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ABSTRACT 

In this paper several deterministic models for competition between two 

species proposed by Bartlett, Kendall, Lotka and Volterra are reviewed. 

First two simple models are discussed in detail to study the behavior of two 

species near the equilibrium point. 

Simple models are then modified to take into consideration such quanti­

ties as maturation lag and immigration. 

In the last part, a general competition model is discussed briefly. 

Also the work on flowerbeetle by Park is reviewed. 

The material in pages 12 through 23 are excerpts from the 1962 lecture 

notes (unpublished) of s. Karlin. 
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Prey-Predator Models 

1.1. The problem we will consider deals with two species, the first of which 

serves as food for the second one. Let 

H(t) be the size of the host population at time t 

P(t) be the size of the parasite population at time t 

~ be the birth rate of the host population; ~dt is the increase in 

the population per single host organism in the time interval dt 

5 be the death rate of the parasite population • 

We shall assume that ttie number of kills of host by parasites at time t is 

proportional to H(t)P(t). 

The differential equations giving the rate of change in population 

sizes are: 

(I) 

(Note that y1 can be interpreted as the probability of contact between a host 

organism and a parasite and y2 the fraction of parasites which survive to 

maturity.) 

Models of this general type have much wider ~plicability. To mention 

but one example that is quite different from prey-predator, consider the 

spread of a fatal disease by means of bacteria. Ue can take the human popu­

lation of the region as H(t), and the bacteria as P(t). 

It will be interesting to consider a second model, similar in form, but 

leading to quite different solutions. Suppose that we consider two species of 

.hunters (x(t), y(t)) that are in competition with each other, so that membere-
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of one species kill members of the other species. Each one has a natural 

rate of increase in the absence of its enemy, with expansion rates with. 

parameters a, c. Each species decreases proportionally to the product xy as 

a result of kills by the other species. Hence the simplest model is given by 

(II) dx - ax bxy • ddyt = cy - dxy ' dt -. - , a, b, c > 0 • 

1.2. The differential equations 

The equations-of the model in Section 1 are examples of a particularly 

interesting type of simultaneous first order differential equations. They are 

of the form: 

( *1) : = F(H, P) ; dP 
dt = G(H, P) • 

These equations have the special property that time does not enter them ex­

plicitly. As a matter of fact, time can be eliminated by dividing the second 

equation by the first: 

dP G(H, P) 
dH = F(H, P) 

Often, we are interested only in the possible values of the quantities P and 

H, which we shall represent geometrically by the position of the points (H, P). 

As we do not care to know the exact times when these positions are occupied 

the above equation (*2) gives all interesting information. The locus of the 

position through time, known as the trajectory, must be a solution of the 

first order differential equation (*2). 

Such equations have been studied extensively. We shall summarize only a 

few of the known results. 

Theorem 1. · If (H0 , P0 ) is a point of the plane near which the partial deri­

vatives of F' and G are continuous, then there is a unique solution of (*1) 

:Passing through· (H0 ; P 0 }, at t = 0. The solutions are either constant· ftinc• 

tiona of time, or they deifcribe a simple curve. Furthemore, the solutions 

H( t-) and P(t) ·depend continuously on the initial position. 

We caii ·araw many useful conclusions from the theorem. 

We note ·that in our case the trajectories do not depend on the starting 

time. Thus if H(t0 ) = H0 , P(t0 ) = P0 at a certain time t 0 , then for any time 

.. 
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after t 0 the trajecto~~es are as if the process at time 0 started at (H0 , P0 ); 

i.e., H(t- t 0 ) and P(t- t 0 ) agree with the function H'(t) and P'(t) which 

one would have if H(o) = H , P(o) = P • Hence, there is a unig_ue trajectory 
0 0 

through each point. An immediate conseg_uence is that two trajectories cannot 

cross, for we would then have two different trajectories through the same 

point. A trajectory also cannot cross itself, since by (*1) the direction of 

motion depends only on the position, not on the time. The trajectories given 

by theorem 1 are, of course, solutions of (*2). 

We must now discuss solutions that are constant functions of time. These 

occur at eg_uilibrium points; i.e., points where F = G = o. If we choose. such 

a point as the starting position, then the rate of changes in (*1) are 0, and 

so we remain at the starting point. We thus have a one-point trajectory. 

If the starting point is not an eg_uilibrium point, then the trajectory 

is a simple curve. Furthermore, this curve must be traversed in a fixed 

direction, since ( ~}1) determines the direction of motion for every point of 

the trajectory. This direction could be reversed only if we reached an equi­

librium point, or if the curve crossed itself, which is impossible. However, 

an eg_uilibrium point cannot lie on a curve trajectory: If it did, the curve 

trajectory would have a point in common with the point trajectory, and we 

would have two trajectories through the same point. Thus, an eg_uilibrium 

point can never be reached if we start out ot equilibrium. . But thi~ dqe~ not 

prevent the trajectory from approaching the equilibrium point asymv~ot~cally. 

That is, the position gets closer and closer to the eg_uilibrium posi~ion, 

although it never reaches it in finite time. The eg_uilibrium is the limit of 

the position as t ~ oo. 

It is of particular interest to know how a trajectory behaves in the 

neighborhood of an eg_uilibrium point. We shall illustrate three kinds of 

behavior: (1) Whenever we start near the eg_uilibrium. This is known as a 

stable equilibrium point. (2) Whenever we start near the equilibrium, we 

proceed away from it; such an eg_uilibrium is known as unstable. (3) Whenever 

the trajectory is a closed curve with the eg_uilibrium point on the inside, we 

move cyclically around the eg_uilibrium. 

A major tool in determining the nature of the behavior is given in the 

follo~ing theorem. 
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Theorem 2. The nature of a trajectory near an equilibrium point may be de­

termined by expanding F and G in a Taylor series around the equilibrium, and 

keeping only one linear term. The solutions of these linear equations near 

the equilibrium will have the same general nature as the exact solution. 

We have considered only two equations in two unknowns. But the 

discussion just concluded holds equally well when there are n equations 

in n unknowns: 

( *1) I 

fori= l, ••• ,n. 

1.3. Solution of the equations 

At first we will concentrate on the model generated by the equations in 

(I). We shall be interested only in trajectories in the first quadrant. Our 

first ·task will be to show that if H0 > 0 and P0 > 0, then.H(t) > 0 and 

P(t) >· 0 for all t. 

Let us start by discussing four special trajectories. First, there are 

only two equilibrium points (o, 0) and E = (o/y2, f3/y1 ). Thus we have two 

one-point trajectories. But the positive parts of the axes are also trajec­

tories. Since trajectories cannot cross, a trajectory starting inside the 

first quadrant can never cross either axis, and hence H(t) > 0 ~nd P(t) > 0 

for.all time. 

The interesting equilibrium point is E. Let us find the nature of the 

trajectories near E. Let u = H - o/ y2 and v = P - (jj y1 • Then 

dU: dH ( · 1 ) • dv dP ( / ) dt = (it = -. u + '01 y2 YJ:.V: , and dt = .dt = y2.u v + f3 y1 • The li~ear part of 

these equations are . 

(*3) 

Treating these as exact equations in accord with Theorem 2, differentiating 

the first equation, and substituting ~~ from the second, we get 

• 
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l36u • 

The motion will therefore be periodic. Since the starting time is unimportant, 

let us start at a time when u = 0. The solution of ( ~f4) is then 

u =A sin (~t) 

and from ( ~~3) we obtain a solution of the form 

v = B cos (~t) • 

Thus 

Hence, the trajectory is an ellipse. 

We have thus shown that near E the trajectories must be closed, and 

hence that solutions are periodic movements around the e~uilibrium point. In 

first approximation the trajectories are elliptical, and the period of revo­

lution is 2rr/~ • 

( *2). 

Hence 

To find the trajectories exactly, we form the equation corresponding to 

(*5) 
dP P(ytr - 6) 
dH = H(13 - y1P) 

Integrating with respect to H, we obtain 

or 

( *6) 

Since K does not depend on time, 

He 
0 

K=--
Vi!o 

e 
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We have thus found an equation for the trajectory corresponding to a given 
. 5/ '¥2H . . _R , Y1 P starting position. The functJ.on H e , or the like functwn l!'f e has a 

graph similar to Figure 1, and so each possible value is taken on twice, 

except for the extreme values. 

f(H) 

1.5 

1.0 

·5 

1 2 3 4 5 6 7 8 9 
H 

Figure 1. f(H) 
H5 

"(2 = 1, 5 3 =-for = 
y2H 

e 

Thus if in ( *6) we fix H at a possible value, there are normally two corres­

ponding P-values, and for a possible P-value there are normally two possible 

H-values. Thus we obtain a simple closed curve. The ma.xinru.m and minimum 

P-values are taken on· for H = 5/ y2, while the maxinru.m and minimum H-values 

occur for P = ~/y1, and there are no inflection points. A family of'such 

trajectories is shown in Figure 2. 

p 7 

6 -

5 -
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l -

0 

Figure 2. 
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0 

02 
5 

Trajectories~ 
y2 

e 

for 

9 
H 

~ = 4, 
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~e ~~t still determine the direqtion of motion. From (I), : > 0 if and 

only if P < ~/y1 • Hen,ce, on the loY1er half of the trajectory H is increasing, 

whereas on the upper it is decreasing. Therefore, the motion must be clock­

wise. 

As a final result we shall obtain the a'[erage values H and F. Since the 

motion is cyclic, we may take the average over one cycle. Let T be the length 

of a cycle. Fro~ (I), 

T T 

I~ ~ dt = I (~ - y P)dt dt 1 
0 0 

T 

log (H(T)) log (H(o)) = ~T- y1 I Pdt 

0 

But (0, T) is a complete cycle; hence H(o) = H(T). Thus the lefthand side of 

(*7) is o, and hence so is the righthand side. Thus P = ~/y1• And similarly, 

H = 5/y2• These averages turn out to be independent of the initial position 

and hence are the same as the equilibrium values at E. 

Let us now turn to the second model, which is generated by the equations 

in (II). We find the same equilibrium points as before, and the axes are 

again special trajectories. Thus a trajectory starting with positiy~_.:y,~ues 

for x and y will continue to have positive values. The major difference 

arises when we find the behavior near E. By the approximation used ·in (*3), 

we find 

( *3) r du (bd) 
dt - - v c 

dv - (~c) u dt = 

And thus, 

(*4) r d2u a.du • -= 
dt2 
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In this case the solution is not periodic. The most general solution of this 

equation is u = Aest +Be-st, where s =!ad. If we differentiate this and 

substitute the result in (*3)', we obtain v =- rAest + rBe-st, 1n which 

r = cs/bd. From these solutions we find the relation u2 - (v/r)2 = 4AB; 
hence, the first approximation trajeL·tories are hy-perbolas, with E as center. 

Therefore, we know that the motion is not periodic, and the trajectories 

approach the equilibrium point for a while - and then run away from it. To 

obtain more information concerning the trajectories we carry out the method 

of Equations (*5) and (*6) to find 

(*5)' ~ = y~d - ex~ 
dx x a -by 

and (*6) r 
a d 
L;;:K~ 

by ex ' e e 

ex a o y e 
K = --.-o __ 

byo d 
e x0 

Particularly interesting are the curves passing through E, i.e., where 

K= 

These are shown by solid lines in Figure 3· Since trajectories cannot cross, 

and since E is a point trajectory, the remainder of these curves must actually 

represent four separate trajectories. By considering the signs of the deri­

vatives in (*3)', we see that two of these correspond to asymptotic approach 

to the equilibrium E whereas two represent asymptotic regress from the equi­

librium. These curves divide the positive quadrant into four regions. If 

the process starts in a given region it must stay there. The shape of a 

trajectory and the direction of motion is then determined by the signs of 
dy d2~ dx and dx • Representative examples are shown in Figure 3· 

There is, of course, no analogue to (11) 1 since the motion is not 

periodic. 
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a ::; 4, b = 2 

c = 1, d = 3 

In the model for (I) we have cyclic behavior. Our cycle always starts 

with a positive number of hosts and parasites. It is extremely unlikely that 

we should start exactly with the equilibrium values; hence, we may assume 

that we shall follow a closed curve trajectory, as in Figure 2. We 'shall 

therefore observa a cyclic process of four stages: (I) Hosts are in abundance. 

The number of parasites increases, cutting down on the number of hosts~ 

(II) When the hosts drop to H = o/y2, the parasites find insufficient food 

and hence start declining in number •. Hosts continue to decline. (III) When 

parasites drop to P = ~/y1 in number, hosts can start increasing in number. 

Parasites continue to decline. {IV) When hosts get back up to H = o/y2, 

parasites start increasing again, until they reach a level of P = ~/y1 • At 

thi~~·point stage I is reentered. The fact that the trajectories can never 

reacJ~ .. an axis means that neither species will ever be wiped out. Thus, we 

have a type of cyclic equilibrium. 

The average number of hosts is o/y2, and of parasites ~/y1, independently 

of the starting stocks. Thus, the equilibrium values are determined by the 
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machinery of change, given by (I), and not by the starting values. The 

starting values influence only how widely the values vary. The further we 

start from equilibrium, the wider the variation. 

Figure 2 shows four closed trajectories for the case ~ = 4, y1 = 2, 

y2 = 1, 8 = 3· The equilibrium point is E = (3,2). The curves, from the 

inside out, correspond to starting positions (3, 1.75); (3, 1.3); (3,1) and 

(3,5). (The trajectories were traced out by numerical approximation on a 

computing machine. 

It is seen that the innermost trajectory is very near an ellipse, whereas 

the ones further out become more lopsided. Our first approximation solution 

for the length of the cycle yields T. =2ft/~= 1.814. The numerical esti­

mates of the trajectories yield 1.87, 1.84, 1.88, and 2.041 respectively. 

Thus the ~proximation is excellent near E, and it is fairly good even further 

out. Thus, although the sizes of the species vary greatly according to the 

initial stocks, the times of revolution changes very little for reasonable 

values. 

In the model for (II) we note that the normal asymptotic behavior is one 

of approaching an axis. That is, although no species die out in finite time, 

one tends to vanish asymptotically. If we take into account that there cannot 

be less than one animal per species, this really amounts to the prediction of 

the eventual extinction of one species. The other species, on the other hand, 

tends to infinity. Of course this too is an oversimplification, in that the 

model neglects shortage of the food supply. 

There are again four important regions, but this time they determine the 

long-range outcome: (I) They are large number of both species to start with. 

This causes a steady decrease in both species (because of the large number of 

kills), until the second species drops to the critical level of y = aVb. Then 

the first species start to increase again and is able to wipe its enemy out. 

(II) This is like I, except that the critical level is x = d/c, and it is the 

first species that is eliminated. (III) There are small numbers to start 

with, and hence very little conflict. Thus each species can increase, until 

the second species reaches the critical level of y = aVb• Then it begins to 

dominate the first species, and eventually eliminates it. (IV) ~nis is like 

III, except for the fact that the critical level is x = d/c, and it is the 
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second species that die out. 

The exceptions to these rules occur on the boundaries of the regions, 

which cons~st of the four special trajectories marked solidly in Figure 3, 
' :. 

and of the point E itself. The bou11dary of I and IV shares with both regions 

the feature that the second species is wiped out, but the increase in the 

first species and the decrease in the second both take placemonotonically. 

The boundary of II and III is similar, with the first species being wiped out. 

But if the initial numbers of the two species happen to fall on the border of 

I and II, or of III and IV, then the nunibers tend to the equilibrium value E 

monotonically. At E itself no change can take place. Of course, any such 

starting conibination is very unlikely. 

Competition models II 

Unfortunately, the two models we have considered fail to fit observed 

situations well. We .shall consider several modifications which are more 

sophisticated. 
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First, we shall consider a case of one species and examine the growth of 

the population of mature members. 

Let N(t) = size of population of mature individuals at time t 

~ = time to grow to maturity 

Then 

a = birth rate 

(ignore the death rate) 

~ = etN(t - ~) dt 

This equation has solutions which may be prescribed arbitrarily for 

0 s t s T. We found in the last lecture, that if time to develop to maturity 

was not considered, the population size approached emt where m is the Mathu­

sian constant. Let us try a solution of that form. It must satisfy 
memt = aemte-mT so m = ae-Ill't" if T << 1, e-mT = (1- mT) so m = a/(1 + a't'). 

Now we shall introduce such a lag in development to maturity into the 

host-parasite model. Let 

~1 = maturation time for hosts 

T2 = maturation time for parasites 

Assume only mature individuals can be hosts and that T1 , T2 are small enough 

that terms of degree ~ 2 in T1, T2 may be neglected. Then 

~ = ~ H(t - T1 ) - y1 P(t) H(t) 

and, approximately, 

H(t- T.) = H(t) 
~ 

P(t - T2) = P(t) 

~iH'(t) 

- T2 P'(t) 

i = 1, 2 

Assume also that H and P are near H0, P0 so we may write H(t) = H0(1 + h), 

P(t) = P0(1 + p), h, p small. The D.F.'s become, approximately, 
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., dh . dh 
.... \·dt = ~ C\(1 + h).- Tl ~ dt] - yl \ P0(1 .+ h)(l + p) 

dh- ~ d t - ( 1 + ~T l) = ~ ( 1 + h) - \ \ ( 1 + h + p) 

dh dh 
dt = - f3Tl dt - ~p 

dh ~P ( a dt =- 1 + ~T compare this with the result above (m = 1 + cx-r)) 

similarly 

substituting the expression for db/dt in the second equation, 

dp _ 5h + 5T 2 , ~ p 
dt - 1 + 5-r2 1 + 5-r2 1 + 5Tl 

p = h = 0 is an equilibrium point. 

To determine stability of this equilibrium point, let p, h be small and 

consider the matrix of coefficients in the equations for dp/dt, dh/dt. It is 

0 -~ 
1 + 5-rl 

5-r2 ~ 
1 + 5-r2 1 + 5-r2 1 + o-r1 

The characteristic equation is: 

2 ~5T2 ~5 
A - (1 + ~-r~)(l + 5-r2) + (1 + ~-r1 )(1 + o-r2) = O 

If at least one of the roots has a positive real part then the solutions of 

the DE's will go to + ro as t ~ + ro, i.e., the equilibrium will be unstable. 

~5Tl 
The sum of the roots ~l + A2 = ~l + ~-r1 )(~ + 5-r2 ) > 0 

. . at least one of the roots has a positive real part. • • the equilibrium 

is unstable. 



- 14-

Second Modification: 

Ignore the lag in development to maturity, but assume that immigration 

occurs. Let 

Then 

€1 = rate at which host population enters the region 

e2 = rate at which parasite population enters the region 

(el, €2 ~ 0) 

d.P dt = (v2ff - e)P + e2 

Let (P0, H0 ) be an equilibrium point. Then 

or 

multiplying the first equation by y2; the second by y1 , and adding: 

2) 

since 

Upon substituting this into 2) we obtain 

so 

The radical is equal to 
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so both roots are real. If 

(yl€2 + Y2€1 + ~o) - J<v1€2 + V2€1 + ~8 )2 - 4~vlo~;-
P =-~~___..;.;...,;:; ___ __:..~~-_..;;~-----.,;;;;;_....;:; 
o 2oy1 

Then 

but 

= 0 

so the smaller root gives H0 < 0 and thus it must be rejected. 

<vl€2 + "~2€1 +~a) + J<v1€2 + V2€1 + ~8 )2 - 4~v18€2 
p = __;~;;.._.......;;~-----::.-=~-_..;;;-=------~..;;;. 

0 2yl8 . 

if €1 , €2 are small enough that their squares may be neglected. 

(yl€2 + y2€1 + ~o) + J2~8 (yl€2 + y2€1) + (~o)2 - 4135 €2~1 
p =-=-=:...___;::;....:= ___ -,:,--:~=-=:;___.....:=-=;__------=--= 

0 2yl5 . 

recalling F = 1 + x/ 2 if 0 !'l; x << 1 
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and 

To determine the nature of the e~uilibrium point (H0, P0), let 

h, p small 

substituting into the D.E. 's 

ignoring terms in p, h 

and since 

similarly, 

The matrix of the coefficients is: 

The characteristic equation is: 
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Let Al' A2 be the two roots 

'Y2 'Yl 
'\ +'\ = € € <0 /\1 /\2 - 2 8 - 1 t3 

AlA2 = yly2POHO > O 

at least one must thus have negative real part. The other must either be 

real and negative (the product is positive, or it is the conjugate of the 

first). In either case, both have negative real parts •• •• h, p ---> 0 

.·.equilibrium is stable. 

We shall now consider a model in which both a maturation lag and immi­

gration is taken into account. Let €1 , €2 be the immigration factor, as 

above, and letT be the·maturation time for both species. As~e· €i,· €2, T 

are all small enough that their effects are additive, i.e., so that second 

order terms may be ignored. 

The D.E. 's are: 

We saw earlier that the introduction of a lag to maturity did not affect the 

equilibrium. PO.,ints • Thus 

are the equilibrium points. Let H(t) = H0(1 + h(t)), P(t) = P0(1 + p(t)); 

p, h small. Recall that H(t- T) ~ H(t) - TH'(t); P(t- T) ~ P(t) - TP'(t). 

Thus: 

/o: = ~o(l + h- Th')- Yl P~o(l + P +h)+ Jo(ylPo- f3) 

:; (1 + ~~) = h(~'-- ylPO) + p(-ylPO) + (~ - 'h_Po) + 0 



- 18-

T is small, 

1 + T~ = 1 - T~ + 0(T~)2 : 1 - T~ 

but we are assuming that T€1, T€2 << 1 so we can drop such terms 

dh:h[- €1YZ:+pf.-~ _ €1~/g-t 
dt o _ L1 + T~ 0 -j 

P0 ~~ = - oJ'0(1 + p) + y2 fo H0(1 + p(t-T) + h(t-T)) + ~~(o - y2H0) 

~~ = - o(l + p) + y2 H0 [1 + p- Tp 1 + h- Th 1 ) + (o- Y2ffo) 

dp [ €1 YJ, r -€2 Y1 To~ -, 
dt (1 + TO) = h B - -~-- + p L ~ + 1 + T~_. 

dp = h o _ ~ : + 2 1 + B~ [ Ey-, [-€y ..., 
dt 1 + T~ ~ ~ p ~ T ~ 

The matrix of the coefficients is 

-€ y 
2 1 + To~ 
~ 

"'! 



if ~ 1, ~2 are the eigenvalues, 

-€ y € y 
~ + ~ = 1 2 -~ + T5~ 

1 2 5 ~ 

ignoring second order terms in T, €1, €2 

since €1, €2 are small, ~ 1, ~2 > 0., so tlfe: equilibrium is stable if 

A.1 + A.2 is < o, for then both roots must have negative real parts, since their 

product is po~itive. 

thus 

so the condition for stability beco~s 

II. General Competition Model 

Consider two species, A and B. Let 

N(t) = size of A population at time t 
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M(t) = size of B population at time t 

a1 = birth rate of members of A 

a 2 = birth rate of members of B. 

F1, F2 are some functionf of population size. For simplicity we shall assume 

they are of the form: 

F1 (N,M) = (~ll N +~12 M) N. 

F2(N,M) = (~21 N + ~22 M) M 

so 

~ = N(al(~ll N +~12M)) 

~ = M(a2(~21 N + ~33. M)) 

the equilibrium is given by the solution to the equation (~ij) (:) 

Case 1. 

Then 

~11 ~12 

~21 ~22 
= A= 0 so there is A, ~12 = \~il' let ~i = ~il • 

Note that if N, M are sufficiently large ~ , : :;;; 0 so N, M are bounded. 

so 

We have (~2 dN)/N - (1\ dM)/M = (a1~2 - ~1a2 ) dt 

al 
~l log M = 

t3l 
t + c 

C is determined by the initial conditions. 



- 21 -

Nt32 (alt32-CX2f31)t 
- = Ke · if 
Mt31 . 

> 0 

then as t ~ oo. M(t) - 0 (species t3 dies out) if < o, 

N(t) - 0 (A dies out); if 

= 0 1 this model gives no information. 

Case 2. D. f 0 

Theri ·the equilibrium point (M0 , N0 ) must b'e such that 

al = t3n No + t3l2 11o 

l N =-
0 D. 

. 
' 

1 
M =-

0 A 
t3ll -a· 

1 

~21- a· 
.2 

-these must be> 0 for a positive equilibrium to exist. 

Let 

u, v small 

substituting these expressions into the D.E. 's 

The matrix of coefficients is: 

the characteristic equation is 
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•• at least one char. root has negative real parts. If ~ > o, both have 

negative real parts, and (N0, M0 ) is a stable equilibrium. If !::. < 0 both 

roots are real; one > o, the other < 0. The equilibrium will be stable or 

not depending on the initial conditions. 

III. Flowerbeetle Model 

n1is material is the result of work by Park. There are two species of 

beetle, 

T-casteneum T-confusum 

If both occur together in a region, only one will survive, but it is not 

always the same one. We may try to set up a deterministic model for this 

behavior. 

Each beetle has 2 stages: active and passive; let 

P(t) = number of passive individuals at time t 

A(t) = number of active individuals at time t 

~ = coefficient of voraciousness of active beetles 

v = rate of transition from passive to active 

o = density factor in the rate of growth 

~ = growth rate of passive individuals, as offspring of active members 

at time o. 
E = death rate (of active individuals) 

~ = - ~AP - vP + (A. - oA)A ; 

The equilibrium point is seen to be 

A = (A - E)V 
0 ~E + \!0 

dA_ 
dt - vP - EA 

if X ;:: E 

To determine the nature of the equilibrium, let 

then 

A= A (1 + a), 
0 

V ~~ = V€(1 + p) - V€(1 + a) 

a, p small 



... 
- 23-

da _ 
dt - - e:a + e:p 

after algebraic manipulations, the constant terms cancel and we obtain 

The matrix of the coefficients is 

I= 
-e: 

~ve:2 - v2 x5 + 25e:v2 

e:(~e: + v5) 

let A1, A2 be the eigenvalues. Then 

€ 

-~vx - v2 5 
(~e: + VD) 

v(A - e:) 

If A > e:, A1A2 > O; since at least one of the roots is negative, this means 

they both are negative, and equilibrium is stable. If \ < e:1 then the only 

equilibrium point is P0 = A0 = 0; since ),1A2 < 0 in that case, the equilibrium 

may be unstable. 

If A = e:, then P0 = A0 = 0 is the only equilibrium point, and it may be 

stable, unstable, or oscillatory, depending upon the initial conditions. 


