
THE GLOBAL STABD...ITY ANALYSIS FOR AN SIS MODEL WITH AGE AND 
INFECTION AGE STRUCTURES 

M-1551 

YicangZhou 
Baojun Song 

Zhien Ma 

February 2001 

Keywords: age-structure, infection age, proportionate mixing, basic reproductive number, global 
stability. 

Abstract: A general SIS model with chronological age and infection age structures is 
formulated. We analyze the global dynamics of the model with a constructive 
iteration procedure. The basic reproductive number Ro is calculated using the next 
generation operator approach. Ro plays a sharp threshold role in determining the 
global dynamics, i.e., the endemic steady-state is globally asymptotically stable if 
Ro > 1, while the disease-free steady state is globally asymptotically stable ifRo ~ 
1. the basic reproductive number is over estimated where the infection age is 
ignored. 



The Global Stability Analysis for an SIS Model with Age 
and Infection Age Structures 

Yicang Zhou1 * Baojun Song2 Zhien Ma1 

1 Department of Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China 
2 Department of Biometrics, Cornell University, Ithaca, NY 14853-7801, USA 

Abstract 

A general SIS model with chronological age and infection age structures is formu­

lated. We analyze the global dynamics of the model with a constructive iteration 

procedure. The basic reproductive number Ro is calculated using the next genera-

tion operator approach. Ro plays a sharp threshold role in determining the global 

dynamics, i.e., the endemic steady-state is globally asymptotically stable if Ro > 1, 

while the disease-free steady-state is globally asymptotically stable if Ro :::; 1. The 

basic reproductive number is over estimated where the infection age is ignored. 

Keywords: age-structure, infection age, proportionate mixing, basic reproductive 
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1 Introduction 

Virtually all epidemic models for communicable diseases in homogeneous populations have been 

inspired by the model derived by Kermack and Mckendrick [1,2]. Epidemiologically, this model, 

in its general form only became well-known in the 1970s[3,4,5]. Chronological and infection age 

might be the most important factors in disease spread. Vynnycky and Fine [6], for instance, 

have shown that tuberculosis(TB) infection is at low rate for individuals less than 10 years old, 

but dramatically increases when the individual's age is between 10 and 20 years. The mixing 

structure of a population is often closely related to age structure of the population. Contact 
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rates are highly dependent on age. Many diseases, for example, childhood diseases, may be 

mostly transmitted to individuals of the same age. Vaccination strategies for specific diseases 

are naturally applied to different age groups( see Castillo-Chavez and Feng[7) and references 

therein). Hence, during the last two decades of the 20th century, age-structured epidemic models 

have been extensively studied [8,9,10,11,12,13,14,15,16). Dietz and Schenzle studied an epidemic 

model with special forms of age and infectious age dependent contact rate[17). Thieme and 

Castillo-Chavez formulated a model and explored the role of variable infectivity in combination 

with a variable incubation period in the dynamics of HIV transmission in homogeneously mixing 

population[18). Proportionate mixing has been extensively used in age-structure models. This 

mixing structure has been useful in the study of dynamics of childhood diseases. The use of 

proportionate mixing also makes it easier to get an explicit formula for the basic reproductive 

number[19). 

Previous dynamical analysis for many age-structure models has been incomplete. The local 

stability for disease-free steady-state is easy to establish for most age-structured models when 

the basic reproductive number is less then a unity. The globally asymptotic stability of a stable 

age distribution, however, is very difficult in general. In this paper, we focus on the study of 

the global dynamics of two-age structured model. The study is theoretical in nature, but the 

framework and the approach may be applicable to specific diseases. 

The paper is organized as follows: Section 2 introduces the epidemic model. The basic repro­

ductive number is computed and fundamental assumptions are spelled out. Section 3 establishes 

the global asymptotic stability of the disease-free steady-state and the endemic non-uniform 

age-distributions. An iteration procedure is used. The appendix shows that the solutions of the 

epidemic model are nonnegative for relevant initial distributions. 

2 Model and basic reproductive number 

The framework of our model is from Busenberg and Castillo-Chavez [20). SIS models with both 

chronological age and infection age structures are formulated. Demographically the population 

is stratified by chronological age and, epidemiologically, it is partitioned into susceptible and 

infective. Here s(a, t) denotes the density of susceptibles at timet and i(a, c, t) the density of 

infectives at time t, where a is the chronological age and c is the infection age, that is, the time 
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span since infection. The variable c does not distinguish individuals and can never be greater 

than the chronological age a. The total numbers of the susceptibles S(t) and infectives I(t) 

at time t are given by S(t) = J0A s(a, t)da, I(t) = J0A J0a i(a, c, t)dcda, respectively, where A is 

the maximum age. The total population size is given by P(t) = S(t) + I(t) = J0A s(a, t)da + 

J0A J0a i(a, c, t)dcda. It is assumed that all newborns are susceptibles and the disease is not fatal. 

Thus, we ignore the disease-related mortality. The model describing the dynamics of an SIS 

infectious disease takes the form of a nonlinear hyperbolic system of PDEs: 

as as r. 
aa + at = -JL(a)s(a, t) - G(a, t) + 1(a) Jo t(a, c, t)dc, 

1A2 

s(O, t) = b(a, P(t))p(a, t)da, 
A1 

s(a, 0) =so( a), s(A, t) = 0, 

ai ai ai 
aa + ac +at= -(JL(a) +!(a))i(a,c,t), 

i(a, 0, t) = G(a, t) = C(a)s(a, t) {A r' {3(a',c) i(~',,c, ~) p(a, a', t)dcda', 
Jo Jo P a, t 

i(A, c, t) = 0, 

i(a, c, 0) = io(a, c), 

(la) 

(lb) 

(lc) 

(2a) 

(2b) 

(2c) 

(2d) 

where p(a, t) = s(a, t) + J0a i(a, c, t)dc is the entire population density at time t; P(t) = 

J0A p(a, t)da the total population size at time t; b(a, P(t)) the density-dependent age-specific 

birth rate(birth modulus) of the population; so(a) and io{a, c) are the initial distributions; 

[AI> A2] is the fecundity period, 0 < A1 < A2 < A; JL(a) the age-specific mortality rate; 1(a) the 

age-specific recovery rate of the infective individuals; C(a) the age-specific contact rate; {3(a, c) 

the age-specific probability that a susceptible becomes infected given that it had a contact with 

an infectious of (a, c) type; p(a, a', t) the probability that an individual of age a has contact 

with an individual of a' given that it has a contact. We implicitly assume that the population 

mixes proportionately [20], that is, p(a, a', t) = p(a', t) = f.f(a')p(a',t) , The force of infec-
0 C(a)p{a,t)da 

tion{incidence), that is, the rate at which susceptibles individuals of age a move over into the 

infective class per capita and per unit of time, is given by G(a, t); 

In the most cases (except for the case where backward bifurcation takes place) the basic 

reproductive number regulates the local dynamics of disease transmission., i.e., if it is less than 

a unity, the disease dies out, while if it is greater than one the disease establishes itself. The main 
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result of this paper is the establishment of the global nature of this transcritical bifurcation. 

The next generation operator is used to find out the basic reproductive number. This approach 

formulated by Diekmann et al. [19] has been widely used recently. Feng, Castillo-Chavez, and 

Huang have a detailed version of this method and specific applications in this volume. First, we 

compute the demographic steady-state and expected infectivity. The demographic steady-state 

is calculated from Equation (la) by letting i(a, a', t) = 0 ( details are provided later in this 

section). It turns out that the demographic steady-state 

( ) exp(- J0a f..L(T)dr) 
Poo a = Poo A ' 

fo exp(- foa f..L(T)dT)da 
where P 00 is a constant. 

Let E(a,a',c) denote the expected infectivity of an infectious individual of (a', c) type towards 

a susceptible of age a at the demographic steady-state. E(a,a',c) is determined by a routine 

infection process thought that follows the pattern of an infective who first survives from a' - c 

to a'; has contacts with susceptibles; and transmits the disease by chance. It is assumed that 

these events happen independently. Hence, E(a, a', c) is the product of three terms: the survival 

probability of an infected individual surviving from a' - c to a'; the contact rate of individuals 

of age a with individuals of age a'; and the transmission probability. Therefore 

( , ) ( ) ( ')/3( 1 )n(a', c) E a, a - c, c = C a p a a , c ( ') , 
Poo a 

r' where p(a') = J.f(a')P=(a') and n(a', c)= e- a'-c(!L(a)+'Y(a))da( the survival probability of an 
0 C(a)poo(a)da 

infected individual survives from a'- c to a'). 

Hence 

1A 1a' n(a' c) Ro = C(a'- c)p00 (a'- c)p(a')f3(a',c)-(' ') dcda' 
0 o Poo a 

= fA r' C(a'- c)poo(a'- c) A C(a')f3(a'' c) n(a'' c)dcda'. 
Jo Jo J0 C(a')Poo(a')da' 

(3) 

3 Dynamics analysis 

3.1 Assumptions 

From the epidemiological and mathematical point of view, we make the following assumptions: 

• Al. f..L(a) > f-Lo > 0 is a positive continuous function on [0, A), and J0A f..L(a)da = +oo. Set 

M(a) = exp(- J0a f..L(T)dT) for 0 $ a < A, and M(A) = 0. It is obvious that M(a) is a 
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continuous, decreasing function on [0, A], and 0 :S M(a) :S 1 for 0 :::; a :SA. 

• A2. b(a, P) is a nonnegative continuous function, and b(a, P) > 0 for A1 < a < A2, 

b(a, P) = 0 for a :S A1 or a~ A2. 

• A3. po(a) ~ 0 is a continuous function, po(a) > 0 if a E [0, A), and Po(A) = 0. The initial 

data p0 (a) satisfies the compatible condition 

Po(O) =loA b( a, loA Po(r)dr )Po(a)da, 

which is simply the requirement that the initial data be consistent with the birth process. 

• A4. -y(a) is a nonnegative and continuous function on [0, A]. 

• A5. The effects of infection age follows an exponential distribution with an expected 

infection age t and (J(a', c) takes a form of variable-separated, (J(a', c) = (31 (a')e-lic, where 

(31 (a') is assumed to be bounded, positive and continuous. To keep notation simpler, we 

set >. (a) - C(a) >. (a') = (31 (a')C(a'), >.(a, a', c) = >.1 (a)>.2(a')e-lic, and 
1 - J0A C(a')Poo(a')da'' 2 

>.* = maxo:s;a::;A,o:s;a':s;A>.(a, a', c) 

• A6. i0 (a, c) is bounded, nonnegative and continuous function on 0 :S c :S a :S A. And 

i0 (a, c) satisfies the continuous compatible condition 

r rA r' 
(Po(a) - Jo io(a, c)dc) Jo Jo >.(a, a', c)io(a', c)dcda' = io(a, 0). 

The lack of disease-induced mortality in our model implies that the total population density 

p(a, t) is governed by the following demographic evolution equation [21,22]: 

op op 
oa + ot = -J.L(a)p(a, t), 

1A2 

p(O, t) = b(a, P(t))p(a, t)da, 
At 

p(a, 0) =Po( a), p(A, t) = 0, 

(4a) 

(4b) 

(4c) 

where p0 (a) = s0 (a) + J0a io(a, c)dc. Under assumptions (Al) "' (A3), the age-structured popula­

tion model (4) is well-posed [23,24). From the net reproductive number n(P) = J: b(a, P)M(a)da, 

we see that, if the equation n(P) = 1 has a positive root P00 , then the total population density 

p(a, t) has a steady-state p00 (a) = P00 M(a)j J0A M(a)da[23). Sufficient conditions for the local 
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stability for the positive steady-state p00 (a) can be found in [25,26,27]. We focus on the global 

stability of non-uniform epidemic steady-state throughout the rest of this paper. 

We assume that the total population is at its demographic steady-state p00 (a) i.e., p(a, t) = 

P=(a) = P=M(a)/ f0A M(a)da, thus replacing s(a, t) by P=(a) - foa i(a, c, t)dc in the force of 

infection, G(a, t), we arrive at a single equation in terms of i(a, c, t). 

8i 8i 8i 
8a + 8c +at = -(f..L(a) + l(a))i(a, c, t), (5a) 

i(a,O,t) = G(a,t) = (P=(a) -loa i(a,c,t)dc) loA loa' )..(a,a',c)i(a',c,t)dcda', (5b) 

i(A, c, t) = 0, (5c) 

i(a, c, 0) = io(a, c). (5d) 

Using a similar idea by Thcker et al., it can be shown that the Equation (5) has a unique 

continuous solution for all t 2: 0, provided that the assumptions (Al)rv(A6) hold[28]. Are the 

solutions to the Equation (5) nonnegative? Theorem A below gives a positive answer. 

Theorem 1 Assume that { AJ)rv( A6) hold. Let i(a, c, t) be the solution of {5) with the initial 

distribution io (a, c) satisfying J0a io (a, c )de ~ P= (a). Then i (a, c, t) 2: 0 for all t :=::: 0. 

The proof of Theorem 1 can be found in Appendix. 

3.2 Global stability of disease-free steady-state 

Equation (5) can be explicitly solved along the characteristic lines, 

i(a, c, t) = G(a- c, t- c)n(a, c), (6) 

. n(a, t) 
G(a- c, t- c)= z0(a- t, c- t)-( -), if t:::; c. 

n a,c 
where 

Imposing the boundary condition (5b) upon (6) gives the following nonlinear equation for G(a, t) 

G(a, t) =(Poo(a) -loa G(a- c, t- c)n(a, c)dc) 

A I 

x lola )..(a, a', c)G(a'- c, t- c)n(a', c)dcda'. (7) 

Since n(a', c) = exp(- J;'_c (f..L(r) + /(r))dr) is bounded, positive, and continuous, it follows 

from (6) that the asymptotic behavior of i(a, c, t) is completely determined by the asymptotic 

. 6 . 



behavior of G(a, t), which satisfies Equation (7). Therefore, Equation (7) is the main target in 

our analysis. 

The specific expression for the basic reproductive number for Model (5) under the assump-

tions (Al)rv(A6) is 

(8) 

To see the effect of infection age, we look at Ro as a function of the expected infection age, 

!· Ro(!) increases as does !· An extreme case ! = oo corresponds to the situation where 

the infection age has no effect. Ro(!) approaches its maximum value Ro = f0A J0a' >. 1(a'­

c)>.2(a')p00 (a'- c)1r(a', c)dcda' that is the corresponding basic reproductive number to the case 

where only chronological age is considered. Hence the basic reproductive number in single 

age-structure model over estimates the severity of the epidemic. 

We now examine the stability of the disease-free steady-state and the existence of an endemic 

steady-state. 

Theorem 2 Assume that {Al}rv{A6} hold. Then the disease-free steady-state is globally asymp-

totically stable if Ro ~ 1, whereas, it is unstable and there exists a unique endemic steady-state 

if Ro > 1. 

Proof. The local stability of the disease-free steady-state is directly derived from the definition 

of Ro. What remain now is to show that it is a global attractor. Defining 

A a' 

w(t) = lo lo >.a(a',c)i(a',c,t)dcda', 

one can see that 

rA r' 
w(t) = Jo Jo >.a(a', c)G(a'- c, t- c)1r(a', c)dcda', t?: A. 

According to Equation (7), we arrive at 

w(t) =loA loa' >.1(a'- c)>.a(a', c)p00(a'- c)1r(a', c)w(t- c)dcda' 

-loA loa' >.1(a'-c)>.a(a',c) 1a'-c G(a'-c-T,t-c-T)7r(a',c-T)w(t-c)dTdcda', (9) 
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and 

{A ra' 
w(t) :S Jo Jo >.1(a'- c)>.3(a', c)p00 (a'- c)n(a', c)w(t- c)dcda'. (10) 

Let IIPoo(a)ll and llio(a, c)ll be the maximum norm of the continuous functions, that is, IIPoo(a) II = 

maxo::;a:s;APoo(a), Ilia( a, c) II = maxo:s;c:s;a:s;A io(a, c). The assumption (A6) and the expression 

of Poo(a) = PooM(a)/ faA M(a)da imply that IIPoo(a)ll and llio(a, c)ll are well-defined positive 

numbers. The fact that the disease-free steady-state i(a, c, t) = 0 is a trivial solution to (5) 

and the regularity result of solutions implies that i(a, c, t), the solutions of (5) with the initial 

distribution io (a, c), are continuously dependent on io (a, c). Hence, for any given positive number 

c:, there exists a positive number 8, such that i(a, c, t) < c: if llio(a, c)ll < 8 and t ::=; A. From 

(5b) it follows that 0 ::=; G(a, t) ::=; c1 t: for 0 ::=; t ::=; A, here c1 is a positive constant. From the 

definition of w(t) , there also exists a positive constant co, such that w(t) < eoc: for 0 ::=; t ::=;A. 

If Ro < 1, Inequality (10) implies that w(A) ::=; Roeoc: < Rn2+1 Cot: < eoc:. We claim that 

w(t) < Rn2+1 c0c: for all A:::; t ::=; 2A. Otherwise, there exists at least one toE (A,2A], such that 

w(to) = Ro2+1eoc:, and w(t) < Ro2+leoc: for all A::=; t <to. From Inequality (10) it follows that 

A a' 

w(to) :S 11 >.1(a'- c)>.3(a',c)p00 (a'- c)7r(a',c)w(to- c)dcda' 

Ro+ 1 :::; Roeoc: < - 2-eoc:. 

This contradiction implies that w(t) < R~+l Cot: for all A :::; t ::=; 2A. Mathematical induction 

gives 

(Ro + 1)n w(t) ::=; - 2- Cot: for nA ::=; t ::=; (n + 1)A. (11) 

From (5b) and (11) we obtain 

(Ro+1)n G(a, t) ::=; - 2- c2c:, for nA:::; t ::=; (n + 1)A. (12) 

Finally the expression (6) gives rise to 

(Ro + 1)n i(a, c, t) ::=; - 2- c3c:, for nA :::; t ::=; (n + l)A. (13) 

c2 and c3 in (12) and (13) are positive constants. Inequality (13) says that the disease-free steady­

state i(a, c, t) = 0 is a globally asymptotically attractive. Thus it is globally asymptotically 

stable since we have known it is local stable. 
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To prove the existence of unique stable age distribution, we need to look for the time-

independent solution G00 (a) of the equation (7) when Ro > 1. G00 (a) satisfies the equation 

where 

G00 (a) = At(a)(p00 (a) -loa Goo(T)Zi~~dT)w*, 

w* = lA loa' A3(a',c)G00 (a'- c)1f(a',c)dcda', 

N(a) = exp( -loa (JL(T) + I(T))dT). 

Defining g(a) = ~';'(~J), it can be verified that g(a) is the solution of the equation 

( r N(a) ) * g(a) = Poo(a)- Jo g(T)At(T) N(T)dT w, 

(14a) 

(14b) 

(14c) 

(15a) 

A I 

where w* =lola A3(a',c)g(a'- c).Xt(a'- c)1r(a',c)dcda'. (15b) 

Changing the integral equation for g(a) into a differential equation, solving the resulting equa­

tion, a closed form for g(a) is obtained, 

The substitution of (16) into (15b) leads to that (16) is the solution of (15) if and only if w* is 

the solution of the equation f(w*) = 1, where 

f(w*) = lA la' At(a' -c).X3(a',c)N(a')exp(-w* loa'-c .X1(T)dT) 

( ( r'-c I(T)Poo(T)exp(w* J; At(O)dO) ) , 
X Poo 0) + Jo N(T) dT dcda 

{A r' r'-c 
=Poo(O) Jo Jo At(a' -c).X3(a',c)N(a')exp(-w* Jo .X1 (T)dT)dcda' 

+p00 (0) lA loa' At(a' -c).X3(a',c)N(a') la'-c 'Y(T)exp'( -w* 1a'-r At(O)dO+ lor 'Y(O)dO)dTdcda'. 

f ( w*) is a monotonic decreasing function of w*, with limw• --++oo f ( w*) = 0, and 
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This follows that there exists one and only one solution to equation f(w*) = 1 by using the 

intermediate theorem for continuous function. Hence the existence of a unique steady age 

distribution is established. 

Now turn to prove that the disease-free steady-state is unstable when RQ > 1. If it is stable 

then for the positive number£= 2~£:;.:, there exists a {j > 0, such that, 0 :::; i 0 (a, c) < {j implies 

that 

0 :::; i(a, c, t) < £, 0 :::; c :::; a :::; A, t ~ 0. (17) 

By the definition of w(t) and (17), we know 

A a' 

0 < w(t) = 1 1 >.3(a',c)i(a',c,t)dcda':::; A2 )..*£, t ~ 0. (18) 

On the other hand, if t ~ A, (6) and (9) yield 

A a' a'-c 

w(t) = 1 1 A3(a', c) (Poo(a' -c) - 1 i(a' - c, r, t- c)dr )w(t- c)'rr(a', c)dcda' 

A a' a'-c 

~ { { )..3(a',c)(Poo(a'-c)- { i(a'-c,r,t-c)dr)1r(a',c)dcda' min w(r) 
Jo Jo Jo t-A:s;r9 

~ (Ro-A3>.*c) min w(r)= Ro+ 1 min w(r), (19) 
t-A:s;r::;t 2 t-A:s;r::;t 

from which we can have 

( Ro+1)n w(t) ~ - 2- min w(r), 
o:s;r:s;A 

nA:::; t :::; (n + 1)A. (20) 

The initial distribution io(a,c) can be chosen such that mino<r<A w(r) = w0 > 0. Conse­

quently, Inequality (18) and (20) can not be true simultaneously. This contradiction implies the 

instability of the disease free equilibrium. The proof of Theorem 2 is complete. 

The threshold result (Theorem 2) presents a satisfactory answer to the stability of the disease-

free steady-state and the existence and uniqueness of nontrivial stead-state. It is natural to 

investigate the stability of the unique endemic steady-state when Ro > 1. 

3.3 The global stability of the endemic steady-state 

The two-age-structured system is replaced by two coupled single-age-structured system. A 

comparison theorem then is established for the coupled models. Finally, we prove the global 

stability results for the SIS model (2). 
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We first define the age and weighted age density functions 

j(a, t) =faa i(a, c, t)dc, k(a, t) =faa e-lici(a, c, t)dc, 

which are governed by 

~: + ~~ = -(p,(a) + r(a))j + (p(XJ(a)- j(a, t))>.l(a) faA A2(a')k(a', t)da', 

~ ~ {A 
aa + at = -(p,(a) + r(a) + 8)k + (p(XJ(a)- j(a, t))>.1(a) Jo >.2(a')k(a', t)da' 

j(a, 0) = io(a) =faa io(a, c)dc, 

k(a, 0) = ko(a) =faa e-licio(a, c)dc, 

j(O, t) = 0, j(A, t) = 0, 

k(O, t) = 0, k(A, t) = 0. 

Going one step further, we perform the normalization, 

u(a, t) = e-liaj(a, t)/p(XJ(a), v(a, t) = k(a, t)/p(XJ(a), 

thus 

0 :::; u(a, t) :::; v(a, t) :::; 1, 0:::; e6au(a, t) :::; 1. 

A new system in terms u(a, t) and v(a, t) is 

au au 
aa + at = F(u,v)(a,t), 

av av 
aa + at = G(u, v)(a, t), 

u(a, 0) = uo(a) = e-liajo(a)/p(XJ(a), 

v(a, 0) = vo(a) = ko(a)/p(XJ(a), 

(21a) 

(21b) 

(21c) 

(21d) 

(21e) 

(21f) 

(22a) 

(22b) 

(22c) 

(22d) 

u(O, t) = 0, v(O, t) = 0, (22e) 

where F(u, v)(a, t) = -(r(a) + 8)u(a, t) + { e-lia- u(a, t))>.1(a) faA A2(a')p(XJ(a')v(a', t)da', 

G( u, v )(a, t) = -( r(a) + 8)v(a, t) + (1 - e6au(a, t))>.1 (a) faA A2( a')p(XJ(a')v(a', t)da'. 

When Ro > 1, it is straightforward to show that the unique endemic steady-state of (2) 
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corresponds to the unique endemic steady-state of {22): 

where 

Uoo(a) =loa ve-6T Al(r)exp( -1a ('Y(O) + 6 + VA1(0))do)dr 

V00 (a) =loa V(1- e6r u00 (r))A1 (r)exp( -1a ('y(O) + 6)d0 )dr, 

V =loA A2(a)p00 (a)v00 (a)da. 

A comparison theorem for the constructed System of PDEs {22) is established below: 

Theorem 3 {Comparison Theorem) Assume that {Al}rv {A6} hold. Let u1(a, t), u2(a, t), 

v1(a,t), v2(a,t) be the solutions of {22} with the initial conditions u1(a,O) = ulo(a), u2(a,O) = 

u2o(a), v1(a,t) = vw(a), v2(a,O) = v2o(a), respectively. Then {1} u1(a,t) ~ u2(a,t), v1(a,t) ~ 

V2(a, t) if0 ~ U2o(a)- Uw(a) ~ V2o(a)- vw(a). {2} eu1(a, t) ~ ue(a, t) and ev1(a, t) ~ ve(a, t), 

. where ue(a, t)and ve(a, t) are the solutions of {22} with the initial conditions ue(a, 0) = euw(a), 

ve(a,O) = evw(a), and e is a constant 0 ~ e < 1. 

Proof. Let 'fJ be a positive constant such that 

'fJ max (-y(a) + 26 + Al(a)exp(26A) {A A2(a)p00 (a)da) < 1. 
o::;;a::;;A Jo 

The characteristics method implies that {22) is equivalent to the following system of integral 

equations 

u(a, t) = exp( ~t)uo(a- t) +~lot exp( -(t; r)) ( u(a- t + r, r) 

+ ryF(u, v)(a- t + r, r) )dr, a?. t, {23a) 

u(a, t) = ~ 1a exp(-(a'fJ- r)) ( u(r, t- a+ r) 

+ryF(u,v)(r,t-a+r))dr, a<t, (23b) 

v(a, t) = exp( ~t)vo(a- t) +~lot exp( -(t; r)) ( v(a- t + r, r) 

+ ryG(u, v)(a- t + r, r) )dr, a?. t, {23c) 

v(a,t) =~loa exp(-(a'fJ-r))(v(r,t-a+r) 

+ ryG(u, v)(r, t- a+ r) )dr, a< t. (23d) 
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Construct two sequences by iteration 

u<0l(a, t) =uo(a), (24a) 

u<n+ll(a, t) = exp( ~t)uo(a- t) +~lot exp( -(t; 7)) ( u<nl(a- t + 7, 7) 

+7JF(u(nl,v(n))(a-t+7,7))d7, a~t, (24b) 

u(n+l)(a,t) =~loa exp(-(a; 7))(u<nl(7,t-a+7) 

+7JF(u<nl,v(n))(7,t-a+7))d7, a<t. (24c) 

v<0l(a, t) =vo(a), (24d) 

v(n+l) (a, t) = exp( ~t)vo(a- t) + ~lot exp( -(t; 7)) ( v<nl(a- t + 7, 7) 

+7JG(u<nl,v(n))(a-t+7,7))d7, a~ t, (24e) 

v<n+ll(a,t) =~loa exp(-(a17-
7))(v<n)(7,t-a+7) 

+7JG(u<nl,v(n))(7,t-a+7))d7, a<t, (24f) 

It is not difficult to show that u<nl(a,t) and v<nl(a,t) converge uniformly to u(a,t) and v(a,t), 

the solutions of the integral equations (22). If 0 ~ u<0l(a, t) ~ v<0l(a, t) ~ 1, 0 ~ e6au0 (a, t) ~ i, 

0 ~ u<nl(a,t) ~ v<nl(a,t) ~ 1, and 0 ~ e6au(n)(a,t) ~ 1, then from (24b) and the selection for 
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'TJ, we have that 

0 :'S u(n+ll(a, t) 

= exp( ~t)uo(a- t) +~lot exp( -(t; r)) ( u<nl(a- t + r, r) 

- 'T]e-o(a-t+r) {T(a- t + r) + 8) 

+ ry(e-o(a-t+r)- u<nl(a- t + T, r)) ( ('Y(a- t + r) + 8) 

+ >.1(a- t + r) loA A2(a')Poo(a')v(n)(a', r)da') )dr 

:-:::; exp( ~t - 8a) +~lot exp( -(t 17- r)) ( u<nl(a- t + r, r) 

- 'T]e-o(a-t+r)(T(a- t + r) + 8) + e-o(a-t+r)- u<nl(a- t+ T,r))dr 

:-:::; exp( ~t - 8a) + ~lot exp( -(t 17- r)) (1- ryo)e-o(a-t+r)dr 

:'S exp( ~t - ba) + (1- exp( ~t + bt))e-oa 

:-:::; exp( ~t - ba) + (1- exp( ~t) )e-oa :-:::; e-oa :-:::; 1, a 2 t. 

A similar procedure implies that 

(25) 

Based on (24), a relationship between both sequences is deduced 

u(n+ll(a, t)- v<n+l)(a, t) = exp( ~t) (uo(a- t)- vo(a- t)) 

+~lot (exp(-(t; r)) ( (1- 'T]('Y(a- t + r) + o))(u(n)(a- t + T,T) 

- v<nl(a- t + T, r)) + ry(e-o(a-t+r)- 1) (1- e6(a-t+r)u(n)(a- t + T, r)) 

X >.1(a- t + r) loA A2(a')p00 (a')v<nl(a',r)da')dr :'S 0, a 2 t, (26a) 

u<n+ll(a, t)- v<n+ll(a, t) 

=~loa ( exp( -(aT]- r)) ( (1 -17(-y(r) + 8))(u<nl(r, a-t+ r) 

-v(n)(r,a- t+r)) +ry(e-or -1)(1-e6ru(n)(r,a-t+r)) 
A 

x >.1(r) lo A2(a')p00 (a')v<nl(a', t- a+ r)da')dr :'S 0, a:-:::; t, (26b) 

which implies 0 :-:::; u<nl(a, t) :-:::; v<nl(a, t) :-:::; 1. It can be seen that 0 :-:::; e6au(nl(a, t) :-:::; 1 for all 
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integer n by induction. Hence, 

lim u(n)(a,t) = u(a,t)::; e-6a, 
n-+oo 

lim v<nl(a,t) = v(a,t)::; 1, 
n--+oo 

0::; u(a,t)::; v(a,t)::; 1, 

0::; k(a, t) :S j(a, t) :S Poo(a), 0 ::; a ::; A, 0 ::; t ::; T. 

We claim that 

u(n)(a t) < u(n)(a t) and v(n)(a t) < v(n)(a t) 
1 >-2' 1 >-2' 

(27a) 

(27b) 

(27c) 

(27d) 

hold for any integer n. Now we apply induction again to ensure the claim. Assume they are 

true for n, i.e., 

0::; uin)(a,t)::; v~n)(a,t)::; 1, 0 :S u~n)(a,t)::; v~n)(a,t)::; 1, 

and 0 :S u~n) (a, t) - uin) (a, t) ::; e6a ( v~n) (a, t) - v~n) (a, t)). 

Then a direct computation gives 

(n+l) ( t) - (n+l) ( t) u2 a, u 1 a, 

= exp( ~t) ( u~o) (a, t) - ui0) (a, t)) 

+~lot exp(-(t TJ- r)) ( (u~n)(a- t + r, r)- uin)(a- t + r, r)) 

x (1-r{y(a-t+r)+6+..\1(a-t+r) loA ..\2(a')p00 (a')v~n)(a',r)da')) 
+ TJe-6(a-t+r).>,1(a- t + r)(1- e6(a-t+r)Uln)(a- t + r,r)) 

x loA ..\2(a')p00 (a')(v~n)(a', r)- v~n)(a', r))da')dr :2: 0, a :2: t, (28a) 

and 

u~n+l)(a, t)- uin+l)(a, t) 

=~loa exp(-(aTJ- r)) ( (u~n)(r, t- a+ r)- uin)(r, t- a+ r)) 

x ( 1- TJ( 'Y(r) + 8 + .A1(r) loA >.2(a')p00 (a')v~n)(a', t- a+ r)da')) 

+ rJe-67 ..\1 ( T )(1 - e67 uin) ( r, t - a+ r)) loA A2(a')Poo( a') 

x (v~n)(a', t- a+ r)- v~n)(a', t- a+ r))da')dr :2: 0, t :2: a. (28b) 

. 15 . 



The selection for TJ and - ( u~n) (a, t) - u~n) (a, t)) ~ -e6 ( v~n) (a, t) - vin) (a, t)) result in 

and 

v~n+l) (a, t) - vin+l) (a, t) 

= exp( ~t) (v~0)(a, t)- vi0)(a, t)) +~lot exp( -(\- r)) 

x ( ( v~n) (a-t+ T, r) - vin) (a-t+ T, r)) (1- TJ(/(a- t + r) + 8)) 

- 7Jeo(a-t+r) ..\1 (a-t+ r) ( u~n) (a-t+ T, r) 

- u~n) (a-t+ T, r)) loA ..\2(a')p00 (a')v~n) (a', r)da' 

+ 7JA1 (a-t+ r) (1- e6(a-t+r)u~n)(a- t + T, r)) 

x loA A2(a')p00 (a')(v~n)(a',r) -vin)(a',r))da')dr ~ 0, a ;:: t, (29a) 

(n+l) ( t) _ (n+l) ( t) v2 a, v1 a, 

=~loa exp( -(a TJ- r)) ( (v~n)(r, t- a+ r)- vin)(r, t- a+ r))(1- TJ('Y(r) + 8)) 

- T}e0r ..\1(r)(u~n)(r, t- a+ r)- u~n)(T, t- a+ r)) loA A2(a')p00 (a')v~n)(a', t- a+ r)da' 

+ TJA1 (r) (1- e6r u~n) (r, t- a+ r)) loA A2(a')Poo(a') 

x (v~n)(a', t- a+ r)- vin)(a', t- a+ r))da')dr ~ 0, t ~a. (29b) 

From the above expressions, we deduce that 

(n+l)( t)- (n+l)( t) u2 a, u 1 a, 

~ exp(8a + ~t) (v~0)(a, t)- vi0)(a, t)) 

+~lot exp(-(t; r)) (exp(8(a- t + r)) (v~n)(a- t + T, r)- vin)(a- t + r,r)) 

x ( 1- TJ( 1(a- t + r) + 8 + Al (a-t+ r) loA A2(a')p00 (a')v~n) (a', r)da')) 

+ T}e-o(a-t+r) A1 (a-t+ r)(1 - e6(a-t+r)u~n)(a- t + T, r)) 

x loA A2(a')p00 (a')(v~n)(a',r)- vin)(a',r))da')dr 

~ e6a(v~n+l)(a, t)- vin+l)(a, t)), a~ t, (30a) 

thus u~n+l) (a, t) - u~n+l) (a, t)) ~ e6a ( v~n+l) (a, t) - vin+l) (a, t)), t ;:: a (30b) 
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Therefore, 

Hence given any constant 0 ~ ~ < 1, it is readily found that 

~F(u,v)(a,t) ~ F(~u,~v)(a,t), ~G(u,v)(a,t) ~ G(~u,~v)(a,t). 

From the construction of the iterative sequences in (24), we have that 

and Theorem 3 is proved. 

Theorem 4 Assume that {Al}rv {A6) hold. The positive equilibrium solution u00 (a), v00 (a) 

of {22} is globally stable if Ro > 1. 

Proof. Using the method of characteristics, System (22) can be solved explicitly: 

u(a, t) = uo(a- t)exp( -lot a1(a- t + T, r)dr) 

+ lote_6(a-t+r)>..1(a-t+r)w(r)exp( -1ta1(a-t+O,fJ)dB)dr, a?:.t, (31a) 

u(a,t) =loa e-6r>..l(r)w(t-a+r)exp( -1a al(fJ,t-a+O)dB)dr, a~t, (31b) 

v(a, t) = vo(a- t)exp( -lot a2(a- t + r)dr) 

+lot (1-e6<a-t+r)u(a-t+r,r))>..l(a-t+r)w(r) 

x exp( -1t a2(a- t + O)dfJ )dr, a?:. t, (31c) 

v(a,t)= loa (1-e6ru(r,t-a+r))>..1(r)w(t-a+r)exp( -1a a2(fJ)dO)dr, a~t,(31d) 

where, 

w(t) =loA >..2(a)p00 (a)v(a, t)da, 

a1(a, t) = -y(a) + 6 + >..1(a)w(t), 

a2(a) = -y(a) + 6. 

w(t) > 0 for 0 ~ t ~ A holds from its definition. Combining (31b), (31d) and e6au(a, t) < 1(0 < 

a < A) yields u(a, A) > 0 and v(a, A) > 0 for 0 < a < A. Continuing this process leads to 
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w(t) > 0 for 0::; t::; 3A. Again from (31b) and (31d), we obtain 

u(a, 2A) 2: loa e-or >..1 ( T)woexp(- 1a a1 *((), 2A- a+ B)d()) dT, 0::; a ::; A, (32a) 

v(a,2A) 2: loa (1- e6ru(r,2A- a+r))>..1(T)w0 exp( -1a a2(B)dB)dr, 0 <a::; A, (32b) 

where 

wo = min w(t), 
A::;t9A 

a;(a, 2A) = 1(a) + b + >..1(a) max {A >..2(T)p00 (T)v(r, t)dT. 
A::;t9A}0 

Moreover, from the expressions of Uoo(a) and Voo(a) together (31) and {32), e can be chosen 

such that 

euoo(a)::; u(a,2A)::; e-oa, evoo(a)::; v(a,2A)::; 1. 

Let u~(a, t), Vf,(a, t), Uo(a, t), vl(a, t) be the solutions of (22) satisfying u~(a, 0) = euoo(a), 

Vf,(a, 0) = evoo(a), Uo(a, 0) = e-oa) V! (a, 0) = 1, respectively. By virtue of Theorem 3, it is clear 

that 

ue(a, t) ::; u(a, t + 2A) ::; uo(a, t), 

ve(a, t)::; v(a, t + 2A)::; v1(a, t). 

The fact that u00 (a) and v00 (a) are equilibrium solution implies that 

evoo(a)::; ve(a, t), vl(a, t)::; 1, 

which further imply that ue(a,t), ve(a,t) are increasing, and conversely u0 (a,t), v1(a,t) are de­

creasing. Therefore, we(t) = f0A >..2(a)poo(a)ve(a, t)da is increasing and w1 (t) = f0A >..2(a)p00 (a)v1 (a, t)da 

is decreasing. Hence we(t) and w1 (t) must approach the same limit w;;,, otherwise, the positive 

steady-state for (6) would not be unique. Hence the positive steady-state of (22) is globally 

asymptotically stable. This ends the proof of Theorem 4. 

From the assumptions and (2b), G(a, t) can be expressed in terms of u(a, t) and v(a, t) as 

G(a, t) = (Poo(a)- j(a, t)) loA >..1(a)>..2(a')k(a', t)da' 

= >..1 (a)p00 (a) (1 - e6au(a, t)) loA >..2(a')p00 (a')v(a', t)da'. 
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Consequently, the solution of (2) is of the form 

i(a, c, t) = G(a- c, t- c)7r(a', c), 

where G(a, t) is given above. Hence, the positive steady-state of (2) is globally asymptotically 

stable whenever Ro > 1. 

4 Concluding remarks 

A general age-structured epidemic model is modified via the introduction of the infection age. 

The stability of steady-states and the uniqueness and existence of endemic steady-state for an 

SIS epidemic model are established . The basic reproductive number increases our understanding 

of the effect of infection age. Traditional single-age-structured model attempts to over estimate 

the disease severity. A two-age-structured SI epidemic model recently studied by Brauer[29] has 

also indicated this over estimation when the ratio of mean age at infection to the mean life span 

is very large. 

It has been found that endemic equilibria are globally stable for epidemic models given by 

monotone ODE systems by Feng, Castillo-Chavez and Huang[30], Song and Castillo-Chavez 

[31], and Li [32]. Our work is an extension of this global dynamics to PDE system. We also 

expand the work of Thieme, Dusenberg, Iannelli [9] to PDE systems with two-age structures. 

The approach of constructing iterate sequences to establish the global dynamics here may be 

useful in similar analysis of general epidemic models. 

In the future, we intend to extend this approach to more realistic situations. For instance, we 

would like to apply it to fatal diseases and to situations that can handle general age distribution 

infection. 
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5 Appendix 

A rigorous proof of Theorem 1 is provided here. 

Proof. Expression (6) helps us to equivalently show G(a, t) ~ 0. For the solution i(a, c, t) of (5) 

with the initial distribution satisfying the condition in Theorem 1, we define the age-structured 

distribution of the infectives by 

. fa . r N(a) r N(a) 
J(a,t)= Jo z(a,c,t)dc= Jo G(a-c,t-c)N(a-c)dc= Jo G(r,t-a+r)N(r)dr, 

which satisfies 

a· a· 
a~+ a~ = -(J.L(a) + 1(a))j(a, t) + G(a, t), 

j(O, t) = 0, 

j(a, 0) = Jo(a) =loa io(a, c)dc. 

u(a, t) = j(a, t)/p00 (a) is a normalization of j(a, t), then 

& & rA r~ 
aa +at =-,(a)u(a,t)+(1-u(a,t)) lo lo >.(a,a',c)i(a',c,t)dcda', 

u(O, t) = 0, 

u(a, 0) = uo(a) = Jo(a)/Poo(a). 

(33a) 

(33b) 

(33c) 

(34a) 

(34b) 

(34c) 

For any given T(O < T < A) it follows from the given conditions of Theorem 1 that i(a, c, t) is 

bounded for 0 ~ c ~a~ A, 0 ~ t ~ T, and 0 ~ ua(a) ~ 1. Choose any positive constant 1J and 

rewrite Equation (34a) as 

au + au =- u(a, t) + u(a, t) -l(a)u(a, t) 
aa at 1J 1J 

A a' 

+ (1 - u(a, t)) la la >.(a, a', c)i(a', c, t)dcda', 
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from which an equivalent integral equations is deduced 

u(a, t) = exp( ~t)uo(a- t) + ~ 1t exp( -(t; r)) ( u(a- t + r, r) 

+11(- 'Y(a- t + r)u(a- t +r,r) + (1- u(a- t +r,r)) 

x 1A 1a' >.(a-t+ r, a', c)i(a', c, r)dcda') )dr, 

u(a, t) = ~ 1a exp( -(a 1]- r)) ( u(r, t- a+ r) 

+11(- 'Y(r)u(r,t- a+r) + (1- u(r,t- a +r)) 

A a' 

X 11 >.(r,a',c)i(a',c,t-a'+r)dcda'))dr, 

a;::: t, 

a< t, 

(35a) 

(35b) 

where 1J is a positive constant, such that 11( I'( a)+ f0A f0a' >.(a, a', c)li(a', c, t)ldcda') < 1. We 

apply the routine iterative procedure 

u<0>(a, t) =uo(a), (36a) 

u<n+l}(a, t) = exp(~t)uo(a- t) + ~ 1t exp(-(t; r)) ( u<n>(a- t + T, r) 

+ 1J(- I'( a-t+ r)u<n>(a- t + r, r) + {1- u<n>(a- t + r, r)) 

A a' 

x 11 >.(a-t+r,a',c)i(a',c,r)dcda'))dr, a;:::t, (36b) 

u<nH>(a, t) = ~ 1a exp( -(a1J- r)) ( u<n>(r, t- a+ r) 

+ 1J(- 'Y(r)u<n>(r, t- a+ r) + (1- u<n>(r, t- a+ r)) 

A a' 

x 11 >.(r, a', c)i(a', c, t- a+ r)dcda') )dr, a< t. (36c) 

One can easily show that the iterative sequence u<n>(a, t) converges uniformly to the solution of 

the integral equation (35). 

. 21 . 



If 0 ~ u<n>(a, t) ~ 1, then we can obtain from (36b) and (36c) that 

u<n+I)(a, t) ~ exp( ~t)uo(a- t) + ~ 1t exp( -(t 11- r)) (u<n>(a- t + r, r) 

+ 11( 1(a- t + r)(1- u<n>(a- t + r, r)) + (1- u<n>(a- t + r, r)) 

{A ra' 
x Jo Jo >.(a-t+r,a',c)ii(a',c,r)idcda'))dr 

~ exp( -t)uo(a- t) + .!_ t exp( -(t- r)) ( u<nl(a- t + r, r) 
11 11lo 11 

A a' 

+(1-u<n>(a-t+r,r))11(1(a-t+r)+ h h >.(a-t+r,a',c)ii(a',c,r)idcda'))dr 

~ exp( ~t) + ~ 1t exp( -(t 11- r)) ( u<n>(a- t + r, r) + (1- u<n>(a- t + r, r)) )dr 

(-t) 11t (-(t-r)) ~ exp - + - exp dr ~ 1, 
11 11o 11 

a;::: t, (37a) 

u(n+l)(a, t) ~ .!_ t exp( -(a- r))dr ~ 1, 
11 lo 11 

a> t. (37b) 

where Inequality (37b) is deduced by the same process as does for (37a). Hence, induction 

implies that u<n) (a, t) ~ 1 for all integer n, by which we arrive at 

lim u<n) (a, t) = u(a, t) ~ 1, 
n-+oo 

j(a, t) ~ Poo(a), 0 ~ a ~ A, 0 ~ t ~ T. 

Recalling Equation (6) and (7), we find 

(38a) 

(38b) 

G(a, t) = f(a, t) + h(a, t) ht 1A >.(a, a', c)G(a'- c, t- c)n(a', c)da' de, (39a) 

where f(a, t) = h(a, t) 1A 1A >.(a, a', c)io(a'- t, c- t)n(a', t)da'dc, (39b) 

h(a, t) = p00 (a) - j(a, t), 0 ~ a~ A, 0 ~ t ~ A. (39c) 

f(a, t) and h(a, t) are nonnegative continuous and bounded on D = [0, A] x [0, A]. In order to 

prove the nonnegativity of G(a, t) we built a new sequence by iteration as follows 

c<o>(a, t) = io(a, t), 0 ~ t ~a~ A, (40a) 

c<o>(a, t) = i0 (a, a), 0 ~a~ t ~A, (40b) 

c<n>(a, t) = f(a, t) + h(a, t) 1t 1A >.(a, a', c)G(n-l) (a'- c, t- c)n(a', c)da' de, 

(a,t)ED, n=1,2,.... (40c) 
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Owing to the fact that QC0 l(a, t) is a nonnegative and continuous on D, Q(nl(a, t) are also 

nonnegative and continuous on D for all n. Denoting h* = max(a,t)ED h(a, t), we can estimate 

the norm between two consecutive terms in the sequence, resulting in 

IIG(n+ll(a, t)- a<nl(a, t)ll :::; h* A>.*IIG(nl(a, t)- aCn-l)(a, t)llt. (41) 

Inequality ( 41) together with the induction imply that 

from which it follows that Q(nl(a, t) converges uniformly on D. And thus G(a, t) = limn__,oo Q(n) (a, t) 2:: 

0 holds for 0 :::; t :::; A. This is also true for all t by repeating the process. We finish the proof 

of Theorem 1. 
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