
1 March 13,2000 

Self-Modeling Regression with Random Effects Using Penalized Splines 

Naomi S. Altman Julio C. Villarreal 

Cornell University 

Acknowledgements: This work was partially supported by NSF grant DMS #9625350 

Abstract 

In many longitudinal studies, the response can be modeled as a (discretely sampled) curve over 

time for each subject. Often these curves have a common shape function and individual subjects 

differ from the common shape by a transformation ofthe time and response scales. Lindstrom 

(1995) represented the common shape by a free-knot regression spline, and used a parametric 

random effects model to represent the differences between curves. We extend Lindstrom's work by 

representing the common shape by a penalized regression spline, and use a parametric random 

effects model to represent the differences between curves. The use of penalized regression splines 

allows for a generalization in the modeling, estimation, and testing of parameters and is easily 

implemented. An iterative two-step algorithm is proposed for fitting the model. 

keywords: longitudinal data; semi-parametric; smoothing; penalized spline; random effects; 

functional data 

1. Introduction 

In many longitudinal studies, the response to be modeled is a continuous curve measured over time. 

Examples include EKG readings, growth curves, or serum glucose levels following a meal. The 

common factor in all of these examples is that the response curves share a similar shape e.g. the 

same number of extrema or inflection points located relatively near some common region. The 

data can be represented as Yu for j=l, ... ,ni and i=l, ... ,m; a sample ofm individuals, curves, or 

experimental units, with the ith individual measured at ni times, tu. 
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In this paper we will consider the Self- Modeling Regression (SEMOR) Model introduced by 

Lawton, Sylvestre and Maggio (1972). The model assumes a common underlying regression 

function J.lo and transformations ofboth the time (t) and response (Y) axes. The SEMOR model is: 

where <l>i (x) is a monotone inverse link transforming the regression function and Ki (x) IS a 

monotone transformation of the time axis. One can choose to model <l>i (x) and Ki (x) 

parametrically or nonparametrically (depending on the regression problem) for specified J.lo (t). 

The errors, su can also be modeled parametrically or nonparametrically and can be serially 

correlated or heteroskedastic, which is useful in the longitudinal setting. This paper will focus on 

nonparametric modeling of J.lo and parametric modeling of <l>i (x) and Ki (x) with known correlation 

structure for the errors. 

We give special attention to the case when <l>i (x) and Ki (x) are both are affine transformations: 

<l>i (x) = aoi + a1i x and Ki (x) == f3oi + f3li x. Then Equation (1) becomes the Shape Invariant 

Model (SIM) (Lawton et. al.1972): 

Since Ali and Bli should be positive, we express them as Ati = exp(ali) and A1i = exp(f31i) 

If one has physical or theoretical justification to pre-specify Jlo (t) parametrically, a number of 

techniques are available. These include Bates and Lindstrom ( 1986) for the case when the 

parameters are fixed and Lindstrom and Bates (1990), Davidian and Giltinan (1995) and Pinheiro 

and Bates (I 995) when parameters are random. The semi-parametric SEMOR model allows 

flexible modeling by estimating J.lo (t) nonparametrically. 
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Several different approaches have been studied in fitting the SIM model. Lawton et. al 1972, 

Kneip and Gasser 1988, Kneip and Engel1995 considered ei =(aoi, ali, l3oi, 13li)T to be fixed effects. 

We will follow Lindstrom (1995) in modeling ei as mixed effects. 

We model the regression function IJ.o (t) by a penalized regression spline (p-spline) implemented as 

a linear mixed effects model. One major gain is that the smoothing parameter can be interpreted as 

a ratio of variance components that can readily be estimated along with the other parameters of the 

model. This allows us to use estimation methods based on maximum likelihood. 

Estimation of the regression function J..lo, mixed effects ei, and variance components will be done 

via a two-step iterative algorithm. The algorithm consists of a linear mixed effects step (p-spline 

fitting) and a nonlinear mixed effects step (mixed effects and variance component estimation). 

2. A Brief Introduction to P-Splines 

Using penalized regression splines (Eilers and Marx 1992, 1996; Ruppert and Carroll, 1997) for 

nonparametric modeling is a compromise between smoothing splines and free-knot regression 

splines. 

Suppose we have the following observations (Yi, ti) for i=1, ... , nand ti in the interval (a, b) modeled 

by: 

(3) 

where J..l is the unknown smooth regression function and the ei are independently and identically 

distributed random variables with zero mean and constant variance cr/ (The i.i.d. assumption can 

be relaxed to handle correlated or heteroskedastic errors). The regression spline model of order 

p ~ 1 is: 
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(4) 

where the parameter to be estimated is J3=(J3o, ... , J3p+k) and { t1. ... , tk} are k fixed knots with 

a~tt< ... < tk~b and (x)P+ = xPJ{x~}· The knots are pre-selected, typically with large k. To control 

smoothness, a roughness penalty function P is placed on the regression coefficients of the form 

P(f3p+I, ... , f3p+k) ~A.. The purpose of the penalty is to prevent the coefficients representing jumps in 

high order derivatives from becoming too large. 

Because the use of the penalty function decreases the problem of overfitting, knot selection is less 

critical than for regression splines (Eilers and Marx 1996; Ruppert and Carroll1997) and is usually 

done non-adaptively. We use a relatively large number of knots with a quadratic penalty function 

(Ruppert and Carroll 1997). The estimator p~..• is defined as the minimizer of 

n{ }2 k 2 L Y;- ,uo(t;p) +lLfJp+j 
i=I j=l 

(5) 

where A. is the smoothing parameter. 

We can restate the model in matrix form as follows. Let Y = (Y1, ... , Yn)T and let X(t) be the design 

matrix with the i1h row ofX(t) equal to 

Let D be the diagonal matrix with the first p+ I entries zero and the remaining k entries equal to 

one. The estimator p~..• is the minimizer of the following equivalent expression in matrix notation: 
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(Y- X(t)P) T (Y- X(t)p) + A-PTDP (6) 

with 

p· CA.)= cxcr) T xcr) + A-»r1 xct) Tv 

Note that f3A.* is a ridge regression estimator and is readily computed for any fixed choice of A.. 

There are several approaches to estimating A such as cross-validation and generalized cross 

validation. However, it is convenient to use the generalized maximum likelihood (GML) approach 

(Wahba, 1985), which can be derived via a linear mixed effects (LME) model. 

Consider partitioning the parameter f3 and the design matrix X respectively into two submatrices, 

f3= [(y; u]T and X= [X*, Z], with y =(yo, ... , Yp)T, u = (u1, ... , uk? and the fh rows of X* and Z 

given by 

(7) 

respectively. Then consider the following LME model: 

Y = X* y + Zu + E (8) 

where E is distributed multivariate normal with mean equal to the zero vector and covariance matrix 

crs2 I, y is the fixed effect and u is the random effect, independent ofE, with u-i.i.d N(O, cru2 I). 

The maximum likelihood estimators ofy and u are the minimizers of 

2 
* T * (J"e T (Y -X y-Zu) (Y -X y-Zu)+-u u 

0"2 
u 

(Searle, Casella and McCulloch, 1992). This expression has the same form as in ( 6) where the 

smoothing parameter A is replaced by the ratio of the variance components cr?lcr/ since Xf3 = 

X*y+Zu and f3'tDf3 = u Tu. The GML method estimates the smoothing parameter by the estimated 

variance ratio. 

The advantages of using LME models for fitting a p-spline are quite clear: the mixed model is 

readily understood and A. is automatically estimated. Standard statistical software can be used for 
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fitting LMEs, such as 1 me in S+ or PROC MIXED in SAS. By using the LME p-spline for SEMOR 

we have a relatively quick and easy method for estimating the regression function for a fixed 

number of knots. P-spline fitting also will allow for a generalization ofthe SEMOR model to 

include nonlinear transformation functions <I> and K. 

3. Model Formulation 

3.1 General Set-up ofModel 

We extend SIM model (2) to consider mixed effects for the scaling and shifting parameters. 

Yij =ao + aoi+ exp[(a1 + aii)] )lo [f3o +hoi +exp[(f31 + bii)] tij]+ Bij 

for i=l, ... ,m; j=l, ... ,ni, tij in (a,b) where (ao, a1, f3o, f3I) are fixed effects and (aoi, ali, boi, b1i) are 

random effects. To impose identifiability in the SIM model, we constrain (ao, a1, f3o, f3 1) to be 

(0,0,0,0), the mixed model equivalent to setting the sum of each parameter equal to zero as 

suggested by Kneip and Engel (1995). The random effects (aoi. a1i. boi, b1i) are modeled as 

independently distributed multivariate normal. We consider the covariance matrix of the random 

effects to be diagonal, although they need not be. 

Let Y; = (Yn ,1'j2 , ... ,1jn ) fori= I,2, ... ,m;j = I,2, ... ,n;. The SIM mixed model including the 
I 

penalized spline is: 

Yi = (ao + aoi )+ exp (a1 +ali) {xi* [(ft> +hoi)+ exp (p1 + Pli) t] y+ 

Zi [(ft> +hoi)+ exp (p1 + Pli) t] u} + 0 

e; - i.i.d.N(on,, In, a;) 
a0; - i.i.d.N(o, a;o) 

hoi - i.i.d.N(o, a; ) 
0 

u; - i.i.d.N(o, a;) 
ali - i.i.d.N(o, a;. ) 
hli - i.i.d.N(o, a; ) 

I 

(9) 
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where Qn is the zero vector oflength n; and the rows ofX*(t) and Z(t) are given by (7). 

We can handle this estimation in a two step approach: one is estimating the parameters for the p

spline that model Jlo, and the other is estimating the variance components, fixed effects and the Best 

Unbiased Predictors (BUPS) which enter the model nonlinearly. Note that Equation (9) can be 

placed in a general Bayesian context with non-normal priors for the parameters. We can readily 

extend to parametric structure for error variance. 

3.2 Algorithm for SIM 

From the model we have formulated, we can write the log likelihood function: 

This is a different approach from the earlier literature for SIM modeling since we have an explicit 

likelihood function. While estimation of the parameters might be done by maximizing equation 

(10) directly, this is computationally difficult. 

Equation (2) suggests the following algorithm. Let 

9; = (Ou,fJ2i,B3i,B4;) 

= (ao + ao;,ai +ali ,flo + bo;, fJ1 + bli) 

and 

9 = (9{ ,9~ , ... ,9~). 

If we knew the true shape of Jlo, then we could use nonlinear mixed effects (NLME) methods to 

estimate e. Similarly ifwe knew e, we could estimate J.1o through linear mixed effects (LME). 

Hence the following iterative algorithm is proposed. 

SIM Algorithm 
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Step 0 Choose initial estimates ofei<o> = (0,0,0,0). Set k=O. 

Step I Transform data and time with 

Step 2 Using LME, estimate y(k.> and u(k.> by fitting: 

Step 3 Using NLME, estimate e(k.+l) by fitting the model 

Yij =ao + Roi+ exp(a1 + aH){X(f3o + bOi +exp(f31 + bH) tij) -f>+Z(f3o + bOi +exp(f31 + b1i) tij) u(k.>}+ Bij 

Check for convergence. Else normalize the parameters with the transformations (using the notation 

ofEquation 2): 

a1i *(k+ 1>=exp(Ali *(k.+l)) 

*(k.+l)_ (k.+I> A *(k.+I>*"' (k.+1)1 ·Roi -aoi - H L..j Roj 1m 

*(k.+l) *(k.+l) b1i =exp(Bli ) 

b *(k.+l>-b (k.+l) B *(k.+l>*"' b (k.+1> 1 Oi - Oi - li L..j Oj I m 

(k.+ 1) *(k.+ 1) *(k.+ 1) *(k.+ 1) *(k.+ 1 h and set ei = (Roi ,ali ,bOi ,bli ) Go to step I. 

Step I is suggested from the graphical diagnostics presented by Lindstrom (I995). The 

normalization in Step 3, similar to Kneip and Engel (I995), forces the fixed effects to be (0,0,0,0). 
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Other methods to select the initial values include choice of the median curve to estimate y<o) and u<0> 

or use of structural points as in Kneip and Engel (1995) to choose better initial parameter estimates. 

Other normalizations include setting the maximum and minimum values of IJ.o. 

There are several convergence criteria that can be used to terminate the algorithm. Lawton et al 

(1972), terminated the fitting algorithm when MSE of the parameters converged. We terminated the 

algorithm when the change in the log-likelihood in the nonlinear mixed effects step converges. 

3.3 Convea·gence of Algorithm 

If we knew 8, Step 1 would align the transformed response and transformed time (Y* and t*) to the 

common shape or regression function. The transformation removes subject differences leaving us a 

data set with only one source ofvariation, crs2. We then need only fit a p-spline. Although the 

theoretical rate of convergence of the p-spline as a sieve estimator has not to our knowledge been 

established, it should be similar to the rate for B-splines, which was determined by Shen and Wong 

(1994). Simulation results in Villarreal (2001) support the convergence of the p-spline with GML 

selection of the smoothing parameter if the number of knots increases with the sample size. 

In general, by transforming the data and pooling across curves to estimate J.lo, we effectively 

increase the number of design points to the total number of observations. Hence, we have a large 

sample size for estimating the regression shape. As long as the NLME routine converges the 

algorithm appears to converge. 

4. Simulation Results 

To determine the efficacy of the computational method, we performed a small simulation study, 

using 3 underlying curves for the common shape. These were selected to resemble shapes 

commonly found in growth and pharmacokinetic models. 

The three functions are: 
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1 __ l_(t-1.5)' 1 _!{t-3.5)' 
" (t) = e 2(.25) + --e 2 
r0(2) -}27r(.25) J2ii 

e2<t-2.5) 

Jlo(3) (t) = e2<t-2.5) + e -2(t-25) 

These are plotted in Figure 1. 

0 2 3 4 5 

Figure 1: Regression shapes used in the simulation study. 

The two sources of error in the model are the between curve variation modeled by the random 

effects, and the within curve variation modeled by the error. We use two levels of variation: large 

and small. These are summarized in Table 1. We also consider two levels of observations per 

curve (n=20, 30) and 3 levels of numbers of curves (m=10, 30, 50). For each combination of 

factors, we generated 50 data sets. 

Case 1: Small Error Case IT: Large Error 
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O"ao 0.10 0.30 

O"at 0.05 0.10 

O"bO 0.15 0.20 

O"bt 0.0375 0.1875 

0"~: 0. 02 *range(() 0.1 O*range(f) 
Table 1: Simulated Variance Components 

The tolerance set for convergence was set at a change in the log-likelihood of the nonlinear step of 

10-4 with a maximum of 50 iteration steps. For each sample, we record the estimates of the random 

effects and the mean squared error (MSE) in estimating the curves (at the design points). 

Although the p-spline estimator is not sensitive to knot placement, in practice, we need to 

determine the number of knots required for fitting the curves. It is clear that for the case of a single 

curve, with the number of design points increasing to a dense set, the number of knots must 

increase with the sample size to achieve consistency. A small simulation study showed that, for 

sample size 1 00 on a single curve, increasing beyond 10 knots did not improve the fit. However, 

we need to adapt to multiple curves and sample sizes. In the first iteration, the number of 

transformed time points is either 20 or 30, and we use 4 and 6 knots respectively. After the first 

iteration, the number oftransformed time points is the product of number of points per curve and 

the number of curves. For 20 points per curve we used 8,12 or 16 knots for 10, 30 or 50 curves 

respectively. For 30 points per curve we used 12, 18 or 24 knots for 10, 30 or 50 curves 

respectively. 

Fitting was done using the 1 me and n 1 me procedures in Splus. Convergence of the algorithm 

depends on convergence of all steps: 1 me to fit the shape, n 1 me to fit the variance components, and 

the iterations between 1me and n1me. The 1me step always converged. The n1me step was more 

problematic. There were frequent failures, even when the iterative procedure appeared to be close 

to convergence. This appears to be a problem with n 1 me rather than with the iterative procedure. 

When the 1me and n1me both converged, the algorithm usually converged quickly. Curves 1 and 3 

always converged. Curve 2 did not converge (in 50 iterations) for 5 ofthe 300 samples. 
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For the purposes of the simulation study, we generated the required number of curves until we had 

fitted 50 samples without a failure of n 1 me. Simulations in which the algorithm failed to converge 

at the iterative step are included in the summaries. Simulations in which n 1 me failed are not 

included. 
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Figure 2: MISE of .fit for each simulation. Notched boxes indicate 30 data points per curve. Plain 
boxes indicate 20 data points per curve. Notice that the MISE improves with both the number of 
data points per curve and the number of curves per set. 

Figure 2 displays boxplots of the MISE under all conditions of sample size and variance 

components. The MISE decreases as a function of both the number of data points per curve and the 

number of curves per set. 

To assess the accuracy of the estimates for the variance components, we look at box plots for each 

variance estimate as a function of the number of curves. These are displayed as the ratio 

SD(estimated)/SD(realized) where the SD(estimated) is the SD of the predicted parameter value 

and the SD(realized) is the empirical SD of the parameters generated by the model. 
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Figure 3: SD ratio for ao. The numerator is the empirical SD of the predicted values of a0 The 
denominator is the empirical SD of the generated values. 

Figure 3 displays boxplots of the SD ratio for parameter ao. Plots for bo are similar. The variance 

components are estimated quite well. There appears to be a small downwards bias. The ratios are 

more spread out when there are 20 points per curve (rectangular boxes) than when there are 30 

(notched boxes). The spread of the ratios decreases as the number of curves increases. 

Figure 4 displays boxplots of the SD ratio for parameter a1. Plots for b1 are similar. There is some 

downwards bias in the estimated SDs, especially when the true variance components are large. The 

ratios are more spread out when there are 20 points per curve (rectangular boxes) than when there 

are 30 (notched boxes) and when the variance components are large. The spread ofthe ratios 

decreases as the number of curves increases. 
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Large Variance Curve 1 Large Variance Curve 2 Large Variance Curve 3 
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Figure 4: .SD ratio for a1 . The numerator is the empirical SD of the predicted values of b 1 The 
denominator is the empirical SD of the generated values. 

5. Application to Spirometer Data 

For a real application, we considered the spirometer data used by Lawton et. al. (1972) and 

Lindstrom ( 1995). We fitted the SIM model, using 10 equally spaced knots. The data are 

displayed in Figure 5 with a fit to each curve (computed individually). The rescaled data are 

displayed in Figure 6, with the fit ofthe common shape. The lower right panel is a plot of all the 

rescaled data on the common time and response scale. 

It is evident from both figures that the error variance is small for these data. The individual curves 

display a sigmoid shape. Figure 6 shows the remarkably good fit of the SIM model. The rescaled 

data (using the predicted parameters) have very little spread. The common shape is clear. 
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The final estimates for the regression mean function fit the data very closely. Lindstrom (1995) also 

analyzed these data. She removed the two initial points due to the assumption that they were 

observed before exhalation began. We use the two initial points and are able to fit the data very 

well. The time shift constant bo captures the possibility of observations prior to exhalation. We 

also see from the variance component estimates that the variability in the curve for they- direction 

is largely due to the multiplicative factor a1. 
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Figure 5: ,\jJirometer data(. .. ) with individual estimated curves(-). 
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Figure 6: Scaled and shifted spirometer data(. .. ) with individual estimated shifted curve(-)). 

6. Discussion 

The paper demonstrates the efficacy of using p-splines and random effects for fitting the SIM 

model to a Hunily of curves. The SEMOR model has a number of advantages over fully parametric 

or fully non parametric models. It allows very flexible modeling of the common shape function, 

while allov .. ing differences among curves to be expressed as parametrically. Commonly used 

summaries, such as the maximum, time to maximum and so on can be expressed as a function of 

the parameters and a functional of the shape function. 

The use of p-splines to model the common shape offers further advantages. P-splines are sieve 

estimators- rhat is, for a fixed set of knots a p-spline is a parametric function, and convergence to a 

nonparametric class of functions is achieved by increasing the number of knots as the sample size 

increases. For any fixed set of knots, the p-spline can be expressed as a linear mixed model. 

Hence, generalization to data with correlated errors, generalized linear mixed models, Cox 
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regression and other generalizations ofthe linear mixed model is conceptually simple (although the 

computational cost may be high.) Varying degrees of curvature in !lo can be accommodated by use 

of a general diagonal variance matrix for cru in (8). The quadratic penalty on the jumps in 

derivatives of po at the knots can be replaced by any function corresponding to an exponential 

family log-likelihood. 

Similarly, th~ use ofthe iterative algorithm allows us to generalize seamlessly to the general 

SEMOl( l1lodel- the affine transformation of the response and time axes can be replaced by any 

monotont: parametric function. In general, let both <t> and K be dependent on ei, the vector of q 

random clT\:cts where 

T ei = (81i, ... , 8ni) . E[8i] = J..le and Var[8i] = L:e. The general set up is as follows: 

Y, = ¢(X[K(t,B;)]'y + Z[K(t,B;)]u,B;} +s; 

E, ~ iid.N(O,Ia;) u; ~ N(o,a;) 

0, ~ i.i.d.N(J-18 ,!:8 ) 

Estimation for this general SEMOR form can be carried out similarly to SIM, with suitable 

normalization of the parameters to achieve identifiability. The random effects need not be mutually 

independent. 

SEMOE Algorithm 

Step 0 Choose initial estimates ofei<0>. Set k=O. 

Step 1 Tr:ttt:Jorm data and time with 

Step 2 trsing LME, estimate y<k> and u(k> by fitting: 
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Step 3 Using NLME, estimate S(k+l) by fitting the model 

Yij = <J>{X[K(t;; 8;(k))] y(k)+Z[K(ti; ei(k))] u(k)}+ Eij 

Check for cunvergence. Else normalize e(k+l) and go to Step 1. 

The iterntivc algorithm also suggests conditional tests when there are time-invariant covariates that 

might arrcct either the regression function or the axis transformations. The inverse axis 

transform:~tions (Algorithm Step 1) aligns the data making it possible to determine ifthe shape of 

the regression on the aligned data varies as a function of the covariate. If the regression function 

does not vnry with the covariate, then conditional on the fitted function, we have a nonlinear mixed 

effects tnuckl which can readily accommodate covariate effects. 

Comput:lc:u,, is ~till problematic for these models. Either a high dimensional integration must be 

perfonk"c:, ur computationally intensive methods are needed. 

The flexi!;iliLy of the SEMOR model, coupled with modern computational methods, make it a 

valuab 1 ',' ~~ d d it ion to the statistical modeling tool kit. 
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