 

effects could be treated in this manner. 
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2. 3 111ixed Effects for Treatments in a Factorial Arrangement· 

Suppose that the treatments in examples 2.1, 2.2, and 2.3 were in a 

factorial arrangement and that the levels of one of the factors are randcm 

effects. For same hypotheses, the inteYaction mean square would be used to 

test hypotheses about main effects. An even more complic2~ed situation arises 

when mean squares need to be added or subtracted to obtain a synthetic F test. 

Although one could construct a test. procedure which is an analogue of the fixed 

sample case, there is no assurance thst such a pro~edure would have desirable 

properties. If it is necessary to utilize a s-equential test procedure and if 

none is available, then the experimenter's only recourse is to utilize the 

fixed sample procedure and use the easily constructed tablesdescribed by 

Johnson [1953]. 
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3. SEQUEI'll'IAL ESTIIvJA.TION 

Se~uential test procedures as described in section 2 are, as their name 

implies, specifically constructed for use in differentiating among a few 

(2 or 3) specific hypotheses. 'I'hese procedures do not necessarily produce 

precise and low cost estimates of param~ters. In fact (see Johnson [1961], 

section 5, and Wetherill [1965], chapter 8), the sequential estimation problem 

appears to be this: 

i) Provided the sample size wheu the ;:;xper:iment is stopped is "not too 

small", fixed sample methods of estimation can be used, even though 

the sample was selected sequentially, for many estimation situations. 

ii) Sequential estimation is no more (and perhaps less) efficient than 

fixed sample size estimation. 

iii) Much theoretical vrork is required in this area. 

As stated before many experiments are se~uential by nature. Then, it would 

appear frcm the above that fixed sample size procedures may be utilized with 

relative efficiency in se~uential estimation of confidence intervals if the 
II II 

sample size is not too small (whatever that means). Stopping rules need to-

be devised, and here (see Wetherill [1965], section 8.7), decision theory 

provides the framework for determining such rules. 

Perhaps one of the simplest of se~uential estimation procedures is the 

double sampling plan or t>vo stage plan given by Stein [1945]. For this case, 

the random variables Y. are independently and normally distributed with mean 
l. 

~ and variance cr 2 and the problem is to estimate ~ by a (1-a)% confidence 
€ 

interval of length less than L, say. In the first stage a:,sample of n observations 
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n 
is taken. Then an est~Jate of cr 2 is ccflputed as s~ = Z (Y.-y )~(n-1) where 

E n i=l l n 
n 

yn = Z Y./n •. A ~econd sample of size mistaken and the sample mean from 
i=l l 

N 
all n + m = H observatibns is ccmputed as Z Y./N = y Then, a confidence 

i=l l N • 

interval yN ± trv 1 J s~/H v1here t 1 is the two-sided a% point of Student's 
~,n- ~ a,n-

t distribution "'vith n-1 degrees of freerlcm. The length of the confidence inter-

val L = 2ta,n-l s~/N , and if we choose H = [4t~,n-l s~L2] + 1 where the 

~uantity in brackets, [x], is the greatest integer less than x, then the confi-

dence interval has length less than L. Thns, :lf N < n the confidence interval 

based en the first sample alone is already leBs than L. If N > n then m more 

observations are required. 

In this method no use is made of the last m observations in ccmputing an 

estimate of a2 ; if all H results are used, the confidence interval will not 
€ 

necessarily be less than L, although the proportion of times it would be less 

than L could be camputed. In many situations there will not be such a rigid 

requirement on the length of the confidence interval, and hence all N observa­

tions would be utilized in camputing the estimate of a2 • As Wetherill [1965] 
E 

states the solution given by Stein [1965] is typical of many in sequential 

analysis. \vith ingenuity a solution to a mathematically precisely stated pro-

blem is obtained, "but neither the problem nor, still less, the solution cor-

responds to what the practicing statistician really wants to do". 

In this connection in biological experimentation the error variance often 

changes frcm condition, or environment, to ccnditicn. (Perhaps this could be 

countered with an appropriate transformation.) Also, the cost from stage to 
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stage is much larger per additicnal sample than within stages. Therefore, it 

would appear more econcmical to select n large enough in the first stage to 

obtain a confidence interval of the desired length. This would essentialJ.-y 

amount to a fixed sample one stage type of procedure. 

If an observation arises on·2 at a t::me as in rotation experiments then a 

transformation shouJ_d. be used to stabi2.ize the error variances; a sequential 

estimation procedure with a stopping rule possessing desirable characteristics, 

should then be utilized. Such experiments as rot at. ion experiments allm-1 con­

siderable time between observat:Lon.s, UStl2J.'~·~ •ne y~r,r, to analyze the results 

and determine ·whether to stop the experii~.r:;~_r'~ or· to :r:roceed. It is felt that 

many such experiments are carried on because "it is a good idea", "we may learn 

something", etc., and that many of them should have been stopped many years 

ago~ Summarization of data at the end of each stage Should contribute greatly 

to the efficiency of experiments of this type. Thus, if the experimenter and 

statistician think in terms of sequential estimation and keep analyses current 

with data collected, experiments will be terminated on a rational basis and 

will not be continued indefinitely until "funds are no longer available" or 

"scmething appears which is more exciting to work en". Many medical trials 

are sequential in nature, but analyses are often not kept current with results. 
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4. DISCUSSIOll 

In their paper, Hall, vlijsman, and Ghosh [1965]' list the statistical 
' - : 

properties used for assessing characteristics of a sequential test procedure 

as follows: 

i) strength which refers to degree of correctness o:f the error prob­

abilities a and !3, 

ii) termination v-rhich refers to the fact that the test does or does not , - ~r-

t.erminate with probability one, 
l_ . . ~> ·' ... __ 

iii) ASN-function which is the average sample size for termination, and 
.··::...: 

iv) OC-function which is the operating characteristic function of the 
.. 

test. 

A sequential test procedure has the correct strength if the error of rejecting 

H0 when true is a and of rejecting H1 vrhen true is f3. In practice, the pro­

cedure would be adequate even if a and f3 11ere within 2-3 percentage points of 

the stated values. In other vTOrds, the experimenter 1-·rould desire that a and p 

be approximately correct. Several procedures are constructed to have the true 

errors less than or equal to a and f3. 

Vlith regard to the property that a test 11ill or will not terminate >-lith 

probability one, in practice a sequential experiment will ahvays terminate lurlf 

before infinity. Therefore, a practicing statistician couldn't care less if 

the probability of termination before infinity is unity. He will terminate tr,e 

experiment at same sample size, say N0, which may not be exceptionally large, 

say N0 = 20, 30, or 4o. Under these circumstances he is interested in the pre­

portion of the time that he will be able to reach a decision about the specifi(::L1 
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hypotheses. A closed or boQ~ded form of the test is required. Few closed form 

procedures appear to be available. 

The average sample size property, ASN, is an important consideration in 

sequential test procedures but appears of little consequence in sequential 

estimation. But, even more important in test procedures, it would appear, is 

the operating characteristic or the distribution or stopping time sample size 

(DSN). Except for a few cases, knowledge of the distribution of DSN appears 

to be limited to a few special cases although a "large-s8J;JJ.ple". approximation 

has been found (Johnson [1961]). Frcm the distribution, when available, the 

proportion of time a decision would have been reached before scme fixed upper 

limit on sample size = Nn, can be ccmputed. 

It is suggested that the properties of tests be re-examined in light of 

application rather than in terms that are justifiable because of their mathe­

matical simplicity or tractibility. Also, if the experiment is sequential in 

nature, and many are, and if hypothesis testing is desired, it will be necessary 

to utilize a test procedure. Any knowledge of the properties of such a pro­

cedure would be desirable. Therefore, much work needs to be done to obtain 

procedures meeting the requirements of the experimenter. If the mathematics 

is too difficult to investigate the procedure analytically, it may be necessary 

to utilize a high-speed computer to empirically investigate scme of the proper­

ties of the test procedure. 

In all the procedures discussed in this section nothing has been said 

about analysis carried out "tfC spot the winner" in which case it would appear 

desirable to eliminate non-contenders early in the testing procedure (see 

~-Jetherill [1965], p. 72). It appears that many procedures ·vrill need to be 

devised to meet all situations. 
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One probler:; that requires investigaticn is tbe use of Johnson's [1953] 

procedure to construct tables in the randc.m effects case for use in the fixed 

effects case. In fact, no table is required since the computation is so 

simple. If this procedure can be used as a reasonably good approximation, the 

table ccnstruction problem 1110uld be solved • 

. Another problerr. that wou::Ld definitely fall in the area of se.quential 

design of experiments is the selection of the experimental design at each stage. 

For example, a latin square design could be utilized at the first stage, then 

based on the experimental results, a randomized complete block or a completely 

randcmized design might be utilized in the remaining stages of the sequential 

experiment. Also, a sequential selection of the analysis might be utilized. 

For example, suppose that the design is a latin square and the standard row­

column-treatment-residual analysis of variance is performed. Based on the 

results of the first stage, a differential gradient within columns-column~ 

treatment-residual analysis of variance might be utilized in the next or all 

of the follmTing stages. The sequential selection of biliocking, of analyses, 

and of the function of the observations are pertinent unsolved problems facing 

the statistician and, of course, the experimenter 'vho has these problems whether 

or not the statistician has soluticns for them. 

The suggestion by Sir Ronald A. Fisher that sequential design of experi­

G"lents ivculd be a fruitful field in which to work is just as true today as it 

was 15 years ago vThen the statement \vas made. It would be desirable to have 

analytic results or reasonable approximations thereof. If this is not forth­

ccming then high speed ccmputers may be utilized to obtain scme empirical evi­

dence on the properties of a procedure. This may lead to ideas for analytic 

results. 



• 
- 31 -

5. SU<.ili!ARY 

&1 exposition o£ analyses o£ variance procedures used in sequential 

e),.'Jlerimentation v1ith sequential hypothesis testing and with sequential esti­

mation is presented. Several sequential test procedures, viz, a single F 

test in the analysis o£ variance, a set of F tests involving orthogonal single 

degree of freedom contrasts, and a set of t tests (or F tests) £or all possible 

differences betv1een pairs or contrasts or means, are presented for data from 

an experiment designed as a completely randcmized design. Also, several error 

rate bases are considered. A numerical example is utilized to illustrate the 

procedures. Following a discussion of these procedures illustrating their 

extension to other experimental designs, analyses using a single F test are 

described for the randcmized complete block design with blocks added sequentially, 

single v x v latin square added sequentially, v treatments designed in b blocks 

of size k (k usually but not necessarily less than v) uith each treatment occur­

ring r times and with sets of blocks being added sequentially, and k-row by 

b-colurnn design for v treatments "VTith r replicates on each treatment and vlith 

rOilS and/ or columns added sequentially. The analyses presented were for f'ixed 

effects which was followed by a discussion of randcm and mixed effects cases 

for each of the designs presented. 

Under sequential estimation a two stage sampling procedure is discussed 

alon6 with results relating fixed sample size estimation procedures to sequen­

tial sampling estimation procedures. Same discussion is presented relative to 

unsolved problems in the sequential selection of an experimental design, the 

sequential selection of an analysis, and of the scale of measurement, or 
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transformation. All of the discussion relates to sequential design and analysis 

of experiments with no presentation being made of sequential procedures for 

selecting treatments as, e.g. levels of the independent variate in regression, 

of levels for a dosage response, and related phenomena. 
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