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A MODEL FOR THE POPULATION DYNAMICS OF INTERNAL PARASITES 

BU-176-M Keewhan Choi 

ABSTRACT 

We are interested in the loss of red cells in a parasitized sheep in 

relation to the contamination of posture by worm eggs and parasites (pupae 

and adult worms) in a sheep (or any other organism). Discussed in this 

paper is a simple model for the temporal distributions of eggs in the pasture, 

red cells in a sheep, and pupae and/or adult worms in a sheep. For a 

stochastic model difference-differential equations which must be satisfied 

by the probability distributions of the quantities of interest are obtained 

easily. However, the resulting equation is not tractable. As for a deter­

ministic model, the solution (an infinite series) is obtained. Since the 

solution is of no practical use, a recursive scheme of evaluating the solution 

is given. 
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We are interested in the loss of red cells in a parasitized sheep in 

relation to the contamination of posture by worm eggs and parasites (pupae 

and adult worms) in a sheep, (or any other organism). Discussed in this 

paper is a simple model for the temporal distributions of eggs in the pasture, 

red cells in a sheep, and pupae and/ or adult worms in a sheep. For a 

stochastic model difference-differential equations which must be satisfied 

by the probability distributions of the quantities of interest are obtained 

easily, However, the resulting equation is not tractable. As for a deter­

ministic model, the solution (an infinite series) is obtained. Since the 

solution is of no practical use, a recursive scheme of evaluating the solution 

is given. 

1. Notation and a stochastic model 

Let X(t) be the number of eggs in the pasture at time t, 

Y( t) 11 " 11 " red cells in a sheep at time t, 

Z(t) " " " 11 pupae and adults (worms) in a sheep at time t. 

Given at time t, X(t) = x, Y(t) = y, Z(t) = z, we assume that 

the probability of x ... x + 1 in (t, t +At) = ~2zAt + oCAt) 

11 " 11 x ... x - 1 11 11 = 1..1. xAt + O(At) 2 

11 11 11 y ... y + 1 " 11 = A. yAt + o(At) 
1 

II II 
II y ... y-1" II 

the probability of x or y changing more than 1 in (t, t + At) = o(At). We 

also assume that 

Z(t) = eX(t - T) 

where T > 0 is the known maturation period Of eggs and 0 < 9 < 1 is the known 

proportion of eggs surviving to maturity. 
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Let P (t) denote· the probability that X(t) = x and P.(t) is defined in the 
X y 

same way. 

Then it is obvious from the above assumptions that 

Hence 

Px(t + 6t) = Px(t) [1- (A3z + ~3x)6t] + Px_1(t)~3z6t 

+ Px+l(t)~3 (x + 1)6t + o(At) • 

dP (t) . 
d~ = Px_1(t)~3z - (A3z + ~3x)Px(t) + ~3 (x + l)Px+l(t) x = 1,2,3, ••• 

(I) 
dP0(t) 
dt = ~3Pl(t) 

Similarly, we obtain 

+ Py+l(t)[~t1(y + 1) + ~2z] ·x :r:: 1 

f dPO(t) - .· + 
(II) l dt - Pl (t)[lll ~2zl 

Z(t) is obtained from the assumption 

z(t) = ax(t - T) • 

Let P(s, t) and Q(s, t) be the probability generating functions of P (t) and 
X 

P (t), respectively. 
y 

QO 

(e.g. P(s, t) = LPx(t)sx) 
x=O 

Then {I) and (II) give us 

oP(~t t) = (s - 1)~3zP(s, t) + (s-1 - 1) s oP(:t t) 

= (s - 1)~3zP(s, t) + (1 - s) oP(~t t) 

or 



(I I) 

and 

- 3 -

s oP(s, t) = (s - 1)~3zP(s, t) 
ot 

{II') oQ(s, t) = (s- 1)[~ s oQ(s, t) + A2zQ(s, t)] at 1 at 

+ (s-1 - l)[s oQ(~t t) + ~2zQ(s, t)] • 

Neither the solutions of (I) and (II) nor the solutions of {I') and (II') are 

known. 

2. Deterministic model 

Using the notation in Section 1 and the corresponding deterministic 

assumptions, the following set of differential equations can be written 

immediately. 

(1) ~~~~ = A3ex(T ~ T) - ~3X(T) 

(2) d~~~~ = (~1 - ~1)Y(T) - ~2eX(T - T) 

X(T) = X0 for T ~ 0 • 

The equation (1) must be solved first and the solution has to be sub­

stituted in the equation (2) before the equatio~ (2) can be solved. In the 
. '.' \ . ' 

remainder of the p~er only the solution of (1) will be given. 
•·,•-••••w-,. ••••·••·· 

Using the notation I = ~3 , R = - ~3 e (l) becomes 

X'(T) + IX(T) + RX(T- T) = 0 

changing the time scale by 

Then 

t = -rT 

x(t) = eiTX(T) 

;,:( t) = TeiTtX,·(~)- + ITeiTtX(T) 

x(t - 1) = IIT(t-l)X(T - T) 
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where r dx X' dX 
X = dt ' = dT • 

Then (1) can be written as 

or 

(1 r) 

IT Denoting R't'e = 

(1 1 ) is 

1··, . · · . I't' : 
-·x'(t) + Re x(t- 1) = o '1" 

{
x'(t) + R't'ei't'x(t- 1) = 0 

( ) I't't x t = x0e ~or t ~ 0 

lJ-3'1" 
- A39'1"e by b, we notice the characteristic equation of 

D(Z) = z + be-z = o • 

Since b < o, D(Z) has no real roots, but has infinitely many pairs of con­

jugate complex roots. Let r±p(b) denote the conjugate complex roots with 

positive and negative immaginary roots and larger p refers to the root of 

the greater magnitude. T.he Asymptotic expression for r:!:p(b) is given by 

Pinney (see ordinary difference-differential equations by Pinney, University 

of California Press, 1958, page 122). 

:r:!:p (b) - ,en(- 2:prr/b) :!: (2p - ~)rri + 0 (!~P) 
Then CCII 

x(t)=) 
L. 

1 rj (b )t [ I't'X0 ( rj (b )-I't'') _1 
1 + rj(b) e I't'- rj(b) 1- e /- brj (b)XoJ 

j=-co 

' 
where L denotes tha.t j = 0 time is omitted. 

In terms of the original time scale T, 

CCI 1 r. (b )T/ '1"-IT r. (b )-I't' I 
\ e J [I - Ie J · Re '1" J 

X(t) = XO't' L 1 + r. (b) I't' - r. (b) - r:-tbJ 
j=CCI J J J 

. . 
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The explicit solution of X(T) is not much of any practical use because of 

its form. The following discretization of the equation (1') is more amenable 

to numerical solution. 

(1') 

Discretize (1') as follows: 

x'(t) = - ~3~(t) + A3ax(t - 1) 

x(t) = x0(t) = x0 

Define x (t) = x(t + n), 0 ~ t ~ 1 
n 

then (1') is equivalent to 

n = 1,2, ••• , x0 as above. 

b 
with the initial condition 

X (0) = X 1(1) n n-

t ;:: 0 

0 ~ t ~ 1 

Let us now solve the above set of difference-differential equations. 

Hence 

-~ t t ~ t -~ t 
x1(t) = e 3 A ex J e 3 dt + ce 3 

3 0 0 

C = X 0 

~ ex -~ t -~ t 
x (t) = 3 ° [1 - e 3 J + x e 3 

l ~3 0 
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. Now let u~ fi.nd x2(t). 

Hence 

x2(t) = - ~~x2(t) + x3ex1(t) 

x2(o) = x1 (1) • 

-~ t Jt ~ t -~ t 
x2(t) = e 3 A3e x1(t)e 3 dt + x1(l)e 3 

0 -

For general n, we have 

x'(t) = - ~3x (t) + x3ex l(t) n n n-

with X (0) = X 1(1) 
n n-

hence 
-~ t Jt ~ t . . -~ t 

X (t) = e 3 x3e X 1(t)e 3 dt +X 1(l)e 3 n n- n-O . 

n = 1,2,3,•••• 

Inspection of the solutions x1(t), x2(t) convinces us xn(t) can be 

evaluated for any integer n in a closed form involving exponential functions. 


