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Abstract 

Genetically modified corn crops have been developed to reduce the impact 
of potentially devastating agricultural pests such as the European Corn Borer 
( Ostrinia nubilalis). Continuous exposure to Bt toxins in genetically modified 
corn results in the increased prevalence of European Corn Borers that are resis­
tant to these toxins. In this article, we first analyze the evolution of resistance 
in a uniform environment using a system of nonlinear difference equations. The 
evolution of resistance is then simulated in spatially explicit environments based 
on the biology of the insect and using parameters found in the literature. The 
optimum initial conditions and various stripe patterns on a corn field which 
will minimize the evolution of a resistant population are explored numerically . 
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1 Introduction 

Insect pests are inherent problems in the agriculture industry which have plagued 
growers for countless years. As a result, a multitude of insecticides have been em­
ployed for their control. However, environmental and human health issues have always 
been a concern surrounding pesticide use. Recent technological advances, though, 
have allowed for a dramatic decrease in the use of externally applied insecticides. 
Crops have been engineered to contain exotic genes which allow them to exhibit con­
tinual expression of toxins, thus making external application of insecticides virtually 
unnecessary in combating infestations of some pests. The result is an approximate 
90% reduction in annual insecticide use for genetically modified sweet corn, which 
amounts to a savings of over 700,000 pounds of insecticides annually [8]. It is es­
timated that $2.7 billion of the $8.1 billion spent annually on insecticides could be 
replaced by genetically modified crops [8]. 

A particular transgenic crop, known as Bt corn, has been manufactured to be 
resistant to the European Corn Borer ( Ostrinia nubilalis). The European Corn Borer 
is the most devastating insect pest of corn in the United States and Canada. It causes 
damage and requires control resulting in losses that exceed $1 billion every year [13]. 
Bt corn provides more effective and consistent control of 0. nubilalis than insecticides 
for a lower cost than insecticide application and with fewer health or environmental 
concerns [16]. This crop contains a gene from the naturally occurring soil bacte­
ria Bacillus thuringiensis, which produces a protein lethal to European Corn Borer 
larvae. Various strains of genetically modified Bt corn produce crystalline proteins 
known as Cry Proteins in different forms that selectively kill groups of insects. The 
protein forms Cry1Ab, Cry1Ac, and Cry9C are effective against Ostrinia nubilalis, 
with Cry1Ab being the most commonly used [13]. The toxic form of the protein is 
activated by the insect's digestive enzymes. It binds to specific receptors on the lining 
of the intestine and the cells rupture, letting the gut contents leak into the body fluid. 
Most larvae die within two or three days of initial ingestion [13]. 

A characteristic of organisms in naturally occurring biological systems is the abil­
ity to adapt for survival. Studies show that there exists substantial genetic diversity 
for minor resistance genes to be present in wild populations of 0. nubilalis [16]. If 
this gene happened to emerge in an environment comprised entirely of Bt corn, the 
individuals with the genetic trait that makes them resistant would survive, while all 
the normal insects would perish. The greater the duration of exposure and the higher 
the proportion of exposed individuals, the faster the process of resistance development 
occurs, as the intensity of selection is increased [14]. Much to the dismay of growers, 
selection for the resistant insect would occur, and the survivors would proliferate, 
producing an entirely resistant population. 

The resistant allele has been assumed to be recessive; however, studies have 
demonstrated that insects with one resistant allele (R) and one susceptible allele 
(S), or heterozygotes, are not completely susceptible to Bt [1]. Instead they display a 
range of survival rates depending on the degree of plant toxicity. Incompletely dom­
inant Bt resistance can therefore be effectively dominant at some Bt concentrations 
[1]. Major incidences of resistance can be associated with the loss of affinity of the 
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toxin produced by the Cry protein for the toxin receptors in the gut of the insect [1]. 
Disrupted or altered enzyme activity in the gut of the insect is a factor which could 
make the allele phenotypically display incomplete dominance [1]. Levels of codomi­
nance are determined by the portion of heterozygotes which survive Bt exposure. 

The U.S. government recognizes the magnitude of the problem of selective evo­
lution that could accompany widespread use of genetically modified crops. As a 
result, the U.S. Environmental Protection Agency (EPA) and the U.S. Department 
of Agriculture (USDA) have proposed guidelines to manage insecticide resistance 
[8]. A strategy necessary for the control of insect resistance is known as the high 
dose/structured refuge strategy [8]. This strategy consists of planting Bt corn with 
high levels of toxin expression along with sufficient normal corn to provide an ade­
quate number of susceptible adult insects to dilute the frequency of resistant genes. 
Planting refuges, which are proportions of crop acreage designated to contain only 
non-Bt corn, have also been shown to be economically beneficial [16]. Studies show 
that Bt cultivars must produce a toxin concentration strong enough to kill most in­
sects which are heterozygous for the resistance gene [15]. According to the Scientific 
Advisory Panel, a toxin concentration that is 25 times the concentration required 
to kill susceptible insects would be sufficient to kill heterozygotes [15]. Growers in 
the U.S. are required to plant non-Bt corn refuge over at least 20% of their total 
field acreage [8]. This ratio has been shown to be the most "economically superior" 
considering all costs involved for farmers [16]. The minimum refuge area of 20% is 
supported by data on regional genetic structure of 0. nubilalis along with theoret­
ical models [16]. The minimum recommended portion of normal corn on a field is 
increased to 40% if the land is to be sprayed, in order to increase the chance of sus­
ceptibles surviving [16]. 

The high dose/structured refuge strategy is based on three major assumptions 
which are outlined by the 1998 regional research committee NC-205 [16]. The first 
is that the frequency of major resistance genes must be sufficiently low to ensure 
that nearly all resistant genes are found in heterozygous (RS) individuals. The sec­
ond is that heterozygote survival rates must be very low on Bt plants. This occurs 
when the resistance gene is nearly recessive (the codominance level is low). The third 
assumption is that random mating occurs within the typical dispersal distances of 
the adults, so that resistant insects have enough susceptible individuals within their 
range of travel to make it likely that their offspring will be heterozygous rather than 
homozygous for the resistant allele. These assumptions were considered when para­
meters were designated for our simulation. 

The ultimate goal of this project is to determine possible refuge configurations 
which may reduce the rate of evolution of a resistant population of 0. nubilalis, based 
on a 20% refuge plan. We begin by analyzing a deterministic model representing the 
basic population dynamics of 0. nubilalis. We then analyze a deterministic model 
with selection to evaluate the population dynamics of the insect in an environment 
with selective pressure. This is followed by a discussion of the operation of the com­
puter simulation and the application of the derived models to this simulation. Finally, 
the results and conclusions obtained from the performed simulations are given . 
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2 Deterministic Model 

We begin with the introduction and analysis of a deterministic model which represents 
the basic vital dynamics of Ostrinia nubilalis. This model generates the number of 
larvae in a population based on the number of adults in the previous generation, and 
we assume there is no overlap of generations. The larval stage is vital to consider, 
as it is at this stage that the insect damages the corn plant through herbivory. This 
model will be used as a reproductive mechanism in our computer simulations. 

2.1 Model 

To build a model of the population dynamics of 0. nubilalis, we assume that the 
initial larval population at any generation is equivalent to the number of eggs that 
hatch. We define J.Ll to be the fraction of eggs that are not viable, so 1 - J.Ll is the 
fraction of eggs laid by the previous generation that survive to the larval stage. The 
number of initial larvae, then, is 1 - J.Ll multiplied by the total number of eggs laid. 
We define 1 to be the fraction of females in the adult population and an to be the 
total number of adults, so 1an becomes the total number of females in the adult 
population of the nth generation. The average number of eggs laid by an adult female 
is defined as {3, so !f3an is the total number of eggs laid by generation n. This leads 
to the equation: 

(1) 

The adult population of the next generation depends on the larvae of the present 
generation. We use the Verhulst Model to provide a basis for the derivation of our 
model. The Verhulst Model is defined as follows [2]: 

This model was chosen because it represents a population in which Xn+l is bounded 
above by a carrying capacity, k = ~'and Xn+l is close to k whenever the Xn population 
is large. 

It is assumed that generations do not overlap and that each corn plant can only 
hold a limited number of larvae. The number of adults of the next generation cannot 
exceed the number of larvae of the present generation. From this information the 
following difference equation is derived: 

aln 
a ----

n+l - 1 + J.L2ln (2) 

where: 

1. a is a constant that must be less than or equal to 1 for an+l not to exceed ln. 

For simplification, let a = 1. 

2. J.L2 is the larval death rate. 
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3. k1 = .1... is the adult carrying capacity. 
1-'2 

Substituting equation (2) into equation (1) yields the following difference equation: 

l _ ')',6(1 - J.ll) ln-1 
n+l-

1 + J.L2 ln-1 
(3) 

Equation (3) can be expanded as a system of equations. First, we introduce the 
following definition: 

Substituting this equation into equation (3), we define the system of equations as: 

l _ ')',6(1 - J.ll) Jn 
n+l- . 

1 + J.L2 )n 

Jn+l = ln 

The carrying capacity, or maximum survival rate of the population is: 

2.2 Analysis of the Model 

(4) 

(5) 

We will now analyze the system of equations (4) and (5) for equilibria and their 
respective stabilities. This process allows us to see the long term dynamics of the 
model, and determine the eventual fate of the insect population. 

2.2.1 Equilibrium Points 

The equilibrium points are derived by defining the reproduction functions f(l, j) and 
g(l,j), and setting them equal to land j respectively. 

Definition 1 A reproduction function is a function f : I ---t I, I C ~n, n = 1, 2, 3 ... 
such that ifxm = (xl,m,X2,m,···,Xn,m) E I,m = 0,1,2 ... , then Xm = fm(xo), where 
fm denotes f of o ... of, and f 0 (xo) := Xo-...___.., 

m times 

The reproduction functions of this model are: 

f(l, j) = ')'/3(1 - J.ll).a j 
1 + J.l2 J 

g(l,j)=l 
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Definition 2 If !I : I -+ I, h : I -+ I, ... fn : I -+ I, I C JR.n, n = 1, 2, 3 ... are 
reproduction functions of a system of difference equations, then, x* =(xi, x2, ... , x~) E 
I, is said to be an equilibrium point of fi, h, ... , fn if and only if JI(x*) =xi, h(x*) = 
x2, ... , fn(x*) = x~ are true. 

In order to find the equilibrium points we set f(l*, j*) = l* and g(l*, j*) = j*. The 
equilibrium points are: 

Where ii = li, and i2 = l2. 

l~ = 0 

l~ = (1',8(1- ILl)- 1) 
/L2 

2.3 Stability of Equilibria 

Definition 3 An equilibrium point x* = (xi, x2, ... , x~) E I, n = 1, 2, 3 ... of a system 
of reproduction functions fi : I-+ I, h : I-+ I, ... fn : I -+I, I C JRn is stable if and 
only if VEm > 0 38m > 0, m = 1, 2, ... , n, such that lxm,p- x:n,l < Em, p = 1, 2, 3 ... 
whenever lxm,O- x:n,l <Om. 

Theorem 1 If A is the Jacobian matrix of the system of reproduction functions 
f(x*, y*) and g(x*, y*), and if all roots of the characteristic equation det(A(x*, y*)­
>.I) satisfy 1>.1 < 1, then all solutions of the system with initial values sufficiently 
close to an equilibrium approch the equilibrium {4]. 

The characteristic equations for li = 0 and l2 = ('i't3(l-JL1)-l) derived from the Jacobian 
JL2 

matrix of the reproduction functions are: 

and 

respectively. 
From the characteristic equations we determine the stability of the fixed points 

by using Theorem 1. 

For li = 0, ).. is: 

For l* = ('i';3(l-JL1)-l) ).. is: 
2 JL2 ' 
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Whenever -y(1 ~J.LI) < (3, then l.\1l > 1, and l.\2l < 1. Here li = 0 is unstable, and 

l2 = ('Y.B( 1-J.L1)-1) is locally asymptotically stable. If -(1 1 ) > (3, then 1>.11 < 1, and 
}'2 'Y -J.Ll 

l2 is locally asymptotically stable. In this instance the equilibrium point l2 does not 
make sense biologically, since whenever 'Y( 1 ~J.LI) :::; f3 is true, l2 is not a positive value. 

If -y,B(LJ.Ll) then li = l2 = 0, and the point li = l2 = 0 is an equilibrium with 
1>.1 = 1. In this case 1>.1 = 1 tells us that the equilibrium point li = l2 = 0 is an 
attractor whenever ln > 0 and a repeller whenever ln < 0. According to Theorem 1, 
li = l2 = 0 would not be considered stable if it were not an endpoint of the interval 
on which f(l,j) and g(l,j) are defined; however, since ln < 0 does not have biolog­
ical significance (f(l,j) and g(l,j) are not defined when l < 0) we take the point 
li = l2 = 0 to be locally asymptotically stable. 

f3 l* 1 l* 2 

7(i~J.Lll < f3 Unstable Asymptotically Stable 
___l__- f3 
-;(1-J.Lll - Asymptotically Stable -

-y(i~J.Ll) > f3 Asymptotically Stable -
. . .. 

Table 2: Stab2hty Chart for Eqmhbrw 

Note: If -y(l~JLI) = ,B then l2 = li = 0. If -y(l~JLtl > ,B then l2 < 0, and does not make sense biologically . 

In summary, the characteristics of the equilibria are determined by the way the 
value of (3, the number of eggs laid by each female, relates to the value of -y( 1 ~J.Ll), 
the reciprocal of the fraction of the population that is female, multiplied by the 
fraction of eggs that hatch. If (3 > -y( 1 ~J.Ll), there are two eqilibria, li = 0, which is 
unstable, and l2 > 0, which is asymptotically stable. In this case the population of 
0. nubilalis reaches a stable positive population size. If f3 ::; -y(1 ~J.L1 , there is only 
one non-negative equilibrium, li = 0 which is asymptotically stable. fn this case the 
population eventually goes extinct. 

3 Deterministic Model with Selection 

In this section, we introduce and analyze a deterministic model representing the 
selection of resistance in Ostrinia nubilalis. This model will be used to calculate 
succeeding generations based on the selective pressures of the environment. The 
frequencies of two alleles are analyzed. These include the resistance allele R, which 
represents the ability to survive on Bt corn, and the susceptibility allele S, which 
represents no resistance to the Bt toxin. The three possible genotypes of these alleles 
are: RR, RS, and SS. 

Again, we assume that the population changes in a discrete-time manner so there 
exists no overlapping of generations. The fitness of an individual (relative probability 
of survival and reproduction) is independent of its genotype frequency. Since this 
model assumes random mating, it is related to the Hardy- Weinberg Principle for 
establishing proportions of initial genotypes [12]. 
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3.1 Hardy-Weinberg Principle 

The Hardy- Weinberg Principle states that random mating among genotypes is equiv­
alent to random combination of gametes and assumes the following conditions: 

1. Fitness is independent of genotype frequency. 

2. There is no movement into or out of the system. 

3. Population size is large enough to ignore stochastic effects. 

4. No mutations occur at the locus of the allele of interest. 

5. Mate selection is independent of genotype. 

The alleles R and S are defined as having frequencies p and q respectively, where 
p + q = 1. According to the Hardy- Weinberg Principle, in a population without 
overlapping generations, only a single generation of random mating is needed for the 
frequencies of the genotypes to be established as follows [12]: 

2 
PRR=P 

PRS = 2pq 
2 

Pss = q 

This is commonly referred to as Hardy- Weinberg equilibrium [12]. 

3.2 Model 

We now introduce the notion of fitness ( w), which represents the relative survival 
rates of individuals. The following table summarizes the information required to find 
the respective frequencies of the adult population given an initial population of larvae 
assumed to be in Hardy- Weinberg equilibrium. 

RR RS ss 
Larvae Freq. p"" 2pq q"" 
Relative Survival Rates WRR WRS wss 
Relative Adult Freq. p""WRR 2pqWRS q""wss 
Adult Freq. p""wRR/w 2pqwRs/w q""wss/w 
Table 1: Selectwn Model for Two Alleles at a Smgle Locus {12] 

The mean fitness of the population at generation n is given by: 

w(n) = p~WRR + 2pnqnWRs + q~Wss 

and the average fitnesses of the alleles at generation n are defined as: 

WR(n) = PnWRR + qnWRs 

ws(n) = PnWRs + qnWss 
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The frequencies of the alleles in generation n are given by the following system of 
difference equations [12]: 

2 Pn = P + pq 
2 qn = q + pq 

(8) 
(9) 

This system can be reduced to a single formula. Since p + q = 1 for all generations, 
it is obvious that: 

qn = 1- Pn (10) 

Substituting the values of the adult frequencies of R from Table 1 into (8), the 
difference equation for the frequency of the allele R in generation n + 1 becomes: 

PnWR(n) 
Pn+l = w(n) (11) 

Now we focus our attention on deriving equations that represent the fitness of the 
three different genotypes: RR, RS, and SS. These fitnesses will help us clearly define 
the values of the fitnesses of each allele. The fitness of the genotype depends on the 
environment in which it is found: Bt corn or normal corn. 

WRR = Prob[RS found in Bt]wRs[Bt] + Prob[RS found in normal]wRs[normal] 

WRs = Prob[RS found in Bt]wRs[Bt] + Prob[RS found in normal]wRs[normal] 

w88 = Prob[SS found in Bt]wss[Bt] + Prob[SS found in normal]wss[normal] 

The following simplifying assumptions are vital to the deterministic model: 

1. An individual with both resistant alleles is unaffected by Bt corn. Hence, 
WRR[Bt] = 1. 

2. An individual with genotype RS is not completely resistant to Bt corn. Hence, 
0 :S WRs[Bt] :S 0.025 [16]. Here we denote WRs as 8. 

3. An individual with both non-resistant alleles has no resistance to Bt corn. 
Hence, Wss[Bt] = 0 [16]. 

4. Individuals of all genotypes persist on normal corn. Hence, WRR[normal] 
wRs[normal] = Wss[normal] = 1. 

Therefore, if we define !Bt to be the fraction of Bt corn, it is easy to see that 

WRR = 1 

WRS = fBt8 + (1- fBt) = 1- (1- 8)fBt 

Wss = 1- !Bt 

From this information and equation (11) we obtain a simplified equation for Pn+l, 
and since qn = 1 - Pn we consider only Pn . 

(12) 
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3.3 Analysis of the Model 

We will now analyze the nonlinear difference equation (12) for equilibria and their 
respective stabilities. This process allows us to see the long term dynamics of the 
model, and determine the eventual fate of the insect population. 

3.3.1 Equilibrium Points 

The reproduction function for equation (12) is: 

f(p) = p- pqfBt(1- 8) 
1 - q2 fBt + 2pqfBt(1 - 8) 

The equilibrium points of this model are: 

p~ = 0, q~ = 1 

p; = 1, q~ = 0 
8 * 3(1- 8) 

p; = (3- 28)' q3 = (3- 28) 

If 8 = 0 then P3 = Pi = 0 and if 8 = 1 then P3 = P2 = 1. 

3.3.2 Stability of Equilibria 

Theorem 2 Let x* be a hyperbolic fixed point (an equilibrium point where lf'(x*)l =!= 
1} of a smooth function f :I---t I where I is an open interval in lR [5}. 

1. If lf'(x*)l < 1 , then x* is locally asymptotically stable. 

2. If lf'(x*)l > 1 , then x* is unstable. 

From the reproduction function we determine the stability of the fixed points by using 
Theorem 2. 

For Pi = 0, f'(p) is: 

lf'(p*)l = 1- fBt(1- 8) > 1 'r/8 and f 
1 (1 _ fBt) - ' Bt 

For P2 = 1, f'(p) is: 

lf'(p;)l = 1 + 3fBt(1- 8) ~ 1, 'r/8 and fBt 

For P3 = (3! 26), f' (p) is: 

1 * 3fBt(1 - 8) + 128- 31 
If (Pa)l = 3fBt( 1 _ 8)2 + 128 _ 31 :S 1, 'r/8 and fBt 
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For 0 < 8 < 1 and fbt =/= 0, the less than or equal to and greater than or equal to 
signs become strictly less than and greater than, respectively. Thus for 0 < 8 < 1, P3 
is locally asymptotically stable (lf'(p3)1 < 1), and Pi and Pz are unstable (IJ'(pi)l > 1 
and lf'(p3)1 > 1). The special cases: 8 = 0, 8 = 1 and JEt= 0 are considered further 
in the following section. 

Special Cases 

When JEt = 0, then Wnn = wnn[normal] = Wns = Wns[normal] = Wss = Wss[normal] = 
1, and there is no selection occuring. Thus the population is in Hardy- Weinberg Equi­
librium, and p = p*, Vp E [0, 1]. In this case p* is stable, but is not asymptotically 
stable. 

The following summarizes the special cases of 8 = 0 and 8 = 1: 

1. If 8 = 1, Wnn[Bt] = 1 and Wss[Bt] = 0. R is completely dominant. 

2. If 8 = 0, Wnn[Bt] = 1 and wss[Bt] = 0. R is completely recessive. 

Note that for 8 = 0 the first derivatives of the reproduction function are: 
For Pi= 0, f'(p) is: 

lf'(pi)l = 1 

For Pz = 1, f'(p) is: 

For P3 = (3_!28), f' (p) is: 

Also note that for 8 = 1 the first derivatives of the reproduction function are given 
as follows. 
For Pi = 1, f'(p) is: 

For Pz = 1, f'(p) is: 

For P3 = (3_!28), f' (p) is: 

lf'(p3)1 = 1 

To determine the stability of the nonhyperbolic equilibrium points that exist when 
8 = 0, and when 8 = 1, an additional technique is required. 
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Figure 1: Cobwebbing Graphs: Deterministic Model with Selection 

Cobwebbing Graphs 

Cobbwebbing is used to graphically verify the stability of the equilibria. According 
to the graphs, for 8 = 0, Pi = Pa = 0 is locally asymptotically stable, and P2 = 1 
is unstable. For 8 = 1, P2 = P3 = 1 is locally asymptotically stable, and Pi = 0 is 
unstable. 

The following chart summarizes the stability of the equilibria for different values 
of 8 . 

8 Pi P2 Pa 
8=0 Asymptotically Stable Unstable -

0<8<1 Unstable Unstable Asymptotically Stable 
8=1 Unstable Asymptotically Stable -

.. . . 
Table 3: Stab~hty Chart for Equ~hbna 

Note: If 6 = 0 then P3 = Pi = 0 and if {j = 1 then P3 = P2 = 1. 

In summary, the equilibria and their characteristics are determined by the value of 
8. If 8 = 0, the resistance allele (R) is essentially fully recessive, so all heterozygotes 
perish on Bt corn. In this case, there is only one stable equilibrium (p* = 0), which 
means that the resistance allele (R) goes extinct for any initial frequency of this allele. 
If 0 < 8 < 1, then the resistance allele will not go extinct for any initial frequency. 
Instead, the frequency approaches the equilibrium point: P3 = 3_!26). If 8 = 1, the 
resistance allele is fully dominant, so all heterozygotes survive on ~t corn. In this case, 
the stable equilibrium point is p* = 1, which means that the frequency of resistance 
will approach 100% for any initial resistance frequency. 

4 Stochastic Simulation 

We created a computer simulation using JAVA to analyze the evolution of resistance 
corresponding to various arrangements of refuge within a Bt corn field. The relative 
widths of stripes in a field were varied to test the effects of the heterogeneity of the 
environment on the evolution of resistance. Each simulation was run 30 times over 
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100 generations. The changes in the frequencies of the resistant (R) and susceptible 
(S) alleles were determined after each larval generation, and the ultimate dynamics 
of the allele frequencies occurring in each generated field were investigated. 

Knowledge of the biology of the insect is essential for constructing the simulations 
to yield the most realistic results possible. To make biological processes simpler for 
the efficiency of the simulation, however, individual insects are disregarded and the 
processes they undergo are applied to alleles. The equations (1) and (2) are used 
to generate succeeding generations of larval and adult alleles. An adult population 
consisting of only females is considered, which means that new alleles are generated 
from every existing allele. The reproduction habits of 0. nubilalis are incorporated 
in the simulation as well, represented by the creation and distribution of new alleles. 

Insect populations are affected by a variety of naturally occurring events. The 
survival rates of larvae are different for those that hatch in the spring and those that 
hatch during mid-summer [3]. The toxicity of the environment in which the larvae is 
born also influences survival rates according to alleles involved. We assume that that 
the resistant allele (R) does not adversely affect the ability of the insect to reproduce. 
We also assume that no homozygous susceptible individuals survive on Bt corn [16]. 

Field Arrangement 

The simulations were performed for five different arrangements of refuge within a 
Bt corn field. One spatial arrangement contains 100% Bt corn and one contains 
100% normal corn. These arrangements serve as controls to test the accuracy of the 
simulations, as the general trend of the results can be predicted. The remaining three 
fields consist of 80% Bt corn and 20% non-Bt corn with varying degrees of uniformity 
of integration in stripe patterns. The simulated field is composed of 200x50 square 
patches. Each stripe is one patch wide and runs the entire length of the field. The 
patch dimensions were established to be 215 ft2 for the efficiency of insect distribution. 
Therefore, the simulated field size is approximately 8 miles wide by 2 miles long and 
is composed of 200 stripes. The specific dimensions, however, are not as significant 
as the degree of uniformity because the field is programmed as being torus shaped. 
The uniformity of the three heterogeneous fields varies as follows: 

1. Normal corn and Bt corn are highly integrated with every 4 stripes of Bt corn 
alternating with 1 stripe of normal corn. 

2. Normal corn and Bt corn are less integrated with every 80 stripes of Bt corn 
alternating with 20 stripes of normal corn. 

3. Normal corn and Bt corn are not integrated, but placed in blocks with 160 
stripes of Bt corn adjacent to 40 stripes of normal corn . 
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The figure below shows a pictorial representation of the five arrangements. 

Field A 

All Bt Arrangment 

Field C 
80 Stripes BT and 20 Stripes Non·BT 

Arrangment 

Field E 
All Non·Bt Corn 

Arrangment 

Field 8 
4 Stripes BT and 1 Stripe Non·BT 

Arrangment 

Field D 
160 Stripes 9T and 40 Stripes Non-BT 

Arrangment 

Ill BT Corn 

1D Non-Corn 

Figure 2: Field Arrangements 

Numerical Parameters 

Many of the numerical parameters which determine the dynamics of the simulations 
were collected from a variety of literary sources. The remaining were deduced relative 
to each other considering the efficiency of the simulation. The parameters used in the 
simulation are: 

1. The initial frequency of the resistance allele (R) is: p0 =8.39xlo-4 [16]. 

2. The fitness of the genotype RS on Bt corn is: WRs = 8 = 0.025 [16]. 

3. The fitness of the genotype S S on Bt corn is: Wss = 0 [16]. 

4. The fitness of the genotype RR on Bt corn is: WRR = 1. 

5. Only females were considered, thus 'Y = 1. 

6. The number of egg packets laid by each female insect ranges from 15 to 25 
[18][9] . 

7. The average number of eggs per packet laid by each female insect is 23 [9]. 
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8. The fraction of eggs laid which are not viable, /Ll, is 0.65. 

9. The larval death rates are: JL2,1 = 0.02 and J.lz,2 = 0.09. These values were esti­
mated to be as realistic as possible considering a low enough carrying capacity 
to allow the simulations run efficiently. 

10. The initial capacity of alleles per patch is: 300. 

11. The maximum egg laying range of the female is 1500 ft [3]. 

12. The size of the field is 8 miles by 2 miles. 

The Simulation 

The simulation begins with a field composed of square patches. A number of alleles 
are randomly distributed over an empty field with a limit on the initial number of 
alleles placed in each patch. This initial distribution of alleles is used for all simula­
tions on all fields so that the dynamics can be statistically compared. The specific 
composition of the heterogeneity of the field is then set, and in each patch, processes 
are set to occur over each generation. These processes are mortality, reproduction, 
and distribution . 

Mortality 

The first vital process to occur within each patch is death. There are two types 
of mortality which occur here: death due to natural causes such as predation or 
competition (natural death), and death due to susceptibility to Bt (Bt death). Natural 
death occurs at the same rate for both alleles. The number of larval alleles surviving 
to adulthood are generated using equation (2), where o: = 1, and J.lz varies between 
two values which alternate with successive generations. These are: J.lz,1 = 0.02 and 
JL2 ,2 = 0.09. Bt death is variable depending on whether or not the patch is composed of 
Bt corn and depending on the fitness of each allele with respect to the environment. If 
the patch is composed of normal corn, Bt death does not occur for either allele. If the 
patch is composed of Bt corn, the number of surviving resistant (R) and susceptible 
(S) alleles are represented by the following equations: 

Rn+l = WRRn 

Sn+I = wsSn 

The fitnesses wR and w8 are defined by equations (6) and (7). With the defined 
parameters, these equations become: 

WR(n) = Pn + Qn(0.025) 

ws(n) = Pn(0.025) 

The frequencies Pn and Qn are recalculated with each generation. 
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Reproduction 

During the reproduction process, a number of new alleles are created in each patch, 
simulating the number of eggs laid by the female adults. This process comes from 
equation (1). For the simulation, f3 = (#eggs per packet)(#of packets), where the 
number of eggs per packet is 23, and the number of packets laid is a randomly 
generated number between 15 and 25. The number of new alleles produced, then, is: 
23(1- .65) and these will be distributed between 15 and 25 times. 

Distribution 

During the stochastic distribution process, alleles are distributed as the female adult 
would distribute her eggs. We assume that the female is more likely to lay eggs 
near her place of birth. We represent this with a two-dimensional approximation 
to a normal distribution of alleles, centered over the patch in which the allele was 
created. The maximum range in which a female lays eggs is set to be 1500 ft, so for 
the efficiency of placing the normal distribution by patch, this number is divided by 
seven, making each patch 215 ft2• Each surrounding patch within the range is assigned 
a probability of having an allele placed in it according to a normal distribution chart 
[11] . 
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5 Results 

The results of 30 simulations of the frequency of the resistance allele (R) in the overall 
population are plotted over 100 generations. The means of the fields are graphed 
against each other for comparison. Graphs of the standard deviations for fields B, C, 
D, and E are also included in this section. The simulations and standard deviations of 
Field A are not included because the populations of both alleles (RandS) go extinct 
within very few generations. 

Generation Plots 

The following graphs show the results of 30 simulations over a 100 generation time 
period. 
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Figure 3: Stochastic Simulation Graphs 
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Means 

The following graph incorporates the plot of the means for fields B, C, D, and E. The 
mean converges the overall behavior of the simulations for every field. Field A is not 
shown since allele R and allele S go extinct within the first generation. 

II) 
u 
c 

"' 

1.0 

-~ 0.5 
II) 

[t' 

'it1 

0.0 

All Means 

0 FieldS 

+ FieldC 

X Field D 

• Field E 

10 20 30 40 50 60 70 80 90 1 DO 
Generation 

Figure 4: Means 
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Standard Deviation 

The following graphs show the standard deviation of fields B, C, D, and E for each 
generation. On all fields, except field B, the standard deviations eventually go to zero. 
This occurs when all simulations have reached equilibrium. Field B does not show 
this behavior because of the single simulation in which the resistant allele (R) goes 
extinct. Field A is not shown since both alleles go extinct within the first generation. 
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Figure 5: Standard Deviation Graphs 

19 



• 

• 

• 

Deterministic Model 

The graphs of the deterministic model are included to provide a visual reference for 
comparison with the graphs of the stochastic simulations. The evolution of resistance 
in a field with 80% Bt corn and 8 = 0.025 for two different initial frequencies of the 
resistant allele (R) is graphed. In addition, the evolution of resistance after 200 gen­
erations is included for fields with varying percentages of normal corn. The resistance 

Percenl of R based on 80% bt corn, and delta ..Q.025 

0.045 
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l 0.03 

40 50 60 70 00 00 100 
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Figure 6: Deterministic Model Graphs 

in the deterministic model does not approach 100% as it does in the simulation. This 
is because this model represents an infinitely large population in which an allele with 
a low frequency does not go extinct from natural causes. 

6 Discussion 

We observed through our research that the evolution of resistance in the stochas­
tic simulations followed the general trend of evolution depicted by the deterministic 
models. The differences between the mean trends of the simulations are a result of 
the varying degrees of heterogeneity. 

Spatial arrangement is not a factor of evolution in Field A because it is comprised 
entirely of Bt corn. The deterministic model shows that the resistance should im­
mediately increase under these conditions. However, in our simulations, the initial 
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frequency of the resistance allele (R) is very low relative to the carrying capacities 
of the patches. The result is the extinction of the resistance allele within the first 
few generations due to natural death. The susceptible alleles are all eliminated by Bt 
exposure. Thus, in our computer simulations, the entire population goes extinct on 
Bt corn with a low initial frequency of resistance. 

Field B is the most thoroughly mixed field. Bt and normal corn are integrated on 
this field by alternating four stripes of Bt corn with one stripe of normal corn. The 
graph of Field B in Figure 3 depicts the behavior of resistance evolution for 30 simu­
lations. In 29 of the simulations, the population reaches 100% resistance after various 
lengths of time, but the resistance allele goes extinct in one simulation. The stochas­
tic process of death by natural selection forces the resistance allele in one simulation 
to be eliminated. This result does not present a problem though, as it is a justified 
anomaly. The graphs of the means and the standard deviations were included for 
statistical analysis. The mean of each field summarizes the overall behavior of that 
field. The mean of Field B is not altered significantly by the simulation in which the 
resistance goes extinct. The standard deviation does not decrease to zero after its 
peak value as it does in each of the other fields. This is the effect of the simulation 
in which resistance is eliminated. 

The two types of corn are mixed much less on Field C than on Field B. Bt and 
normal corn are integrated on this field by alternating 80 stripes of Bt corn with 
20 stripes of normal corn. The interval in which all simulations reach 100% resis­
tance is relatively small. Resistance increases rapidly within the first ten generations; 
however, after the tenth generation, the rate of evolution of resistance appears to 
decrease. 

The two types of corn are not mixed on Field D. All Bt corn (160 stripes) is 
placed in a block adjacent to the entire portion of normal corn (40 stripes). The 
simulations all appear to reach 80% rapidly, then the rate of increase of resistance 
sharply decreases. 

Spatial arrangement is not a factor of evolution in Field E because it is comprised 
entirely of normal corn. Our deterministic model shows that the allele frequencies 
under these conditions would approach a positive equilibrium in a natural system 
with a very large initial population of insects. However, since the initial frequency of 
the resistance allele (R), is very low relative to the carrying capacities of the patches, 
the resistance allele goes extinct within the first few generations due to natural death. 
When the resistance drops to approximately 0.01 %, it appears to show a brief increase 
before going extinct due to the higher natural death rate in our simulations. This 
event may be related to the equilibrium which would be reached in a natural system, 
as demonstrated by the deterministic model (Figure 6). 

The initial frequency of the resistance allele is significant in our simulations. The 
high dose/structured refuge strategy proposes that the inital frequency of the resis­
tance allele must be sufficiently low to ensure that nearly all resistant genes in the 
population are in heterozygous individuals. One literary source gave an initial fre­
quency value of 8.39x10-4 and a 95% confidence interval for the frequency of [0, 
4.38x10-3] for very large populations [16]. However, for our stochastic simulations, 
these tested values proved to be too low. The combination of death by Bt toxin in 
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the heterozygous individuals along with natural death rates pushed the resistance 
allele to extinction because the carrying capacity of each patch was very low relative 
to the initial frequency. Therefore, to obtain better results, a higher initial frequency 
(Po = 0.05) was used. This initial frequency of the resistant allele was high enough 
result in evolution of 100% resistance over time, which is the main concern of our 
project. 

7 Conclusions 

The simulations performed showed that normal corn more intricately interspersed 
with Bt corn results in the slower increase of resistance frequency. The general be­
havior pattern of the evolution of resistance observed in the deterministic models is 
the same as that observed in the stochastic simulations, which leads us to conclude 
that the results of the simulation are reasonable bases for predicting long term be­
havior of resistance frequency. The only inconsistancies occurred in the extreme cases 
of the pure Bt and pure normal corn fields. These were results of the low carrying 
capacity relative to the low initial frequency of the resistance allele and the effects of 
natural death. 

Although less distinction can be observed between the two fields with less inte­
gration, the distinction between the least integrated and most integrated fields can 
be clearly observed in the results of the simulations. The resistance frequency ap­
proached 100% in each case; however, the rates at which the frequency increased 
appeared to depend on the level of refuge integration. This phenomenon is most 
likely related to the distribution of resistance alleles. In a more thorougly mixed 
environment, resistant insects are more likely to be in close vicinity with susceptible 
insects. This increases the chances of maintaining a significant number of heterozy­
gotes in the population, which are less likely to survive than insects homozygous for 
the resistance gene. Thus, with a sufficiently diluted frequency of resistance in a 
naturally large population achieved by increased intricacy of field refuge integration, 
evolution can be slowed. 
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