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1 Introduction 

Mycobacterium tuberculosis, the causative agent associated with the trans­

mission of tuberculosis, was discovered by Robert Koch in 1882. Bacilli are 

spread in the air when infectious individuals sneeze, cough, speak or sing 

(American Thoracic Society, CDC, 1990). A susceptible individual may be­

come infected with TB if he or she inhales bacilli from the air. The particles 
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containing Mycobacterium tuberculosis are so small that normal air currents 

not only keep them airborne but also transport them throughout rooms or 

buildings (Wells, 1995). Individuals who regularly share space with those 

with active TB (the infectious stage of the disease) naturally have a higher 

risk of becoming infected than those who do not. Infections occur when 

susceptible persons inhale droplet nuclei containing Mycobacterium tubercu­

losis. The bacilli become established in the alveoli of the lungs from where 

they spread throughout the body. Hosts' immune response usually limits 

further bacilli multiplication and the spread that naturally follows initial in­

fections. Only a small proportion of newly infected persons (usually less 

than 1%) develops active infections, that is, only a tiny proportion of those 

infected progresses rapidly towards active-TB. Between 5% and 10% of in­

fecteds eventually develop active-TB but typically, they do it rather slowly. 

Most infected individuals remain as latently-infected carriers for their entire 

lifes. In general the distribution of progression times is skewed. The aver­

age length of the latent period (carrier at non-infectious stage) ranges from 

months to decades but the risk of progression, towards active-TB, increases 

markedly in the presence of co-infections that debilitate the immune system. 

In other words, the presence of co-infections alters the shape of the distri­

bution of progression times. Persons with HIV co-infections progress faster 

towards the active (infectious) TB state than those without them (Selwyn et 

al., 1989). However, impact from co-infections may be temporal if effective 

approaches are used against them. 

Effective and widespread treatment for active and latently infected indi­

viduals has been available for about five decades. Streptomycin, an antibiotic, 

first discovered at Rutgers University in 1943, is still used but with pyraz­

inamide. Currently Isoniazid and Rifampin are most effective in the fight 

against M. tuberculosis. The widespread introduction of antibiotics reduced 

mortality by 70% from 1945 to 1955 in the U.S. but major reductions on 

TB mortality rates had already been achieved before their introduction (see 
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Aparicio et al., 2000; Dubas and Dubas, 1952; Lowell et al., 1969). Latent 

TB can be handled with a single dmg Isoniazid but treatment is effective 

only if applied for at least six months. Active cases must be treated for nine 

months with multiple drugs (Isoniazid, Rifampin, Pyrazinamide ) and com­

plex regimens. Treatment in the U.S. covers over 95% of the cases (WHO, 

2000b) despite its high cost. The expenses associated with treatment pro­

grams are so high that their effective implementation are pretty much out of 

reach in most developing nations. Antibiotic resistant strains may be easily 

generated if treatment is not completed and the consequences may be serious 

for such individuals (see Castilla-Chavez and Feng, 1997). Lack of treatment 

compliance has not only local but also global serious consequences that are 

not difficult to imagine in today's society (see Kalata, 1995). 

In 1989, CDC and ACET (Advisory Council for the Elimination of Tu­

berculosis) set long term national goals for TB control that included specific 

national targets (CDC, 1989). CDC's goal was to reduce the case rate of TB 

to less than 3.5/100,000 by 2000 and to about 1/1,000,000 by 2010. Data sug­

gest that these targets were optimistic. In this paper, we show that targeting 

a higher proportion of latently-infected individuals increases the likelihood 

that CDC's target may be reached. We illustrate the effect of treating a 

higher proportion of latently-infected individuals on CDC's target and show 

that meeting CDC's goal by 2020 is actually possible. 

Our paper is organized as follows: Section 2 introduces the basic model 

structure for the study of the dynamics of TB transmission; the asymptotic 

behavior of the model of Section 2 is analyzed in Section 3; a function that 

captures the impact of HIV /AIDS on TB progression is introduced in Section 

4; parameter values and parameter ranges are introduced and discussed in 

Section 5; Section 6 collects the results of simulations using estimated param­

eters and collects our conclusions; finally the Appendix includes two tables 

with a forecast of active TB cases by 2050 and the proof of the theorem on 

the asymptotic dynamics of our model. 
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2 Model structure 

Tuberculosis, a slowly progressing disease, was one of the biggest contributors 

to human mortality in the past. TB's world prevalence of asymptomatics is 

huge (about one out of three persons may be infected with TB) but progres­

sion to active TB has slowed down (Aparicio et al., 2000). In order to mimic 

the dynamics of TB over the past five decades, our model includes the U.S. 

population's demography. In addition, individuals are classified according 

to their TB epidemiological status: susceptible (S), latent/exposed (L) and 

(actively) infectious (I). We do not keep track of specific co-infections in­

cluding HIV co-infections to keep the model as simple as possible. In fact, 

we do it in a practical way since our focus here is on TB control. Dynamical 

models for the transmission dynamics of tuberculosis have been developed 

in the recent past (Castilla-Chavez, 1997, 1998; Blower, 1995 and references 

therein). A similar approach leads to the following model: 

dS di = F(N)- B(S, I, N) + r 2L + r 1I, 

dL 
dt = B(S, I, N)- (p, + k + r 2 )L, 

di 
dt = kL- (p, + d + r1)I, 

(1) 

(2) 

(3) 

where F(N) represents the recruitment rate as a function of total population 

size N; B(N, I, S) denotes the incidence rate per unit time; ri(i = 1, 2) denote 

treatment rates for actively and latently-infected individuals, respectively. 

The dynamics of the total population size N(t) = S(t)+L(t)+I(t) is governed 

by the equation 

dN = F(N)- di 
dt ' 

(4) 

where d is the tuberculosis induced death rate, a very small rate when com­

pared to the "natural" death rate (mortality rate due to all other causes). 

F(N) will be assumed to be either a linear (exponential growth) or a non­

linear bounded function. This assumption covers most observed popula-
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tion growth patterns on the time scale of TB epidemics (Song et al., 2001). 

B(N, I, S) will simply be taken as f3Stt (random mixing). 

In modeling "recent" (last five decades) tuberculosis transmission in the 

U.S. it is reasonable to disregard the impact of TB-induced mortality, that is, 

taking d = 0 is quite reasonable. Hence, the dynamics of TB in the U.S. over 

the past few decades can be reasonably modeled by a system where demog­

raphy and epidemiology are uncoupled. Or equivalently, it can be modeled 

via a non-autonomous system since N(t) can be "explicitly" computed from 

the demographic equation~~ = F(N). Consequently, Equations (2) and (3) 

are enough to describe the transmission dynamics of tuberculosis, that is, 

our system reduces to the following non-autonomous system: 

dL ( ) I dt = {3 N(t) - L- I N(t) - (J.t(t) + k + r2 )L, (5) 

di 
dt = kL- (J.t(t) + d(t) + r1 )I, (6) 

where N(t), now assumed independent of the disease, is a known 'external' 

input to the epidemiological model. The values of N(t) are inputted using 

published U.S. demographic data. The transmission rate,{3, is assumed con­

stant; k, TB's activation rate, is also assumed to be constant; ri (i = 1, 2), 

the treatment rates defined before, are also assumed to be constant. J.t(t) 

and d(t) are, in general, functions of time (see Aparicio et al., 2000). 

Age-structure and immigration (critical factors on TB persistence in the 

U.S.) can easily be incorporated into the modeling framework. However, data 

needs required by structured models can be huge and hence nearly impossible 

to meet. 

If n(t, a) denotes the age distribution of the population at timet per unit 

time then the corresponding age-structured demographic model is 

an an 
at + aa = -J.t(t, a)+ m(t, a), (7) 

n(t, 0) = B(t)- J.to(t), (8) 

n(O, a)= n0 (a), (9) 

5 



where J.t(t, a) is the time-dependent age-specific death rate per unit time; 

m(t, a) denotes the age-specific net immigration rate per unit time (for the 

U.S., m(t, a) would be assumed to be positive for all ages); n0 (a) denotes 

the initial distribution of the total population; n(t, 0) denotes the net birth 

rate, which equals B(t), the total birth rate, minus J.to(t), the death rate of 

newborns. The total population size is N(t) = J0
00 n(t, a)da. System (5-9) 

is a mixture of demography and epidemiology that includes immigration. A 

study of the solutions n(t, a) in System (7-9) can be found in (Iannelli, 1995 

or Webb, 1985). Here, it is assumed that N(t) = f0
00 n(t, a)da, J.t(t) and d(t) 

are bounded from below and from above. These assumptions guarantee that 

all solutions of the non-autonomous System (5-6) are bounded and nonneg­

ative. Age-structure could also be incorporated in the epidemiology. We do 

not consider population structure explicitly in either the demography or the 

epidemiology because our general objectives fortunately can be met with the 

simpler system that requires less (and available) data. 

3 Asymptotic behavior of solutions 

An asymptotic analysis of Model (5-6) is carried out in the Appendix but 

the results are discussed in this section since they play a role in the param­

eterization of the model. The analysis helps establish a criterion for disease 

persistence, that is, a threshold condition, that must be met by our param­

eterized model. Such criterion also helps narrow down parameter ranges. 

Hence, the long term behavior of our system is determined by the asymp­

totic property of the functions N(t), M(t) and d(t). The following theorem 

characterizes such behavior: 

Theorem. Assume liminfJ..t(t) = J.t001 liminfd(t) = d00 , and 
t-+oo t-+oo 

lim supj.t(t) = J.t00 , lim supd(t) = d00 • 

t-+oo t-+oo 

1. If Roo= (k+ k + ) ( +~ + ) ::; 1 then limL(t) = liml(t) = 0. 
/1-oo r2 /1-oo oo r1 t-+oo t-+OO 
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2. If R 00 = ( k+J"!,+r2 ) C=+:=+rJ ~ 1 then li~~pL(t) > 0, and 

limsupl(t) > 0. 
t->oo 

When p(t) = p and d(t) = d (both constant) then R00 =Roo= R 0 gives 

the classical basic reproductive number, that is, 

R _ /3 ( 1 ) ( k ) 
o- p+d+~ k+p+~ 

where f3 is the effective contact rate; q +~+d is the effective infectious period; 

r2+~+k is the proportion of latently-infected individuals who make it to the 

active stage. In other words, R 0 gives the average number of secondary in­

fectious generated by a typical actively infected individual in a population 

of mostly susceptibles that is, in a population of susceptibles at a demo­

graphic steady state (autonomous system). This theorem provides a sharp 

classification for the two important biological states: disease elimination or 

persistence for non-autonomous systems. These thresholds help verify the 

reasonableness of published parameters. They are also helpful in the selec­

tion of reasonable ranges of unknown parameters. Our model generalizes the 

results established for related autonomous systems by Feng et al.(2001) and 

Song et al. (2001). 

4 Impact of HIV /AIDS 

Few infected individuals developed active tuberculosis since their immune's 

response is usually effective and fast. The immune system of infected individ­

uals produces a thick waxy coat that almost immediately covers tuberculosis 

bacilli. This action prevents its activation. When the immune system of an 

infected person does not function well, for example, when an individual also 

faces a HIV /AIDS co-infection, the coat covering tuberculosis bacilli becomes 

more fragile and, hence it is more likely to break. Consequently, individuals 

with co-infections that enhance immune deficiencies, face a higher risk of 
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developing active TB infections. Hence, whenever a large pool of latently­

infected TB individuals find themselves in the presence of such co-infections, 

the likelihood of an outbreak of active TB in such population increases. 

Studies have shown that 15% of AIDS deaths are due to tuberculosis 

co-infections (WHO, 2000a). The risk of progression to active disease is 

markedly increased for persons with HIV co-infections (Selwyn, et al., 1989). 

We incorporate the effects of AIDS co-infections from a single outbreak into 

our model in a rather simple and indirect way. A time-dependent function 

that enhances TB progression as a function of HIV risk during the time 

period when HIV had the most impact is used to modify the distributions of 

latent periods. Our assumption is based on the fact that HIV /AIDS increased 

tuberculosis incidence (and vice versa) during some identifiable window in 

time. We incorporate such a function in the following way: 

dL ( ) I dt = /3 N(t)- L- I N(t) - (p,(t) + k + r 2 + A(t))L, (10) 

di 
dt = (k + A(t))L- (p,(t) + d(t) + r 1 )I, (11) 

where 

A(t) = . ' {
0 05(t- 1983)1.8e-v't-l983 if 1983 < t 
0 otherwise. 

A(t) models increased progression from latent to active TB beginning in 1983. 

This function has large values around the middle of the 1980's before HIV 

was identified and before any forms of treatment were available in the U.S .. 

It decreases dramatically afterwards (see Figure 1) in a way dictated by our 

desire to fit the data as close as possible. Mathematically, the addition of 

A(t) does not change the asymptotic behavior of tuberculosis in the U.S. 

albeit it changes its quantitative dynamics over a relative short period of 

time. These changes fit observed patterns because A(t) was chosen to make 

them fit. Hence, we have an epidemiological model that fits demographic 

and epidemiological data for the last five decades. AIDS has, naturally, 

delayed CDC's time table for TB "elimination" and our model explicitly 
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Figure 1: Shape of function of A(t) 

takes account of this effect. The fact that there may be recurrent HIV /AIDS 

epidemics in the future that are not synchronized in time is likely to have 

important implications (recent increases in HIV in San Francisco may fit this 

category). Such temporal asynchrony could be modeled by 

dL ( ) I J di = /3 N(t)- L- I N(t) - (Jt(t) + k + r 2 + ~ Aj(t))L, 
J=l 

(12) 

di J 
dt = (k + :?= Aj(t))L- (Jt(t) + d(t) + ri)I, 

J=l 

(13) 

where each function Aj(t) would have a shape similar to that of A(t) but 

with a different support interval. System (5-6) and (12-13) has the asymp­

totic behavior predicted by our theorem in Section 3 but the time to CDC's 

'TB elimination' may be radically changed if asynchronous epidemics are 

supported. 

We observe that our model has only altered the distribution of progression 

times towards active TB due to the impact of a temporal co-infection, that is, 

a co-infection that impacts progression only for a short period of time. The 

growth of HIV co-infections and their strong impact on TB progression in the 
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1980's and 1990's changed the dynamics at least for a short period of time 

(before they return to their 'normal' or 'natural' dynamics). The fact that 

TB prevalence and incidence exhibited a prolonged downward trend before 

HIV implies that the time to meet CDC's target has been delayed by this 

HIV "perturbation". In summary, we have introduced a model that captures 

this phenomenon, that is an agreement with the data, and that incorporates 

demography and epidemiological interactions. It is in the context of this data­

driven model that strategies to meet CDC's target in a reasonable period of 

time are discussed. 

5 Parameter estimation 

The parameter values and the asymptotic behavior of functions, like f.£( t) 
and N(t), determine the time to CDC's 'TB elimination'. We use the United 

States not only to illustrate the likelihood of meeting CDC's criterion but also 

to discuss the implications of future co-infection outbreaks. The selection of 

the required parameters in this setting is therefore difficult but literatures 

provide a reasonable start. 

We use reasonable ranges and averages (from the literature) and use them 

in our extensive simulations. An explicit list of our parameter selection 

sources and assumptions is provided below: 

1. The value of (3 (effective contact rate) is the product of the contact 

rate c and the transmission probability per contact. CDC has used 

an average contact rate of 9 (Etkind, 1993). Other studies have used 

estimates for c of the same order of magnitude (Shrestha-Kuwahara 

and Marks, 1999). Here, we take c to be around 10. 

2. The value for the transmission probability per contact is around 0.2. 

CDC used 0.21 (Etkind, 1993). It is believed that this value has stabi­

lized. It is believed that it has lived in the range of 0.21 to 0.23 since 

1987 (National Tuberculosis Center, 2001). 
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3. The parameter k represents the per capita rate of progression from 

inactive-TB to active-TB. The exact distribution of the latent periods 

is unknown. Available information claims that 10% of inactive tuber­

culosis cases progress to active tuberculosis within 10 years. There is 

evidence that confirms the occurrence of cases 10 years after primary 

infections. Earlier work of Ferebee (1967) assumed that k = 6~5 year- 1 • 

We shall assume that k is around 0.001 

4. Our dynamic model for tuberculosis transmission is given by a system of 

ordinary differential equations whose solution curves are determined by 

initial conditions. There is no way for us to have a reasonable estimate 

of 'initial' levels of latently-infected individuals but it is reasonable to 

assume this number is of the order of 106 in the U.S .. Ferebee (1967) 

assumed that it was 25, 000, 000 in the U.S. in 1967. More information 

on the number of active tuberculosis than inactive cases is available. 

The incidence rate multiplied by the case finding rate gives a rough 

estimate of the initial levels of active tuberculosis. We take 1953 as 

time zero and assume that /(0) ~ 874230 (10 times the number of 

cases in 1953). 

5. Case reporting rates reflect the case finding rates which have a value 

of around 70%. The probability of successful treatment is greater than 

95% in the U.S. (WHO, 2000). To be consistent with the data r 1 

is assumed to take values around 0.65. The finding rate for inactive 

tuberculosis is about 10%. Latent tuberculosis treatment programs 

have a probability of success of about 0.90 in the U.S.. Treatment 

failure is mostly due to a patient's inability to complete treatment. To 

be consistent with the data r2 is assumed to take values around 0.05. 
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6 Results and discussions 

A discrete version of Model (7-9) for the demography was used by Bureau of 

the Census (Hollmann et al., 2000) to fit and project the U.S. demography. 

The model looks like: 

nt(O) = Bt-I,t- J.lt-I,t(O) + mt-I,t(O), 

nt(a) = nt-I(a- 1)- J.lt-I,t(a) + mt-I,t(a), 

where the total population (sum over all ages) is therefore given by 

Nt = Nt-I +Bt-l t - lit-It + Mt-1 t· 
' t"' ' l 

(14) 

(15) 

(16) 

U.S. population projections by the Bureau of Census are available until 2100 

(Census Bureau of U.S., 1999) from Model (14-16). We use the results of 

theses projections to input the N(t) values required in our simulations. Of 

course, appropriate interpolations have to be made since we are using con­

tinuous time models. Data on mortality and TB induced death rates are 

available but only for the last one and half century (this is sufficient for us). 

In the implementation of our simulations, we interpolate from mortality data 

to obtain estimates for J.L(t) and d(t) when t :::; 2000 and when for t > 2000 

we take them as constants by averaging the corresponding data for last 5-10 

years. We conduct a sensitivity analysis to take into account the impact 

of variation on parameters. In some sense, we treat the parameters of the 

model as random variables from appropriate normal distributions. The val­

ues used as predictors of TB cases in the U.S. are the re~mlt of averaging 

5,000 simulation runs. 

Figure 2 shows that for the selected parameter ranges, the progression rate 

function A( t) fits the data very well. That is, the fit successfully captures 

the past history of TB in the U.S.. A value of r 2 = 0.05 says that in the 

past only 5% of latently-infected individuals got treated per unit time. The 

treatment of 100% of active TB cases per unit time (r1 = 1, instead of 0.65) is 
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Figure 2: Left: New case of TB and data (dots). Right: 10% error bound of 
new cases and data 

insufficient to reach CDC's goal (see Figure 3). However, treatment of more 

latently-infected individuals, for instance, raising r 2 to 20% per year, would 

help reach CDC's target of 1/1,000,000 in a more reasonable period of time 

(see Figure 3). Figure 4 illustrates the effect of HIV on the control of TB. It 

delays the achievement of CDC's goal but has no permanent impact on the 

( 0(0(6 \ I~t=~·SIIl zt ~· O.t 

( 0(0(5 ~ \ 

5Xl.O-i 

\ \ 4XLf' 
( 0(0(4: \ 
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Figure 3: Left: r 2 = 5%, no CDC 'TB elimination' by 2020. Right: r 2 = 20%, 
CDC 'TB elimination' by 2020. 

long-term persistence of TB. However, prolonging TB 'survival' enhances the 

likelihood of its evolution, a situation that is not explored here. We present 

two tables in the Appendix with a forecast of the number of new cases and 
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Figure 4: Impact of HIV. Lower curve represents no HIV effect; upper curve 
represents the case rate when HIV is included; both are the same before 1983. 
Dots represents real data 

the number of latently-infected individuals in the U.S. over the next half 

century. 

In this paper we have introduced the impact of HIV I AIDS on TB pro­

gression during the past two decades via the introduction of a temporary 

perturbation on the distribution of TB progression times. Our selection of 

this perturbation is driven by our desire to fit active-TB data since our pri­

mary goal is not to look at the coevolution of co-infections but rather at 

the impact of HIV I AIDS co-infections on the ability of the U.S. to meet 

CDC's target by 2010. Our model suggests that if emphasis is placed on 

treating at least 20% of the latently-infected individuals then CDC's target 

may be met by 2020. Our model also shows that re-emergence of diseases 

that compromise the immune system (or recurrent outbreaks) would make it 

very difficult to control TB unless treatment emphasis is put on the earlier 

(non-detectable) stages of TB diseases. 
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A Tables 

Prediction of TB Incidence of the U.S. 

Year Tuberculosis Year Tuberculosis 
2001 26888.2 2026 6448.9 
2002 25441.8 2027 6121.3 
2003 24039.4 2028 5812.7 
2004 22690. 2029 5522.3 
2005 21397.3 2030 5248.7 
2006 20166.6 2031 4990.4 
2007 19000.6 2032 4746.3 
2008 17895.9 2033 4516.0 
2009 16855.7 2034 4298.4 
2010 15877.9 2035 4092.1 
2011 14959.4 2036 3896.3 
2012 14097.3 2037 3710.9 
2013 13287.8 2038 3535.6 
2014 12530.3 2039 3369.5 
2015 11822.2 2040 3211.6 
2016 11158.8 2041 3061.7 
2017 10538.3 2042 2919.6 
2018 9957.7 2043 2784.4 
2019 9414.6 2044 2655.8 
2020 8905.6 2045 2533.7 
2021 8427.4 2046 2417.7 
2022 7979.6 2047 2307.2 
2023 7559.8 2048 2202.1 
2024 7166.2 2049 2101.9 
2025 6796.8 2040 2006.3 

Table 1: Number of active tuberculosis in the U.S. form 2001 through 2040 
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Prediction of Latent TB of the U.S. 

Year Latent TB Year Latent TB 
2001 1.998606832907533*10° 2026 708910.7866496837 
2002 1.923641943171843*10° 2027 678360.6672065898 
2003 1.851032791472061*10° 2028 64904 7. 8934275835 
2004 1.780727957000281*10° 2029 620964.6129269843 
2005 1.712427328121379*106 2030 594084.6524858062 
2006 1.646274943502753*106 2031 568292.6894604814 
2007 1.582269278290167*10° 2032 543565.8952388513 
2008 1.520080645340529*10° 2033 519911.7440658233 
2009 1.459989683998999*10° 2034 49727 4.2113372126 
2010 1.401935871794004*106 2035 475552.3255516171 
2011 1.345776986524634*106 2036 454698.1230445390 
2012 1.291474406687125*106 2037 434 7 41.4368790902 
2013 1.238867122849632*10° 2038 415693.3226847585 
2014 1.188156782532186*106 2039 397479.3322123775 
2015 1.139338047317955*106 2040 380007.3759705960 
2016 1.092198664367019*10° 2041 363303.6546871724 
2017 1.046814234224803*106 2042 347346.0655184661 
2018 1.003127238758086*106 2043 332053.1078910177 
2019 961123.3758838332 2044 317428.7300328113 
2020 920677.5518493373 2045 303457.5335038745 
2021 881654.2212026586 2046 290103.9100908917 
2022 844202.9677817885 2047 277334.0112790820 
2023 808252.6039557089 2048 265124.3304444849 
2024 773771.6760658747 2049 253436.1904742842 
2025 740708.6360752575 2050 242238.6155298132 

Table 2: Number of Latent TB from 2001 though 2050 
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B Proof of theorem 

Proof. We will use the following facts which are straightforward in real anal­

ysis. 

limsup(A +B) =limA+ limsupB, whenever limA exists 

liminf(A +B) =limA+ liminf B, whenever limA exists 

lim sup ( AB) =lim A lim sup B, whenever lim A exists 

liminf(AB) =limAliminf B, whenever limA exists 

The proof is based on the Fluctuation Theorem (Hirsch, Hanisch and 

Gabriel, 1985) and its extension by Thieme (see Theorem 2.3 in Thieme 

1993). Applying Theorem 2.3 from Thieme to Equations (5) and (6) directly, 

one obtains that 0 :::; /3100 - (J.loo + k + r2)L00 and kL00 :::; (J.loo + d00 + 

rr)/00 • Hence, it follows that /31 00 2:: J.L=+;+r2 (J.loo + doo + rr)/00 , that is, 

] 00 (k+ k + +~ + - 1) = I 00 (Roo - 1) 2:: 0. Since Roo < 1 and I(t) is J.Loo T2 J.Loo oo Tl 

bounded, it follows that ! 00 = 0. A similar argument results in L 00 = 0. 

The first part of this theorem is proved. It is not difficult to show that 

limsupL(t) = 0 if and only if limsupJ(t) = 0. For instance, the fact that 
t-+oo t-+oo 

lim supJ(t) = 0 =?lim supL(t) = 0 is verified below. From Equation (5) 
t-+oo t-+oo 

dL dt :::; f]I- (J.£(t) + k + r 2)L. 

It follows from the comparison principle that 

Lo + rt f]I(s)ef;(J.L(r)+k+r2)dr ds 
L(t) < Jo 

- ef~(J.L(r)+k+r2)dr 

Hence 

f]J ( t )ef~(J.L(r)+k+r2)dr 
limsupL(t) < limsup t 

t-+oo - t-tOO (J.£(t) + k + r2 )efo(J.L(r)+k+r2)dr 

= lim sup j3I(t) = 0. 
t-+oo J-t(t) + k + r2 
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The same argument gives limsupL(t) = 0 ==? limsupi(t) = 0. 
t-+oo t-+oo 

Case 1: If kL(t) ~ (J-l(t) + k + r2)I(t) holds for all t > 0, then ~! > 0 

directly implies limsupi(t) > 0; 
t-+oo 

Case 2: If kL(t) < (J-l(t) + k + r2)I(t) holds for all t > 0, then 

limsupi(t) > 0. 
t-+00 

The proof of Case 2 is as follows: Suppose limsupi(t) = 0, then 
t-+oo 

dL > f3 I(t) (N(t) _ J-l(t) + d(t) + r1 I_ I) _ (J-l(t) + d(t) + r1)(J-l(t) + k + r 2 ) I 
dt - N(t) k k 

= (!3 _ (J-l(t) + d(t) + r~(J-l(t) + k + r 2)) I+ o(I2) 

~ (/3- (J-loo + doo) + r~(J-loo + k + r2)) I+ o(I2) 

= (J-loo + doo) + r~(J-loo + k + r2) (Roo- 1)I + o(I2) > 0, fort>> 1. 

This implies that limsupL(t) > 0 which contradicts the assumption 
t-+oo 

limsupi(t) = 0. 
t-+00 

Trajectories of System (5-6) cannot intercept kL(t) = (J-l(t)+d(t)+ri)I(t) 

infinitely many times if I(t) ~ 0 as t ~ oo because ~f > 0 on kL(t) = 

(J-l(t) + d(t) + ri)I(t) whenever R00 > 1. Therefore, limsupi(t) = 0 implies 
t-+oo 

that either kL(t) > (J-l(t) + d(t) + r1)I(t) or kL(t) :s; (J-l(t) + d(t) + r1)I(t) 

holds eventually. Hence, limsupi(t) > 0. D 
f-+00 
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