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ABSTRACT

An exposition of enalyses of variance procedures used in sequential
experimentation with sequential hypothesis testing and with sequential esti-
mation is presented. Several sequential test procedures, vig. a single F
test in the analysis of variance, a set of F tests involving orthogonal single
degree of freedecm contrasts, and a set of t tests (or F tests) for all possible
differences between pairs or contrasts or means, are presented for data from
an experiment designed as a completely randomized design. Also, several error
rate bases are considered. A numerical example is utilized to illustrate the
procedures. Following a discussion of these procedures illustrating their
extension to other experimental designs, analyses using a single F test are
described for the randcmized ccmplete block design with blocks added sequentially,
single v X v latin square added sequentially, v treatments designed in b blocks
of size k (k usually but not necessarily less than v) with each treatment occur-
ring r times and with sets of blocks being added sequentially, and k-row by
b-column design for v treatments with r replicates on each treatment and with
TOWS and/or columns added sequentially. The analyses presented were for fixed
effects which was followed by a discussion of random and mixed effects cases

for each of the designs presented.

Under sequential estimation a two stage sampling procedure is discussed
along with results relating fixed sample size estimation procedures to sequen-~
tial sampling estimation procedures. Scme discussion is presented relative to
unsolved problems in the sequential selection of an experimental design, the
sequential selection of an analysis, and of the scale of measurement, or
transformation. All of the discussion relates to sequential design and analysis
of experiments with no presentation being made of sequential procedures for
selecting treatments as, e.g. levels of the independent variate in regression,

of levels for a dosage response, and related phencmena.
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1. INWNTRODUCTION

Late in July, 1952, a number of pre- and post-doctoral students of
statistics were gathered together .with the- late Sir Rcnald A. Fisher to dis-
cuss research in and the future. of statistics. I asked him what line of
researéh*he would pursue in life if he were one of us starting a career in
statistics. He stroked his beard in a thoughtful manner and aiter a mcment
he replied, "This fellow Abraham Wald was a very ingenious person. His ideas
on the gequgpt;g;%a§pects’of experimentation are vefy important. Yes, if I
were a young mag.§tarting a career in statistics, I would work on the sequential
design of experiments.” This ccament was made over 15 years ago; where do we
stand today? Do we have anything like a coherent theory of sequential design
of experiments which can be applied in practice? The purpose of this paper is

to investigate these questions and to illustrate scme avallable procedures.

We shall first take a lock at sequential procedures for hypothesis test-
ing under both fixed and randcm effects models for various experimental designs.
In section 3 we shall consider sequential estimation procedures. In section 4
we shall discuss the relevance of scme usual properties of sequential pro-

cedures frcom the experimenter's point of view.

The author undertook this subject not because he knows this field, but
because he feels that it is very important for people to be thinking about

sequential design of experiments and that it was important for him tm learn



scmething more about this topic. The works of Johnson (1953,1961], Wetherill ‘
(1965], and Hall, Wijsman, and Ghosh [1965], were :utilized extensively in

preparing the following. The first two references are expository and attempt

to cover the field. The last work is a ccmprehensive and sound theoretical
Jjustification of the work on hypothesié testing. These three references are

in the must read class for anyone wishing knowledge in this area. No attempt

was made to present a coverage of the topics in sequential design (see Jackscn

[1960] and Johnson [1961]), to assign priorities, etec. A few selected papers

were utilized as reference material.

Furthermore, the discussion is confined to sequential design of experi-
ments rather than to the sequential selection of treatments or levels of treat-
ments. Selection of dosage levels, of the X values in regression, of varieties
or drugs in screening experiments, and other treatment designs are not considered ‘

in the present discussion.



2. HYPOTHESIS TESTING

The relevance of hypothesis £ééting in experimentation is not being sup-
ported because a presentation is made of sequential procedures for doing this.
To the contrary, the author is fairly well ccnvinced that expéfimenters éré
often quite certain that the null hypothesis is untrue. Othe;ﬁise, thé§ Q0uld
not conduct the experiment. Then, since the null hypothesis is'6f£en:hbt
applicable, it is nonsense to test it. The same comqgﬁts hold for éhﬁregion
of indifference". However, hypothesis testing can be justified withigvthe
realm of the subject of Statiégicé and is required to ccmplete the entire sub-
ject. The statistician;sjéilemnaérises when he begins téhbélieve that the.”

Real World always cohforms to procedureé for which he has solutions.

We shall approgch aliLanalyses of data frcm experiments taken in a sequen-
tial manner via analysis of variance procedures under the assumpﬁion that the
linear, additive model with independent effects is wvalid. This:meansvthat an
error variance for linear contrasts of effects is available frcm the analysis
of variance. No discussion appears to have been made of sequential procedures
involving different error rate bases (e.g. see Tukey [1953], Hart;ey [1955],
Federer [1961], etc.). Although it would appééf,that the ;tfaightforward
extension of the fixed sample procedure as pfe%eqted hergin would be permissible,

this requires justification.

Also, there is the probtlem of sequential stopping procedures when the v-1
treatment degrees of freedcm have beer partiticned into 1 < k £ v-1 contrasts.
This: is a simultaneous test of the k contrasts and a decision on ccmposite

hypotheses is required on each of the k contrasts. If the k contrasts have



unequal weights this could be compensated for by altering the error of select- .
ing the wrong hypothesis. Presumably, the sampling would need to be continued

until decisions were reached on each of the k contrasts. For unbounded sequen-

tial sampling procedures, the sample size would then be the maximum cne for

the contrast requiring the largest number of samples. For bounded procedures,

the maximum sample size would be less than or equal to the largest sample size
allowable, For k large the maximum number would often be achieved, and we

would have essentially a fixed sample size procedure.

The simultaneous test of k hypotheses is in sharp contrast to the discus-
sion of ccmposite hypothesis testing as discussed by Hall, Wijsman, and Ghosh
[1965], Hall [1965], Wetherill [1966], etc.; these authors consider ccmposite
hypotheses of the type 6 = GO and 0 = el and 0 < eo, 1
A sinmultaneous test of k such ccmposite hypothesis would be more to the point ‘

£ 053 > .
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in experimentation.

2.1. Fixed Effects

- The general regression procedure_outlined by Johnson [1953]‘and Ray [1956]
will be utilized in the following examples. Basically these and later writers
use a series of sequential F tests with unbounded sampling. Some empirical
results on sample size is available; relative to this the ccmment by Wetherill
[1966], page 59, is interesting, ”An outstanding‘feature of sequential t-tests
is our state of ignorance concerning tﬁéif properties.'. The éame ccmment
would hold for sequential F-tests. VDgspite this, many experiments are naﬁurally
taken sequentially and the experimentéf Qould like to reach a conclusion. Hence,

a procedure may necessarily be used regardless of its statistical properties



and will continue to be used until one with more desirable statistical properties

is available.

Example 2.1. Ccmpletely randcmized design with fixed effects.

Random samples of 5 observations each were obtained frcm a near normal
population with mean 30 and variance 100 (Snedecor [1956],table 2.3.1). Letters
A,B,C,D, and E representing treatments were assigned to the samples as drawn.
The sample drawing is sequential in nature. The data are giygn‘in‘table 2.1,

A number of situations were examined with the experiment being terminated at
various stages depending upon the treatment ccmparisons made. These will be
discussed individually belcw.

The linear model is Yij =u + Ti + eij’ given that the Ti are fixed effects
and the eij are randcm, independent, normal variates with mean zero and variance

U?: i=1,2,*,v, j=1,2,*"",r.

Accept either the EO or the El hypothesis. We shall utilize the procedure given

by Johnson [1953] and Ray [1956]. The first step in the procedure ‘is to specify

a value of B = ZlT%/vo « In most cases, ZTi is set equal to zero. If this is
so, then the average treatment effect in standard deviation units is the item
of interest. Although the experimenter may not like to think in these terms
this is the way the test procedure was constructed. Ray [1956] has constrﬁcted

tables for & =%, 1, and 2 for the statistic G(vr=N) = Among treatments sum

of squares divided by the within treatments sum of squares, i.e.,

v r

/o = o = (L /et o)/} (150 )) @)

i=1 j=1



Let A(N) = A(vr) = vrd; then the test procedure is:

" o mh(m/2 { vr=l  v=1  a@)e(w)/2 \ . 1-8 .
Accept H, if e M 5 0 3 5 TTHG) } 2 ==

P

L. = ()2 { vr-1  v-1 _ AlM)cem)/2\ _ B8
accept HO if e M -l R vl (1) <7y ¢

Otherwise take a further set of v (or mv) observations,

one (or m) on each treatment."

v

is that T, =2 specified value such that £ 72 = vd©8

H., is that 7, = 0, H
0 i i=1 1 €

1
for a specified 8, @ and B arevthe (approximate) chances of erroneocusly reject-
ing H, and ﬁi, respectively, and M(X,Y,;n) is the confluent hypergoemetric
function which has been tabled by Rushton [1954], Rushton and Lang [1954], and
Slater [1960]. Let the upper limit be él(N) be the soluticn for G(N) in the

following equation:

1-6 _ ~M(W)/2 M{ (vr-1) ¥=1  A(@Wg(N)/2
a ) >

2 2 1+c6(N) * (2.2)

Let the lower limit S&(N) be the solution for G(N) obtained from the equation:

B _ é-h(N)/E M {(v;~l) v-1l h(N)a(N)/2 } (2.3)

1O P 2 J l+G(N)

The values in tables 2.2 and 2.3 which are reproduced frcm Ray's [1956] paper,
may be obtained frcm tables of the confluent hypergecmetric functicn, provided

extensive tables are available. In these tables @ = B = .05 was used. Other



Table 2.1. Example of a completely randcmized design with five treatments(A,B,C,

D,E) and with one observaticn per treatment added in a sequential

manner.,
| Treatment
Stage A B e § D E
2 y o

Yy Y, ZYij Yy, Vg Zng Yoy Yoo Z¥gy ij T zygj Yg; T zgij
1 30 30 900 29 29 841} 39 39 1521 17 17 289! 12 12 1kk
2 |19 k49 1261 42 71 2605| 27 66 2250 | 25 k2 .omh | 22 - 3% 628
3 |16 65 1517 | b1 112 4286 37 103 3619| 31 73 1875| 25 59 1253
L 17 82 1806 | 30 1k2 5186 2k 127 L4195 | 28 101 2659 | 35 94 2478
5 | 47 129 ko151 33 175 6275| 17 1k Lu84 | 33 134 3748 | 29 123 3319
6 | 17 1&6':g3ohw.wgs 198 6804 | 3L 175 Sk45 | 39 173 5269 | 30 153 k219
T | 41 187 5985 | 26 224 Th80| 19 194 5806 | 32 205 6293 | 27 180 Lok8
8 20 207 6385| 28 252 82641 39 233 7327 | 43 248 8ik2 | 30 210 5848

Sum of squares

Source d.f. =3 r=k r=5 r=6 r= r=8
Total 5r 12550 16324 21841 26041 30512 35966
CFM 11316 | 1906 } 19881 | 23801 | 28003 | 33062
Amecng treatments w7 608 33§.“ .280 169 219
Within treatments 5(xr-1) L87 810 1624 1960 2340 2685
G(N) 1.53 0.75 0.21 0.14 - -
F(h,u(r-l)) 3.83 2.81 1.03 0.89 - -

(e I S
terminates ‘“termindtes
for &=1 - for &=%



levels of & and B could be obtained in the manner described by Ray [1956] for

constructing tables 2.2 and 2.3.

Table 2.2. One-way classificaticn by groups (true limits). v = number of
treatments; r = number per treatment; A = rvd; 8 = 0.5; ¢ =B = 0.05,
v=2 v=3 ‘ vl

r A g G r A G G r A G G

in y - 5.390 5 7.5 0.037 1.319 L 8 0.065 1.825
6 6 0.002 1.091 7 10.5 .072 0.696 6 12 .110 0.770
8 8 .025 0.639 9 13.5 .089 .oy 8 16 126 .521
10 10 o0 b7 11 16.5 .099  .40oo 10 20 131 Wh11
12 12 .050 .385 13 19.5 .105 .34k 2 24 A3l L350
4 1% 0.059 0.333 15 22.5 0.108 0.306 i 28  0.136 0.310
16 16 L0666 .300 17 25.5 .110 .280 16 32 138 .282
18 18 072 .276 19 28.5 .112 .261
20 20 076 .258 21 31.5 - .115 .24s

30 30 0.089 0.205 4

V=5 ='-6 v= »

r A - G G r A g G r A G G

3 7.5 0.072 k4.176 2 6 0.0c8 - 3 10.5 0.184% 2.407 -
5 12.5 .142 0.927 L 12,168 1.272 5 17.5 .211 0.784
7 17.5 .155 .568 6 18 183 0.646 7 2k.5 ,207 .512
9 22.5 .158 k32 8 24 .183 L6k 9 31.5 .199 .hko1
11 27.5 .159  .360 10 30 180 W37
13 32.5 0.155 0.317 12 36 0.176 0.327
15 37.5 .157 .287




Table 2.3.

9 -

One-way classificaticn by groups. Vv

r = number per treatrent; X = rvd; ©

numver of treatments;
1.0, ¢ =8 = 0.05.

v=p v=3 v=lt
r A G G r A G G r A G G
L 8 0.052 2.390 3 9 0.124 4.760 2 8 0.1k -
5 10 .082 1.380 I 12 .169 1.79 3 12 .231 3.13
6 12  .105 1.016 5 15 .195 1.174 N 16 .266 1.4c8
7 i 121 0.826 6 18  .210 0.902 5 20 .276 1.0k0
8 16 .135  .710 T 21 221 762 & 24 ,g8u 0.838
10 20 0.150 0.578 9 27 0.23 0.605 8 32 0.287 0.637
12 2L .166 504 11 33 .240  .522 10 bo .286 .shko
16 32 L1897 Lok 13 39 .2k 47 12 48  ,284 482
20 ho .199 .383 15 b5  2h7 k436 16 e 280 Lok
30 60 0.215 0.333 21 63 0.251 0.377 20 8o .277 .391
60 120 235  .300 31 93  .251 .33%H 30 120 0.271 0.342
51 153 .251 .306 50 200 .266 @ .306
v=5 V= =
r A G G r A G G r A G G
3 15 0.331 2.469 2 12 0.381 2k.0k2 3 21 0.469 1.925
I 20 .35 1.332 3 18 .4os 2.133 4 28 447 1.175
5 25 .3%0 0.973 L 2,398 1.237 5 35 420 0.888
6 30 .335  .TR 5 30 .384% 0.920 6 L2 ko5  .T745
T 35 .331 .687 6 % .313  .763 7 L9 .387 .65
9 k5 0.322 0.565 8 48 0.354 0.601 9 63 of365 0.552
11 55 .34 498 10 60 .3H0 .521 11 77 .3H9 Lok
13 65 .308 .Lks56 12 72 .330 473 13 91 .338 .L4sé
15 75 .303 .28 1h 84 ,322  .Lbo 15 105 .328 .430
25 125 0.288 0.360 20 120 0.307 0.386 21 147 0.315 0.384
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Table 2.3, (Continued)

=3 T y= ! v=10

r A G G r A G G r A G G

2 16 0.566 7.500 3 27 0.565 1.684 2 20 0,709 5.066
3 ebh ,518 1.792 4 36 .510 1.085 L 4o .53k 1.06
i 32 Jh79 1.120 5 4bs 470 0.8L5 6 60 457 0.705
5 Lo  .448 0.865 8 80 k15 .575
6 L8 k2h L7300 7 63 0.421 0.635 10 100 .389 .506

_ 9 81 .32 .5k
8 6% 0.391 0.585 11 99  .372  .L485 16 160 0.347 0.b1k

10 80 .371 .512 20 20C .332 .384

16 128  .336 41k 15 135 0.34%7 o0.k425

20 160 .32k .387 21 189 .325 .380 30 300 0.312 0.348
- 31 279  .306  .345 bo koo .300 .329

30 20 0.306 0.348 b1 369 .296 .328

Lo koo  .288 .318

Utilizing the statistic in equation (2.1) we may now proceed with the
sequential testing approach. ‘e note frcm tables 2.2 and 2.3 that the minimum
sampie size for v=5 treatments is r=3. The "among grcups”‘and "within groups"
analysis of variance 1s ccmputed at each stgte for r=3, r=4, r=5, etc. This
is given in the lower part of table 2.1. Using table 2.3 for d=1, the sampling
terminates at r=5 samples, and we accept HO; using table 2.2 for 6=%, the
sempling terminates at r=6 samples. These results are indicated in the bottem

part of table 2.1.

Single degree of freedcm contrasts. Suppose that we partiticn the four treatment

degrees of freedom into four orthogonal ccntrasts each with a single degree of
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freedc. Contrasts 10, 11, 12, and 13 in table 2.4 form such a set, i.e.,

treatment D vs. E, D+E vs. C, C+D+E vs. B, and B+C+D+E vs. A. Now the sum of
_ v _

squares for any linear contrast of treatment means, say =2 Ci§i" on a per unit
S i=1 .

Voo \N2/V
basis in the analysis of variance is r(,ﬁ c v1°> P

LY. ~. Corresponding to
i=] i=1 1 P .

this suﬁ otf sguarec, which would be the St of ecuation (2.1}, we neéq a dencmi=-
nator sum of cquares for two treatments. ~An average sum of squares for this
procedure could be obtained by multiplying Se = within groups sum of squares
for v treatment, by the factor 2/v. This is justifiable if the within treat-

ment varliance: are ell estimates of the same paramster. Then, we would compute

the statistic '
v v .
= [ = \ =2 \
G(2r) = vr \ Z?iyi- 2 ). %58 - (2.4)
i=1l i=

G(2r) would be ccmpared with tabled values of upper and lower limit values of

v
qj(Qr). The upper and lower limits for the contrast I c.y. , ignoring sign,
i=1 ¢
woulg be cbtalued &s
QZci .
e seq1(2r) (2.5)

to yield a linewise error rate of size . An experimentwise error rate would
be obtained by using &/ (v-1) where there are v-1 orthogonal single degree of
freedom contrasts. One could also have an experimentwise error rate of the

Scheffé [1953] type by utilizing G (vr) instead of G (2r) in equation (2.5)

to ccmpare each single degree of freedcm contrast.
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Table 2.4. Linear contrasts of means.

9.05,2,5(r-1)

No. "Contrast r=3 r=4 r=5 r=6 r=7 r=3
1 A-B =15.7 -15.0 -9.2 ~8.7 -5.3 -5.6
2 A-C -12.7 -11.2 -3.0 ~4.8 -1.0 -3.2
2 A-D -2.7 -4.8 -1.0 k.5 -2.6 -5.1
L A-E 2.0 -3.0 1.2 -1.2 1.0 -0.k
5 B-C 3.0 3.8 6.2 3.8 k.3 2.4
6 B-D 13.0 10.2 8,2 L.2 2.7 0.5
7 B-E 17.7 12.0 10.k4 7.5 6.3 5.2
8 C-D 10.0 6.5 2.0 0.3 ~1.6 -1.9
9 C-E k.7 8.2 4,2 3.7 2.0 2.9

10 D-E h.7 1.8 2.2 3.3 3.6 4.8

lower (2) - 2.9 4.6 5.2 5.7 6.0
upper (2) - 19.7 18.9 16.3 k.9 13.8
11 2C-D-E - 4.8 6.2 k.o 0.k -
lower (6) - 5.0 8.0 9.1 9.9 -
upper (6) - k.1 32.8 28.2 25.7 -
12 3B-C-D-~E - 26.0 24,8 15.5 13.3 -
lower (12) - 7.1 11.3" 12.8 13.9 -
upper (12) - 48.2 L6 4 39.9 36.k4 -

13 B+C+D+E-LA - &k.0 12.0 19.2 7.9 -

lower (20) - 9.2 14,6 16.6 18.0 -
upper (20) - 62.2 59.9 51.5 L7.0 -

%.05,5, (r-1) (1ower (2)) b2 6.6 7.5 8.1 -

9, 05,2,5(r-1)

*.05,5,5(r=1) (upper (2)) 28.5  27.2  23.2  2l.1 -




In a similar manner, suppose that the v-1 treatment degrees of freedcm
are partiticned in sets of degrees of freedcm (esg. as in a factorial) greater
than or equal to cne. Any given contrast with p~1 degrees of freedom, say,
could be compared in the same manner as described for single degree of freedcm
contrasts except that p/v would replace 2/v and qx(pr) would replace %x(Er)

in equation (2.5).

To illustrate the procedure with the data in table 2.1, suppose that
contrasts 10 to 13 in table 2.4 are the ones of interest, thet & = 1.0, and
that @ = B = 05. The upper and lower limits are obtained Zors «.cn ccanrast
using equation (2.5) and the tabulated values in table 2.3 for qx(2r). For
contrast 10 two means are involved and I ci = 2. The lower and upper limits
for this contrast are denoted by lower (2) and upper (2), respectiveiy. For
this contrast, sampling would have stopped at r=4 samples. For contrast 11,

z c? = 6 and the limits are denoted as lower (6) and upper (6); 5 samples would
have been sufficient to reach a decision in favor of HO on this contrast. For
contrast 12, 3B-C-D-E, & c2i = 3% + (~1)% + (-1)® + (-1)® = 12, the upper and
lower limits are denoted as upper (12) and lower (12), respectively, and are
obtained frcm equation (2.5). Seven samples would have been required to reach
a decision. The fourth single degree of freedcm contrast, number 13, is the
one involving the mean of A versus the others. The Z_ci = 20 and the upper

and lower limits are denoted as upper (20) and lower (20}, respectively, in

table 2.4, A decision in favor of H

o &iven that 5=1 would have been reached

for n=5 samples. Thus, the largest number of samples required for any contrast
vwas T, and if the process is terminated at this point we are assured that & and
B are less than the prescribed velue, .05 in this case, for a single degree-of-

freedcmwise error rate base.



- 1k -

In connection with the above sequential procedure, we note that a deci-
sion in favor of HO was reached for contrast 13 for r=5 samples and that r=6
samples indicates no decision for this contrast. If the sampling had terminated
when r=6, the experimenter might be in a dilemma. However, if one uses the
rule that any ccntrast will not be reconsidered once a decision has been reached,

this dilemma will not arise, and the properties for & and B mentioned in the

preceding paragraph still hold.

Ccmparison of all possible differences among pairs of meanc. In certain cases

it is desired to compare differences between all v(v-1l)/2 pairs of means. If
a comparisonwise error rate is desired then the use of the upper and lower
values obtained from equation (2.5), e.g. lower (2) and upper (2) in bable 2.4,

10 contrasts are those numbered

]

would suffice. For our example, the 5(5-1)/2
1 through 10 in table 2.k, In order to réach a decision in favor of either HO

or Hl for =1 it would have been necessary to use 8 samples, and Ho would have

been accepted for all pairs.

If, on the other hand, an experimentwise error rate had been desirable,
the upper (2) and lower (2) values would be multiplied by the factor
qu,v,f/Qa,Q,f’ where the Qa,v,f values are obtained from the extensively tabu-
lated tables of studentized ranges and where f is the number of degrees of
freedcm associated with the within groups sum of squares. Proceeding in this

fashion we obtain the values in the bottom part of table 2.4, E.g.,

4,05,5,15 _ k.37
9,05,2,15 >

= 1.45 and 2.90(1.45) = k.2 .
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Similarly, we could use v[(v-l)ﬁj(v-l,f)/ﬂx(l,f) as a multiplier to obtain

an experimentwise error rate of the type discussed by Scheffé [1953].

Example 2,2. Randcmized ccmplete block design with r blocks, v treatments,

rv observations, and fixed treatment effects.

The yield equation for a randcmized complete block design of the following

form is ccnsidered here:

= + + .
Yi,j B+ Ti pj eiJ

vhere the T eij’ i and j are as defined in example 2.1 and the pj may be
either fixed or random effects as this does not affect the test procedure. The

test statistic ccmparable to the one in equation (2.1) will be St/se equal to

v v T
= ‘ - N oA )2
o) =( LB =By ) )Y () (2-6)
i=1 i=1 j=1
where §i-’ §'j’ and y are the treatment, block, and over-all means, respectively,

Yi- = treatment totals, and Y = grand total. This ratio is the treatment to
error sums of squares from the analysis of variance. In the same manner as in

example 2.1, the sequential procedure is defined by:

i) accept H, if G(rv) > ql(rv) 5

ii) accept Hj if G(xv) < g,(xv)

iii) otherwise add another (or m) block(s) to the experiment.
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E%Krv=N) is the solution for G(i) frcm the equaticn:

15 ~r /2y, ( r(\af-l) , =1, K(Iﬁggg/g ) ; (2.7)

ga(rv=N) is the soluticn for G(N) frem the equation:

B =x(mw/2 . [ r(v-1) v-1 A(DG(H)/2
T:a— = e M ( 5 y T3 l+G(N) ) . (2.8)

These are of the same form as equaticns (2.2) and (2.3) for the ccmpletely
randcmized design; the parameters in the confluent hypergecmetric function
change, necessitating different tables. Tables for the randcmized complete
block design have been ccnstructed by Ray [1956] for & = 0.5, 1.0, and 2.0 for
limited values of r and v. Here, as for the one-way classification, additional
tables could be constructed from tables of the confluent hypergeometric func-

tion.

Provided tables are available, no additional difficulties over a ccmpletely
randcmized design are encountered in the analysis of experiments deisgned as a
randcmized ccmplete block design. The various procedureé described in example

2.1 may be applied directly here.

Example 2.3. n sets of v X v latin squares with v treatments, r

number

replicates, nve observations, and fixed treatment effects.

The yleld equation considered for an experiment designed as n sets of

v X v latin sqQuares is:

Yhij =p + Tyt Yj + ehij
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where i=1,2,°**,v, h=1,2,°°*,nv, j=1,2,***,v, T, are fixed effects, € are

i hij
randcm independent, normal variates with mean zero and variance 02’E » and the Py
and YJ’ may be either fixed or random effects. At each stage (1,2,°++,n) an
experiment designed in a v X v latin square design is conducted with the v
additicnal rows being added in the v columns. Thus, v observations on each
treatment are added at each stage. Treatment effects are orthogonal to rows
and to columns in this design. The same procedures as used in example 2.1 may

be used here provided suitable tables are available. (They need to be computed.)

The statistic required is:

(22, /w, /w)

i=1
G(nv2=N) lrr— (2.9)
L (Y. .-F, -V Y. 2P
h=l j=1 hij “he. 1 3

which is the treatment sum of squares with v-1 degrees of freedcm divided by
the residual sum of squares with (nv-2)(v-1) degrees of freedem. The sequential
procedure is as defined for the previous two examples. The upper limit,

aa(rv=nv2=N), is obtained as a soluticn to the following equation:

1-8 _ -A(W)/2 (b-1)(k-1)  w-1  A(MG(N)/2

= = ° M< 2 » 3P TG ) (2.10)
The low limit _Ga(rv) is obtained as a solution to the equation:

B ~a(w)/2 (b-1)(x=1)  v=1 _ a(m)a(m)/2

1 = € M( 2 » TZ P TIAG) ) (2.11)
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Example 2.k4. Vv treatments designed.ig_g blocks 2£ size k each with r replicates

g£ each treatment with fixed treatment effects.

If the v treatments are arranged in b blocks of size k (k usually but
not necessarily less than v) with each treatment appearing r times in the
experiment and if the treatments are properly randcmized in their allocation
to blocks and within blocks, we have a class of experimental designs which
includes the balanced and partially balanced inccmplete block designs as well

. as many others. The yield equation considered here is of the form

Yij = nij(”+Ti+Bj+€ij) s

where the Ti and Bj are fixed effecté, nij =1 if the i'" treatment appears in
the j'® block and equals zero otherwise. (This could easily be made more
general if desired.) eij are randcm, normal, independent variates with zero
mean and a ccmmon variance oi, i=1,2,***,v, and j=1,2,*°*,b. Intrablock
analysis is considered to be appropriate. If ?ivare the solutions for the Ti

obtained from the normal equations given that, e.g. Z ?i=0, and if Qi- =Y

i *
b - - . .
- Z n,.y . where Y, = treatment total and y . = block mean, then the sum of
=1 *d *J 1 *Jd

V/\
squares due to treatments (eliminating block effects) is S, = .Z TiQi-' Like~
. i=
v b
wise, the residual sum of squares is S_ = £ I n..(Y..-?-~(J:Eﬂ))2, then we
€ izl j=1 19 1J 1 J

may proceed as in the previous sections except to use M (b(g-l) s V;l 3 Xiﬁ%?§§)ﬁﬁ,

for N = rv = bk, as the confluent hypergecmetric function instead of the one in

equations (2.7) and (2.8), e.g.
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If it is desired to have single degree of freedcm contrasts among the Ti,

v v ~ N
say X 4.T for £ 4, = 0, then the estimate of this contrast is £ 4.7, = 4%7,
i=1 1 i=1 1 11

. . - A ~ . . 3 03
say, and its variance is £'V(T)4 where V(T) is the variance-covariance matrix

of the ?i' One could then proceed as described for example 2.1.

It should be noted that r need not be a’ constant and that nij could be
the number of times, 0,1,2,***, that the i'" treatment occurs in the j** block.
No new ideas are encountered but the arithmetic is more difficult. The recovery
of interblock information introduces special difficulties, and is not considered

here.

Example 2,5, k-row by b-column design for v treatments with r replicates cn

each treatment.

. Whenever k and b are multiples of v we essentially have the situation
digcussed under example 2.3. Therefore, the interim steps cbtained by adding
rows (and/or columns) one at a time given that b is a multiple of v should be
amenable to the same procedure as for the orthogonal case. If the test in
secticn 2.3 terminates with probability one then this one would have to terminate
also as the former is embedded within the framework of the present one. Thus
solutions, ?i say, of the ;iin the normal equations would be obtained and a
sum of squares for treatments eliminating row and column effects would be come

k - b

where Q, . =Y, =~ Zn,.y .-Zn 7.,
. Q'l.. Jee j:l lJ.y.JQ j=l l‘hycoh

row mean, y = h*"® column mean, y = over-all mean, n,. = number
> Youn ’ > By 5.

V A
=3 7.9

. + ry for
t i=1 1

puted as S

= _ Ln
Y,j: ) J’

of times treatment i occurs in row J, Dy T nunber of times treatment i occurs

in colum h, Y, = total for trestment i, end the yield observation is

. Yi‘jh

= nijh(p+fi+pj+yh+eijh). In the yield equation u, 7, ¥ and vy, are



- 20 -

fixed effects for over-all effect, treatment effect, row effect, and column
effect, respectively. The eijh are random, independent, normal variates with

mean zero and variance oi. n; s, = one if the i*" treatment occurs in the‘jt“
row and h'® column and equals zero otherwise.
kK b
The residual sum of squares is equal to r = (Y,.
j=1 n=1' 1j

NN S A 2—
h"“'Ti"pj'Yh> = By
The resulting test statistic would be of the form G{rv=bk=N) = St/se' New

tables would need to be ccmputed using the confluent hypergecmetric function

b (k-1) v-1  A(W)e(w)/2 ) s
M ( 5 R TIG (W) » Then, using these tables the test pro-

cedures of the previous sections would apply.

2.2. Random Effects

Several procedures (e.g. Johnson [1953,19547, Wetherill [1965], Hall,
Wijsman, and Ghosh [1965]) are available concerning test of hypothesis on the
ratio of two variance ccmponents in the analysis'of variance. We shall con-
fine‘our discussicn to one of the procedures described by Johnson {1953], and
to the situation wherein HO is the null hypbthesis that the treatment variance
ccmponent is zero. For this procedure and for designs having treatment effects

orthogonal to the blocking effects, the tables may easily be constructed fol-

lowing the method described by Johnson [1953].

Example 2.6. The ccmpletely randcmized design with v treatments and r replicates

on each treatment with randcm treatment effects.

Suppose that the yield equation for a ccmpletely randcmized design with
v treatments and r replicates is of the form Yij = p+¢i+eij where P is a con-~

stant ccmmon to all observations, Ty and €ij are random, independent, normal
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randcm variates with means zero and variances ci and di, respectively,
3 see q s s e — 2 “+ —_ —
i=1,2, »V, and j=1,2, ,re Let 8 = oi/oe and let HO be oi/ci = 90 =0

and H. be that oi/ci =9

1 a specified value. In this formulation § = oi/ci

1

v
in the randcm effects case plays the role that .ZlTi/voi played in the fixed
i=

effects case. The upper, GR(N), and lower,.EP(N), liriits as given by Johnson

[1953] are:

Gp(N=vr) = r6 H(1-1)7 - 1 (2.12)
and

ER(N=vr) = relﬁ(l-ﬁ)'l -1 (2.13)
where

2/ (rv-1) ; V{(r-1)/ (rv-1)
(B 1 3

1= () <——_l+rel/ (2.14)

and

2/ (rv-1) v(r-1)/(rv-1)
- (D) ()

= (2.15)

+
1 rel
Johnson [1953] presents tables for various,values of v and r for Bl =1 and
a =B = .05 and .0l. These tables are easily ccmputed, even cn a desk calcu-
lator. Therefore, extensive tables for various values of el, a, and B are

readily available should they be desired.
For the test procedure ccmpute

v v r

plevetl) = (L B/xB /o)) ) (25,
i=]1

i=1 j=1
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end proceed as follows:
i) Accept Hy if GR(N) < QR(N)

ii) Accept Hy if Gp(IN) > 5 (1)

iii) Otherwise add ancther (or m) observetien(s) to each treatment

group.

Exemple 2.7. The randcmized camplete block design with v treatments, r complete

blocks, rv observations and randcm treuziment effects.

Suppose that the yield equation for a randcmized ccmplete block design
for v treatments in r cocmplete blocks is of the form Yij = u+'ri+pj+eij where
p+pj is the mean of the j'® block, Ti are randcm, independent, normal variates

T

with zero mean and ccmmon variance 02, eij are randcm, independent normal vari-

ates with mean zero and ccmmcn variance di, i=1,2,°*°,v, and j=1,2,*'**,r.

The test procedure is the same as for example 2.6 except that

A\

v r
o = (Y B /B )Y Y (TSR, (as)

1
i=1 i=1l j:l

5 >2/r(v-l) ( 1 >(r-l)(v-l)/f(v-l)

n=(£ 3?3*?{ , (2.17)
- &/ r(v-1) (r=1)(v=1)/r(v-1)
- (2 -

1

and cne (or m) ccmplete block(s) would be added at each stage. Tables would

need to be ccmputed but this would be an easy task.
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Example 2.8. n sets of v X v latin squares with v treatments, r = nv repli-

cates, nv® cbservations, and random treatment effects.

Suppoéé that the yield equation is of the same form as in example 2.3

except that the treatment effects are randcm, independent, normal variates

with mean zero and common variance oi. The test procedure would be the same

as for the previous two examples except that St/se would equal

and

nv

v v
G = () 2./ ) )Y (YT TS, (219)

ioo
i=1 J=L h=1

2/ (nv=1) (v-1) (nv-E)(vél)/(nv—l)(v—l)
() ( |

1
1-& l+r61> ’ (2.20)

=
1

jam g

i (_1___@ 2/ (av-1)(v-1) ( (nv-2) (v-1)/ (nv-1) (v-1)
(0

1
1+rel> ) (2.21)

Example 2.9. Other situations.

A test statistic and procedures for other experimental designs may be

canputed in the same manner prescribed for examples 2.4 and 2.5. Tables could

be ccmputed as described for the preceding three examples. However, before

doing this the wvarious properties of these procedures should be examined.

Certainly, all designs with treatment effects orthogonal to the blocking

effects cculd be treated in this manner.
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2.3 Mixed Effects for Treatments in a Factorial Arrangement

Suppose that the treatments in examples 2.1, 2.2, and 2.3 were in a
factorial arrangement and that the levels of one of the factors are randcm
effects. For scme hypotheses, the interaction mean square would be used to
test hypotheses about main effects. An even more complicated situation arises
when mean squares need to be added or subtracted to obtain a synthetic F test.
Although cne could construct a test procedure which is an analogue of the fixed
sample case, there is no assurance thet such a procedure would have desirable
properties. If it is necessary to utilize a saquential test procedure and if
none is available, then the experimenter's only recourse is to utilize the
fixed sample procedure and use the.eaSily constructed table;:described by

Johnson [1953].
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3. SEQUENTIAL ESTIMATION

Sequential test procedures as described in section 2 are, as’their name
implies, specifically cbnstructed for use in differentiating émong a few
(2 or 3) specific hypotheses. These procedures do not necessarily produce
precise and low cost estimates of paramsters. In fact (see Johnson [1961],
section 5, and Wetherill [1965], chapter 8), the sequential estimation problem
appears to be this:
i) Provided the sample size when the =xperiment is stopped is "not too

small", fixed sample methods of estimation can be used, even thoﬁgh

the sample was selected sequentially, for many estimation situations.

ii) Sequential estimaticn is no more (and perhaps less) efficient than

. fixed sample size estimation.

iii) Much theoretical work is required in this area.

As stated before many experiments are sequential by nature. Then, it would
appear frcm the above that fixed sample size procedures may be utilized with
relative efficiency in sequential estimation of confidence intervals if the
sample size is'hot too smallu (whatever that means). Stopping rules need to
be devised, and here (see Wetherill [1965], section 8.7), decision theory

provides the framework for determining such rules.

Perhaps one of the simplest of sequential estimation procedures is the
double sampling plan or two stage plan given by Stein [19%5]. For this case,
the randcm variables Yi are independently and normally distributed with mean
u and’ variance cs and the problem is to estimate u by a (1-)% confidence

interval of length less than L, say. In the first stage a:sample of n observations
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n
is taken. Then an estimate of cj is computed as si = 3 (Yi~§n)?/(n-l) where
i=1

n
.ZlYi/n « .A second sample of size m is taken and the sample mean from
i= -
N

all n +m = N observations is ccmputed as I YI/N = §N .
i=

Yo =

Then, a confidence

. - 2 . . I - . '

interval Iy + ta,n—l'/ Sl/N where ta,nul is the two-sided 0% point of Student's

t distribution with n-1 degrees of freedcm. The length of the ccenfidence inter-
- . - 2 2/.2

val L 2ta,n-l sl//ﬁ , and if we choose N [uta,n-l Sl/L ] + 1 where the

quantity in brackets, [x], is the greatest integer less than x, then the confi-
dence interval has length less than L. Thus, if N < n the ccnfidence interval
based cn the first sample alone is already less than L. If N > n then m more

observations are required.

In this method no use is made of the last m observations in ccmputing an
estimate of 05; if all N results are used, £he confidence interval will‘not
necessarily be less than L, although the propofﬁion of timeé it would be less
than L could be computed. ‘In many situations there will notvbe such a rigid
rgqﬁirement on the length of the confidence interval, and hence all N observa-
tions would be utilized in.ccmputing the estimate of c?. As Wetherill [1965]
states the solution giveﬁ by Stein [1965] is typical of many in sequential
analysis. With ingenuity a solution to a mathematically precisely stated pro-
blem is obtained, "but neither the problem nor, still less, the solution cor-

responds to what the practicing statistician really wents to do".

In this ccnnection in bioclogical experimentation the error variance often
changes from condition, or environment, to ccnditicn. (Perhaps this could be

countered with an appropriate transformation.) Also, the cost from stage to



stage 1s much larger per additicnal sample than within stages. Therefore, it
would appear more econcmical to select n large enough in the first stage to
obtain a confidence interval of the desired length. This would essentially

amount to a fixed sample one stage type of procedure.

If an observation arises cnz at a time as in rotation experiments then a
transformation should ve used to stabilize the error variances; a sequential
estimation procedure with a stopping rule possessing desirable characteristics,
should then be utilized. ©Such experiments as votsation experiments allow con-
siderable time between observations, uvsuslis ome yoar, to analyze the results
and determine whether to stop the experimens or to proceed. It is felt that
many such experiments are carried on because "it is a good idea', "we may learn
something', etec., and that many of them should have been stopped many yeafs
ago! Summarization of data at the end of each stage should contribute greatly
to the efficiency of experiments of this type. Thué, if the experimenter and
statistician think in terms of sequential estiﬁation and keep analyses current
with data collected, experiments will be terminaied oﬁ a rational basis and
will not be continued indefinitely until ﬁfunds are no longer available" or
"scmething appears which is more exciting to work on". Many medical trials

are sequential in nature, but analyses are often not kept current with results.
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In their paper, Hall, Wijsman, and Ghééh'[l965]'list the statistical
properties used for assessing charéctériéfibs bf'a:sequéhtial test procedure
as follows:

i) strength which refers to degree of correctness of the error prob-
abilities @ and B,

ii) termination which refers to the fact that the test does or does not

terminate with probability one,

iii) ASN-function which is the average sample size for termination, and

iv) OC-function which is the operating characteristic function of the
test.
A sequential test procedure has the correct strength if the error of rejecting

H. when true is @ and of rejecting H

0 when true is B. In practice, the pro-

1
cedure would be adequate even if @ and f were within 2-3 percentage points of
the stated values. In other words, the experimenter would desire that & and g

be approximately correct. Several procedures are constructed to have the true

errors less than or equal to @ and B.

With regard to the property that a test will or will not terminate with
probability one, in practice a sequential experiment will always terminate long
before infinity. Therefore, a practicing statistician couldn't care less if
the probability of termination before infinity is unity. He will terminate the
experiment -at scme sample size, say NO, which may not be excepticnally large,

say NO = 20, 30, or 40. Under these circumstances he is interested in the prc-

porticn of the time that he will be able to reach a decisicn about the specified
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hypotheses. A closed or bounded form of the test is required. Few closed form

procedures appear to be available.

The average sample size property, ASN, is an important consideration in
sequential test procedures but appears of little consequence in sequential
estimation. But, even more important in test procedures, it would appear, is
the operating characteristic or the distribution or stopping time sample size
(DSN). Except for a few cases, knowledge of the distributicn of DSN appears
to be limited to a few special cases although a "large-sample". approximation
has been found (Johnson [1961]). From the distribution, when available, the
proportion of time a decision would have been reached before scme fixed upper

limit on sample size = N,, can be ccmputed.

It is suggested that the properties of tests be re-examined in light of
application rather than in terms that are justifiable because of their mathe-
matical simplicity or tractibility. Also, if the experiment is sequential in
nature, and many are, and if hypothesis testing is desired, it will be necessary
to utilize a test procedure. Any knowledge of the properties of such a pro-
cedure would be desirable. Therefore, much work needs to be done to obtain
procedures meeting the requirements of the experimenter. If the mathematics
is too difficult to investigate the procedure analytically, it may be necessary
to utilize a high-speed computer to empirically investigate scme of the proper-

ties of the test procedure.

In all the procedures discussed in this section nothing has been said
about analysis carried out "te spot the winner" in which case it would appear
desirable to eliminate non-contenders early in the testing procedure (see
Wetherill [1965], p. T2). It appears that many procedures will need to be

devised to meet all situationse.
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Cnie probler: that requires investigaticn is the use of Johnson’s‘[1953]
procedure to construct tables in the randcm effects case for use in the fixea
effects case. In fact,.no table is fequired since the ccmputation is so
simple. If this procedure can be used as a reasonably good approximation, the

table ccnstruction problem would be solved.

.Another problem that would definitely fall in the area of sequential
design of experiments is the selection of the experimental design at each stage.
For example, a latin square design could be utilized at the first stage, then
based on the experimental results, a randcmized ccmplete block or a ccmpletely
randcmized design might be utilized'in the remaining stages of the sequential
experiment. Also, a sequential selecticn of the analysis might be utilized.

For example, suppose that the design is a latin square and the standard row-
colunn~treatment-residual analysis of variance is performed. Based on the
results of the first stage, a differential gradient within columns-column:
treatment-residual analysis of variance might be utilized in the next or all

of the following stages. The sequential selecticn of biocking, of analyses,

and of the function of the observations are pertinent unsolved problems facing
the statistician and, of course, the experimenter who has these problems whether

or not the statistician has soluticns for them.

The suggestion by Sir Ronald A. Fisher that sequential design of experi-
ments wculd be a fruitful field in which to work is just as true today as it
was 15 years ago when the statement was made. It would be desirable to have
analytic results or reasonable approximations therepf. Irf this is not forth-
ccming then high speed ccmputers may be utilized to obtain scme empirical evi-
dence on the properties of a procedure. This may leéd to ideas for analytic

results.



5. SUMMARY

An expositicn of analyses of variance procedures used in sequential
experimentation with sequential hypothesis testing and with sequential esti-~
mation is presented. Several sequential test procedures, viz, a single F
test in the analysis of variance, a set of F tests involving orthogonal single
degree of freedom contrasts, and a set of t tests (or F tests) for all possible
differences between pairs or ccntrasts or means, are presented for data from
an experiment designed as a ccmpletely randcmized design. Also, several error
rate bases are ccnsidered. A numerical example is utilized to illustrate the
procedures. Following a discussion of these procedures illustrating their
extension tc other experimental designs, analyses using a single F test are
described for the randcmized ccmplete block design with blocks added sequentially,
single v X v latin square added sequentially, v treatments designed in b blocks
of size k (k usually but not necessarily less than v) with each treatment occur-
ring r times and with sets of blocks being added sequentially, and k-rcw by
b-column design for v treatments with r replicates on each treatment and with
rows and/or columns added sequentially. The analyses presented were for fixed
effects which was followed by a discussion of randcm and mixed effects cases

for each of the designs presented.

Under sequential estimation a two stage sampling procedure is discussed
along with results relating fixed sample size estimaticn procedures to sequen-
tial sampling estimation procedures. Scme discussion is presented relative tc
unsclved problems in the sequential selection of an experimental design, the

sequential selecticn of an analysis, and of the scale of measurement, or



transformation.

A1l of the discussion relates to sequential design and analysis ‘
of experiments with no presentaticn being made of sequential procedures for
selecting treatments as, e.g. levels of the independent variate in regression,

of levels for a dosage response, and related phencmena.




- 33 -

6. LITERATURE CITED

Ansccribe, F. J. [1955]. Sequential estimation. Jocurnal Royal Statistical
Society, Series B, 15:1-29.

Federer, W. T. [19611. Experirental error rates. Proceedings of the
Arerican Society for Horticultural Science, 78:605-615.

Hall, W. J. [1965]. Methods of sequentially testing composite hypotheses
with special reference to the two-sample probler. Institute of
Statistics Mireo Series No. 441, University of North Carolina, Chapel
Hill, North Carolina.

Hall, W. J., Wigsman, R. A., and Ghosh, J. K. [1965]. The relation between
sufficiency and invariance with applications in sequential analysis.
Annals of Mathematical Statistics, 36:575-61k.

Hartley, H. O. [1955]. Some recent developments in analysis of variance.
Communications of Pure and Applied Mathematics, 8:47-

Jackson, J. E. [1960]. Bibliography on Sequential analysis. Journal
of the American Statistical Association, 55:561-580.

Johnson, N. L. [1953]. Scme notes on the application of sequential
rethods in the analysis of variance. Annals of Mathematical Statistics,
2Lh:614-623,

Johnson, N. L. [1954]. Sequential procedures in certain component of
variance problems. Arnnals of Mathematical Statistics, 25:357-366.

Johnson, N. L. [19611. Sequential analysis: A survey. Journal Royal
Statistical Society, Series A, 124:372-411.

Ray, W. D. [1956]. Sequential analysis applied to certain experimental
designs in the analysis of variance. Biometrika 43:388-403.

Rushton, S. [1954]. On the confluent hypergeometric function M(a,Y,x).
Sankhya 13:369-376.

Rushton, S. and Iang, E. D. [l95h]. Tables of the confluent hypergeocretric
function. Sankhya 13:377-411.

Scheffe, H. [1953]. A method for judging all contrasts in the analysis
of variance. Biometrika 40:87-10L.

Slater, L. J. [1960]. Confluent hypergeometric functions. Princeton
University Press, Princeton, New Jersey.




literature Cited, Continued.

Snedecor, G. W. [1956]. Statistical methods, 5'" ed. The Iowa State
University Press, Ames, Iowa, U.S.A.

Stein, C. [19&5]. A two-sapple test for a linear hypothesis whose power
is independent of the variance. Annals of Matheratical Statistics
16:243-258.

Tukey, J. W. [19533. The problern. of multiﬁle comparisons; Dittoed
Notes, Princeton University, 396 pp.

wetherill, G. B. [1965]. Sequential methods in statistics. Methuen
and Co., Ltd., London. John Wiley and Sows, Inc., New York.



