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Nanoelectromechanical systems (NEMS) have recently been the subject of much

exciting research. They have been proposed for use in various applications such

as mass and force detection, RF processing, and investigating quantum effects in

the mechanical motion of resonators. Attempts to increase sensitivity for these

applications has led to further and further miniaturization of the mechanical de-

vices. When their size reaches the range of hundreds of nanometers, these devices

have active masses in the hundreds of the femtograms and operational frequencies

in the GHz. An ultimate limit to this miniaturization is a mechanical resonator

based on a single molecule. Such a resonator should not only be able to push

the limits of the measurements sensitivities, but can also probe decrease of the

quality factor values with size that has so far been attributed to the increase of

the surface-to-volume ratios in these resonators. Carbon nanotubes (CNTs), thin

tubes of graphene, are light, stiff, strong, and electrically active, which makes them

a perfect candidate for a such a NEMS structure.

By employing a capacitive actuation and detection technique, we investigate

the performance of a resonator based on a doubly-clamped, suspended CNT in a

transistor geometry. We excite vibrations by applying an AC driving voltage to the

gate electrode, and we detect them by measuring the current through the CNT

device. Controlling the CNT’s tension, by applying a downward DC force with



a DC voltage on the gate electrodes, enables us to tune the resonant frequency,

resulting in the first tunable and self-detecting carbon nanotube resonator.

This setup also allows us to probe the loss mechanisms in these small structures.

We systematically study correlation of the quality factor with each of the device

characteristics, including electrical resistance, fabrication geometry, and resonant

mode harmonic number. We also study dependence of the quality factor on the

experimental knobs, such as pressure, temperature, DC gate voltage, and AC

driving voltage. We find that the quality factors in CNTs continue the trend

previously established by NEMS, and that several dissipation mechanisms must

be responsible for losses in this system. We identify coupling to the environment,

the thermoelastic effect, and surface-related losses as the three key mechanisms.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Micro- and nanoelectromechanical devices have been the subject of extensive re-

search for a number of years and have generated much excitement as their use in

commercial applications has increased. An electromechanical device is basically

a mechanical element (a beam, a cantilever, etc.) that is controlled by a micro-

electronic circuit. Microelectromechanical systems (MEMS) are currently used

to make such diverse systems as electric current or light flow regulators (Ekinci

and Roukes, 2005), microscale mirrors arrays (Craighead, 2000), accelerometers in

crash airbags systems, RF electronic components, and sensors.

Nanoelectromechanical systems (NEMS) are the natural successor to MEMS

as the size of the devices is scaled down to the submicron domain. They also hold

promise for a number of scientific and technological applications. In particular,

NEMS have been proposed for use in ultrasensitive mass detection (Sidles et al.,

1995, Roukes, 2001), RF signal processing (Nguyen, 1999, Nguyen et al., 1999),

and as a model system for exploring quantum phenomena in macroscopic systems

(Cho, 2003, LaHaye et al., 2004). Improving sensitivity for these applications re-

quires decreasing the size, or, more importantly, the active mass of the resonator,

increasing its vibration frequency, and decreasing the line-width of the resonance.

Perhaps the ultimate material for these applications is a carbon nanotube (CNT).

CNTs are the stiffest material known, have low density and ultrasmall cross sec-

tions, and can be defect-free. In this thesis we will describe the fabrication and

operation of the first NEMS device based on a carbon nanotube.

1
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Due to their remarkable electrical, mechanical, and electro-mechanical proper-

ties, CNTs have been a subject of intensive research since their discovery in 1991

(Ijima, 1991). In this chapter we give a brief introduction to CNTs’ structure (sec-

tion 1.2) and their electrical (section 1.3) and mechanical (section 1.4) properties.

We conclude the chapter with a section on the previous work done using CNTs as

mechanical resonators (section 1.5).

1.2 Carbon nanotube structure

Carbon nanotubes are thin, hollow cylinders of covalently bonded carbon atoms.

They can come in two different flavors: single-walled carbon nanotubes (SWNTs)

and multiwalled carbon nanotubes (MWNTs), which consist of concentric SWNTs

(or shells) stacked together. SWNTs are typically 1−2nm in diameter and several

µm in length, but SWNTs up to mm long have been grown (Huang et al., 2003a).

MWNTs typically have diameters in the range of 5−50nm and are typically several

tens of µm in length. CNTs are created by either catalytical (Kong et al., 1998),

arc-discharge (Ijima, 1991) or laser-ablation (Guo et al., 1995) methods. The work

in this thesis was done on only individual single- or few-walled CNTs created by

catalytic methods.

The carbon atoms in the walls of a nanotube (NT) are arranged in a honey-

comb lattice just as in a single sheet of graphene. In fact, a CNT can be thought

of as a single rolled graphene sheet (See Fig. 1.1a). The properties of a CNT then

derive from the properties of graphene. Depending on the “rolling” angle with

respect to the lattice, the relative arrangement of the atoms in the walls of the

CNT with respect to the CNT axis is different. The angle between the orientation

of the lattice and the NT’s axis is known as the “chirality” of the CNT. Fig.
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Figure 1.1: Structure of CNTs. Adopted from Minot (2004). (a) Forming a

CNT by wrapping a graphene sheet. The shaded area shows the part of the sheet

to be wrapped and the black arrow identifies the direction of wrapping. The angle

φ between the direction of wrapping and the lattice is called the “chiral” angle.

(b) An “armchair” CNT (φ = 30◦). (c) A “zigzag” CNT (φ = 0◦). (d) A “chiral”

CNT ( φ is arbitrary).
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1.1b,c,d show examples of CNTs with different chiralities.

1.3 Electrical properties of carbon nanotubes

Carbon nanotubes inherit their remarkable electrical properties from the unique

electronic band structure of graphene (Fig. 1.2a). Depending on its chirality, the

nanotube can be either a metal, a semiconductor (Tans et al., 1998), or a small-

band gap semiconductor (Zhou et al., 2000).

The cylindrical structure of a CNT imposes periodic boundary conditions on

the electron wave function around the NT’s waist, and transport in a SWNT occurs

only along the axis of the tube, making a CNT a 1D conductor. The conductance

G of a 1D channel is given by the Landauer-Buttiker model (for review see Datta

(1995)),

G =

(
e2

h

)∑
i

Ti (1.1)

where Ti denotes the transmission probability through the i-th channel, and e2/h

is the so-called quantum of conductance. In nanotubes there are four degenerate

1D channels: two due to spin degeneracy, and two due to the degeneracy arising

from clockwise/counter-clockwise “handedness” of the electron wave function (see

Fig. 1.2d). Thus, the theoretical low-bias conductance of a CNT with perfect

transmission is

G = 4

(
e2

h

)
(1.2)

Conductances approaching this value have been measured experimentally in

high-quality metallic tubes with lengths of 200nm (Kong et al., 2001, Liang et al.,

2001) and in semiconducting tubes in the “on” state (Javey et al., 2003, Yaish

et al., 2004). For such tubes, the conductance through the tube is essentially

ballistic. For longer tubes, the main origin of resistivity at low biases is believed to
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Figure 1.2: Electronic structure of CNTs. Adopted from Minot (2004). (a) The

band structure of graphene. (b), (c) Imposing the boundary conditions of the

band structure leads to allowed states on the equidistant lines in k-space. For a

metallic CNT (b) the lines cross the points of zero band gap (the Fermi points). For

a semiconducting CNT (c) the lines miss the Fermi points. (d) 4-fold degeneracy

of a NT: two states due to spin and two states due to the “handedness” of the

wavefunction.
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be due to scattering by acoustic phonons (Kane et al., 1998) with experimentally

measured mean free paths at room temperature of around a µm.

Semiconducting tubes have a band gap Eg = 0.7eV/D[nm], where D is the

CNT diameter (Dresselhaus et al., 2001), separating the valence and conduction

bands. Small-band semiconducting tubes have gaps on the order ≤ 100meV that

originate due to perturbations such as twist, curvature, or local strain in an oth-

erwise metallic tube (Heyd et al., 1997, Yang et al., 1999, Zhou et al., 2000).

An electrostatic field can couple to the potential of the tube and shift its Fermi

energy from the valence band, into the gap, and further into the conduction band,

modifying the CNT conductance (Tans et al., 1998). This field-effect transistor

(FET) behavior is useful for circuit-type applications and for sensors. An example

of a CNT in the transistor geometry is illustrated in Fig. 1.3a. There are three

different regimes of operation. For gate voltages less than 0V the Fermi energy

is in the valence band and the transport is due to the holes (“p-regime”). When

there are 0−5V on the gate, the Fermi energy is in the band gap and the transport

through the nanotube is “off”. For gate voltages larger than 4V the Fermi energy

is in the conduction band and the transport is due to electrons (“n-regime”). The

metal contacts screen the effect of the gate for the contacted part of the nanotube.

As a result the ends of the CNT are “pinned” at a certain doping defined by the

difference between the work functions of the CNT and the contacting metal(Javey

et al., 2003). The gate voltage then modifies the Fermi energy for the middle

section of the tube. The underlying oxide and various adsorbates can also affect

the doping of a CNT. Due to these effects, at zero gate voltage the nanotube is in

the “p-regime” for a typical device.
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Figure 1.3: Carbon Nanotube FET. Adopted from Minot (2004). (a) A

schematic of a CNT FET. (b) Conductance through the transistor as a func-

tion of the gate voltage. For negative voltages the CNT is in the “p” regime, for

gate voltages between 0 and 5V the CNT is in the “off” state, and for larger gate

voltages the CNT is in the “n” regime. (c) Band diagram of “p”, “off”, and “n”

regimes of operation.
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1.4 Mechanical properties of carbon nanotubes

CNTs owe their mechanical properties to the strength of the sp2 hybridized C-C

bond. The two most important parameters characterizing the mechanical proper-

ties of a material are the elastic modulus E

σ = εE (1.3)

that describes the slope of the stress (σ) vs. strain (ε) curve, and the tensile strength

(σs) which describes the maximum stress that the material can endure. If further

stress is applied the material either fractures or undergoes irreversible plastic de-

formation.

Theoretical calculations for the elastic modulus and the tensile strength of

a CNT predicted values ranging from 0.5TPa to 5TPa for the elastic modulus

(Overney et al., 1993, Yakobson et al., 1996, Lu, 1997, Yao and Lordi, 1999, Her-

nandez et al., 1999, Zhou et al., 2000) and 10GPa to 40GPa for the tensile strength

(Yakobson, 1997).

Experimentally, neither parameter is easy to measure due to the small size of

CNTs. Two techniques, however, have proved useful in measuring these prop-

erties: Atomic Force Microscopy (AFM) and Electron Microscopy. Early work

concentrated mostly on the properties of MWNT and CNT bundles. Treacy et al.

(1996) used Transmission Electron Microscopy (TEM) to image thermal vibrations

of MWNTs at high temperature and then extracted the elastic modulus by fitting

the shape of the resonance (Fig. 1.4a). They found values ranging from 0.4 to

4.15TPa. This work was later continued by several other groups using TEM with

MWNTs (Krishnan et al., 1998), with reported values around 1.4TPa, and Scan-

ning Electron Microscopy (SEM) with individual SWNTs at room temperature
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Figure 1.4: Measuring mechanical properties of CNTs. (a) Thermal vibrations

of MWNT in a TEM (Treacy et al., 1996). (b) A CNT pulled by two AFM tips

inside an SEM (Yu et al., 2000). (c) A contacted CNT stretched laterally by an

AFM tip (Kim et al., 2002). (d) Thermal vibrations of a SWNT in an SEM (Babic

et al., 2003). (e) A metallic paddle defined on top of a CNT to measure its shear

modulus (Williams et al., 2003). (f) A schematic of a suspended CNT stretched

by an AFM tip (Minot et al., 2003).
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(Babic et al., 2003)(Fig. 1.4d), with reported range of values of 18GPa to 2.5TPa.

Electrically excited CNT vibrations have also been used to measure elastic modu-

lus (Poncharal et al., 1999, Gao et al., 2000), with extracted elastic modulus values

of approximately 1TPa. This work will be discussed in detail in the next section.

Wong et al. (1997) used an AFM cantilever to bend singly clamped MWNTs

and directly measure their elasticity and strength. They found values of elastic

modulus of around 1.3TPa. Salvetat et al. (1999) and later Walters et al. (1999),

Kim et al. (2002), and Minot et al. (2003) have used similar methods to study

the elastic properties of doubly clamped ropes of SWNT and individual doubly

clamped SWNTs (see Fig.1.4c,f). Salvetat et al. (1999) reported values for the

elastic modulus around 1TPa for arc-discharge grown tubes, and values an order

of magnitude or more lower for tubes grown by catalytic methods. Later mea-

surements produced similar results for the elastic modulus of around 1TPa and in

some cases also determined an upper bound on the tensile strength (Walters et al.,

1999) of around 40GPa. Yu et al. (2000) studied the elastic properties of SWNT

ropes by attaching them to two AFM cantilevers inside of an SEM system (Fig

1.4b). The measurements yielded elastic modulus values around 1TPa and tensile

strength of ∼ 40GPa.

Williams et al. (2003) have measured the shear modulus of MWNTs by fabri-

cating a metallic paddle on top of the nanotube to which a twisting force could be

applied using an AFM cantilever (see Fig. 1.4e). The measured values of 400GPa

were in rough agreement with theory.

As the electronic properties of CNTs are highly sensitive to the geometric con-

figuration of the atoms, it is also possible to study the effect of mechanical modifi-

cations on the electronic properties of the CNT. Theoretically it has been predicted
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(Heyd et al., 1997, Yang et al., 1999, 2000) that it is possible to modify the band

gap of a semiconducting CNT and induce a band gap in certain metallic tubes by

applying strain to NTs. Indeed, it has been experimentally shown that the band

gap Eg of a semiconducting nanotube can be tuned by applying a small mechanical

strain σ (Minot et al., 2003) as

dEg

dσ
≈ ±100

meV

%
cos 3φ (1.4)

where φ is the chiral angle and the sign up front depends on the exact wrapping

vectors.

1.5 Previous work on CNT resonators

Early work on CNT resonators was done on MWNTs in an electron microscopy

system for the purpose of measuring the elastic modulus of CNTs. Poncharal et al.

(1999), soon followed by Gao et al. (2000), have grown MWNTs on a holder by

either pyrolysis (typically 6µm long and 10nm in diameter) (Poncharal et al., 1999)

or arc-discharge (Gao et al., 2000) (typically 30− 60µm long and 13− 20nm in di-

ameter), and placed them in an oscillating electric field created by applying an AC

voltage to a nearby electrode (Fig. 1.5a). A DC voltage difference was also applied

to induce charge on the CNT. In an AC electric field, a charged nanotube expe-

riences an oscillating electric force which sets it into motion when the frequency

of the AC field matches the resonance frequency of the nanotube. Detection is

implemented using a transmission electron microscope (TEM) (Poncharal et al.,

1999) or a scanning electron microscope (SEM) (Gao et al., 2000) and directly

imaging the nanotube’s movement (Figs.1.5b,c). For a singly-clamped cantilever
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Figure 1.5: Previous work on CNT Resonators. (a) Experimental schematic for

experiments by Poncharal and Gao. (b),(c) Images of first and second harmon-

ics of vibrating CNT cantilevers. (d) Experimental schematic for experiment by

Purcell et al. (e) Emitted CNT current as a function of driving frequency. A

drop in current on resonance can be observed. The peak is non-Lorentzian due to

nonlinear detection. (f) Resonance frequency as a function of applied DC voltage

VA. The resonance frequency tunes linearly with the applied gate voltage.
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the resonance frequency is given by (for derivation see Chapter 2)

νn =
βn

8π

1

L2

√
D2 + D2

i

√
E

ρ
(1.5)

where L is the length of the CNT, ρ is the CNT mass density and D, Di are the

outer and inner diameters, respectively. From the measured resonance frequencies

of 1MHz, the elastic modulus E could be extracted and was found to be in the

range of 0.2 − 2TPa. In both experiments, the extracted quality factors were on

the order of 100 to 200, which was attributed mainly to the abundance of defects

in pyrolysis and arc-discharge grown tubes.

Later, Purcell et al. (2002) grew MWNTs (typically 10 − 25nm in radius and

10 − 40µm long) by chemical vapor deposition (CVD) (Kong et al., 1998), which

typically produces close to defect-free tubes. Actuation was done electrostatically.

A nanotube, grown on a metallic tip (Fig. 1.5d), was placed between two electrodes.

A DC voltage applied to the holder created a DC electric field along the CNT, which

both doped the CNT with charge and applied a DC electric force on it. An AC

voltage applied to the two electrodes created an AC electric field used for actuation

of the resonance. The detection of the resonance was performed using the CNT

as a field emitter. The DC voltage, VA, applied to the CNT’s holder was adjusted

until the nanotube started emitting electrons, which were then accelerated to the

detection screen. If a particular nanotube was moving, the pattern on the screen

changed and the emission current dropped. Increasing the DC voltage beyond the

amount necessary for detection increased the electric force along the CNT, thus

increasing its tension. From simple arguments, it can be shown that the tension

in the CNT T is given by

T = γ2V 2
A (1.6)

where γ is a constant defined by the geometrical factors and the electrostatic
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environment. Being able to change a NT’s tension allowed researchers to study

the dependence of the resonance frequency on tension. For a tensed string it is

expected that the frequency changes as the square root of tension. Thus, the

resonance frequencies in this system were expected to follow (Purcell et al., 2002):

νn =
n

2L2

√
E

ρ
+

nγ

2L

√
1

µ
VA (1.7)

and thus to change linearly with applied gate voltage. Such linear dependence was

observed for all the measured resonances (see Fig. 1.5 f). The measured frequencies

were on the order of 1MHz, similar to the previous experiments. Since the detection

scheme of measuring the emission current was highly non-linear in the amplitude

of vibration, the shape of the resonance (Fig. 1.5d) did not look Lorentzian as

expected (see Section 2.2). Nonetheless, the effective quality factor (the line-width

divided by the center frequency) for the resonances was measured, and was found

to be roughly 2400.

Despite of the success of the detection methods described above, they still have

several disadvantages. Firstly, using a TEM or SEM, or applying several hundred

volts to detect the resonance is unrealistic for any industrial application. Secondly,

as will be discussed in Appendix B, the electron beam used for imaging in TEM

and SEM interacts with the CNT and even damages it both structurally and elec-

trically. The detection scheme using the microscopes relies on visually determining

the amplitude of vibration and is thus not very convenient and useful for any in-

depth study of resonance properties, as the measurement is not automated. The

field-emitter detection scheme has the disadvantage of being extremely non-linear

and thus losing all of the information about the linear properties of the resonance.

Lastly, all of these techniques are limited in their sensitivities to tens of nm vibra-

tion amplitudes by the resolution of the imaging beam. Such poor sensitivity may
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push the operation of these resonators into the non-linear regime.

A fully electrically controlled detection/actuation method is highly advanta-

geous for any possible future applications and/or research. In order to implement

this method, we have decided to use the nanotube itself as a detector, thus re-

quiring it to have at least two electrical contacts. This requirement restricts the

mechanical structure to the doubly clamped geometry.

1.6 Summary and outline of thesis

Carbon nanotubes are a novel material that exhibits exciting electronic and me-

chanical properties. Their small size, high stiffness, great flexibility, and transistor

properties make them ideal for use as a nano-electro-mechanical system (NEMS).

In this thesis we will describe the first measurement of a NEMS device based on

an individual SWNT. Chapter 2 gives an introduction to NEMS and to the theory

of vibrating systems. Chapter 3 describes the process of making devices and the

measurement setup used in this thesis. Chapter 4 describes the first measurements

of a CNT resonator and presents a model for the frequency dependence on the pa-

rameters of the setup. Chapter 5 describes a quantitative analysis of the measured

signals and discusses the sensitivities of the measurements and possible sources of

noise. Lastly, chapter 6 discuses the possible sources of dissipation in the CNT

resonator system and presents its dependence on temperature.



CHAPTER 2

OVERVIEW OF NANOELECTROMECHANICAL SYSTEMS

2.1 Introduction

In this chapter we will present a basic introduction to micro- and nanoelectro-

mechanical systems (MEMS and NEMS). In this short review we will follow closely

two main review articles: Ekinci and Roukes (2005) and Roukes (2000).

A typical electromechanical device can be described as a system where electri-

cally controlled signals provide mechanical stimuli to a resonator, whose mechanical

motion (typically the the displacement of the element) is then transduced back into

electrical signals. Additional control electrical signals can be applied to change the

two main parameters of the resonator: its resonant frequency ω0/2π and quality

factor Q. There are various types of geometries that are used in NEMS. Figure 2.1

shows some of the representative systems. In general, the two types of mechanical

motions that are mostly used are flexural and torsional vibrations. An example

of a flexural resonator is a doubly clamped beam, and an example of a torsional

oscillator is a paddle. In this thesis we only consider flexural resonators, mainly

doubly clamped beam and cantilever geometries.

In the linear regime of operation (when the displacement of the vibrating ele-

ment is small) the mechanical structure can be approximated by a simple harmonic

oscillator (section 2.2) and the resonant frequencies of these mechanical structures

can be calculated using the methods of continuum mechanics. It has been shown

by molecular dynamics simulation (Broughton et al., 1997, Phillips, 2001) that

such calculations continue to be valid as the sizes of the structures shrink down to

several tens of lattice constants in cross section. In section 2.3 we present a clas-

16
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Figure 2.1: Examples of NEMS. (a), (b), (c) Examples of NEMS devices uti-

lizing flexural vibration. (a) A cantilever (Ilic et al., 2004). (b) Doubly clamped

beams (Cleland et al., 2001). (c) Suspended membrane (Zalalutdinov et al., 2003).

(d) NEMS utilizing torsional vibration, a paddle (Sekaric et al., 2002).
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sical calculation of the resonant frequency for a cantilever and a doubly clamped

beam. Above the critical displacement of the mechanical structure various types

of non-linearities in the restoring force of the system become increasingly impor-

tant. These non-linearities can be caused by the elongation of the beam, imperfect

clamping, or some kind of force gradient present in the system. This behavior

of mechanical resonators is very useful for certain applications (Greywall et al.,

1994, Turner et al., 1998, Carr et al., 2000, Erbe et al., 2000), such as memory and

signal processing. We will present a short introduction to a typical behavior of a

nonlinear oscillator whose restoring force contains a cubic term in section 2.4.

Experimentally, NEMS can operate at frequencies as large as 1GHz. Due to

their small sizes, inducing and detecting the motion of the vibrating element at

such high resonant frequencies becomes a challenge. A typical displacement sensi-

tivity required for NEMS technology is on the order of 3pm/
√

Hz (Cleland et al.,

2002) with the the onset of non-linearities at displacements on the order of nm.

Standard optical approaches used in micro electromechanical systems (MEMS)

such as optical interferometry (Wagner, 1990) and optical beam deflection (Bifano

et al., 1999) are not easily scalable to the nano-sized resonators as they are limited

by the diffraction of light. Electronic methods such as magnetic, magnetomotive,

electrostatic, capacitive, piezoelectric, and piezoresistive techniques are also very

hard to scale down as the effects of parasitic capacitance becomes increasingly im-

portant. In section 2.5 we describe several different detection methods that have

been successfully used with NEMS.

Typical NEMS operate with quality factors in the range of 103 − 105. These

are values that are much higher than those typically available with electronic os-

cillators, but still inferior to MEMS. Ultrahigh quality factors are desirable as
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they decrease the minimum operating power of the device, increase its sensitiv-

ity to external driving, and increase the device selectivity in the spectral domain.

Such qualities are extremely useful in many applications such as filtering and sig-

nal processing. There are several factors that create losses in NEMS: air friction,

clamping losses, surface effects, internal electronic losses and electronic losses due

to external circuitry. The effect of these will be discussed in section 2.6.

High operating frequencies and high quality factors have made NEMS promising

for a variety of different applications. We will present a short discussion of such

applications in section 2.7.

2.2 Simple harmonic oscillator

The simplest one-degree-of-freedom oscillating system is a massless spring with a

spring constant k and a mass m attached to it. If z is the variable that describes

the position of the mass, the equation of motion for such a system is given by

mz̈(t) + kz(t) = 0 (2.1)

The solution to this equation is

z(t) = z0 cos(ω0t + φ) (2.2)

where ω0 =
√

k/m is the resonant frequency of the oscillator, and z0 and φ are

the amplitude and the phase of the motion, respectively, which are defined by the

initial conditions of the oscillator.

In a more realistic situation, a damping term and a driving force term are

present. The damping term in general should not depend on the displacement

(Marion and Thornton, 1995) but rather on the velocity of the mass. For simplicity
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Figure 2.2: An amplitude and the phase of the SHO response as a function of

the driving frequency. The amplitude of the response reaches the maximum at the

resonance frequency f0 = 50, while the off-resonance response is Q times smaller.

At the same time the phase of the response goes through a 180◦ shift.
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we assume sinusoidal driving. We thus modify Eq. 2.1 as follows:

mz̈(t) + bż(t) + kz(t) = F0 cos(ωt) (2.3)

Solving for steady solution of the form presented in Eq. 2.2 we get that

z(t) =
F0/m√

(ω2
0 − ω2)2 + 4ω2β2

cos(ωt− φ) (2.4)

φ = arctan(
ω2

0 − ω2

2ωβ
) (2.5)

where

β = b/2m (2.6)

ω0 =
√

k/m (2.7)

To describe the degree of damping in the system we can define the quality

factor in terms of the the energy loss in the system:

Q = 2π

(
Total Energy

Energy lost during one period

)
(2.8)

We can show that for small damping the quality factor is given by Q = ω0/2β or

alternatively by Q = ω0/∆ω, where ∆ω is the full width at half maximum.

Figure 2.2 shows the frequency dependence of the amplitude and the phase

of the response. We see that the amplitude is maximum at the free oscillator

resonant frequency, reaching the value which is Q times higher than the non-

resonant response. The frequency dependence is in the form of a Lorentzian and

the width at half maximum is given by the product of the quality factor and the

center frequency as described above. The phase of the signal goes through a 180◦

phase shift, with the response being π/2 out of phase with the drive at the center

frequency.
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2.3 Beam mechanics

We can now extend the theory above to the case of a more realistic resonant

structure, such as a doubly clamped beam or a cantilever. First, we solve the

equation of equilibrium for a beam subjected to a constant downwards force, and

then we proceed to solving the dynamical properties of the vibrating beam.

There are two standard way to set up a beam’s equation of equilibrium. The

first is the technique of balancing all the forces and torques acting on a beam’s

subsection (Landau and Lifschitz, 1987, Shabana, 1997). Appendix A contains the

detailed derivation of the equilibrium equation using this method. Alternatively

we can find the configuration of a beam by energy considerations.

Consider a doubly clamped beam represented schematically in Figure 2.3. Let

the coordinate system be set such that x is along the beam, and y, z are per-

pendicular to it. For simplicity we can assume that the cross-section of the beam

is symmetric and all the forces are applied in the x-z plane. The problem then

reduces to two dimensions. If E is the elastic modulus of the material and T is the

tension in the beam, the elastic potential energy of the beam is given by (Landau

and Lifschitz, 1987)

U =
1

2

∫ L

0

(
EIz′′2 +

(
T0 +

EA

2L

∫ L

0
z′2dx

)
z′2
)

dx (2.9)

where T0 is the residual tension in the beam, A is the beam’s cross-sectional area,

I is its moment of inertia, and the prime denotes differentiation with respect to x.

We associate the first term with the flexural energy of the beam and the second

term with the elastic energy in the beam due to the built-up tension. For small

displacements, we can approximate the curvature of the beam, κ, with z′′ and the

strain in the beam, ε, with 1
2
z′2. The product EI, referred to as flexural rigidity,



23

Figure 2.3: A schematic of a doubly clamped beam made out of material with

elastic modulus E. The beam, with dimensions t × w × L, has a cross-sectional

area A, and a moment of inertia I with respect to the z-axis. The beam is subject

to a load ~K, and tension ~T .
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denotes the force necessary to bend a beam by a unit of curvature, whereas the

product EA, referred to as extensional rigidity, denotes the stress necessary to

produce a unit strain. In the presence of a uniform downward force K, the total

energy of the beam including the work done by the downward force simplifies to

U =
1

2

∫ L

0

(
EI κ2 + T0 + EA ε2 + Kz

)
dx (2.10)

Minimizing this energy leads to the following equilibrium equation

EI κ′′ − T0z
′′ − EA (εz)′′ −K = 0 (2.11)

or in terms of the total tension T = T0 + EA
2L

∫ L
0 z′2 and displacements

EIz′′′′ − Tz′′ −K = 0 (2.12)

We will now solve this equation in two different limits.

2.3.1 Bending limit

In the bending limit the tension is much smaller than the flexural rigidity T �

EI/L2 so that the second term of the equations can be neglected.

In order to calculate the resonant frequency of the system, we replace the

external force K with µz̈. Here µ is the linear mass density of the beam. This

leads to a wave equation

µz̈ = EIz′′′′ (2.13)

To solve this differential equation, we plug in a standard solution z = z0(x) cos(ωt+

φ). Equation 2.13 then reduces to

z′′′′0 = k4z0 (2.14)

k4 = ω2 µ

EI
(2.15)
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A general solution to this equation is:

z0 = A cos(kx) + B sin(kx) + C cosh(kx) + D sinh(kx) (2.16)

where we determine the constants A, B, C and D from the boundary conditions.

We consider two cases: first, a cantilever geometry, in which one end of the

beam is free and the other is firmly clamped; and second, the doubly clamped

beam geometry in which both ends of the beam are firmly clamped.

In the first case the cantilever geometry requires that at x = 0, we have z = 0

and z′ = 0 and at x = L, we have z′′ = 0 and z′′′ = 0. From that, we determine

that

z0 = A{[cos(kL) + cosh(kL)][cos(kx)− cosh(kx)]− (2.17)

[sin(kL)− sinh(kL)][sin(kx) + sinh(kx)]}

The resonant frequencies are given by

ωn =

(
βn

L

)2√
EI

µ
(2.18)

where βn are given by βn = knL and are determined by the equation

cos(knL) cosh(knL) = −1 (2.19)

For the lowest mode of oscillation β0 = 1.88.

In the second case, the doubly clamped condition requires that at x = 0 and

at x = L we have that both z = 0 and z′ = 0. Consequently, we determine that

z0 = A{[sin(kL)− sinh(kL)][cos(kx)− cosh(kx)])− (2.20)

[cos(kL)− cosh(kL)][sin(kx)− sinh(kx)]}

and that the resonant frequency is

ω =

(
βn

L

)2√
EI

µ
(2.21)
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where βn are again given by βn = knL but now are determined by the equation

cos(knL) cosh(knL) = 1 (2.22)

For the lowest mode of oscillation, β0 = 4.75.

2.3.2 Tension limit

In the tension limit the tension is large compared to the flexural rigidity T �

EI/L2. In this case, Eq. 2.12 reduces to

Tz′′ + K = 0 (2.23)

Replacing K with µz̈, as in the previous section, leads to a wave equation

µz̈ = Tz′′ (2.24)

the solution to this equation in a case of a doubly clamped beam is a standard

wave defined by:

z = z0 cos(kx) cos(ωt + φ) (2.25)

where the resonant frequency ω is given by

ω =
π

L

√
T

µ
(2.26)

As expected, we recover the simple “guitar string” vibrational modes.

2.3.3 Joining the two limits

In a realistic case, Eq. 2.12 has to be solved self-consistently accounting for both

the flexural rigidity, EI, and the tension, T , which is found from the relation

T = T0 +
EA

2L

∫ L

0
z′2dx (2.27)
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where T0 is the residual tension. Performing the calculation (Sapmaz et al., 2003)

leads to second order corrections to the solutions found above for the two limits

ω = 22.4
L2

√
EI
µ

+ 0.28T
√

1
µEI

, EI/L2 � T

ω = π
L

√
T
µ

+ 2π
L2

√
EI
µ

, EI/L2 � T
(2.28)

2.4 Duffing oscillator

The discussion in the previous section was limited to the case of a linear system.

However, in a realistic system various type of nonlinearities are present. In the case

of doubly clamped beams, a nonlinear restoration force comes from the elongation

of the beam as it vibrates. Accounting for the tension in the beam due to strain,

we get the following equation of motion, also known as a Duffing oscillator (Nayfeh

and Mook, 1979):

z̈(t) +
ω0

Q
ż(t) + ω2

0z(t) + εz3 =
F0

m
cos(ωt) (2.29)

where for the case of doubly clamped beam ω0 = 22.4
L2

√
EI
µ

as defined in the previous

section, and ε = E
18ρ

(
2π
L

)4
(Postma et al., 2005)

Figure 2.4 shows a typical response of a Duffing oscillator as the amplitude of

vibration is increased. For small amplitudes, the response is Lorentzian, but above

the critical amplitude ac the peak is pulled over toward higher frequencies. At this

point, there are three solutions to Eq. 2.29: two stable solutions and one unstable.

The response then develops a hysteretic switching as the frequency is swept up

and down (Figure 2.4b) The onset of nonlinearity due to elongation of the beam

is expected at (Nayfeh and Mook, 1979)

ac = ω0

√
8

3
√

3εQ
(2.30)
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Figure 2.4: Nonlinear resonator response. (a) Resonator response vs driving fre-

quency for increasing vibration amplitude. (b) Example of hysteresis for nonlinear

resonator.
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which for the case of the nonlinearity presented above reduces to (Postma et al.,

2005)

ac = ω0
L2

π2

√√√√ρ
√

3

EQ
(2.31)

For a circular beam with diameter d, moment of inertia I = πd4/64, and cross-

sectional area A = πd2/4, this converts to

ac =
2
4
√

3

√
d2

4Q
(2.32)

2.5 NEMS actuation and detection techniques

To study realistic resonating systems we need a way to induce and detect their

mechanical motion. Below we describe several different methods of actuating and

detecting the vibrations.

2.5.1 Actuation

Piezo

In the simplest scenario, the mechanical structure can be placed on a vibrating

substrate to induce oscillations. A commercially available piezo is typically used

for this purpose (Li and Evoy, 2005). This is a very simple and readily available

technique; however, there are several complications that arise with it. The fre-

quency response of the piezo is very non-uniform even in the region of interest for

MEMS and attenuates fast at higher frequencies (100MHz) making it very hard

to quantify the force applied to the resonator. The voltages required to drive

the piezo are on the order of volts, making electrical detection difficult, as the

capacitive leakage currents interfere with the detection signal.
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Figure 2.5: (a) Magnetomotive setup (Ekinci and Roukes, 2005). (b) Optical

actuation setup (Ilic et al., 2005). (c) Optical interferometric setup (Ekinci and

Roukes, 2005).
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Magnetic - Lorentz force

In the magnetic actuation scheme, a conducting mechanical structure (typically a

doubly clamped beam in a conducting loop) is placed in the presence of a static

magnetic field, B, perpendicular to the plane of vibration (see Fig. 2.5a) (Cleland

and Roukes, 1996). Passing an AC current, I, through the beam induced an AC

Lorentz force, FLorentz, that drives the beam.

FLorentz = IBL (2.33)

where L is the length of the beam.

Electrostatic

In the electrostatic actuation technique, a conducting mechanical structure is

placed in a presence of an AC electric field created by applying an AC voltage, V ,

to a nearby electrode (Carr and Craighead, 1997). The electrostatic force on the

mechanical structure is then given by

Felectrostatic =
1

2
V 2C ′ (2.34)

where C ′ is the spatial derivative of the beam-electrode capacitance.

Optical

Recently (Ilic et al., 2005) an optical actuation scheme was realized with NEMS. In

such a scheme, an AC-modulated laser is focused near the resonating structure (see

Fig. 2.5b). The AC laser power is converted into heat, producing an oscillatory

stress field in the material and causing the resonant structure to vibrate. The

advantage of such an excitation scheme is that it doesn’t require any electrical
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contacts to the resonating structure, while the disadvantage is that the effectiveness

of the drive depends directly on the proximity of the laser spot to the structure

and the thermal conductivity of the material. As the sizes of resonators shrink

down, such an excitation scheme is harder and harder to realize.

2.5.2 Detection

Imaging

The simplest qualitative detection scheme can be achieved by placing a vibrating

structure into a microscope, for example a scanning electron microscope (SEM) or

a transmission electron microscope (TEM), and directly observing the vibrations

of the structure. Despite the simplicity of this technique, it is hard to extract quan-

titative information about the vibrations of the resonator as the detector should

be capable of taking images faster then the resonance frequency of the studied

structure, which for NEMS is in the MHz range. Moreover, this is a very invasive

measurement, as will be discussed in Appendix B. And finally, this measurement

technique does not allow one to vary any parameters in the environment of the

resonator such as air pressure, presence of adsorbates, or temperature.

Optical

In the optical interferometry detection scheme (see Fig. 2.5c) a tightly focused

laser beam reflects off the structure and interferes with a reference beam, typically

the part of the beam that goes through the vibrating structure and reflects off the

substrate. However, extending these techniques into the domain of nanoscale res-

onators proves to be challenging, due to their small cross section, but was realized

in the past (Carr et al., 1999). This technique is typically used in conjunction with



33

electrostatic actuation.

Magnetomotive

The magnetomotive detection technique is normally used with the magnetic ac-

tuation technique, for doubly clamped beam structures. As the beam vibrates,

the flux enclosed by the conducting loop varies, creating an electromotive force

(EMF) across the beam. This EMF can be detected by an amplifier connected to

the circuit (Cleland and Roukes, 1996). Even though this is currently the most

widely used technique for NEMS, it has significant drawbacks for small resonators,

whose resistances are typically much higher than the impedance of the measuring

circuit, making it difficult to detect high frequency signals. Even if the impedance

of the resonator is matched to the external circuit, the the dissipative force created

due to this detection technique dominates the drive for small resonators (Schwab,

2002), as the loss is inversely proportional to the mass of the resonator (see section

2.6).

Capacitive

In the capacitive detection scheme, changes in the capacitance between a vibrating

mechanical structure and a nearby electrode are measured (Nguyen, 1998). Since in

nanoscale-sized resonators these capacitances are usually on the order of 10−18F,

the detection is complicated by the presence of parasitic capacitances that are

several orders of magnitude larger. This challenge is usually overcome by the use

of balanced bridge techniques or by placing an amplifier, such as, for example, a

single electron transistor (LaHaye et al., 2004), in close proximity to the resonator.
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Piezoelectric and piezoresistive

In a piezoelectric detection scheme, a mechanical structure covered with the piezo-

electric medium creates AC polarization electric fields at the points of maximum

strain. These electric fields can be detected by placing a gate of a field effect tran-

sistor (Beck et al., 1998) or a single electron transistor (Knobel and Cleland, 2003)

on top of the piezoelectric medium at these points.

The piezoresistive detection scheme was realized only recently for NEMS (Bar-

gatin et al., 2005). In such a detection scheme, the strain-dependent resistance of

a mechanical element made out of a piezoresistive material such as doped Si or

AlGaAs, is measured.

The large resistances of these small structures complicate these methods. This

complication is inherent to all of the detection methods that measure charge

through small structures. At high resonance frequencies, such high resistances

lead to a frequency-dependent signal attenuation due to a high RC time constant.

There are two different methods to work around this problem. One is to transform

the impedance of the measured device to 50Ω at the frequency of interest (Ha-

gen, 1996, Schoelkopf et al., 1998). A drawback is that the measurement circuit

has to be rebuilt for each individual device. Another method is to use some non-

linear component in the circuit (such as the piezoresistor or an SET) to perform

downmixing at a much lower frequency, where the signal attenuation is not large

(Hagen, 1996, Knobel and Cleland, 2003, Bargatin et al., 2005).

2.6 Losses

The degree of loss in a resonator is characterized by the quality factor Q given

by Eq. 2.8. The inverse of the quality factor describes the relative energy loss per
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cycle and is additive for different processes. The energy losses in NEMS can be

divided into two categories. The first are intrinsic losses that come due to some

imperfections or interactions within the structure or from fundamental processes

within the lattice such as defects, phonon-phonon interactions, electron-phonon

interactions, etc. They are sometimes referred to as the “internal friction”. The

second are the extrinsic losses that arise due to interactions with the surrounding

media such as air friction, clamping, measurement scheme, etc. In this section

we describe some of these loss mechanisms in greater detail; a summary of the

dissipation mechanisms is provided in table 2.1.

2.6.1 Intrinsic losses

The intrinsic losses can be divided into two categories: dissipation due to funda-

mental processes in the lattice that occur even in a perfect crystal, and dissipa-

tion from imperfections of the lattice, such as defects and impurities. The main

fundamental processes are phonon-phonon interactions and electron-phonon inter-

actions. These dissipation mechanisms set the absolute limit to the performance

of a mechanical resonator. Additional dissipation comes from imperfections of the

material both in bulk (impurities, dopants, and electron traps) and on the sur-

face (dangling bonds, adsorbates, etc). Below we describe in detail some of these

processes. For a more thorough review see Nowick and Berry (1972) and Braginsky

et al. (1985).

Many of these processes can be treated in the framework of a standard anelastic

solid (Nowick and Berry, 1972). The basic idea behind this model is that mechan-

ical vibration of a solid takes the system out of equilibrium. For an anelastic solid,

such a configuration is not stable, and the system relaxes to equilibrium through
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Figure 2.6: Various dissipation mechanisms. (a) Thermoelastic effect. (b) Qual-

ity factor dependence on the size of the resonator illustrating the importance of

surface effects (Ekinci and Roukes, 2005). (c) Calculated quality factor for NEMS

as a function of gas pressure (Bhiladvala and Wang, 2004). (d) Dissipation due

to clamping. Dependence of the losses on the thickness of the supporting base

(Photiadis and Judge, 2005). (e) A double layer cantilever structure. (f) The

equivalent electronic circuit for a resonator (Cleland and Roukes, 1999).
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various mechanisms with a finite relaxation time τ . We can modify the Hooke’s

stress-strain relation to include the mechanical relaxation as (Cleland et al., 2002)

σ + τε
dσ

dt
= ER

(
ε + τσ

dε

dt

)
(2.35)

Here ER is the relaxed elastic modulus. The relaxation mechanisms include every-

thing from interaction with point-defects to thermal relaxation. Such relaxation

leads to dissipation of energy from the mechanical mode whose functional form is

given by

Q−1 = ∆

(
ωτ

1 + (ωτ)2

)
(2.36)

where ω is the mechanical vibration frequency and ∆ is the mechanism-dependent

dissipation strength defined by the relaxed elastic modulus and the relaxation times

in the following fashion (Cleland et al., 2002)

∆ =
EU − ER√

EREU

(2.37)

where EU = ERτσ/τε is the unrelaxed elastic modulus. The relaxation time, τ , is

also mechanism dependent and is defined by the relaxation times of the stress and

strain as

τ =
√

τστε (2.38)

Such dissipation has the form of a Lorentzian in frequency domain, and is often

referred to as a “Debye peak”.

In the case of the temperature activated process, the relaxation time is given

by the Arrhenius equation

τ = ν−1
0 eE0/kBT (2.39)

where ν0 is the attempt frequency, and E0 is the activation energy. In this case

as the temperature is changed, τ changes accordingly, producing the maximum
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dissipation at the temperature, Tp, where τ ≈ ω−1. Since at that temperature

ln(ωτ) +
E0

kB

1

Tp

= 0 (2.40)

by measuring Tp for the several different frequencies, the activation energy can be

measured. The activation temperature T0 = E0/kB is then given by the slope of

ln(ω) vs. 1/Tp.

Phonon-phonon interactions

A realistic crystal lattice is always slightly anharmonic. The degree of anhar-

monicity in the lattice is typically described by the Gruneisen constant, γ, that is

essentially the first nonlinear coefficient between the stress and strain in a solid.

This nonlinearity allows for the possibility of energy transfer between the normal

vibrational modes of the crystal or phonon-phonon scattering. For a mechanical

resonator, this means that an acoustical vibrational mode can dissipate energy

into the higher energy thermally populated vibrational modes. Calculating losses

for such a mechanism has been approached for two different limits of the phonon

mean free path compared to the wavelength of the acoustic mode.

The first case, the ballistic limit, occurs when the phonon mean free path, lT , is

comparable to the the acoustic wavelength or the dimension of the resonator, lT ∼

L; the thermal phonons then can be regarded as individual particles in a kinematic

picture. The driven resonant mode can be viewed as an acoustical phonon of

wavelength L. The losses to the resonator are due to individual scattering events

between the acoustical and thermal phonons (the so-called Landau-Rumer effect).

The losses in such a case are typically calculated numerically.

The second case, the diffusive limit, occurs when lT � L. Here the acoustic

mode can be treated as perturbing the local distribution of the phonons, and losses
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come from thermal phonons relaxing to equilibrium, the so-called Akhizer effect.

The phonons are regarded as a viscous “thermal gas” for the acoustic mode. For

the theoretical and experimental discussion of this process see Braginsky et al.

(1985) and Nowick and Berry (1972).

In the extreme diffusive limit, however, the phonons thermalize so quickly that

they can be considered as just creating a temperature field. In this limit, we can

approach the problem classically using thermodynamical arguments. The inter-

actions between the mechanical degree of freedom and the phonons are captured

in the thermal expansion coefficient, α, which can be related to the Gruneisen

constant (Lifshitz, 2002). This limit of phonon-phonon dissipation due is called

thermoelastic effect, we discuss it below in more detail.

Thermoelastic effect

The thermoelastic effect is one of the main sources of dissipation in small me-

chanical systems (Roszhart, 1990, Yasumura et al., 2000). The theory was first

developed by Zener (Zener, 1948) and further developed for thin vibrating beams

by Lifshitz and Roukes (Lifshitz and Roukes, 2000). The idea behind thermoelastic

dissipation (TED) is that the local volume changes induced by mechanical vibra-

tion lead to a temperature gradient across the resonator, and to the heat flow from

the hot to the cold regions. The problem can be solved in the framework of a

standard model for an anelastic solid described above.

To derive the strength of the dissipation due to the thermoelastic effect we go

back to Eq. 2.37. We can identify the relaxed and unrelaxed elastic moduli with

the isothermal and adiabatic elastic moduli, respectively. Thus for a stress, σ, and
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a strain, ε, the moduli are given by:

ER =
(

∂σ
∂ε

)
T

EU =
(

∂σ
∂ε

)
s

(2.41)

where T and s are temperature and entropy, respectively.

Before calculating ∆, we note that ER − EU is small and that we can replace

the product of the moduli in the denominator by E2
R. Eq. 2.37 then reduces to

∆ =
EU − ER

ER

=
JR − JU

JU

=
JR − JU

JR

(2.42)

where JU,R = 1/EU,R is the compliance. We then proceed by calculating the

relaxed and unrelaxed compliances from thermodynamical principles.

Writing down the free energy equation in its differential form

dg = −sdT − εdσ (2.43)

we arrive at (
∂s

∂σ

)
T

=

(
∂ε

∂T

)
σ

≡ α (2.44)

We also know that by definition (
∂s

∂T

)
σ

=
Cσ

T
(2.45)

Using a property of partial derivatives and the equations above, we can derive that(
∂T

∂σ

)
s

= −
(

∂T

∂s

)
σ

(
∂s

∂σ

)
T

= −αT

Cσ

(2.46)

And using Eq. 2.41, we arrive at

JU =

(
∂ε

∂σ

)
s

(2.47)

=

(
∂ε

∂σ

)
T

+

(
∂T

∂σ

)
s

(
∂ε

∂T

)
σ

(2.48)

= JR +
−αT

Cσ

α (2.49)
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The dissipation strength is then given by

∆ =
α2TE

C
(2.50)

where we have replaced the heat capacity at constant stress, Cσ, by the heat

capacity at constant pressure, C. The overall value of loss is given by

Q−1 =
α2TE

C

(
ωτ

1 + (ωτ)2

)
(2.51)

The elastic modulus relaxation time, τ , is given by the time it takes for heat

to travel from the expanded to the contracted regions of the beam. In case of a

transverse acoustic wave (flexural vibration) it is given by

τ =
t2C

π2κ
(2.52)

Here t is the thickness of the beam, and κ is the heat conductance. For a longitu-

dinal wave, the relaxation time is defined by the wavelength of the wave, λ, rather

than the thickness of the beam, and is given by

τ =
λ2C

(2π)2κ
(2.53)

Since only mechanical modes that produce volume changes are subject to TED,

the other modes such as pure torsional modes are lossless.

Electron-phonon interactions

For metallic resonators, the mechanical motion of the resonator results in ion

oscillation and creation of an oscillatory electrical field. The free electrons can

be viewed as a viscous gas that moves in this field and dissipates energy. The

dissipation of longitudinal sound waves in this case were theoretically calculated

to be (Braginsky et al., 1985)

Q−1 =
8

15

EF meσω

ρv2e2
(2.54)
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where EF is the fermi energy, and e and me are the electron charge and mass, σ

is the electric conductivity, ρ is the density, and v is the velocity of longitudinal

sound wave.

Two-level systems

Internal defects such as contamination, impurities, and dangling bonds can also

contribute to losses in a mechanical oscillator. Such dissipation is often caused by

phonon capture by the defect and involves transition between two energy minima

(Mohanty et al., 2002). This mechanism can be effectively described using the

formalism of two-level systems (TLS). Mohanty et al. (2002) have calculated that

for a TLS with energy E the additional dissipation for two limiting cases of E is

given by

Q−1 = 2a
ωγ0

(ω2
0 + γ2

0)

e−2E/kBT

kT
(2.55)

for E � kBT . And

Q−1 =
d

T 2
(2.56)

for E � kBT . Here a, d, and γ0 are constants defined by the coupling of the TLS

to the local strain.

Surface effects

Recent experiments (Ekinci and Roukes, 2005) show that the measured quality

factor in many devices decreases in a linear fashion as the surface-to-volume ratio

is increased (Fig. 2.6b). This suggests that surface losses play a significant role in

determining the quality factor. The losses associated with the surface can come

from many different factors such as residue, poorly terminated bonds in the surface

states, and a water layer. It has been shown that various surface treatments such as
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annealing (Yasumura et al., 2000), oxygen removal from the surfaces (Yang et al.,

2000, 2001), and surface passivation using methyl monolayers (Wang et al., 2004)

can decrease the dissipation in mechanical resonators by as much as an order of

magnitude.

2.6.2 Extrinsic losses

Air friction

Depending on the pressure in the measuring chamber, the losses due to mechanical

structure interacting with air can be divided into two categories. At very low

pressures the interaction is in the “molecular” regime where the mean free path of

a single molecule is much larger than the length scale of the device. Here the losses

are due to the individual collisions with the molecules. The energy loss in a cycle

Q−1
gas has been calculated for MEMS (Blom et al., 1992) and for NEMS (Bhiladvala

and Wang, 2004) to be

Q−1
gas =

pA

meffω0v
(2.57)

where p is the pressure in the chamber, A is the surface area of the resonator, meff

is the effective mass of the oscillator, ω0 is its resonant frequency, and v is the

thermal velocity of the gas molecules. See Fig. 2.6c.

At higher pressures, air can be considered as a viscous fluid. In this regime the

losses from air drag are given by Q−1
gas ∼

√
p (Landau, 1982).

Clamping

A resonator can lose energy to the support structure by acoustic coupling. This

is especially important in the doubly-clamped beam geometry. Experiments with
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identical nanoscale beams with different clamping geometries showed that an im-

provement of ∼ 2.5 can be achieved in free-free beams over doubly-clamped beams

(Huang et al., 2003b).

Several different groups attempted to calculate the dissipation due to clamping.

Jimbo and Itao (1968) were the first to give an estimate for the case of a thin,

infinitely wide cantilever attached to an infinite base:

Q−1 ≈
(

t

L

)3

(2.58)

where t, L are the thickness and the length of the cantilever, respectively. Cross

and Lifshitz (2001) performed calculations for the opposite limit where the base is

the same thickness as the cantilever and arrived at an approximation of the quality

factor of:

Q−1 ∼
(

t

L

)
(2.59)

Recently, (Photiadis and Judge, 2005) performed a calculation in a more general

case of a narrow (compared to wavelength) cantilever attached to a finite thickness

base (Fig. 2.6d). Their estimation for loss was:

Q−1 ≈ w

L

(
t

L

)4

(2.60)

for the fundamental vibrational mode, where w is the width of the cantilever.

Double-layer structures

For metallized devices, or for other double-layered structures, the additional layer

can also contribute to dissipation. This was observed experimentally for metallized

doubly-clamped beams (Sekaric et al., 2002) and metallized paddles (Olkhovets

et al., 2000). White and Pohl (1995) calculated the contribution of a layer with
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internal friction Q2, thickness t2, and elastic modulus E2, to a system with in-

ternal friction Q1, thickness t1 and elastic modulus E1 (Fig. 2.6e). Defining

β = t2E2/t1E1, leads to

Q−1 =
1

1 + β
(Q−1

1 + βQ−1
2 ) (2.61)

Dissipation due to the measuring scheme

The resonance actuation and detection techniques often require that additional

currents (or voltages) are passed through (or created across) the resonator. De-

pending on the parameters of the resonator, these may lead to dissipative forces.

We can describe this effect with a magnetomotive actuation/detection technique

(see section 2.5) following Cleland and Roukes (1999).

In a magnetomotive detection scheme, a driving current, Id, is passed through

a resonator in the presence of magnetic field B. The motion of the resonator in

the magnetic field induces an EMF across the resonator given by

VEMF = αLB
dz(t)

dt
(2.62)

where α, and L are the mode’s shape factor and the resonator length, and z(t) is

the midpoint displacement of the resonator. For an infinite external impedance,

the voltage is given by

VEMF = i
αL2B2

mω(
ω0

ω

)2
− 1 + i ω0

ωQ0

Id (2.63)

where Q0 is the mechanical quality factor of the resonator. This is equivalent to

an electrical circuit (see Fig. 2.6e) with a parallel combination of a resistor Rm,
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inductor Lm, and a capacitor Cm given by (Cleland and Roukes, 1999)

Cm = m
αL2B2

Lm = αL2B2

ω2
0m

Rm = αL2B2

ω2
0m

Q0

(2.64)

which leads to a characteristic impedance Zc =
√

Lm/Cm. For a finite external

impedance Zext, the additional dissipation is given by

Q−1 =
ZcRext

|Zext|2
(2.65)

Approximating the impedance of an external circuit by resistance R, the expression

above simplifies to

Q−1 =
L2B2α

Rmω2
0

(2.66)

Similar analysis has been done for the case of magnetic driving and capacitive

detection (Schwab, 2002).

Ohmic losses

Another type of loss associated with external circuits are ohmic losses from the

electrons moving on and off the resonator due to capacitive coupling to a nearby

gate. This is another example of a loss that we can describe in the “Debye peak”

framework.

We first estimate the dissipation strength for this effect. The system can be

represented as a variable capacitor in series with a resistor to which a voltage

V is applied. The change in the capacitance is determined by the amplitude of

oscillation, z, as ∆C = C ′z, where C ′ is the spatial derivative of the capacitance.

The capacitively induced charge is given by ∆q = ∆CV = C ′zV .
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If the time scales for the electrons to flow on the resonator and the time for

one oscillation are matched perfectly, all of the charge flows through a resistor,

dissipating energy through Joule heating. The time scale for this charge to flow is

given by the RC constant of the circuit, t = 2πRC. The energy dissipated on the

resistor for this change in the capacitance is then

φ = I2Rt =
(∆q)2R

t
=

(C ′V z)2R

2πRC
(2.67)

The energy stored in a resonator is given by E = 1/2kz2, where k is the resonator

spring constant. The dissipation strength is then

∆ =
(C ′V )2

πkC
(2.68)

The actual loss is given by the product of the maximum loss and the Lorentzian

defining the relative time scales for capacitance change, 1/ω and the electron flow

time τ = RC. The loss is then given by

Q−1 =
(C ′V )2

πkC

(
ωτ

1 + (ωτ)2

)
(2.69)

2.7 Applications

Their small sizes and high frequency of operation make NEMS useful for a variety

of different of applications such as signal processing (Nguyen, 1999), mass detection

(Ekinci et al., 2004, Ilic et al., 2004), force sensing (Stowe et al., 1997, Rugar et al.,

2004), and fundamental studies of quantum mechanics in a mechanical system

(LaHaye et al., 2004). In this section we will outline the principles behind two of

these application and give the limits of their performance.
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Table 2.1: Various dissipation processes and the losses associated with them. The

expressions are given for a doubly clamped beam (or a cantilever for the case of

clamping) with the following parameters. The resonator is of dimension t×w×L,

and has cross-sectional area A and resonance frequency ω0. m is its effective mass

and E, c, κ, α are the material’s elastic modulus, specific heat, heat conductivity

and linear expansion coefficient, respectively. The resonator is in the presence of

magnetic field B and air pressure p, and it has capacitance C to an electrode with

voltage V . The resonator’s electrical resistance is R.

Dissipation process Q−1 References

Air friction pA
mω0v

Bhiladvala and Wang (2004)

Clamping ≈ w
L

(
t
L

)4
Photiadis and Judge (2005)

Metallic layer 1
1+β

(Q−1
1 + βQ−1

2 ) White and Pohl (1995)

Ohmic (C′V )2

πkC

(
ω0τ

1+(ω0τ)2

)
Magnetomotive L2B2α

mω2
0R

Cleland and Roukes (1999)

Thermoelastic effect α2TE
C

(
ω0τ

1+(ω0τ)2

)
Lifshitz and Roukes (2000)

Electron-phonon interactions 8
15

EF meσω0

ρv2e2 Braginsky et al. (1985)
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Mass sensing

Mass sensors operate by measuring the frequency shift of the resonance as ad-

ditional mass is adsorbed on the oscillator. Recalling Eq. 2.7 for the resonant

frequency of a simple harmonic oscillator, we determine that the mass sensitivity

δm is given by

δm =
∂meff

∂ω0

δω0 = 2meff
δω0

ω0

(2.70)

Thus we see that the mass sensitivity is effectively determined by the effective

mass of the oscillator and the frequency resolution. The frequency resolution is

given roughly by the quality factor, even though typically the sensitivity is much

better. The smallest detectable mass is then

δm =
2meff

Q
(2.71)

In recent experiments (Ilic et al., 2004, Ekinci et al., 2004), mass sensitivities on

the order of attograms (10−18g) have been demonstrated.

Force sensing

Force sensing is used in several different techniques such as Magnetic Resonant

Force Microscopy (MRFM), Electric Force Microscopy (EFM), and others. These

applications use NEMS, typically in cantilever geometries as scanning probes sen-

sitive to some kind of interaction (i.e. magnetic or electric forces), to obtain spatial

information about the interaction in question. Recently, an ultrasoft cantilever was

used to measure the force from a single spin(Rugar et al., 2004).

There are many sources of noise that limit the sensitivity of the measurement.

For a complete survey of various noise mechanisms and their respective sensitivities

see Cleland et al. (2002). The ultimate limit to force sensing is given by the thermal
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vibrations of the cantilever. The spectral thermal density is given by

Sthermal =

√
4kBkT

ω0Q
(2.72)

where k is the spring constant of the cantilever, kB is the Boltzman constant, T is

the temperature, ω0 is the resonant frequency, and Q is the quality factor.

2.8 Conclusions

In this chapter we have described the various aspects of nano-electro-mechanical

systems. We have discussed the theory of linear and nonlinear oscillators, and

have applied it to to calculate the resonant frequency of a cantilever beam and

a double clamped beam system. We gave a discussion of the possible losses in

NEMS that lead to the relatively low (compared with MEMS) quality factor. We

also described the various actuation and detection techniques that are used to

study NEMS and described two possible application for NEMS. We see that the

sensitivities for both of the applications increase with decreasing effective mass,

increasing vibrational frequency, and decreasing spring constant of the resonator.

The combination of both high frequency and a soft resonator is, however, hard

to realize. Two pathways have been taken to achieve this goal. The first is to

measure higher harmonics of the fundamental vibrational modes, and the second

is to build lighter resonators.

An ultimate solution to this is a carbon nanotube: it is an extremely light

material with a high elastic modulus, promising light, but high frequency, me-

chanical resonators. Since CNTs have very few structural defects and have nicely

terminated surfaces, we can expect from the arguments in section 2.6 that CNT

resonators may have very high quality factors. Such reasoning motivates us to

build a mechanical resonator based on carbon nanotube.



CHAPTER 3

DEVICE FABRICATION AND MEASUREMENT SETUP

3.1 Introduction

Because nanotubes are extremely small in cross section, it is difficult to realize

a nanotube-based resonator with conventional actuation and detection methods

(section 2.5) such as optical and magneto-motive techniques. Despite these chal-

lenges, a nanotube-based resonator in a cantilever geometry has been realized by

several groups (Poncharal et al., 1999, Gao et al., 2000, Purcell et al., 2002). In this

chapter we describe our method for electrically actuating and detecting the me-

chanical motion of a doubly clamped nanotube resonator (Sazonova et al., 2004).

We discuss in detail the device fabrication (Section 3.2), actuation and detection

techniques (Sections 3.3,and 3.4), and the details of the measurement setup (3.5,

and 3.6).

3.2 Device fabrication

The samples studied in the thesis consist of suspended carbon nanotubes in a

transistor geometry (Fig. 3.1). We contact the CNT with two metal electrodes

and use the Si substrate separated from the CNT by an oxide layer as a gate

electrode. The CNT is either partially or fully suspended across a trench in silicon

dioxide. There are three major parts in fabrication: 1) growing tubes, 2) making

electrical contacts and 3) suspending the CNT. We outline the fabrication steps

below (see Fig. 3.2).

First, alumina supported FeO3/MoO2 catalyst pads are patterned using pho-

tolithography onto a degenerately-doped Si wafer with 500nm of surface oxide. The
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Figure 3.1: Device geometry schematic. (a) A false-colored SEM image of a

suspended device taken at a 45◦ angle. Scale bar is 300nm. Metal electrodes

(Au/Cr) are shown in yellow, and the silicon oxide surface in grey. A schematic

of a device created with method #1. The sides of the trench, typically 1.2µm

wide and 400nm deep, are marked with the dashed lines in the SEM images. A

suspended nanotube can be seen bridging the trench. (b) A schematic of a device

created with method #2. Typical gaps are 2µm. (c) A schematic of a device

created with method #3. Typical gaps are 2− 3µm.
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Figure 3.2: Fabrication steps. Catalyst pads are patterned onto a Si/SiO2 wafer.

CNTs are grown using CVD methods. After growth, electrodes are defined on top

of the catalyst pads, and a Au/Cr layer is evaporated. A wet-etch step in buffered

oxide followed by a critical point drying step is then performed to suspend the CNT.

The etched portion of oxide is defined by either using the contacts as a mask or

by lithographically defining a thin trench in between the contacts. Alternatively,

a CNT can be grown last, on top of the deposited Pt contacts over a predefined

trench in the oxide.
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wafer is then placed into a chemical vapor deposition (CVD) (Kong et al., 1998)

furnace at 900◦C with a constant flow of methane to grow the tubes. After growth,

electrodes with typical gaps of 2− 3µm are defined photolithographically (Rosen-

blatt et al., 2002) along with the electron beam lithography alignment marks on

top of the catalyst pad. A metal layer is then evaporated, typically 50 − 80nm

of Au with a 5nm Cr adhesion layer, to contact the NTs. To suspend the CNT

we perform a wet etching step in buffered oxide etch (BOE 6:1, nominal etch rate

80nm/min) (Walters et al., 1999, Nygard and Cobden, 2001). There are two differ-

ent ways to define the etched portion of the oxide. In method #1 we use PMMA

resist as a mask and define a thin (100− 300nm wide) line between the electrodes

by e-beam lithography to be etched. In method #2 we use the electrodes as an

etching mask. After etching, a critical point drying step is performed to prevent

the CNT from sticking to the substrate. A final step is annealing in the furnace at

400◦C− 600◦C with Ar gas flow. Alternatively, in method #3, we can reverse the

order of the steps. We first define the trenches in silicon oxide by either of the two

techniques describes above, then define Pt electrodes, typically 50nm, then define

a catalyst pad on top of the electrodes, and grow nanotubes across the trench (Cao

et al., 2005).

With these methods we typically obtain devices that contain one or a few nan-

otubes. The diameters are 1− 4nm, which is typical for CVD growth (Kong et al.,

1998). Typical resistances of our samples range between 30kΩ and 1MΩ. Similar

devices with better conductances have been reported in the literature (Javey et al.,

2003). However, these devices are typically made without an adhesion Cr layer,

which for our suspended-nanotube devices is essential. Without the adhesion layer,

the Au lifts off from the substrate during the etching step. In order to improve
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the conductances in our devices we resort to an annealing step. This process is

essentially an “ashing” procedure that improves the contact resistance and cleans

the surface from the residues of processing (Rosenblatt et al., 2002).

A false-colored SEM picture of a typical final device suspended with method

#1 and its schematic can be seen in Fig. 3.1a. We see a nanotube suspended over

a trench bridging source and drain electrodes. The apparent buckling of the CNT

is a real effect. It is due to CNT curvature prior to suspension which results in

the CNT being longer than the width of the trench. The downward direction of

the buckling is set by the electric field from the gate electrode. In principle, in the

absence of an electric field this direction is arbitrary, as the gravitation force of the

nanotube is negligible.

The dimensions of the trench are ∼ 1.2µm wide by 400nm deep. Note that the

resulting trench is much wider than defined by e-beam lithography. This increase

of the width of the trench is due to the isotropic etching of BOE. After etching the

trench increases by twice its depth. Since the width of the trench is still smaller

than the distance between the electrodes, a small section of the tube resides on the

oxide. CNTs are known to adhere well to silicon oxide (Hertel et al., 1998) and so

we assume that this adhesion ensures good clamping. This existence of the non-

suspended portion of the CNT enables us to take atomic force microscopy (AFM)

images of the tube and determine its diameter. An example of an AFM image

can be seen in Fig. 3.3b. The suspended part of the tube appears fuzzy on the

image as it is free to move around and thus interacts with the AFM tip at different

positions; the non-suspended part of the tube appears as a line of constant height

on the image.

Figure 3.1b shows a schematic of a device in which the nanotube was suspended
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with method #2. In this geometry all of the oxide between the electrodes is

removed, and since the etch is isotropic, the electrodes develop an overhang as wide

as the depth of the trench. The clamping in this case is provided by the tube-metal

adhesion. It was found, in experiments on modifying the CNT band-structure by

strain with similar devices, that the NT-metal clamping could withstand forces up

to 20nN before the the tube was ripped out from the contacts (Minot et al., 2003).

Figure 3.1c shows a schematic of a device in which the nanotube was suspended

with method #3. In this geometry all of the oxide between the electrodes is

removed by either the a wet etch or a dry etch. The nanotube is grown on top of

the contacts and the clamping in this case is provided by the tube-metal adhesion

(Cao et al., 2005).

Unfortunately, imaging devices with SEM and AFM can be destructive to the

sample. We found that SEM causes a substantial decrease in the conductance of

a device. We do not understand the origins of this effect. Some brief discussion

is provided in Appendix B. Taking AFM images of suspended device may also be

destructive to the sample. Since the CNT sticks briefly to the AFM tip during the

scan, imaging perpendicularly to the direction of growth can break the nanotube.

Even when imaging parallel to the CNT one must exercise caution in choosing the

speed and overall area of the scan. We found that scan areas of 3µm squares taken

at rates of 1Hz or less work fairly well. When moving from one area to another

one needs to ensure that in this translational move the AFM tip does not go over

a suspended nanotube. So even though AFM imaging is possible, it must be used

with caution. Because of these concerns we did not image any of the studied

devices.
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Figure 3.3: (a) AFM image of suspended nanotube device. The sides of the

trench are marked with the dashed lines. (b) An AFM tip height trace across a

non-suspended portion of the nanotube. The red triangular markers indicated the

position of the CNT and the oxide along the trace. The height difference between

the markers is 2.9nm - the diameter of the tube.
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3.3 Actuation Technique

We actuate the nanotube motion using the electrostatic interaction with the gate

electrode underneath the tube (see Fig. 3.4a). A gate voltage Vg induces an ad-

ditional charge on the CNT given by q = CgVg, where Cg is the capacitance to

the gate. The attraction between the charge q and its opposite charge −q on the

gate causes an electrostatic force downward on the CNT. If C ′
g = dCg/dz is the

derivative of the gate capacitance with respect to the distance between the tube

and the gate, the total electrostatic force on the tube is

Fel =
1

2
C ′

gV
2
g (3.1)

If the gate voltage is modulated at some driving frequency ω,

Vg = V DC
g + Ṽg cos(ωt)︸ ︷︷ ︸

Ṽ ω
g

(3.2)

The total electrostatic force on the tube is

Fel
∼=

1

2
C ′

gV
DC
g (V DC

g + 2Ṽ ω
g ) (3.3)

where we have neglected the term proportional to Ṽ ω
g

2
.

We see that Fel has two parts: the DC term controlled by the DC voltage V DC
g

and the AC term produces by the AC component of the gate voltage Ṽ ω
g .

FDC
el = 1

2
C ′

g V DC
g

2

F̃el
∼= C ′

gV
DC
g Ṽ ω

g

(3.4)

The DC term is used to control NT’s tension, and the AC term sets the CNT into

motion. As the driving frequency ω approaches the resonance frequency ω0 the

displacements become large (see section 2.2).
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Figure 3.4: An equivalent circuit diagram for a CNT device. (a) A schematic

of the actuation and detection methods. DC and AC voltages are applied to the

gate electrode to excite the vibration. On resonance the CNT is a source of the

AC conductance modulation. (b) A schematic of the contact pad - gate capacitor.

(c) An equivalent circuit for a CNT device. The CNT is approximated as a

ballistic conductor in series with two contact resistors. (d) The equivalent circuit

for calculating the output bandwidth of a NT.
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3.4 Detection technique

To detect the motion of the nanotube on resonance we rely on the NTs transistor

properties. For semiconducting (Tans et al., 1998) and small band-gap semicon-

ducting carbon nanotubes (Zhou et al., 2000, Minot et al., 2004) the conductance

depends on the induced charge on the tube. A modulation in the charge, q̃, then

leads to a modulation in the CNT’s conductance G̃ = dG
dq

q̃. The conductance can

be modulated by changing either the applied gate voltage or capacitance to the

gate.

q̃ = C̃g(ω)V DC
g + Cg Ṽ ω

g (3.5)

where we have again assumed that the modulation is small and neglected the cross

term.

If Z is the distance between the tube and the gate, Z0 is the initial distance,

and z(ω) is the NT’s amplitude of motion defined by Eq. 2.4, then in general:

Z(ω) = Z0 − z(ω) cos(ωt) (3.6)

Due to this motion the tube-gate capacitance is modulated at the frequency ω with

the amplitude of

C̃g(ω) = C ′
gz(ω) (3.7)

As described above, capacitance modulation leads to modulation of the induced

charge

q̃ = C̃g(ω)Vg = C ′
gz(ω)V DC

g (3.8)

and to the conductance modulation given by

G̃ =
dG

dq
q̃ =

dG

dq
C ′

gz(ω)V DC
g (3.9)
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From Eq. 3.9 we see that conductance is modulated at the driving frequency,

and is proportional to the NT’s amplitude of motion. The maximum conductance

modulation then occurs as the driving frequency approaches the resonance fre-

quency (see Eq. 2.4). For our geometry that corresponds to frequencies in the tens

of MHz range. Thus, to measure the conductance modulation directly (in real

time), we would have to detect a small electrical signal at a high frequency out of

a highly resistive device.

We can calculate the bandwidth of a CNT by approximating it as a ballistic

conductor in series with two contact resistors and assuming that stray capacitances

come mostly from the contact pad - gate leakage (see Fig. 3.4c). A typical device

has resistance on the order of Rtube = 100kΩ. Assuming symmetric contacts, each

contact resistance is Rs = Rd = 50kΩ. To calculate the contribution to stray

capacitance from each contact pad, Cs and Cd, we use a parallel plate capacitor

model (see Fig. 3.4b).

C =
ε0εA

d
(3.10)

where ε is the dielectric constant of SiO2, A is the area of the contact pad, and d

is the thickness of the oxide layer. For the contact pad dimensions in our devices

(illustrated for drain electrode in Fig. 3.4b) we estimate Cs = 6pF, and Cd = 40pF.

The equivalent circuit for detecting high frequency signals out of the CNT is shown

in Fig. 3.4d. Approximating the circuit by a low-pass filter, we calculate that the

corner frequency for this setup is given by

fcorner =
1

2πRdCd

≈ 100kHz (3.11)

Such low readout bandwidth of the device prevents us from a direct (real time)

measurement of the conductance modulation on resonance.
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3.5 Mixing circuit

Two different methods have been previously employed to solve this problem in case

of small electronic devices (Schoelkopf et al., 1998, Knobel and Cleland, 2003). If

the desired detection frequency (CNT resonance frequency in our case) is known, a

matching circuit that transforms the impedance of the device to 50Ω at the desired

frequency can be built (Hagen, 1996, Schoelkopf et al., 1998). Alternatively the

signal can be mixed down to frequencies below the cutoff of the device (Hagen,

1996, Knobel and Cleland, 2003, Bargatin et al., 2005). Both approaches have

been successfully used with NEMS. As the resonance frequency in our case is not

known a priori, we have chosen the second approach.

We employ the nonlinearity in the current-gate voltage dependence in our de-

vices (the non-zero transconductance dG/dVg) to use the CNT as a mixer. The

detailed theory of mixing with transistors in general, and CNTs in particular is

given in Rosenblatt (2005). Here we give a simplified introduction to theory of

mixing with NTs.

In general if the CNT conductance, G, is modulated at a some frequency ω as

G = GDC + G̃ cos(ωt)︸ ︷︷ ︸
G̃ω

(3.12)

and we apply a local oscillator (LO) signal to the source electrode at a slightly

offset frequency ω + ∆ω

Ṽ ω+∆ω
sd = Ṽsd cos((ω + ∆ω)t)︸ ︷︷ ︸

Ṽ ω+∆ω
sd

(3.13)

The current, I, through the nanotube will have both frequency components, since

it depends on the source-drain voltage and the conductance of the CNT. Using
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equations 3.12,and 3.13 we get that

I = GVsd = (GDC + G̃ω)(Ṽ ω+∆ω
sd )

= GDCṼ ω+∆ω
sd + G̃ωṼ ω+∆ω

sd (3.14)

The first term describes the current at the LO frequency. The second term,

though, is more interesting – it consists of the the product of two AC signals and

is the term that is responsible for the mixing. If we expand the last term using

Eqs. 3.12 and 3.13, we get

G̃ωṼ ω+∆ω
sd = G̃ cos(ωt)Ṽsd cos((ω + ∆ω)t)

= G̃Ṽsd
1

2
(cos(2ωt) + cos(∆ωt)) (3.15)

which means that the amplitude of the current through the nanotube, I∆ω, at the

intermediate frequency ∆ω, is equal to

I∆ω =
1

2
G̃Ṽsd (3.16)

and is proportional to the conductance change of the nanotube. Using Eqs. 3.5

and 3.9 we finally derive that the total current is

I∆ω =
1

2

dG

dq

(
C ′

gz(ω)V DC
g + Cg Ṽg

)
Ṽsd (3.17)

Since we can make the intermediate frequency ∆ω arbitrary small, this technique

enables us to measure the amplitude of high frequency conductance modulations

of the nanotube by measuring the current through it at frequencies that are within

the readout bandwidth.

3.6 Measurement setup

The measurements were performed inside a Desert Cryogenics variable temperature

vacuum probe station at pressures of 10−5 torr or less. The sample is placed onto
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Figure 3.5: Schematics of the experimental setups. (a) Two-source setup. A local

oscillator voltage Ṽ ω+∆ω
sd (usually around 7mV) is applied to the source electrode

at a frequency offset from the gate voltage signal Ṽ ω
g by an intermediate frequency

∆ω of 10kHz. The current from the nanotube is detected by a lock-in amplifier, at

∆ω. (b) One-source setup. An AM modulated high frequency voltage Ṽ ω
sd (usually

between 3 − 10mV) is applied to the source electrode in the presence of a static

electric field provided by the DC gate voltage V DC
g . The current from the nanotube

is detected by a lock-in amplifier, at ∆ω – the AM modulation frequency (1kHz

or 400Hz).
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a sample stage which is thermally coupled to the reservoir through which the

liquid 4He can be pumped. The temperature is controlled by monitoring resistive

thermometers at the sample stage, and by use of the resistive heaters on the stage.

For electrical measurements the sample is contacted with metallic probes capable

of delivering signals at frequencies up to 2GHz. 50Ω resistors in series with 10nF

capacitors were soldered into the probes to minimize circuit resonance by matching

the impedance of a line near the sample. The capacitors were introduced to allow

for DC measurements as well, and were chosen such that their presence would not

affect the impedance in the frequency range of interest.

Two different electrical setups were used; the first we label the “two sources”

setup, and the second is called the “one source” setup. The complete circuit dia-

gram for both of the setups can be seen in Fig. 3.5. Both of the setups employ the

capacitive detection method with the mixing technique described in the previous

section, differing only in how the modulation of the gate voltage is achieved.

Two sources setup

In the “two sources” setup the high frequency signals on the gate electrode (for

driving the resonator) and on the source electrode (for mixing) are applied from

two different high frequency sources: HP87332A (10MHz−40GHz), and HP8657A

(0.1MHz − 1040MHz). The DC voltage on the gate is provided by a computer

controlled digital-to-analog card, which is connected to the gate electrode through

a bias-T. The current through the nanotube is detected by a DC-coupled Stanford

lock-in amplifier(SR830) in the current mode. The reference signal to the lock-in

amplifier is provided by separately mixing the two high frequency signals used

for gate and source electrode with an external mixer (Minicircuits ZLW-1SH).
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The reference input lock-in amplifier serves as the low-pass filter with the corner

frequency of 100kHz so no additional low-pass filter is necessary to eliminate the

high-frequency components from mixer.

In this setup the voltages on the gate, source and drain electrodes are:

Vg = V DC
g + Ṽg cos(ωt)

Vs = Ṽsd cos((ω + ∆ω)t + φ)

Vd = 0

(3.18)

where ω, ∆ω, and φ are the current driving frequency, lock-in readout frequency

and the gate-source phase difference, respectively.

By looking at the circuit diagram (Fig. 3.5a) we see that the potential of the

tube, Vtube, is given by

Vtube = (Vs − Vd)
Rd

Rs + Rd

(3.19)

which for the contacts of equal resistance reduces to 1
2
Vs. For the “two sources”

setup the potential of the tube is then

Vtube =
1

2
Ṽsd cos((ω + ∆ω)t + φ) (3.20)

The effective gate voltage, V eff
g , that the tube feels is given by the voltage on the

gate with respect to the potential of the tube, Vg−Vtube. Using the above equations

we find that the effective gate voltage is

V eff
g = V DC

g + Ṽg cos(ωt)− 1

2
Ṽsd cos((ω + ∆ω)t + φ) (3.21)

Even though the effective gate voltage and thus the induced charge and CNT

conductance contain an additional component at ω +∆ω, the amplitude of mixing

current detected at ∆ω given in Eq. 3.17 is not affected.
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Amplitude modulation

Before we explain the configuration for the second setup let us note that the effect

of the source-drain voltage on the potential of the tube described above provides an

alternative way to achieve modulation of the gate. Even in the absence of any AC

signal applied to the gate, by preceding arguments the effective gate is modulated

as

V eff
g = V DC

g − 1

2
Ṽ ω

sd (3.22)

Then in principle both of the signals, the driving excitation Ṽ ω
sd and the mixing

excitation Ṽ ω+∆ω
sd , can be applied to the source electrode. This greatly simplifies

the circuit because we can produce both of them with one high frequency source,

using the source’s amplitude modulation (AM) capabilities.

AM modulation at frequency ∆ω with strength m for an arbitrary signal

A cos(ωt) is defined as

VAM = (1 + m cos(∆ωt))A cos(ωt)

= A cos(ωt) +
Am

2
(cos((ω + ∆ω)t) + cos((ω −∆ω)t)) (3.23)

So an AM modulated signal is equivalent to three high frequency signals offset by

the modulation frequency. In the language of the “two source” setup the driving

excitation and the mixing excitation are then equal to

Ṽ ω
g = Ṽsd cos(ωt) (3.24)

Ṽ ω+∆ω
sd = Ṽsd

m

2
cos((ω + ∆ω)t) (3.25)

Ṽ ω−∆ω
sd = Ṽsd

m

2
cos((ω −∆ω)t) (3.26)

Both Ṽ ω+∆ω
sd and Ṽ ω−∆ω

sd will mix with Ṽ ω
g , producing a signal of the same phase

and magnitude. Thus for the purposes of mixing this situation is equivalent to
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having the following

Ṽ ω
g = Ṽsd cos(ωt) (3.27)

Ṽ ω+∆ω
sd = Ṽsdm cos((ω + ∆ω)t) (3.28)

One source setup

The setup for the “one source” technique is then as follows. One AM-enabled high

frequency source (HP8657A) is connected to the source electrode of the device

and provides the two signals necessary for both driving the resonator and mixing

down the response. The DC gate voltage is supplied by the computer-enabled

digital to analog card just as in the previous setup, which in this case is connected

directly to the gate electrode. The current through the device is still measured by

the dc-coupled Stanford lock-in amplifier in the current mode, with the reference

signal provided by the reference to the AM modulation. The typical modulation

strengths used throughout this thesis are m = 99%.

In this setup the voltages on the gate, source, and drain electrodes are:

Vg = V DC
g

Vs = Ṽsd(cos(ωt) + 0.99
2

(cos((ω + ∆ω)t + φ) + cos((ω −∆ω)t + φ)))

Vd = 0

(3.29)

In principle this technique can be used with the intermediate frequency set

to zero, ∆ω = 0, which eliminates the need for the lock-in amplifier, the two HF

sources, or the AM modulation, as the same signal can be used for both, driving and

mixing (Rosenblatt et al., 2005). However there are a few complications in using

this DC method. First and most noticeable is the fact the any current amplifier

used to detect the current will always produce a back DC voltage that needs to

be zeroed out in order to distinguish the mixed signal from the “normal” current
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due to this amplifier voltage. This voltage changes any time the circuit is modified

so that the current amplifier has to be constantly readjusted. The second, more

concerning problem is that the noise level with a DC readout technique is much

higher than at 1kHz due to 1/f noise. Thus for the purpose of this experiment we

have decided to use the non-zero intermediate frequency method, with a frequency

of 1kHz.

3.7 Mixing from a nonsuspended device

Before performing any measurement on a nanotube resonator, we would like to

test and calibrate the setup. Using a non-suspended device for this purpose turns

out to be extremely useful. We start by discussing what signals we expect from

such a device.

Let us go back to Eq. 3.17 which describes the expected mixing current through

a CNT. For convenience we reproduce it here.

I∆ω =
1

2

dG

dq

(
C ′

gz(ω)V DC
g + CgṼg

)
Ṽsd (3.30)

The first term is described in section 3.4 and for a case of a non-suspended

device is zero, as z(ω) = 0 at all ω. The second term is due to the second term

in Eq. 3.5, the gate voltage modulation. This term is frequency independent, of

purely electrical origin, and is present whether the device is suspended or not.

The mixing current through a non-suspended device is then just due to the second

term.

We expect the mixing current to be proportional to the transconductance dG
dq

of the nanotube. We can independently measure the transconductance of the

nanotube by measuring its DC conductance and using the fact that in the non-

vibrating state, q̃ = CgṼg. Thus, the transconductance can be extracted from the
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Figure 3.6: (a) Mixing signal and the predicted signal from the transconductance

of the device. (b) Mixing current (in color) as a function of the gate voltage and

driving frequency. Cuts through the data set at Vg = −0.5V and f = 25MHz are

marked with dash lines.
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DC current as

dG

dq
=

dGDC

dVg

1

Cg

(3.31)

The amplitude of the total expected current through a non-suspended device is

then given by

I∆ω =
1

2

dGDC

dVg

ṼgṼsd (3.32)

Fig 3.6a shows a comparison of measured mixing current and the predicted

current from a numerical derivative of the NTs conductance (inset) for a non-

suspended device. The shape of the signal agrees well, but the amplitude of the

signal only reaches about 50% of the predicted value. We will return to possible

sources of dissipation later in this section.

In order to explore this further we can measure the mixing current through the

nanotube as a function of driving frequency. Fig 3.6b shows the mixing current

in color as a function of both gate voltage and driving frequency. Figs 3.6c and

d are cuts through b at constant gate voltage and frequency, respectively. There

two things that we notice about this graph. First, there is an overall decay of

the signal with increasing frequency, with the signal becoming unmeasurable at

around 600MHz; and second, there are periodic oscillations superimposed on top

of the signal with a periodicity of about 35MHz.

The overall decay of the signal can be attributed to capacitive leakage to the

gate. The stray contact pad to gate capacitances provide an alternative route to

ground at high frequencies. The circuit (Fig. 3.5) becomes equivalent to a low-

pass filter with a resistance given by the source output impedance (50Ω) and a

capacitance given by the equivalent capacitance of both pads in series. The corner
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frequency for the voltage on the tube Vs is then given by

f =
1

2π(50Ω) CsCd

Cs+Cd

≈ 650MHz (3.33)

This agrees well with the observed decay of the signal. In other experiments on

non-suspended CNT this problem has been resolved by introducing a local gate

which increased the corner frequency to 50GHz (Rosenblatt et al., 2005).

Even though the input lines were 50Ω-terminated, as we see in Fig 3.6b, some

circuit resonances are still present. We could not determine the origin of these

remaining resonances, although the periodicity of the peaks in Fig. 3.6 suggests

that the quarter wavelength of the circuit resonance is on the order of 2m which

roughly corresponds to the length scale of the cables in the circuit. The exact

pattern of this resonance varies from sample to sample and the strength can greatly

increase if a bad contact is made with the probe.

3.8 Conclusions

In this chapter we discussed the fabrication of the suspended CNT devices and mea-

surement setup for actuating and detecting the mechanical motion of a nanotube

resonator. CNT devices in transistor geometry were fabricated using standard fab-

rication methods, and then suspended by wet etching. The motion of the resulting

suspended CNT was actuated using capacitive forces between the CNT and the

underlying gate electrode. The motion was detected by measuring changes in the

CNT conductance due to modulations in tube-gate capacitance. As the output

bandwidth of a CNT is too low to measure the conductance changes directly, a

mixing scheme was devised. Two different measuring setups were devised to drive

and detect the motion of the CNT. The setups were tested using a non-suspended
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CNT device, which produces signals consistent with theoretical predictions. The

mixing signal was found to decay due to electrode - gate capacitive coupling, and

exhibited periodic resonance that we attributed to resonances in the circuit cables.



CHAPTER 4

TUNING THE FREQUENCY

4.1 Introduction

In this chapter we describe the first measurements of the nano-mechanical nan-

otube resonator (Sazonova et al., 2004) introduced in Chapter 3. In section 4.2

we describe the first observation of the mechanical resonance phenomena and the

effect of the static gate voltage on this resonance. In section 4.3 we introduce a

qualitative model for the nanotube resonator, which we develop further into a more

quantitative analysis in section 4.4. We conclude this chapter by comparing the

behavior of the observed resonances with the model (section 4.5) and discussing

some of the behavior not described by the model (section 4.6).

4.2 Observing the resonance

Using the measurement procedure described in section 3.6, we can plot the drain

mixing current measured by the lock-in as a function of the driving frequency.

Figure 4.1 shows results for several different devices. We notice that each plot

shows a distinct feature in the current on top of a slowly-changing background.

Remembering the expression for the drain current (Eq. 3.17) from section 3.7,

we attribute the slowly changing background to the mixing current due to the

modulation of the gate voltage (similar to the the nonsuspended case). The sharp

feature is due to to nanotube’s mechanical motion on resonance, modulating the

gate capacitance and thus producing an additional signal in the mixing current. We

will discuss the details of the lineshape of this resonance and extract the important

mechanical parameters for this resonator in the next chapter. We see a lot of

74
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Figure 4.1: Observed resonances. Detected current as a function of driving

frequency for four different devices. A sharp feature on top of a slowly changing

background, present in all four graphs, is due to gate capacitance change from the

CNT moving on resonance.
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variation in the resonant frequencies of the measured resonances. In total we

observed resonant frequencies in the 5MHz− 400MHz range among the 30 devices

that exhibited resonance.

Before going into the quantitative analysis of this resonance we will study its

behavior as the downwards DC force on the nanotube is changed. From Eq. 3.4

we know that the DC gate voltage controls the overall DC force on the nanotube

and defines the tension in the nanotube. Thus, by varying the DC gate voltage we

will effectively be changing the tension in the nanotube.

Figure 4.2 shows the traces of mixing current vs. frequency for several different

gate voltages, for the same device as shown in Fig. 4.1a. For clarity, the curves

are vertically offset. The position of the resonance changes as the gate voltage is

adjusted. We can also fix the driving frequency, scan the DC gate voltage, and

observe the resonance appear and disappear (Fig. 4.2b).

In order to determine the position of the resonance as a function of gate voltage

we take a 3D scan of the mixing current as a function of both driving frequency

and DC gate voltage, as shown in Figure 4.3. The measured current is presented

in color-scale as a function of the driving frequency (y-axis) and the static gate

voltage (x-axis). Overall the plot looks similar to the non-suspended case (Fig.

3.6); however, on top of the smoothly varying background we see several sharp

lines indicated by arrows in Fig. 4.3. The lines indicate the occurrence of a sudden

change in the drain mixing current, associated with the mechanical resonance in the

nanotube. By extracting the position of these lines we can monitor the position of

the NT’s mechanical resonance in the gate voltage – frequency domain. We refer

to the position of the resonance as a function of the gate voltage f0(Vg) as the

“dispersion relation”. For the rest of this chapter we will only be concerned with
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Figure 4.2: Resonance frequency shifts with increasing gate voltage. (a) Evolu-

tion of the resonance from Fig. 4.1a as the gate is changed from 2V to 3.5V. The

traces are offset for clarity. (b). The resonance can also be observed by fixing the

driving frequency at 9MHz and sweeping the gate voltage.
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Figure 4.3: Examples of measured megasweeps. Detected current, in colorscale,

as a function of the driving frequency (y-axis) and the gate voltage (x-axis) for

four different devices. Positions of the resonances are marked with black arrows.
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these dispersions and ignore the overall value of the current and the background.

We will come back and analyze those in detail in Chapter 5.

There are three things worth noticing about the change in the position of the

resonances as a function of gate voltage: first we see that the dispersion is ap-

proximately symmetric about zero gate voltage, second we observe several distinct

resonances for most of the devices, and finally we see that the resonant feature

shifts upward monotonically as the magnitude of the DC gate voltage is increased.

In the following section we will qualitatively explain these observations.

4.3 NT resonator model

In order to make a model for a CNT resonator, let’s look back at an SEM image

of one of the suspended devices (Fig. 3.1a). We see on the image that the CNT

appears to be slack, as indicated in the schematic. Slack here means that the tube

is longer than the distance between the suspension points, which is a result of the

NT’s curvature on the substrate prior to suspension. We define slack s as the ratio

of the extra length in the nanotube to its length L, where the excess length is the

difference between the length of the CNT and the distance between the suspension

points, W .

s =
L−W

L
(4.1)

Slack was observed for almost all imaged devices in a SEM and has also been

inferred from AFM force measurements on similar samples (Minot et al., 2003).

The typical values of slack extracted from those experiments were on the order of

1%− 2%. For the device geometry presented in Figure 3.1 with W = 1.75µm this

corresponds to a sagging distance of 150− 200nm. For simplicity we assume that

the clamping angles are zero in both the y, and z directions; in other words, that
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the nanotube is confined to one plane and clamped horizontally. The profile of the

nanotube is then a profile of a buckled beam (Fig. 4.4a). The DC gate voltage

creates a DC force on the nanotube that we assume for a moment to be applied

uniformly along the length of the nanotube. Under such a force the nanotube is

pulled down, changing its profile according to the strength of the applied force. For

very small forces the flexural rigidity of the tube is the dominant force scale, and

the profile of the CNT is still given by the profile of a buckled beam: we refer to

this force range as the bending regime. As the force increases, the flexural rigidity

of the CNT is overcome and the CNT profile forms a catenary (Fig. 4.4b): we

refer to this regime as the catenary regime. As the force is increased even further

the tube starts to stretch. The extensional rigidity of the tube becomes dominant

and the tube enters the elastic regime (Fig. 4.4c); the profile of the tube is still

catenary.

In this model for the CNT resonator the profile and tension are controlled by a

uniform downward DC force, set by the DC gate voltage. The resonant frequency

of the CNT depends on both the NT’s tension and the NT’s profile. The nanotube

can have two different kinds of vibrations: in-plane and out-of-plane (see Figs. 4.4d,

e). These vibrations are degenerate at zero slack, but with finite slack they have

different frequencies due to symmetry breaking. Harmonics of both of these kinds

of modes can be excited with frequencies increasing with the number of nodes in

the mode. It is, therefore, not surprising that we see several distinct resonances for

a given device. These could be some of the harmonics of the fundamental in-plane

and out-of-plane vibration modes.

In beam mechanics (section 2.3) the resonant frequency of the beam increases

monotonically with tension. We expect the same effect with a slack beam. The
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Figure 4.4: NT Resonator model. (a),(b),(c) Schematics of a CNT resonator

profile in bending, catenary and elastic regimes, respectively. (d) A schematic of

the fundamental in-plane vibrational mode. (e) A schematic of the fundamental

out-of-plane vibrational mode.
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tension in the CNT is set by the DC force on it and, using Eq. 3.4, we see that

the DC force depends on the square of the applied DC gate voltage. In a real

system the tube will feel a potential in addition to the one set by the gate voltage

due to the work function difference between the tube and the contacts and various

dopants. This potential can be incorporated into Eq. 3.4 as an offset gate voltage

V0, so that the DC force on the tube becomes

FDC
el =

1

2
C ′

g

(
V DC

g − V0

)2
(4.2)

From this relation we see that the CNT tension and the dispersion of its resonant

frequency only depend on the magnitude of the voltage, are symmetric about

V DC
g = V0 and increase monotonically with gate voltage.

4.4 Calculating resonant frequencies

We now analyze our model and present the results of numerical simulations (Üstünel

et al., 2005) that will be discussed below. In our analysis we closely follow Üstünel

et al. We calculate how the gate voltage affects the resonances of a buckled beam

with small slack in three different regimes: bending, catenary, and elastic.

Before going into the details of the calculation, we summarize the basic result

that is illustrated in Fig. 4.5. In the bending regime the vibration modes are

similar to the doubly clamped beam modes. For small induced tensions the change

in the frequency ∆ω0 is proportional to tension T , and thus ∆ω0 ∼ T ∼ V 2
g . In the

catenary regime the flexural rigidity is overcome and the CNT is similar to a string

under tension with ω0 ∼
√

T ∼ Vg. In the elastic regime the CNT is stretched,

and we still treat it as a string under tension with ω0 ∼
√

T . Since the extensional

rigidity is now dominant, the induced tension starts saturating with increasing gate
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Figure 4.5: A qualitative prediction for the resonance frequency dispersion. In

the bending regime the resonance frequency depends quadratically on the gate

voltage, in the catenary regime the resonance frequency changes linearly, and in

the elastic regime the dependence becomes sub-linear.
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voltage, and the dispersion is sub-linear. So overall the frequency first changes

quadratically on the gate voltage, then continues linearly, and eventually slowly

starts to saturate at high gate voltages.

All the calculations presented here are done for a typical CNT device. We

summarize the characteristics of such a device in Table 4.1.

Bending regime

For no force, FDC
el = 0, and zero slack, the problem reduces to that of the doubly

clamped beam with no tension, which was solved in section 2.3. The in-plane and

out-of-plane modes are degenerate and their resonance frequencies are determined

by the flexural rigidity of the nanotube and are given by (Eq. 2.21)

ωbend
n =

(
βn

L

)2√
EI

µ
(4.3)

where E, I, and µ are the Young’s modulus, moment of inertia, and linear mass

density of the tube, respectively. β1,2,3 are equal to 4.75, 7.85 and 11. These points

are indicated as open circles in Fig. 4.6d for s = 0.

As slack is introduced, the tube buckles due to the Euler instability and the

symmetry of the problem changes. For small forces, FDC
el � EI/L2, the flexural

rigidity dominates the extensional rigidity. This means that the vibrations of the

CNT are primarily due to NT’s bending and not stretching, which essentially

means that the length of the tube is constant under vibrations. Due to this length

constraint, slack affects resonant modes differently with different symmetries, such

as the in-plane and out-of-plane modes or the even and odd harmonics of their

fundamental modes. This effect is illustrated in Fig. 4.6.

The out-of-plane modes are almost unaffected by slack since the length of the

tube does not change during vibration, with the exception of the fundamental
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Table 4.1: Parameters for a typical CNT device

Parameter Symbol Value

Radius r 1.5nm

Length L 1.75µm

Shell thickness h 0.34nm

Slack s 1%

Elastic modulus E 1TPa

Linear mass density µ 5ag/µm

Cross-sectional area A 2nm2

Moment of inertia I 3× 10−37

Capacitance Cg 1.3× 10−17F

Capacitance derivative C ′
g 4× 10−12F/m



86

Figure 4.6: Effect of slack on different modes. (a) The even harmonics of the

fundamental in-plane vibrational modes acquire two additional nodes as slack is

increased. (b),(c) The shape of the odd harmonics of the fundamental in-plane

mode and the all of the harmonics of the out-of-plane modes remains unchanged.

(d) Numerically calculated frequency shift of all of the resonance modes with

increasing slack for the out-of-plane modes (dashed lines), and odd and even har-

monics of the in-plane modes (solid and dotted lines, respectively) (Üstünel et al.,

2005).
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mode, which, due to symmetry, corresponds to a rotation about the clamping axis

at finite slack and thus has zero-frequency at zero external force (see Fig. 4.6c).

Any symmetry breaking mechanisms (for example, different clamping angles) cause

the mode to acquire a finite frequency. For the other out-of-plane modes the values

of βn for the resonance frequencies are slightly modified with the introduction of

slack, but for small slack this modification is independent of the value of the slack

itself.

The odd harmonics of the in-plane modes are also affected only slightly by slack

as the length constraint is met automatically due to odd symmetry (Fig. 4.6b).

Their frequencies then only change due to a small change in the values of βn in the

same fashion as for the odd harmonics of the out-of-plane modes. The degeneracy

between the two is then not broken. The even harmonics of the in-plane modes

are modified the most (Fig. 4.6a). As slack is increased the modes acquire two

additional nodes in order to conserve the length, and their resonance frequencies

increase to those of the corresponding out-of-plane modes, which results in a mode

crossing between the odd and the even harmonics (illustrated by an arrow in Fig.

4.6d).

Catenary regime

In the catenary regime, the force is intermediate, FDC
el ∼ EI/L2, and a tension T

is induced in the beam. The resonance frequencies are given approximately by the

tense string model (Eq. 2.26),

ωn =
πn

L

√
T

µ
(4.4)

We now need to express the tension induced in the nanotube in terms of the applied

DC force FDC
el . In principle, if z(x) defines the profile of the nanotube along its
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Figure 4.7: Calculating the dispersions and the applicability of the regimes with

a toy theoretical model. (a) A schematic of the toy model for the catenary regime.

The loading force F is applied in the center of the CNT of length L. The distance

between the clamping points is W . (b). A schematic of the toy model for the

elastic regime. The CNT is now subject to a larger force, that stretches the CNT

by ∆L. (c) A diagram of the applicability of different regimes in the slack-gate

voltage space calculated for a typical device described in table 4.1
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length coordinate x under FDC
el , we recall that the tension in the nanotube is given

by (Eq. 2.27)

T =
EA

2L

∫ L

0
z′2dx (4.5)

where A is the area of the CNT and z′ is the spatial derivative of z. In order to find

the tension, we can first find the profile of the CNT from the equilibrium equation

(Eq. 2.12) and then find the tension self-consistently (Sapmaz et al., 2003). We

can easily solve a simplified model, where the applied force is concentrated in the

center (see Fig. 4.7a). In this case the tension is defined by FDC
el = 2T cos(θ),

where θ is the angle between the nanotube and the vertical axis. Expanding this

in terms of the length of the nanotube L and the distance between the clamping

points W we find that

T =
FDC

el

2 cos(θ)
=

FDC
el

2
√

(L/2)2−(W/2)2

(L/2)2

=
FDC

el

2
√

L+W
L

L−W
L

∼=
FDC

el√
8s

(4.6)

Changing the problem to a uniformly applied force only changes the slack prefactor

(Üstünel et al., 2005).

T =
FDC

el√
24s

(4.7)

The resonance frequency in the catenary regime is then:

ωcat
n =

πn

L

√√√√ FDC
el

µ
√

24s
=

πn

L

√√√√ C ′
g

µ
√

96s
V DC

g (4.8)

To calculate how the resonant frequencies change in the transition from the

bending to the catenary regime, we use the corrections calculated by Sapmaz et al.

(2003) to the resonant frequencies in the bending regime for the fundamental mode

(Eq. 2.28),

ω =
22.4

L2

√
EI

µ
+ 0.28T

√
1

µEI
(4.9)



90

Substituting the expression for T from Eq. 4.7 we arrive at

ωcat =
22.4

L2

√
EI

µ
+ 0.28

C ′
g√

96s

√
1

µEI
V DC

g

2
(4.10)

Thus, in the transition region the resonance frequency depends quadratically on

the gate voltage.

The transition point is determined by equating the induced tension T to the

force produced by the flexural rigidity EI/L2. Setting T = EI/L2 gives us the

transition gate voltage

V DC
g =

√√√√2EI
√

24s

C ′
g

(4.11)

For a typical slack of 1% that corresponds to a DC voltage of ∼ 0.15V. This

relation is shown in the lower curve in Fig. 4.7c.

Elastic regime

In the elastic regime, the force is comparable to the extensional rigidity of the

nanotube, FDC
el ∼ EA, and the length constraint is lifted. In this limit, slack is

negligible compared to the elongation of the nanotube, and thus the modes are

unaffected by the amount of slack in the system. In the absence of the length con-

straint the even harmonics of the in-plane modes return to their original shape by

losing the two additional nodes. This process is exactly opposite to that illustrated

in Fig. 4.6a, and it also requires an even-odd mode crossing.

To calculate the resonance frequencies in this regime we still use Eq. 4.4 for a

string under tension. Equation 4.7, however, needs to be recalculated for the case

of the nanotube with extension. This case is illustrated in Fig. 4.7b. The tension

in the nanotube is still defined by equation FDC
el = 2T cos(θ), where cos(θ) is given

by
(L+∆L

2
)2−(W

2
)2

(L
2
)2

, where the elongation of the tube ∆L is defined by the Hooke’s
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law ∆L/L = T/(EA). Putting it all together, we get

FDC
el = 2T cos(θ) = 2T

√√√√(L+∆L
2

)2 − (W
2

)2

(L
2
)2

= 2T

√
L + ∆L + W

L

L + ∆L−W

L
= 2T

√
2s + 2

T

EA
(4.12)

Since in the elastic regime s � ∆L/L, the equation reduces to

FDC
el = T

√
8

T

EA
⇒ T =

(
EA

8

) 1
3

FDC
el

2
3 (4.13)

The resonance frequencies are still given by Eq. 4.4, and they reduce to

ωn =
πn

L

√√√√(EA)
1
3

2µ
FDC

el

1
3 (4.14)

For the realistic profile, the derivation is similar and the resulting resonance fre-

quencies are (Üstünel et al., 2005, Sapmaz et al., 2003)

ωelast
n =

πn

L

(
5

3

) 1
3

√√√√(EA)
1
3

6µ
FDC

el

1
3 =

πn

L

(
5

6
C ′

g

) 1
3

√√√√(EA)
1
3

6µ
V DC

g

2
3 (4.15)

Even though the resonance frequency, as expected, does not depend on slack,

the transition point from the catenary to elastic regime does. The transition be-

tween the catenary and the elastic regimes occurs when the elongation of the

nanotube under tension is comparable to slack. Substituting T/(EA) = s into Eq.

4.13 with correct coefficients, we get that the transition occurs at

V DC =

√√√√√2
(

27
25

) 3
2 EA

C ′
g

s
3
4 (4.16)

For 1% slack, this corresponds to around 35V. Thus, the elastic regime is not

likely to be relevant for a typical device. The three regimes are shown in Fig. 4.7c

in the slack gate voltage space.
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Spring constants

We can alternatively express the above results in terms of the spring constants of

the resonator. For small tube displacements we can approximate the CNT by a

harmonic oscillator and define a spring constant k = mω2
0. In the bending regime

the spring constant for a standard device described in table 4.1 is

kbend
n =

β4
n

L3
EI = 0.2× 10−4β4

n

β4
1

m/N (4.17)

In the catenary regime the spring constant is

kcat
n =

(πn)2

L

C ′
g

9.8s
V DC

g

2
= 0.2× 10−4n2 V DC

g

2
m/N (4.18)

In the elastic regime the spring constant is

kelast
n =

(πn)2

L

(
0.06C ′

g

√
EA

)2/3
V DC

g

4/3
= 2.7× 10−4n2 V DC

g

4/3
m/N (4.19)

Expectations for a typical device

Having derived the analytical expressions for all of the regimes, we can estimate

what the dispersion curves look like for a typical device. We ignore the elastic

regime, as it is not achievable in our experimental setup, and are left with the

bending and catenary regimes (Eqs. 4.3, 4.8). To approximate the transition region

we add the spring constants for the bending and the catenary regimes. This

approximation seems valid since in the transition region both the bending restoring

force and the elastic restoring force are relevant. The resulting resonant frequency

is then ω =
√

(kbend + kcat)/m. Using Eqs. 4.17 and 4.18 we arrive at

ωn =
√

ωbend
n

2 + ωcat
n

2 =
√

ωbend
n

2 + a V DC
g

2 (4.20)

where a = (πn)2

L

C′
g

9.8s
. Figure 4.8a presents the dispersions for the first three modes

calculated in this manner for device described in table 4.1.
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Figure 4.8: Theoretical prediction and numerical calculations. (a). A calculation

of the dispersion for the lowest three resonant modes for a typical device (Table

4.1). (b) Dispersions calculated numerically for a typical device. (c) Dispersions

calculated for the same device for several values of slack scaled by s1/4. From

Üstünel et al. (2005)
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Numerical simulations

Üstünel et al. have performed numerical simulations for this system using a finite

element model. A discretized nanotube was placed in a standard potential (Eq.

2.9):

U =
1

2

∫ L

0

(
EAε2(x) +

EI

R2(x)
+

FDC

L
z(x)

)
dx (4.21)

where, as we remember from section 2.3, EA is the extensional rigidity of the

nanotube, EI is the flexural rigidity, ε is the local strain, R is the local radius of

curvature, FDC is the DC force on the nanotube, and z is the vertical displace-

ment. For each given DC force and slack this potential is minimized by varying

the profile of the tube and recomputing the local strains and radii of curvature

until the “relaxed” profile is found. To compute the resonant frequencies a force

constant matrix Kij = ∂2U/∂xixj is computed and diagonalized (for more details

see Üstünel et al. (2005)). The basic results are shown in Figs. 4.6d and 4.8b and

c.

Fig. 4.6d shows the behavior of resonances as the slack is increased. As de-

scribed in the beginning of the section, slack only has an effect on the even harmon-

ics of the in-plane vibrational modes, which increase their frequencies by acquiring

two additional nodes and become nearly degenerate with the corresponding out-of-

plane modes. Fig. 4.8b and c show the predicted dispersion relation for a typical

nanotube (b) and for a typical nanotube with several values of slack (c). Since the

tension in the the nanotube scales as s1/4 (Eq. 4.7), the voltage axis was scaled

by (1%/s)1/4 to collapse all the curves onto each other. We see that all but the

the smallest values of slack (0.25% – marked by the crosses) collapse onto a single

curve. The deviation for small slacks is due to the tube entering the elastic regime

sooner. Overall, the results from the numerical simulations agree with our simple
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model. The results of the calculations using the simple model and the numerical

simulations, shown in Figs. 4.8a and b, respectively, are indistinguishable.

4.5 Model comparison with data

Having developed a model of the CNT resonator we can now go back to the data,

which presented in Figure 4.9. Comparing with Figures 4.9a and 4.9b, we see good

qualitative agreement with predicted dispersions. All resonances start dispersing

parabolically, continuing into the linear regime as the gate voltage is increased.

For the lowest resonance in Fig. 4.9b we also observe an ω ∼ V 2/3
g frequency

dependence at large gate voltages. The frequency dependence of the resonances

are thus in good qualitative agreement with theoretical expectations. The range

of frequency that we find (5MHz− 350MHz) is also within the expected range for

the expected distribution of lengths (1µm− 2µm) and diameters (1nm− 3nm).

We do, however, often find that the resonances are lower in frequency than

predicted by the theoretical calculations. One possible source of this discrepancy

could be additional mass coating of the CNT, for example, due to contaminants

from the CNT growth or processing.

To see if the model describes the dispersion accurately, we fit the measured

dispersion to the analytic dispersion relation presented in the previous section (Eq.

4.20). We have three fitting parameters: the zero gate voltage frequency ωbend, the

linear dispersion coefficient a, and the gate voltage offset V0. The results of the fit

with the fitting parameters are presented in Fig. 4.9c. We see that the majority of

the resonances are described well by this model.
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Figure 4.9: Qualitative data comparison with the theoretical model. (a),(b)

Detected current (plotted as a derivative in color scale) as a function of gate

voltage and frequency for two devices. The insets to the figures show the extracted

positions of the peaks in the frequency-gate voltage space for the respective color

plots. A parabolic and a V 2/3
g fit of the peak position are shown in red and green,

respectively. (c) A dispersion of a resonance fitted with the theoretical model from

section 4.4.
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Figure 4.10: Examples of resonance with anomalous dispersions. (a) The lowest

resonance exhibits sub-linear dispersion characteristic of the elastic regime. (b)

An avoided crossing.(c) A device showing an abundance of resonances. (d) A

devices showing a resonance with negative dispersion.



98

4.6 Anomalous dispersions

There are, however, several types of dispersions that we observe that cannot be

explained by the above model. Typical representatives of such types are shown in

Fig. 4.10.

Sub-linear dispersion

In the first class of devices (Fig. 4.10a), the resonance shows a sub-linear (V 2/3
g )

dispersion behavior characteristic of the elastic regime (see Eq. 4.15), which should

not be observable for the voltage of the experimental setup for a typical device.

It is accessible, however, for tubes with extremely small slack. As indicated in

Fig. 4.7, a CNT resonator could enter the elastic regimes at voltages as low as 5V

for slacks of 0.1%. Another possibility for a sub-linear dispersion is a non-linear

dependence of the potential of the tube on the gate voltage due to the charging

of dopants on the tube. If the time constant for the charge movement around the

tube is comparable to the time it takes to record one trace of the measurement,

the actual voltage that the CNT feels will be less than the voltage applied to the

gate, and the resonance will appear to saturate.

Abundance of resonances and avoided crossings

Some other anomalous dispersion examples include devices that show an abun-

dance of resonances (Fig. 4.10c). From our theoretical model and from numerical

simulations we expect 6 − 8 resonances in the measurement range of 5MHz −

200MHz. However, we do not expect all of them to couple to our measurement

scheme, thus observing a device with the number of resonance above 5 is surpris-

ing. Even though we do not know the exact origin of this behavior, one possible
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explanation is that the measured device consists of several tubes, and thus the

different modes come from the different nanotube resonators.

Another type of anomaly is the presence of avoided crossings (Fig. 4.10b) in

the mode dispersions. We could speculate that these crossing originate from the

mode degeneracies predicted by theory that are lifted when the symmetry of the

problem is broken. However, without further measurements we cannot say more

on the origin of this behavior. Both of theses effects reflect, though, that there

is a lot more complexity in the real system than in our simple model or in the

numerical simulations.

Negative dispersion

Another class of anomalous devices (Fig. 4.10d) exhibits negative dispersion. This

feature is extremely common in our devices. We have observed it for several sam-

ples made with method #1 and for all samples made with method #2 (section 3.2)

whose low-gate-voltage dispersion was visible. One systematic difference between

the samples made with methods #1 and #2 is that the suspended portion of the

tube is typically slightly longer with the method #2 (2µm − 3µm) then with the

method #1 (1.25µm− 2µm). We explain why the length of the resonator plays a

role in this effect below.

Dispersions for four different samples that exhibit negative dispersion are pre-

sented in Fig. 4.11. We can explain this behavior by remembering that the CNT

resonator is vibrating in a force field with a non-zero gradient. This force gradient

is acting as an additional spring constant that is counteracting the restoring force

and thus effectively decreasing the spring constant of the resonator and softening

the resonance frequency. Remembering the DC force acting on the CNT, as de-



100

Figure 4.11: Samples exhibiting negative dispersions. In (a) and (b) the reso-

nance is marked with an arrow for better visibility.
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scribed by Eq. 3.4, we can derive that the additional spring constant acting on the

CNT resonator is

ksoftening =
dFDC

electic

dz
=

1

2
C ′′

g V DC
g

2
(4.22)

Fig 4.12 shows the calculated results for the catenary and bending regimes for

a fundamental mode of a typical device made with method two, using a simple

capacitance model for the CNT (this model will be discussed in more detail in the

next chapter). We can no longer use the arguments of adding spring constants to

approximate the transition from the bending to catenary regimes. For that reason

we show the effect of the electric field softening on both dispersions separately.

We see that in the bending regime, the magnitude of the decrease in resonance

frequency is comparable to the one observed in the measurements (∼ 3− 5MHz);

at higher voltages, in the catenary regime, the elastic force compensates for the

softening and the frequency increases.

4.7 Conclusions

In conclusion, we have successfully observed a mechanical resonance of a suspended

carbon nanotube. The device exhibits several vibrational modes, which disperse

symmetrically as a function of the DC gate voltage. To explain these dispersion

relations we model the suspended nanotube as a slack beam, to which we apply an

external uniform downward force set by the DC gate voltage. Depending on the

magnitude of the force, the nanotube can enter three different regimes: bending,

catenary and elastic. We can analytically solve for the resonance frequencies in each

of these regimes and predict the resulting dispersion curve. Alternatively, Üstünel

et al. have performed numerical simulations of a slack nanotube system. The

analytical results agree very well with the numerical simulations and can explain
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Figure 4.12: Theoretical predictions for negative dispersion for both bending

and catenary regimes. The calculation was done for a typical nanotube resonator

device made with the method #2.
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the majority of the resonances. However, several features have been observed

that do not fit in this model. Several devices show an unusually high number of

resonances; several show avoided crossing types of behavior. Another set of devices

shows sub-linear dispersions indicative of the elastic regimes that should not be

observable at the experimental voltage ranges. Lastly, a large number of devices

exhibit a temporal decrease in frequency as the DC gate voltage is increased. We

propose a theory to explain these effects. However, further studies are needed to

fully understand these phenomena.



CHAPTER 5

ANALYZING CNT RESONATOR PERFORMANCE

5.1 Introduction

In this chapter we present an analysis of the measurement of a CNT resonator

device. First, we discuss the shape of the measured signal and present a fitting

procedure that allows us to extract the parameters describing the performance of

a resonator (section 5.2). In the following two sections we estimate the amplitude

of motion of the resonator (section 5.3) and see how it changes with increasing

driving voltage (section 5.4) (Sazonova et al., 2004). We finish the chapter with

two sections on the limits of the device performance. Section 5.5 gives an estimate

of the resonator’s force sensitivity as it is cooled to lower temperatures; in section

5.6 we estimate the limits on its operational frequency.

5.2 Fitting the resonance

Fig. 5.1 shows the basic measurement result from the previous chapter: a mea-

surement of the mixing current, I∆ω, as a function of driving frequency, ω, taken

at room temperature in vacuum. In order to understand the shape of this signal

we go back to Eq. 3.17, which we reproduce here for convenience:

I∆ω =
1

2

dG

dq

(
C ′

gz(ω)V DC
g + Cg Ṽg

)
Ṽsd (5.1)

Here Ṽsd and Ṽg are the AC voltages on the source and gate electrodes, respectively,

Cg is the NT-gate capacitance, dG
dq

is the transconductance of CNT device, and

z(ω) is the NT’s amplitude of motion. The first term, which we refer to as Ipeak,

describes the contribution to the current from the mechanical motion of the tube

104
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Figure 5.1: Resonances shown in Fig. 4.1 in the previous chapter, fit to a

Lorentzian with an appropriate phase shift between peak and the background.

Extracted parameters (good to within 3%) are: (a) f0 = 10.1MHz, Q = 50,

Ipeak = 30pA. (b) f0 = 5.1MHz, Q = 100, Ipeak = 7pA. (c) f0 = 55MHz, Q = 80,

Ipeak = 6pA. (d) f0 = 333MHz, Q = 81, Ipeak = 10pA.
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changing the tube’s potential. It is significant only near the resonance frequency

and we associate it with it the sharp feature in Fig. 5.1. The second term, IBG,

describes the contribution to the current from the direct electrical modulation

of the NT’s potential by the AC gate voltage and is frequency independent, as

discussed in section 3.7; we identify the background signal with the second term.

Inserting z(ω) from Eq. 2.4 into Eq. 3.17, we derive that Ipeak(ω) and IBG(ω)

are given by

Ipeak(ω) =
1

2

dG

dq
C ′

gV
DC
g Ṽsd

z0/Q√(
1−

(
ω
ω0

)2
)2

+
(

ω/ω0

Q

)2
(5.2)

IBG(ω) =
1

2

dG

dq
CgṼgṼsd (5.3)

Naively we would just add these terms to get the total current; however, looking

back at Eq. 3.5, we notice that its two terms have very different physical origin.

The first comes from the electrons driven on and off of the tube by the change

in the potential in phase with the mechanical motion of the CNT. The second

originates from the electrons moving on and off of the the tube due to the change

in the potential in phase with voltages applied to the gate and source electrodes.

In principle, there is an arbitrary phase shift between these two terms, defined by

the exact contact resistances and capacitances of the sample, which causes them

to interfere (Knobel and Cleland, 2003). Therefore, when calculating the total

current, we must add the peak and the background current contributions with a

phase shift ∆φ between them. The resulting total current is

I(ω) =
1

2

dG

dq

C ′
gV

DC
g

z0

Q

cos
(
∆φ + arctan

(
ω2

0−ω2

ωω0/Q

))
√(

1−
(

ω
ω0

)2
)2

+
(

ω/ω0

Q

)2
+ CgṼg

 Ṽsd (5.4)

Depending on the phase difference, the line shape of the signal changes from the
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Figure 5.2: The calculated lineshape of the signal at four different values of the

phase difference. From top to bottom, ∆φ = 0, ∆φ = 3π/6, ∆φ = 7π/6, ∆φ = π.
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peak (∆φ = 0) to the heart-beat shape (∆φ = π/2) to the dip (∆φ = π). Fig.

5.2 illustrates the possible lineshapes for different phases. The height of the peak,

Ipeak, defined as the height of the peak if ∆φ = 0 is

Ipeak =
1

2

dG

dq
C ′

gV
DC
g Ṽsdz0 (5.5)

From discussion in section 3.7, we know that the background current changes

with driving frequency due to capacitive losses and circuit resonances. For the

frequency interval of the resonance we can approximate that frequency dependence

by a straight line.

IBG(ω) =
1

2

dG

dq
CgṼgṼsd (A + Bω) (5.6)

Using these arguments, we fit the measured current to the following functional

form

Itotal(f) = A + Bf +
H cos

(
arctan

(
f2
0−f2

Γf
+ ∆φ

))
√(

1−
(

f
f0

)2
)2

+
(
Γ f

f0

)2
(5.7)

Here A, B, H, f0, Γ, and ∆φ are five independent fitting parameters. A and B

are the intercept and the slope for the background. H controls the height of the

peak on top of the background, f0 and Γ control the position and the width of

the peak, respectively, and finally ∆φ controls the lineshape of the resonance. We

transform these fitting parameters into experimental parameters, such as the center

frequency, f0, the normalized linewidth, Q−1, the height of the peak, Ipeak, and

the background, IBG, in the following fashion

Q−1 = Γ
f0

Ipeak = HQ

IBG = A + Bf0

(5.8)

The black line in Fig. 5.1 indicates the fit to the data. As we see, the fit works
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very well for all the different shapes presented; the fits are good to within 3%.1

The extracted parameters for Fig. 5.1 are given in the figure caption.

5.3 Estimating the amplitude of vibrations

Having developed a procedure to fit the resonances, we can extract and analyze

the important mechanical parameters of the resonator. The resonance frequency f0

and its dependence on the DC gate voltage was discussed in detail in the previous

chapter (Chapter 4); the quality factor Q, describing the degrees of losses in the

resonating system, will be discussed in the next chapter (Chapter 6); and in the

remainder of this chapter we concentrate on the information we can extract from

the magnitude of the peak and background currents, IBG and Ipeak.

To begin, we use Eq. 3.31 and Eq. 5.5 to extract the amplitude of motion of

the resonator. As a first step, we calculate the relative change of capacitance on

resonance from the peak current using Eq. 5.2

C ′
gz0

Cg

=
2Ipeak(ω0)
dG
dq

V DC
g Ṽsd

(5.9)

We can estimate the transconductance dG/dq analogously to the analysis for the

non-suspended CNT device (section 3.7) from the DC current measurement; al-

ternatively, we can use the measured value of the background current. The latter

takes into account the signal variations due to circuit resonances and capacitive

losses. The value of the relative change of capacitance on resonance is then

C ′
gz0

Cg

=
Ipeak(ω0)

IBG(ω0)

Ṽg

V DC
g

(5.10)

In order to determine the actual amplitude of the tube’s displacement on resonance

z0 =

(
C̃g

Cg

)measured
Cg

C ′
g

(5.11)

1 For a typical fit, the standard deviation of (Imeasured/Itotal(f)− 1) ≈ 3%
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we need to know Cg and C ′
g. A simple model of a straight beam above an infinite

plane gives the following dependence:

Cg = 4πε0L
ln(2Z/r0)

C ′
g ∼ Cg/Z

(5.12)

Where L is the length of the tube, r0 is the tube’s diameter and Z is the distance

to the gate. Using this model, we arrive that the vibration amplitude is given by

z0 =
C̃g

Cg

Z =
Ipeak(ω0)

IBG(ω0)

Ṽg

V DC
g

Z (5.13)

From chapter 3 we recall that Z is approximately 500nm for our devices. Cal-

culating the vibration amplitude for one representative resonance curve, presented

in Fig. 5.1c, (measured at Ṽg = 7mV) leads to C̃g/Cg = 0.3%, and z ∼ 10nm.

5.4 Peak amplitude dependence on the driving voltage

Figure 5.3a,b show the dependence of the peak current, Ipeak, and the peak’s full

width at half maximum (FWHM) on the driving voltage of the resonator, Ṽg, for

one device. For low driving amplitudes the response on resonance is linear in Ṽg

and the FWHM is roughly constant. As the Ṽg is increased, the response saturates

and the response peak widens. For some devices, there is also a dramatic change

in the signal shape observed at these high driving voltages (Fig. 5.3b). Instead of

a smooth Lorentzian dip, the system develops a hysteretic transition between low

and high amplitude states of oscillation.

Linear regime

To understand these results, we first address the linear response regime. From Eq.

5.13 we know that the peak current is proportional to the amplitude of oscillation
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Figure 5.3: Amplitude dependence of the response. (a) Trace of detected current

vs. frequency with the background signal subtracted for a device at two different

driving voltages Vg = 8.8mV and Vg = 40mV. The solid black line is a Lorenzian

fit to the low bias data. The traces of the current as the frequency is swept up

and down are shown in purple and magenta, respectively. Hysteretic switching can

be observed. (b), (c), (d) The inverse of the measured FWHM of the resonance

peak and the height of the resonance peak for several devices are shown in red

open squares and black solid squares, respectively, as a function of driving voltage

Vg. Linear behavior is observed at low voltages, but the peak width decreases and

the height of the peak saturates at higher driving voltages.
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z0 and from Eq. 3.4 we know that the driving force is proportional to the AC gate

voltage Ṽg. Thus the linear relation between the peak current and the driving

voltage results in the linear response of the resonator. Consequently, we estimate

the effective spring constant for this resonator from the slope of the amplitude vs.

driving force curve. For the device in Fig. 5.3c it is 4× 10−4N/m. This is consis-

tent with the spring constants for the bending and catenary regimes calculated in

section 4.4. However, we need to remember that experimentally we measure the

force spring constant

kforce
n =

F̃el

z0

Q = θkbend,cat
n (5.14)

by measuring the vibration amplitude dependence on the driving voltage, and not

the resonator spring constant

kbend,cat
n = mωbend,cat

n

2
(5.15)

as it was defined in section 4.4. Here θ is the coupling coefficient that accounts

for the fact that the CNT does not move purely in the z-direction, in which case θ

would be one. Generally, the coupling is different for different modes. We, however,

assume perfect coupling throughout this thesis.

Finally, we can calculate the force sensitivity of the device at room temperature.

The smallest detected signal was at a driving voltage of Ṽg ∼ 1mV. Using Eqs. 3.4

and 5.13 above yields a motion of ∼ 0.5nm on resonance and a force sensitivity of

∼ 3fN/
√

Hz . This is within a factor of ten of the highest force sensitivities ever

measured at room temperature (Jenkins et al., 2004, Stowe et al., 1997). We will

discuss the limiting factors and the projections of the force sensitivity in the next

section.
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Nonlinear regime

As the amplitude of the oscillation is increased, we expect that non-linear effects

due to changes in the spring constant become important. It is well known that non-

linear resonators have a bi-stable region in their response-frequency phase space,

which experimentally results in a hysteretic response (Yurke et al., 1995). The

onset of non-linear effects in our case corresponds to driving voltages of 20mV.

Assuming the same parameters as above yields the amplitude of motion of 30nm.

Several possible mechanisms, such as beam elongation, clamping, etc., can be

responsible for the non-linear behavior. In NEMS the non-linearity is typically

due to the elongation of the resonating beam (see section 2.4), and the onset of

non-linearity is a well known parameter (Postma et al., 2005). In our devices

the presence of slack compensates the elongation induced by the driving forces

corresponding to the onset of non-linearity.

One other possible reason for this behavior is the direct dependence of the

resonance frequency on the driving force, since both driving and tuning are done

by controlling the voltage on the gate. From Eqs. 4.3, 4.8 the spring constant of the

resonator in the bending and catenary regimes depends on the gate voltage. That

means that the resonator’s spring constant is modulated by the driving voltage

around some central value defined by the DC gate voltage :

k(Vg) = k0(V
DC
g ) + k̃(Ṽg) (5.16)

The equation of motion 2.3 for the resonator (Eq. 2.3 ) is then modified as follows

mz̈(t) + bż(t) + k0z(t) + k̃(F0 cos(ωt))z(t) = F0 cos(ωt) (5.17)

This type of equation is usually referred to as parametric amplification, as a pa-

rameter of the system (i.e. its spring constant) is modulated. Without solving



114

this analytically, we can estimate the magnitude of the frequency broadening due

to the driving voltage for the values corresponding to the onset of non-linearity

(20mV). For a typical resonance frequency of f0 = 50MHz with a quality factor of

Q = 50, and with a typical dispersion curve slope of ∆f/∆V DC
g = 10MHz/V, the

frequency modulation will be

∆f =
∆f

∆V DC
g

Ṽ non−linear
g = 0.2MHz (5.18)

which is smaller than, but comparable with, the half maximum width of the peak

of f0/Q = 1MHz, indicating its possible importance. We will return to possible

mechanisms of non-linearity in chapter 6. Solving such equations is typically done

numerically, and even though this presents a very interesting problem it is out of

the scope of this thesis.

The exact cause of this hardening non-linearity is still subject to further inves-

tigations. We must also note that in all measurements of the hysteretic switching

the traces were measured by sweeping the gate voltage, not the driving frequency.

In such a case the driving force is larger on the high frequency side of the reso-

nance (higher gate voltage), and smaller on the low side of the resonance (lower

gate voltage). While this inhomogeneous measurement does not affect the presence

of non-linearities and bi-stability, it might affect the exact shape of the resonance.

5.5 Calculations of force sensitivity

The ultimate limit on sensitivity is set by the thermal fluctuations of the CNT

oscillator

Sthermal
F =

4kbend,catkBT

ω0Q
(5.19)
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where kB, T are the Boltzman constant and temperature, respectively. For a typ-

ical device (table 4.1), this translates to 15aN/
√

Hz. The observed sensitivity is

1pN/
√

Hz, 50 times worse than this limit.

To understand the origin of this poor sensitivity, we first consider the sources

of noise in the system. The experimentally determined value for the current noise

through the device was
√

Sexp
I ∼ 0.3± 0.05pA/

√
Hz. Many sources of noise could

be contributing to that value (Cleland and Roukes, 2002). We identify two major

possible sources: the 1/f noise associated with the movement of charges in the

substrate, and the thermal Johnson-Nyquist noise. According to measurements of

Postma et al. (2001), 1/f noise

S
1/f
I = AI2

ave/f (5.20)

is comparable to the thermal noise at the experimental frequencies f = ∆ω/2π =

10kHz. The major source of noise in this system is the thermal Johnson-Nyquist

noise

Sthermal
I = 4kBTG (5.21)

where G is the conductance of the CNT device. At room temperature for a typical

device (table 4.1) this corresponds to 0.4pA/
√

Hz, in excellent agreement with our

findings. We therefore conclude that the dominating source of noise in our devices

is the thermal electronic Johnson-Nyquist noise.

We can make a model of the theoretical force sensitivity in an CNT resonator.

Using Eqs. 3.4 and 5.14, we can rewrite Eq. 5.5 in terms of the driving voltage Ṽg

Ipeak =
1

2

dG

dq

(V DC
g C ′

g)
2

kbend,cat
QṼsdṼg (5.22)

To avoid any additional forces on the resonator we keep Ṽsd ≤ Ṽg.
2

2 Increasing Ṽsd increases the peak current and so the sensitivity of the device.
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Figure 5.4: Calculation of a projected force sensitivity. (a) The gate dependence

of the conductance for a transistor CNT device (GNT(V DC
g )), calculated for typical

parameters. The voltage at which the maximum slope is achieved is marked by a

gray circle. (b) The gate dependence of the conductance for a CNT device in the

classical dot regime (GQ(V DC
g )), calculated for a typical parameters. The voltage

at which the maximum slope is achieved is marked by a gray circle. (c) The

projected force sensitivity calculated for three different regimes: FET, classical

dot, quantum dot for a typical device is shown as solid black line. A dashed black

line indicates the thermal vibrations limit on the sensitivity. The force sensitivities

recently achieved in the NEMS community are shown as orange circles.
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Equation 5.22 then leads to the following expression for the force sensitivity SF

SF =
2
√

SIBkbend,cat

dG
dq

QB
(5.23)

where SI is the current noise in the device and B is the bandwidth of the mea-

surement.

To estimate the theoretical limit on force sensitivity, we estimate the limits on

the CNT conductance G and transconductance dG/dq.

The CNT’s conductance consists of two parts: the contact’s conductance Gc

and the CNT’s bulk conductance GNT that arises mostly from scattering from

acoustical phonons (Kane et al., 1998). From chapter 1 we know that for perfect

transmission Gc is given by the Landauer-Büttiker formula

Gc = 4
e2

h
(5.24)

In real devices conductance is typically smaller. For the remainder of this chapter

we assume the contact resistance of Gc = 1/100kΩ. For a semiconducting CNT,

the bulk conductance in the p-regime is given by

GNT(V DC
g ) = 4

e2

h

l0
L

(V DC
g /a)2

1 + (V DC
g /a)2

(5.25)

where a = 8e/3πDC ′
g, and l0 is the phonon mean free path. For a detailed analysis

and derivation of this formula see Rosenblatt (2005). The total conductance is

given by the 1/G = 1/Gc + 1/GNT. Figure 5.4a illustrates the behavior of the

CNT conductance for some typical device values (table 4.1). We estimate the

However, following the arguments in section 3.6, Ṽsd creates an additional force
on the CNT resonator of F̃ ω+∆ω = 1/2C ′

gV
DC
g Ṽsd at the frequency ω + ∆ω, result-

ing in an additional motion at that frequency. Since the width of the resonance
peak (typically on the order of f0/Q ≈ 300kHz) is larger than ∆ω/2π = 1kHz,
this additional force could affect the resonance and, perhaps, lead to additional
dissipation.
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maximum transconductance of the device, dG/dq, by calculating the maximum

slope of this graph (marked with the grey circle) and using the fact that

dG

dq
=

dG

dV DC
g

1

Cg

(5.26)

Using these equations in conjunction with Eq. 5.23, we calculate
√

SF = 1.5fN/
√

Hz,

in good agreement with our measurements.

Decreasing temperature affects both the conductance and the transconductance

of the CNT. While the contact conductance does not change with temperature,

the phonon mean free path increases with the inverse of temperature, and so does

the bulk conductance (Zhou et al., 2005, Rosenblatt, 2005). From Eq. 5.25 we see

that the transconductance has the same temperature dependence

G,
dG

dq
∼ 1

T
(5.27)

At lower temperatures the CNT enters into a classical Coulomb blockade

regime. By this point the bulk contribution to resistance is small and the overall

conductance is determined by the contacts. The gate-voltage dependence of the

conductance is modulated by the individual charging events of the CNT dot that

manifest themselves as Coulomb oscillations

GQ(T, V DC
g ) = Gc

(
cosh

(
αeV DC

g

kBT

))−2

(5.28)

where α ∼ 6 (Zhou et al., 2005) is a constant relating voltage and energy scales.

At even lower temperatures the transport through the CNT happens through in-

dividual energy levels of the CNT dot and the CNT is in the quantum dot regime.

GQ(T, V DC
g ) = Gc

∆E

kBT

(
cosh

(
αeV DC

g

kBT

))−2

(5.29)

where ∆E is the average level spacing. An example of a classical Coulomb oscilla-

tion at 10K is presented in Fig. 5.4b. Again, we estimate the maximum transcon-
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ductance by calculating the slope of GQ(T, V DC
g ). From the above equations we

can derive that in the classical dot regime

dG

dq
∼ 1

T
(5.30)

and in the quantum dot regime

dG

dq
∼ 1

T 2
(5.31)

Assuming that Johnson-Nyquist noise is the only noise source in the system,

we calculate the expected force sensitivity for a typical CNT resonator device as a

function of temperature. The result is shown in Fig. 5.4c as a black solid line. A

dashed line indicates the limit on sensitivity set by the thermal vibrations of the

resonator. We see that at low temperatures (∼ 1K), the sensitivity should increase

by orders of magnitude. Force sensitivities below 5aN should theoretically be

attainable. This is comparable to the highest sensitivities ever measured (Stowe

et al., 1997, Mohanty et al., 2000, Stipe et al., 2001), indicated on the graph

with orange dots. Additionally, sensitivity may increase due to the temperature

dependence of the quality factor Q(T ). We will discuss the quality factor and its

temperature dependence in detail in the next chapter.

5.6 Frequency limits

One of the goals in the NEMS community is to push the limit of the operating

resonant frequency. Resonators with fundamental frequencies up to 1.5GHz have

been fabricated (Huang and Roukes, 2003). The highest resonance measured so

far in our devices was at 400MHz. In this section, we estimate the inherent upper

bound on the resonant frequency (not limited by the external circuit) that we can

detect with our measurement technique.
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Figure 5.5: Spring constant length dependence. (a),(b) The spring constant

(the maximum of kbend and kcat is presented) calculated for a typical device as a

function of device length, (a) and gate voltage (b). (c), (d) The transition gate

voltage between the bending and catenary regimes as a function of slack (c) and

device length (d). We see that for shorter devices the bending regime dominates,

as the onset of catenary regime is inaccessible with the experimentally available

voltages.
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One way to increase the resonant frequency in our devices is to decrease their

length (see Eq. 4.3, 4.8). Then, in order to calculate the upper bound on the

resonant frequency we calculate the lower bound of the NT’s length.

Recall Eq. 5.22; in order to find the lower bound on the device length, we

calculate the maximum possible resonant current as a function of the length of the

device and find for which lengths the current is less than the noise in the system

(see Fig. 5.6a).

In the FET regime the driving voltage is not bounded and the maximum res-

onant current is bounded by the total change in the conductance of the device in

the experimentally accessible voltage range. The mixing voltage is not bounded,

in contrast to the previous section, as the goal now is to maximally drive the res-

onator. For our calculations we used the driving and mixing voltages of 1V. For

the case of the Coulomb blockade, the driving voltage and the mixed voltage are

bounded by the charging energy of the dot.

Ṽg ≈ e/Cg (5.32)

In this case the dot is always in the classical regime. Using Eqs. 5.22, 5.25, 5.28,

and 4.17 we calculate the maximum resonant current from the device and obtain

the minimum allowed length by equating it to the noise in the system.

Ipeak
FET,dot =

√
SIB (5.33)

Before presenting the results of the calculation, let us note that only the bending

regime is relevant for the calculation for the short devices. This is illustrated in

Fig. 5.5, where we calculate the value of the spring constants as a function of

device length and gate voltage (panels (a) and (b)), and the transition gate voltage

between the bending and catenary regimes (panels (c) and (d)). We see that for
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Figure 5.6: Noise-limit dependence on the device length. (a) Peak current and

the noise in the system as a function of device length. The intersection defines the

limiting length. (b) Calculated limiting length as a function of temperature for a

typical device in the FET and classical dot regimes.
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shorter CNT resonators the bending regime dominates and the catenary regime

is not accessible with operational gate voltages. Ignoring the catenary regime, we

perform the calculation outlined above and obtain the minimum device length as

a function of temperature. Figure 5.6b presents the result. We see that at room

temperature, detecting the motion of a resonator with lengths down to 160nm

should be possible. At low temperatures, in the Coulomb blockade regime, the

minimum length decreases even further, down to ∼ 10nm.

A 200nm long CNT resonator has the fundamental resonant frequency of ∼

2GHz (Eq. 4.3). This is already higher than the highest resonant frequencies ever

measured with NEMS (Huang and Roukes, 2003). A 30nm long CNT resonator

has the fundamental resonant frequency of ∼ 150GHz (Eq. 4.3). It has been

shown that the electronic part of the current detection setup can be extended to

frequencies of 50GHz (Rosenblatt et al., 2005), so pushing the frequency limits of

the resonator at least up to 50GHz seems feasible.

5.7 Conclusion

In this chapter we have analyzed the performance of a CNT resonator. After

understanding the details of the shape and amplitude of the current response signal,

we developed a fitting procedure that allows us to extract the three parameters

that describe the performance of a resonator: the resonant frequency, the quality

factor, and the amplitude of the induced resonant current. Using a simple model

for NT-gate capacitance, we estimated the actual amplitude of motion of the CNT

resonator to be on the order of nm. We further studied the response amplitude

dependence on the driving amplitude. For low driving voltages, the CNT resonator

operates in the linear regime with an effective spring constant of ∼ 4× 10−4N/m.
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At higher driving voltages the resonator enters into a non-linear regime exhibiting

a bi-stable behavior.

We calculated the force sensitivity of our device to be 3fN/
√

Hz. We find that

our measurement is limited by the thermal electron noise in the CNT. The ultimate

limit on the sensitivity is given by the thermal motion of the CNT resonator and

is a factor of 50 smaller. Finally, we estimated the bounds on force sensitivity and

resonant frequency of the CNT resonator as a function of temperature. We find

that at temperatures of ∼ 1K, force sensitivities on the order of several aN/
√

Hz

should be attainable. In the calculation of the upper bound on the resonant fre-

quency we limit ourselves to the fundamental harmonics and switch the calculation

into the calculation of the lower bound on the length of the device. We find that at

low temperatures, devices with lengths down to 30nm, corresponding to resonant

frequencies of ∼ 150GHz, should produce a detectable signal.



CHAPTER 6

QUALITY FACTOR OF CNT RESONATORS

6.1 Introduction

One of the most important parameters characterizing a resonator is the quality

factor, Q, the ratio of the energy stored in the resonator to the energy lost per cycle

due to damping. Maximizing Q is important for most applications. In the NEMS

community, Q’s up to 250, 000 have been achieved (Yang et al., 2000) and Q’s in

the range of 10, 000 − 100, 000 are typical. As the devices are miniaturized, their

respective Q’s decrease as shown in Fig. 6.1a as a graph of Q vs. volume. This linear

scaling of the Q’s with the surface-to-volume ratio has been attributed to losses

associated with dissipation at surfaces, giving promise for high quality factors from

well-terminated structures such as carbon nanotubes (Ekinci and Roukes, 2005).

Previous measurements on larger MWNTs and ropes of SWNTs yielded Q’s in

the range between 150 to 2, 500 at room temperature (Gao et al., 2000, Poncharal

et al., 1999, Purcell et al., 2002, Reulet et al., 2000). A comparison of the previously

measured Q and a Q measured from one of our samples (Fig. 5.1a) with the NEMS

Q’s is presented in Fig. 6.1a. We see that surprisingly the CNT resonator Q

continues nicely the trend established by the NEMS and MEMS. We, thus, would

like to understand the dissipation in CNT resonators.

In this chapter we investigate the possible reasons for such behavior and the

overall values for the quality factors, and look for the main dissipation mechanism.

We first study the dependence of the quality factor on various resonator para-

meters, such as air pressure, temperature, device conductance, DC and AC gate

voltages at room temperature (section 6.2), and then we study the temperature

125
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dependence of the system (section 6.3), and finally we build an empirical model

for the findings (section 6.5) and correlate it with various theoretical dissipation

models (section 6.6).

6.2 Room temperature results

We measured 30 different devices, each producing between one and eight resonant

modes, making a total of 120 vibration modes. Devices were created with three

different methods (for details see section 3.2) illustrated in Fig. 6.2c. Method

#1 results in a CNT suspended over a trench, clamped by the adhesion to the

SiO2 substrate; method #2 results in a suspended CNT clamped by the electrical

contacts; and method #3 results in a suspended CNT on top of the contacts,

clamped by the adhesion to the contacts. The electrical resistance of the devices

varied from range of 60 to 800kΩ.

Following the procedure described in section 5.2, we extracted representative

quality factors for each of the measured resonances at room temperature. Figure

6.1b shows the resulting quality factor distribution. We see that Q is in the range

of 40− 200, with the maximum of the distribution around 75.

As a first step in understanding the dissipation in CNT resonators, we inves-

tigate the quality factor dependence on various parameters at room temperature.

We start with the ambient conditions and device characteristics: the chamber pres-

sure, the electrical resistance of the device, and the fabrication method. We then

proceed to the characteristics of a particular resonance: the mode number, the

driving force (i.e., the driving voltage), and the tension in the tube (i.e., the DC

gate voltage).

As illustrated in Figs. 6.2a and b, we do not observe a correlation between



127

Figure 6.1: CNT quality factor comparison with NEMS. (a) NEMS quality factor

as a function of the device volume on the log scale. A dashed line is a linear fit.

(b) Distribution of the quality factor values measured among the 120 resonant

modes of 30 CNT devices.
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Figure 6.2: Quality factor dependence on various external parameters. (a) Qual-

ity factor dependence on the resistance of the device. No correlation is observed.

(b) Quality factor dependence on the device geometry. The averages for the three

distribution are all within a standard deviation of each other (indicated in red).

(c) A schematic of the three different geometries. (d) Pressure dependence of the

resonance peak for one device. The Q of the resonance peak is shown in red open

squares. The peak was no longer observed above pressures of 10torr.
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Q and the electrical resistance of a device. We also see that the quality factor

distributions for devices with different geometries are very similar. The respective

quality factor averages for each geometry are 62 ± 35, 87 ± 55 and 75 ± 72, all

within a standard deviation of each other.

Fig. 6.2c shows the dependence of quality factor on the chamber pressure for

one device. At experimental vacuum levels (< 10−4torr), Q is independent of

pressure. Only at higher pressures does Q start to decrease. The resonance is no

longer observed at pressures above 10torr.

A large fraction of the measured devices had more than one resonance mode.

An example of that is illustrated in Fig. 6.3a. The figure shows the dispersions for

all the different vibration modes of one device with the respective Q factor values

written on the corresponding mode. We see that even though the dispersions of the

two neighboring modes look alike (modes #2 and #3), their quality factors are very

different Q(2) = 51 and Q(3) = 98. Numbering the resonance modes consecutively,

starting from the lowest frequency mode and then plotting the measured Q factor

vs. the mode number, results in the plot shown on the inset of Fig. 6.3b. Despite

the large fluctuations in the quality factor, there is a trend towards higher quality

factors for higher frequency modes. To confirm the existence of this trend, we fit

a line through the data, as shown on the inset of Fig. 6.3b. The resulting slope is

∼ 5, or, normalized by the quality factor of the lowest mode, 0.012 = 12%/mode.

Performing the same analysis for all of the devices with more than two resonance

modes, yields a distribution of the Q vs. n shown in Fig. 6.3b. We see that the

distribution has a peak around 20%/mode and a width of around 10%/mode,

indicating that there is a correlation between the mode number and the quality

factor. However, we also see that this behavior is not present for all devices, as we



130

Figure 6.3: Quality factor mode dependence. (a) Resonance dispersions with

their respective quality factors for one device. The numbers on the right indicate

the zero gate frequency normalized by the frequency of the lowest mode. (b) Inset:

Quality factors vs. the consecutively assigned mode number with a line fit for the

same device. Main panel: A distribution of the Q vs. mode number slopes for all

of the devices.
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can observe another peak in the slopes distribution around −5%/mode.

Figures 6.4 a and b show the quality factor and the corresponding resonance

frequency as a function of the DC gate voltage for two devices. Both devices have

complicated dispersions (see section 4.6) and a non-trivial relation between the

quality factor and the DC gate voltage.

The device in Fig. 6.4a shows one resonance mode that exhibits negative dis-

persion in the range of 0 − 1V, then continues linearly until it changes slope at

about 3.5V. The Q dependence on the DC gate voltage changes as the dispersion

goes through these different regimes. In the negative dispersion interval, the Q ex-

hibits a lot of scattering and slowly increases. In the linear part of the dispersion,

the Q decreases and comes to a minimum roughly at the point of the inflection,

where the Q starts to increase dramatically.

The device shown in Fig. 6.4b (see also Fig. 4.11d) has two resonant modes

(shown in solid and open circles) that have an avoided crossing. The crossing is

particularly well seen on the negative gate voltage side. The frequency of the lower

resonance mode increases parabolically and then linearly with the DC gate voltage

until it hits the upper resonance mode at about 3.5V. At this point, the slope of

the lower resonance mode changes to the slope of the upper mode and vise versa.

At the same time the quality factors of both the lower and the upper resonance

modes do not change with the gate voltage until the point of the anti-crossing,

where the Q of the lower mode increases to the value of the upper mode, and the

value of the upper mode decreases to the value of the lower mode. In other words,

the resonances “exchange” the magnitudes of their quality factors.

Finally, Fig. 6.5 reproduces Fig. 5.3, which shows the measured quality factor

dependence on the driving voltage. As discussed in section 5.4, at low driving
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Figure 6.4: Quality factor gate voltage dependence at room temperature. (a,b)

Resonance frequency (upper panel) and the quality factor (lower panel) vs. DC

gate voltage for two different devices. The quality factor changes its behavior at

the gate voltages corresponding to the inflection in the frequency curve.
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Figure 6.5: Quality factor dependence on the driving voltage. (a), (c), (d) Q

and the height of the resonance peak for several devices are shown in red open

squares and black solid squares, respectively, as a function of driving voltage.

Linear behavior is observed at low voltages, but the peak width decreases and

the height of the peak saturates at higher driving voltages. (b) Trace of detected

current vs. frequency with the background signal subtracted for a device at two

different driving voltages, Vg = 8.8mV and Vg = 40mV. The solid black line is

a Lorentzian fit to the low bias data. The traces of the current as the frequency

is swept up and down are shown in purple and magenta, respectively. Hysteretic

switching can be observed.
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voltages, the quality factor is independent of the driving voltage, despite the large

scattering in the data; at higher voltages, non-linear effects become important and

the resonant peak shape deviates from a Lorentzian.

6.3 Temperature dependence results

The temperature dependence of the quality factor can give further insight into

the origin of losses in our system. As the temperature of the system is lowered,

the overall behavior of the system changes in a very complex manner, as illus-

trated in Figs. 6.6, 6.7, 6.9. We observe temperature dependence in all measurable

quantities: the resonant frequency dispersion curves, the amplitude response to

the increasing driving amplitude, and the quality factor dependence on the gate

voltage. We first address the overall behavior of the system and then describe in

detail the temperature dependence of the quality factor.

Resonance frequency

Figures 6.6a and b show the resonant frequency dispersion curves at different

temperatures for the two devices shown in Figs. 6.4. For the device in panel a, we

see that the zero gate voltage frequency increases as the temperature is lowered; at

the same time, the shift to the linear dispersion is pushed to higher and higher gate

voltages. Empirically, we can describe this as a resonant frequency increase in the

bending regime with temperature, illustrated in Fig. 6.6c. For the device in panel

b, there is no observable change in the resonance frequency as the temperature is

lowered. Figure 6.6d shows the resonance frequency as a function of temperature

for several other devices at a particular value of the DC gate voltage and driving

voltage. Here again we observe a consistent, but variable in magnitude, shift to
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Figure 6.6: Temperature effects on the dispersions. (a), (b) Resonant frequency

dispersion curves taken at several different temperatures for the devices shown in

figures 6.4a and b. For the device in panel a, we see that the zero gate voltage

resonance frequency is shifting upwards as the temperature is decreased. (c) A

schematic for the bending mode frequency shifting upwards with lowered tempera-

ture and the catenary regime frequency staying constant. (d) Extracted resonance

frequency for some value of the DC and driving gate voltages for all the measured

devices. Note the constant upward shift with decreasing temperature.
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higher frequencies as the temperature is lowered.

Quality factor dependence on the gate voltage

Figure 6.7 shows the corresponding quality factor dependence on DC gate voltage.

For the device in panel a, we again observe two major trends. The first is an overall

increase in the value of Q. The second is a consistent shift to higher gate voltages

of the prominent features in the Q vs. V DC
g dependence, such as the peak in the Q

vs. Vg curve.

Since both the dispersions and the Q vs. V DC
g dependence change with tem-

perature, we would like to correlate the two. In the previous section we saw that

the quality factor changed its behavior at points where the dispersion behavior

changed, i.e. at the inflection points. We can bring out this correlation by plot-

ting side by side the loss and the derivative of the dispersion with respect to the

gate voltage, df0

dV DC
g

. This plot at different values of temperature for both of the

devices is shown in Fig. 6.8. For simplicity, we show only the positive gate voltage

side. Concentrating on panel a, we see that indeed the loss mimics the qualitative

behavior of the resonance frequency dispersion curve, for all of the values of tem-

perature. As the peak in the derivative shifts to higher gate voltages, so does the

peak in the loss.

For the device in panel b, we also see an overall increase in the values of the

quality factor, and perhaps a slight shift to the higher gate voltages of the crossing

position. The relation between the dispersion and the quality factor is again more

visible on the dispersion derivative and loss vs. gate voltage plot, Fig. 6.8b. Here

we see that the gate voltage where the quality factors are equal (V DC
g ≈ 3V)

coincides with the point where the two slopes are equal, which is also the point of
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Figure 6.7: Temperature effects on quality factor gate voltage dependence. (a),

(b) The corresponding Q’s vs. DC gate voltage for the same two devices as in Fig.

6.6a, b. While Q exhibits a complex dependence on both temperature and gate

voltage, we still notice an overall increase in the values at lower temperatures and

a consistent shift outwards of the prominent features in the dependence.
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Figure 6.8: Quality factor and the derivative of the resonance frequency disper-

sion. (a, b) The numerical derivative of the resonance frequency dispersion curve

(upper panel) and the corresponding loss (lower panel) vs. DC gate voltage for the

same two devices as shown on Figs. 6.4, 6.7 for several value of temperature. We

see that the loss mimics the behavior of the derivative.
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crossing. The overall resemblance between the dispersion derivative and the loss

is quite evident.

Quality factor dependence on the driving voltage

Finally, Fig. 6.9 shows observed changes in the quality factor dependence on the

driving voltage, Ṽg. We see that again there is an overall increase in the value of Q

at lower temperatures. At the same time we see that while at room temperature Q

is independent of Ṽg, at lower temperatures, the Q develops a dependence on the

driving voltage that we have so far attributed to non-linear effects in the resonator

(section 5.4). The dependence is stronger for lower temperatures, such that at

lower temperatures the linear regime of a resonator becomes increasingly difficult

to attain. Figure 6.9b and d show the same data as the loss dependence on the

driving voltage. We see that the loss, Q−1, varies linearly with Ṽg. The strength

of this dependence varies between the samples.

6.4 Extracting the quality factor dependence on temperature

Because of the complexities described above, assigning one representative value for

the quality factor at a given temperature is difficult. To eliminate the effects of the

DC gate voltage and driving voltage, we adopted three different procedures. The

first is extracting the representative value of Q from the driving voltage dependence

measurements. In this procedure, for a particular temperature we assign the Q

measured at the lowest driving voltage that produces a measurable signal. The

extracted quality factors for all of the measured devices with this method are shown

in Fig. 6.10a, as Q−1 vs. T .

The second procedure is extracting the representative value of the Q from the
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Figure 6.9: Temperature effects on quality factor gate voltage dependence.

(a),(c) Quality factor dependence on the driving voltage for two different de-

vices for several values of temperature. We see the overall increase of Q at lower

temperatures and the development of the the dependence of the Q on the driving

voltage. (b),(d) Loss dependence on the driving voltage for the same two devices.

Note the linear dependence on the driving voltage indicated by linear fits through

the data (in red)

.
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Figure 6.10: Quality factors as a function of temperature for all of the measured

devices extracted with three different methods. (a) Q was extracted from the Q vs.

Ṽg dependence at the minimum detectable driving voltage. (b) Q was extracted

from the Q vs. V DC
g dependence at a particular value of the DC gate voltage. (c) Q

was measured as a function of temperature, at a particular value of driving voltage

and DC gate voltage. Note the presence of a peak in loss at 280K for all three

figures.
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DC gate voltage dependence measurements. In this procedure, the Q is extracted

at a particular value of the gate voltage as a function of temperature. The resulting

Q−1 vs. T dependence for this method is shown in Fig. 6.10b, for the only device

(from Fig. 6.4a) where this method was applicable.

The last method is directly measuring Q as a function of temperature at the

lowest detectable driving voltage, at a constant value of the DC gate voltage.

The result is shown in Fig. 6.10c, for the only device (from Fig. 6.4a) where this

measurement was performed.

We see that for all the methods and all the devices, there is an increase in

the value of Q at lower temperatures, in some cases by as much as an order of

magnitude. In most devices we also see a dominating peak in the loss around

280K. This is particularly visible in Fig. 6.10a and c. For the device shown in Fig.

6.10c, the peak disappeared after several days of measurement and could not be

brought back by either introducing air1 or water2 into the chamber.

We performed a several hour bake-out in vacuum at 350K and several day

bake-out at 400K on another sample (indicated by magenta in Fig. 6.10a). The

heating did not result in any significant changes in the room temperature value of

Q.

6.5 Empirical model

Summarizing our findings above, we can say that three major trends were observed

as the temperature was lowered. First, the value of the quality factors increased.

Second, the quality factor dependence on gate voltage changed consistently with

1The chamber was left in ambient pressure overnight.
2A wet napkin was introduced into the chamber over the weekend at ambient

pressure.
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the resonance mode dispersions. The loss mimicked the behavior of the resonance

frequency derivative. Lastly, the loss developed an increasingly stronger linear

dependence on the driving voltages. Below we discuss these findings.

DC gate voltage dependence

The DC gate voltage, V DC
g , controls the resonant frequency of a particular mode

by controlling the tension in the tube (see section 4.4 for details). Naively, for

frequency-independent loss mechanisms, we expect the quality factor to increase

with the increasing frequency, as the energy of the resonator increases and the

loss stays constant. The similarity between the dispersion derivative and the Q’s

behavior, though unexpected, points to the need for understanding the details of

the resonance frequency dispersions.

Pragmatically, we can build an empirical model for Q−1, without understanding

the underlying reasons for this behavior. Since we observed similarities between

the loss and the derivative of the frequency dispersion, we fit the Q−1 vs. V DC
g

curve to the numerical derivative of f0 vs. V DC
g as:

Q−1 = a1
df0

dV DC
g

(6.1)

The result of the fit can be seen in Fig. 6.11 for the two devices shown previously in

Fig. 6.7. The prefactor, a1, comes out to be approximately 3× 10−9. Its behavior

with temperature is shown in Fig. 6.13a and will be addressed later.

Any low-frequency noise that can result in the modulating of the resonance

frequency would cause an inhomogeneous broadening of the response peak. Also,

coupling to external systems with out-of-phase response would lead to the same

effect. This broadening ∆f would have the same functional form as given by Eq.

6.1.
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Figure 6.11: Fitting Q−1 dependence on the DC gate voltage. (a),(b) Loss (solid

circles) vs. the DC gate voltage at several different temperatures for the same two

devices as in Fig. 6.4 and their respective fits (crosses and dots). The loss was

fitted to the a1f
′ functional form.
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The parametric nonlinearity model described in section 5.4, where the reso-

nance frequency is modulated directly by the driving voltage, might also lead to

similar effects. Ro know the functional dependence of the broadening in the case

of parametric nonlinearity, a more accurate, numerical solution of the model given

by Eq. 5.17 is needed.

Driving voltage dependence

The driving voltage, Ṽg, controls the AC force driving the resonator. As discussed

in the previous chapter (see section 5.4), for small voltages, we expect the resonator

to be in the linear regime and the quality factor to be independent of the driving

voltage. In our measurements we observed that as the temperature decreases, a

linear dependence of the loss on the driving voltage develops. This developing

dependence can be empirically described as

Q−1 = b1Ṽg + b2 (6.2)

The behavior of slopes, b2, and intercepts, b1 from a fit of the device shown in Fig.

6.9a as a function of temperature is shown in Fig. 6.13b and c.

The nonlinear loss behavior shown in Fig. 6.9 is very different from the non-

linearities that we observed at room temperature shown on Fig. 6.5, and from the

simple model of a Duffing oscillator (see section 2.4). First, we expect Q vs. Ṽg to

exhibit both a driving voltage independent plateau (linear regime) and a driving

voltage dependent (non-linear regime) region in loss, as was the case for room tem-

perature measurements. Instead, we see either an absence of any loss dependence

on driving voltage or a linear dependence with a variety of slopes. Second, in the

non-linear region, we expect the shape of the signal to deviate from a Lorentzian,

as in the room-temperature case shown in Fig. 6.5b. For the low temperature non-
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linearity, however, the shape of the signal remains Lorentzian. Also, for a typical

Duffing resonator, the resonance frequency of the peak is expected to shift to higher

frequencies for a hardening non-linearity, and to lower frequency for a softening

non-linearity. We, however, observe an inconsistent behavior among the samples,

with resonance frequencies shifting either up or down in different samples.3

It is feasible that the solution to the parametric nonlinearity model defined

by Eq. 5.17 gives a driving voltage dependent broadening, as the driving voltage

would define how much frequency is modulated. The exact functional form of this

dependence can not be extracted without fully solving the model.

Temperature dependence

Figure 6.12a reproduces the results with the three methods that we described

in section 6.4.4 Panel b zooms in on the data. We see a strong temperature

dependence of the loss. The dependence consists of two parts: a peak in the loss

at 280K, and a temperature-dependent background. It is difficult to separate the

two, as we do not know the exact functional dependence of the peak, and, thus,

can not be certain that we are not measuring the peak’s tail. We try to eliminate

the contribution of the peak by concentrating on the data where the peak is no

longer visible (shown in green in Fig. 6.12). Phenomenologically, we can fit the

loss with either a linear or a quadratic dependence on temperature, indicated by

3We must note that one possibility is that this shift is not due to the the non-
linearity, but rather to a drift of the effective DC potential of the tube, i.e., its
tension.

4For simplicity we only combined a few of the curves from each method.
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Figure 6.12: An extracted loss as a function of temperature for all of the measured

devices, (a), and a zoom in, (b). Various datasets collected with the three different

methods shown in Fig. 6.10 were combined. Not all of them were selected to avoid

cluttering. A linear (dashed line) and a quadratic (solid line) fits are superimposed

on the data in panel (b).
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a dashed and a solid line, respectively, in Fig. 6.12b.

Q−1 = c1(T − T0)

Q−1 = c2T
2

(6.3)

The linear fit of the data shown in green yields c1 = 6.3×10−5K−1, T0 = 72K, and

the quadratic fit yields c2 = 1.8× 10−7K−2

Finally we can also look at the temperature dependence of the fitting coef-

ficients. Figure 6.13 shows results for a1, b1, and b2 from the last two sections.

Both a1 and b2 show a peak around 280K. For a1, the underlying temperature

dependence is roughly constant, while for b2, the background changes with tem-

perature, in a fashion similar to the data from Fig. 6.12. b1 does not show any

strong temperature dependence, but due to large scattering in the data, it is hard

to interpret.

Ideally, we would like to combine the empirical findings given by Eqs. 6.1, 6.2,

and 6.3 into one model. Unfortunately, to investigate the relation between the

three sets of coefficients a1, b1 and b2, and c1,2 a complete dataset of Q−1 vs. T , Ṽg,

and V DC
g is necessary. With current data, which contains only specific cuts through

this data set, we can not confidently combine these results into one model.

6.6 Theoretical discussion of possible loss mechanisms

In order to understand these findings we go back to section 2.6, where we have de-

scribed common dissipation sources in NEMS. We can examine these mechanisms

one-by-one to see if their predictions are consistent with our measurements. We

begin our discussion with the extrinsic mechanisms applicable in our system: air

friction, clamping, and ohmic losses. We then move on to the intrinsic mecha-

nisms: surface losses and phonon-phonon interactions. Table 6.1 summarizes the
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Figure 6.13: Fitting parameters; temperature dependence from a device shown

in Fig. 6.4a. (a) a1 from the fits of Q−1 = a1f
′
0 shown on Fig. 6.11a. (b), (c)

Fitting parameters b1 and b2 from the Q−1 = b1Ṽg + b2 fits shown on Fig. 6.9b.

Note the presence of a peak at 280K for a1 and b2.
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Table 6.1: Calculation of various dissipation processes for a standard CNT. We

see that none of the extrinsic mechanisms typically limiting the performance of the

resonator could dominate the losses.

Dissipation Process Q−1 Q Value

Air friction p(2πr2L)

mω0

√
3kBT/mN2

4× 107

Clamping
(

t
L

)
,
(

t
L

)3
,
(

t
L

)5
103, 109, 1016

Ohmic (C′V )2

πkC

(
ω0τ

1+(ω0τ)2

)
105

Thermoelastic effect α2TE
c

(
ω0τ

1+(ω0τ)2

)
400
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calculated contributions to dissipation (Q−1) for a typical CNT device (table 4.1).

We discuss them in detail below.

6.6.1 Extrinsic losses

We observed no quality factor dependence on pressure at the experimental vacuum

levels (< 10−4torr). This is consistent with the calculations of Bhiladvala and Wang

(2004) for the quality factor of doubly clamped beams, which predict the interval

of large losses due to air friction at pressures of 1 − 10torr, and consecutively,

negligible losses at the experimental vacuum levels. We can thus eliminate air

friction as a relevant dissipation source in our experiment.

In section 2.6 we were given three different expressions for the dissipation due

to clamping. Using each of these, we calculate the upper bound on the quality

factor to be Qclamping < 103, 109, 1016, respectively; at least an order of magnitude

higher than observed. Also, we observed similar quality factors in devices with

three different geometries (see Fig. 6.2d), and thus with very different clamping

and different expected levels of dissipation. This argues against clamping losses as

an important source of dissipation.

If ohmic loss dominated, we would expect lower quality factors from the devices

with higher resistances. In our samples there was no correlation between the

electrical resistance of the device and the measured quality factor (see Fig. 6.2a).

We can also calculate the expected dissipation from this mechanism, using Eq.

2.69 with the typical CNT parameters (table 4.1), which yields the upper bound

on the quality factors of Qohminc < 105. We can thus eliminate ohmic losses as the

largest dissipation source.

Residues from processing and other contamination of the CNT could also pro-
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vide a mechanisms for dissipation. However, devices produces with the third

method yield clean devices, as the CNT is grown last and does not undergo any

processing, and thus should give higher Q’s. As we do not observe any systematic

difference between the devices created with different methods, we conclude that

contamination is not likely to be the dominant dissipation source in our system.

6.6.2 Intrinsic losses

Among the intrinsic losses, the possible dissipation sources are phonon-phonon

interactions, electron-phonon interactions and surface losses. Naively, we expect

losses associated with surface effects to be negligible for CNT resonators, as CNTs

have well terminated bonds on the surface. But, as illustrated in Fig. 6.1b, the

quality factors observed in CNT resonators follow the linear trend in the Q vs.

device volume dependence observed with MEMS and NEMS. Such a trend is typi-

cally attributed to surface-related loss mechanisms, as the surface-to-volume ratio

increases for smaller structures.

The large dissipation peak at 280K could also be attributed to the losses in

the surface water layer. Similar peaks have been observed in the dissipation de-

pendence on temperature (Hutchinson et al., 2004) and are typically attributed to

Debye type losses with a thermally activated process (see section 2.6). To correctly

extract the attempt time and the activation temperature, a complete measurement

of the peak for samples with different vibration frequency is needed. Our data,

unfortunately, does not allow us to accurately extract these parameters. We can

say from the position of the peak, however, that the activation temperature is

around 280K, suspiciously close to the freezing temperature of water.

Further experiments, in particular mapping out the position of the peak in
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temperature as a function of the gate voltage (i.e., resonance frequency) are needed

to investigate its exact nature. Repeating the experiments after passing a sufficient

DC current through the CNT to heat it up and evaporate the water layer on the

CNT would also provide valuable information on the relation of the peak to water.

Surface losses are then a possible source of dissipation. It is not clear that

surface effects can also explain the observed loss dependence on the gate voltage

and derivative of the dispersion. So, we conclude that even though surface losses

are likely to be an important source of dissipation, there are other mechanisms

that also contribute to the overall dissipation.

Phonon-phonon interactions set the fundamental limit on the resonator’s per-

formance. Levels of dissipation close to this limit have been achieved in Si NEMS

(Roszhart, 1990, Yasumura et al., 2000).

The geometry of our system differs from the typical NEMS geometry for which

the standard thermoelastic theory (see section 2.6) was developed. First, as CNTs

are initially slacked, their profile is a catenary (see section 4.3). The motion during

a vibration is not the pure flexural motion that it is for NEMS. Second, unlike

in NEMS, the CNT is under tension, defined by the DC gate voltage. These

difference make the standard thermoelastic effect not directly applicable to our

system; however, given the lack of a theory that captures all of the nuances, we

use the existing models.

Depending on the length of the phonon mean free path compared to the size

of the system, thermoelastic losses manifest themselves as either the thermoelastic

effect (diffusive limit) or the Landau-Rumer effect (ballistic limit). In NTs, the

measured length of the acoustic phonons is on the order of 0.5− 1µm (Kim et al.,

2001). As our device lengths are on the same order of magnitude, we treat the
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Figure 6.14: Thermal parameters of CNT extracted from literature. (a), (b)

thermal conductivity κ from (Pop et al., 2005). (c) heat capacitance c from (Hone

et al., 2002) (d) Calculations for the thermal expansion coefficient α from (Kwon

et al., 2004).
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phonon-phonon losses in our system in the framework of thermoelastic effect (see

section 2.6). The degree of loss associated with thermoelastic effect is given by Eq.

2.51, which we reproduce here for convenience.

Q−1 =
α2TE

C

(
ωτ

1 + (ωτ)2

)
(6.4)

The first factor, the dissipation strength α2TE/C, defines the possible maximum

loss due to this mechanism. Using the values for α = 1.5 × 10−5K−1 (Kwon

et al., 2004), κ = 2500W/mK (Kim et al., 2001, Pop et al., 2005), E = 1TPa,

and C = 600mJ/gK × 2300kg/m3 (Hone et al., 2002) found in the literature, we

calculate a lower bound of Qthermoelastic > 20 at room temperature. To extract

the temperature dependence we note that α, κ and C have linear temperature

dependence in the region of interest (Kwon et al., 2004, Kim et al., 2001, Pop

et al., 2005, Hone et al., 2002) (see Fig. 6.14), and using Eq. 6.4, we conclude that

Q−1 ∼ T 2 (6.5)

which is consistent with our measurements.

The second factor in Eq. 6.4 defines the relative time scales for heat and strain.

Here τ is the characteristic time for heat transfer between the points of maximum

and minimum strain. Our vibrations are neither purely flexural nor purely lon-

gitudinal. We can calculate the characteristic time scales for both effects. For

flexural vibration, τ is given by the diameter, d, of the CNT and the heat diffusion

constant.

τ =
dC

(π)2κ
(6.6)

This model yields a dissipation time of 1ps, many orders of magnitude smaller

than the time for one oscillation, 1/f = 20ns. Thus, this model does not lead to

significant losses.
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For longitudinal vibrations, the resonance wavelength for the nth harmonic for

a typical device of length L = 1.75µm is given by λn = 2L/n = 3.5µm/n. τ is

then given by the mode wavelength and the heat diffusion constant (Eq. 2.53):

τ =
λ2

nC

(2π)2κ
(6.7)

For a finite DC gate voltage, our CNT resonators are typically under tension, which

means that during an oscillation all of the tube is strained and thus the extra heat

has to flow in from the contacts due to the lack of the compressed regions in the

tube. For a tensed string model τ is then given by

τ =
L2C

(π)2κ
(6.8)

For the fundamental mode, both of these models lead to the same result. The

characteristic time dissipation is then 2ns, comparable to the time for one oscil-

lation 1/f = 20ns. Using Eq. 6.4, this yields QTED ≈ 400 for a typical device

at room temperature. Assuming the same linear temperature dependencies as

above, we find that for both models τ is independent of temperature, and thus the

temperature dependence of Q is given solely by the dissipation strength term.

For typical resonance frequencies (f = 50MHz) ωτ ≤ 1, the time-scales factor

of the loss reduces to ωτ
1+(ωτ)2

≈ ωτ . Equation 6.4 reduces to either

Q−1 =
α2TE

(2π)2κ
ωn

(
2L

n

)2

(6.9)

for the “longitudinal” model or

Q−1 =
α2TE

(2π)2κ
ωnL

2 (6.10)

for the “tensed string” model.
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For a given resonance mode, we expect the loss to increase with the increasing

vibration frequency (i.e., with increasing DC gate voltage) as the strain is modu-

lated faster, while the heat flow time remains the same. This hold for both models.

The time scales for heat flow and one vibration become closer to each other, and

the amount of loss increases.

Q−1 ∼ ωn(V DC
g ) ∼ V DC

g (6.11)

The loss dependence on the mode number at a given DC gate voltage is different

for the two models above. For the longitudinal model, the resonance frequency

increases with the mode number, ωn ∼ n, and thus the strain is modulated faster.

At the same time, though, the number of nodes increases proportionally, decreasing

the heat flow time. We expect the loss factor to decrease with the mode number

n.

Q−1 ∼ ωn

n2
∼ 1/n (6.12)

For the tensed string model we expect the opposite behavior, since the heat path

does not change for different modes, but the vibration frequency does.

Q−1 ∼ ωn ∼ n (6.13)

In our measurement, we observed a complicated, device dependent quality fac-

tor dependence on the DC gate voltage that, if anything, points to the increase of

the quality factor with increasing gate. We have also observed a correlation of the

quality factor with the mode number for most devices, as indicated in Fig. 6.2e,

that agrees better with the longitudinal model rather than the tension model.

We see that overall, the loss in CNT resonators can not be explained with a

single theoretical model, as different trends in its behavior point to different dissi-

pation mechanisms. First, with few assumptions, the thermoelastic effect predicts
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a reasonable value for the dissipation strength in our system, and predicts the

correct underlying temperature dependence. However, the relative time scales for

the heat flow and vibration are still not understood. Second, the correlation of the

loss and the derivative of the resonance frequency dispersion could be attributed

to the inhomogeneous noise broadening, but the exact nature of the noise is still

under question. Last, some surface-related dissipation processes could account for

the presence of the peak in loss at 280K, but the exact process is still unclear. The

overall complicated behavior of the loss indicates that no single dissipation mecha-

nism is the dominant one, and that the correct theoretical model is a combination

of several mechanisms.

6.7 Conclusion

In this chapter we studied the quality factor in CNT resonators. At room tempera-

ture values in the range of 30−200 were measured, and at low temperatures quality

factors increased by an order of magnitude. Values up to 1, 000 were observed. We

investigated the quality factor dependence on various device and resonance char-

acteristics. We found no correlation to the device geometry, the device’s electrical

resistance, or the chamber pressure. We did find, however, a dependence on the

resonance mode number, driving voltage, and the DC gate voltage. We also found

that temperature had a significant effect on the the behavior of the system, and

led to a large increase of the quality factor values.

From these dependencies we extracted that Q changed linearly with the mode

number, that Q−1 had the same DC gate voltage dependence as the derivative of

the frequency dispersion curve (Q−1 ∼ f ′), and that Q−1 depended linearly on

the driving voltage (Q−1 ∼ Ṽg). We also observed a peak in the dissipation at
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280K that could not be correlated with the changes in either the dispersion or

the driving voltage. The underlying temperature dependence of Q could be fit to

either a linear (Q−1 ∼ T − T0), or to a quadratic (Q−1 ∼ T 2) dependence.

After considering several dissipation mechanisms, we concluded that the overall

values of the Q’s and their temperature dependence point to the presence of several

dissipation mechanisms of comparable strength. We identified the surface effects,

inhomogeneous response broadening, and thermoelastic effect as the possible key

players, but more work needs to be done to confirm this.



CHAPTER 7

CONCLUSIONS

7.1 Summary

We have demonstrated the first tunable self-detecting carbon nanotube resonator.

We investigated the resonator frequency tunability, the limits on the resonator’s

performance, and the origin of losses in the resonator.

To perform these measurements, we designed a fabrication procedure described

in Chapter 3 that resulted in suspended CNT devices in a transistor geometry. We

were able to electrically excite and detect the doubly-clamped CNT vibrational

modes using a capacitive actuation and detection scheme in conjunction with a

mixing technique described in Chapter 3.

In Chapter 4, we described our results on the resonance frequency tuning with

an applied gate voltage. We could understand the behavior of the frequency vs.

gate voltage behavior both qualitatively and numerically by modeling the resonator

as a slack beam, to which we apply an external uniform downward force set by

the DC gate voltage. Depending on the magnitude of the force, the nanotube can

enter three different regimes: bending, catenary, and elastic, in each of which a

different type of frequency gate voltage dependence is observed.

In Chapter 5, we further analyzed the performance of a CNT resonator and

investigated its limitations. We developed a fitting procedure to extract the impor-

tant parameters of a resonator: the resonant frequency, the quality factor, and the

amplitude of the induced resonant current. Using this procedure, we estimated the

measured force sensitivity of 1.5fN/
√

Hz, consistent with theoretical calculations

of electron Johnson-Nyquist noise; at temperatures below 1K sensitivities down to

160
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aN/
√

Hz should be achievable. We also estimated the upper bound on the reso-

nant frequency detectable by our techniques, limiting ourselves to the fundamental

harmonic. We find that at low temperatures devices with lengths down to 30nm,

corresponding to resonant frequencies of ∼ 150GHz, should produce a detectable

signal.

Finally, in Chapter 6, we investigated the losses in CNT resonators. By inves-

tigating the quality factor dependence on various parameters, we found a strong

quality factor dependence on temperature and a complicated dependence on the

mode number, the DC gate voltage, and the driving voltage. At room temperature

values in the range of 30 − 200 were measured, and at low temperatures quality

factors increased by an order of magnitude, with values observed up to 1, 000. We

were able to empirically fit the loss dependencies on the derivative of the disper-

sion mode, driving voltage and temperature. After considering several dissipation

mechanisms, we concluded that the overall values of the Q’s and their behavior

point to the presence of several equally important dissipation mechanisms. We

concluded that the overall values of the Q’s and their behavior point to surface

effects, coupling to external systems, and the thermoelastic effect as possible key

mechanisms in dissipation. Further investigation is necessary to confirm these

findings.

7.2 Future work

The small mass of CNT resonators makes them very attractive for two potential

experiments.

The first experiment is to build a mass sensor. The typical mass of a CNT

used in our devices is on the order of 7ag. Using Eq. 2.71 for mass sensitivity, we
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see that even at room temperature with the quality factors around 70, detecting

masses down to 200zg, comparable with the highest sensitivities up-to-date (Ekinci

et al., 2004, Ilic et al., 2004), should be possible. At lower temperatures, T ≈ 100K,

the mass sensitivity should increase by at least an order of magnitude as quality

factors increase to 1, 000. This yields the smallest detectable mass of 10zg, or only

30 Au atoms.

The second application is to study single electron charging (Woodside, 2001)

and quantum mechanical (LaHaye et al., 2004) effects on the mechanical motion

of the CNT resonator. At low temperatures, T < 10K, a quantum dot can form on

the nanotube. The transport through the CNT reduces to single electron charging

events, which manifest themselves as oscillations in the conductance as a function

of the gate voltage. These oscillations result in improvement of the force sensitivity,

as discussed in Chapter 5. They also are expected to affect the mechanical motion

of the CNT resonator, causing both a shift in the resonant frequency and an

additional dissipation, analogously to the system of a vibrating cantilever on top

of a quantum dot, as was studied by Woodside (2001).

Quantum effects become important when the mechanical resonator is cooled

further down to its “quantum temperature,” TQ = h̄ω0/kB. For a typical 100MHz

resonator, this means cooling to ∼ 1mK, which is hardly achievable with current

technology. As calculated in Chapter 5, however, the upper limit on resonance

frequency detectable with this technique is in the hundreds of GHz. For a few-

GHz device, the quantum temperature rises to a few mK, accessible with a dilution

refrigerator. To see quantum effects, a displacement sensitivity comparable to the

“standard quantum limit,” ∆zSQL =
√

h̄/2mω0, is necessary. Since the product of

mω0 is independent of length, for a fundamental harmonic, the required sensitivity
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is ≈ 5pm, for either a typical device or a few-GHz device, comparable to what has

been achieved in the literature and perhaps feasible with our detection technique

for shorter tube-gate distances.



APPENDIX A

BEAM MECHANICS

Let us consider a small section of a bent beam. One side of it is compressed

and another side is stretched, which implies that there is line of neutral stress

along the length of the beam (See Fig. C.2). Let x̂ be the coordinate along the

beam, and ŷ, ẑ the coordinates perpendicular to the beam. For the bending radius

of curvature R, the relative elongation of an infinitesimal segment previously of

length dx along the beam (or else strain) is given by

ε =
dx′ − dx

dx
= z/R (A.1)

Using Hooke’s law we have that the stress in the beam, σ, is given by

σ = εE =
z

R
E (A.2)

where E is the elastic modulus of the beam.

We can define the torque due to the internal stresses in the cross section of

the beam. For each area element d ~A there is a force σd ~A acting on it along the x̂

direction. The torque created by it with respect to the x̂ axis is equal to zσd ~A,

which means that the total torque about the ŷ axis is

~M =
∫

A
zσd ~A =

E

R

∫
A

z2dA︸ ︷︷ ︸
Iy

(A.3)

where it is useful to define the quantity Iy - the moment of inertia of the beam

around the ŷ axis.

For small deformations 1/R = d2z/dx2 and thus

~M = −EIy
d2z

dx2
(A.4)
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Figure A.1: A schematic of a doubly clamped beam made out of material with

elastic modulus E. (a). The beam, with dimensions t×w×L, has a cross-sectional

area A, and a moment of inertia I with respect to the ẑ-axis. The beam is subject

to a load ~K, and tension ~T . (b). A segment of the beam, expanded on one side

and contracted on the other. The line of neutral stress is indicated in dash.
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The total force due to internal stress applied to a cross section of the beam F is

equal to

~F =
∫

A
σd ~A (A.5)

If ~K is the external force per unit length applied to the beam, the balance of forces

requires that the sum of all forces acting on the segment of length dl is equal to

the external force acting on that segment. If ~F is the total internal force on the

lower base of the segment and ~F + d~F is the total internal force applied to the

base, their difference d~F should balance out the total external force applied to the

segment ~Kdl. From this we can derive that

d~F

dl
= − ~K (A.6)

The balance of torques requires that the difference in the internal torques d ~M

acting on the top and bottom bases of the segment of the beam is equal to the

torque created by the total force applied to the bases ~F .

~dM + ~dl × ~F = 0 (A.7)

dividing everything by the length of the segment dl, and noticing that d~l/dl = ~t is

the unitary tangential vector, leads to

d ~M

dl
= ~F × ~t (A.8)

For small bending, the radius of curvature is large and thus we can assume

that the direction of ~t changes slowly, or in other words that d~t/dl is small. If we

differentiate Eq. A.8 along the length

d2 ~M

dl2
=

d~F

dl
× ~t + ~F × d~t

dl
(A.9)

Using Eq. A.6 we get

d2 ~M

dl2
= ~t× ~K + ~F × d~t

dl
(A.10)
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from the arguments above we know that the term d~t
dl

is small and we can neglect

the second term in the equation except for the cases where the force ~F is large, or

in other words for the beams under tension. If we set the force along the beam to

tension

Fx = T (A.11)

and use Eq. A.4, Eq. A.10 reduces to

EIy
d4z
dx4 − T d2z

dx2 −Kz = 0

EIz
d4y
dx4 − T d2y

dx2 −Ky = 0
(A.12)



APPENDIX B

NANOTUBE IN THE SEM BEAM

A home built insert for a Keck LEO SEM system shown in Fig. B.3 allowed us

to simultaneously image and perform electrical measurements on a CNT device.

The sample were imaged at acceleration voltages of 1kV, which allowed a resolution

of better than 10nm.

As can be seen in Fig. B.1, CNTs can be easily imaged in the SEM. The differ-

ence between a suspended and a non-suspended portion of tubes is clearly visible.

The non-suspended portion appears “fuzzy”, due to charging of the underlying

silicon oxide, while the suspended portion appears as a sharp, thin line.

The purpose of this setup was to electrically actuate vibrations of doubly

clamped CNT devices and to detect them by imaging. For one device, as shown in

Fig. B.2, an image resembling a vibrating CNT was obtained. This result, however,

could not be reproduced with further samples, and, as discussed below, imaging

in a SEM beam proved to be very destructive to the sample both structurally and

electrically.

Figure B.3 shows the structural damage that can be done to a CNT sample.

On panels b and c we see a suspended CNT before and after intensive imaging.

During imaging, the apparent diameter of the CNT has more than doubled due to

carbon deposition in the SEM. On panels d and e we see another example of this

effect. A series of three “dots” were deposited on the CNT by zooming in on the

corresponding region. The second dot indicated by a line on panel d, was made by

a 4min scan at 400× zoom. The third dot shown on panel e, was made in similar

conditions.

Figure B.4 shown the changes in NT’s conductance after imaging in the SEM.
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Figure B.1: Imaging CNTs in a SEM. The suspended portion of the CNT shows

up as a thin, sharp line, while the portion on the oxide appears “fuzzy” due to

charging.
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Figure B.2: NT resonance in a SEM. An SEM image of what may be a vibrating

doubly-clamped CNT. The CNT is excited electrically through an AC voltage on

the substrate.
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Figure B.3: Structural modifications in a SEM. (a) An image of the electrical

measurement setup inside the SEM. (b), (c) A CNT device pre- and post- intensive

imaging. The increase in the apparent CNT diameter is evident. (d), (e) A CNT

device on which a series of “dots” were created by intensive imaging.



172

Figure B.4: Conductance modifications in a SEM. Current through CNT at a

10mV source-drain excitation vs. the DC gate voltage before and after imaging in

an SEM, shown in black and red, respectively, for four different devices.
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The conductance was measured by measuring a DC current through the CNT with

a 10mV source-drain voltage. The graph shows the measured current as a function

of the DC gate voltage; the current measured pre- and post-imaging is shown in

black and red, respectively. For all of the devices the conductance decreases by as

much as an order of magnitude.

Figure B.5 shows the behavior of the CNT’s conductance while imaging. Again,

the graph shows the current through the CNT at 10mV source-drain excitation as

a function of the DC gate voltage. We observed three stages in the conductance

behavior. First, the overall values of conductance decrease. Then the system

develops n-type characteristics. Finally, each pass of the electron beam across the

CNT registers as a spike on the measured current.
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Figure B.5: Further conductance modifications in a SEM. As the CNT device

is imaged, its conductance goes through three different stages of behavior, shown

here for four different devices. First, the overall conductance decreases. Then

n-type behavior develops. Last, the current through the CNT starts registering

individual rasters of the electron beam.



APPENDIX C

MEASUREIT

C.1 Introduction

For the measurements of done in this thesis, a program capable of controlling a

digital-to-analog computer card (DAC) and various instrumentats through a GPIB

interface was needed. For this purpose, we wrote a custom program, “Measureit”.

The program was written using Labview 7.1 and should run on any computer

system that has a NI digital-to-analog card with “DAQmx” driver support and/or

a GPIB card.

The program bundle contains the following files:

1. default.cfg – the default configuration of the program

2. measureit2.2.llb – the program library

3. sources.dat – a list of supported GPIB instruments

4. manual.pdf – this document

We first describe the general capabilities of this program and then give some

details of the implementation. Help is also available during the program execution.

It can be accessed by pressing Ctrl-H

C.2 General capabilities and usage

The program is capable of three different types of measurement:

1. Setting all output channels to user-defined values, while reading-in values

from all input channels.
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Figure C.1: Measureit program front panel
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2. Recording input channels as a function of one output channel (sweep).

3. Recording input channels as a function of two or three output channels

(megasweep).

The main window of the program is shown on Fig. C.1. It has four different

panels: the data controls, the channels, the scan controls, and the plot. The data

controls panel defines the program’s configuration and data-saving parameters;

the channels panel defines the input and output channels; the scan controls panel

defines parameters for a single channel scan; the plot panel graphically shows the

result of a single-channel scan. Before we describe the areas one by one, a word

of caution: Currently no error catching is implemented in the program, thus the

user must avoid canceling any started operations.

Channels

The channels panel allows the user to select and define the instruments he/she

wants to control in a particular measurement.

For input, only the first four input channels of the DAC are supported. The

user can only add the input channels sequentially: from 0 to 3. For each channel,

the user can specify a factor that always multiplies the raw input value, and the

channel name. The resulting value (raw value × Factor) is displayed and saved in

the Value field (first column on the input channels panel). The input values are

read in every 150 ms. The channel name is used for defining scans and graphs.

For output, both of the DAC output channels and a number of instruments

controlled through the GPIB interface are supported. The list of all supported

instruments can be seen in table C.1. In order to use the DAC channels, the user

must ensure that the two DAC output channels are added in the NI channel control
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software. They should be named AO0 and AO1. If a second DAC is available, its

output channels should be named AO2 and AO3.

For each output channel, the user selects the controlled instrument, the value

to set, the scaling factor (the value set on the instrument is Value × Factor), the

channel name, the limits on the applied values, the default increment step, and

the scanning speed (in steps per second). Even though the latter four fields are

grayed out, they can be edited. The output channels are set to their respective

values only when the Update button is pushed. If the value requested exceeds the

limits, the limit value is set.

Scan controls

The scan controls panel defines the parameter of a single scan. The top drop-down

menu, lets the user select, by name, the channel to scan of the defined output

channels. The scan limits, increment, and scan speed, defined in the channels

panel, are automatically copied to the Parameters cluster. The scan starts at the

current value of that channel. The direction, and whether the scan stops at the

limits, can be set by in the bottom of the panel by the Direction and Stop at the

end controls. The scan starts after the Start button is pushed. Any of the scan

parameters, including the direction, and the stop condition can be changed during

the scan. The current value of the channel is displayed in the Value field. The

recorded input and output channel values are stored in a buffer.

Plot

The plot panel displays the value of one of the input channels as a function of

the scanned channel. User can select, by name, which input channel is displayed,
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the graph bin size (whether every, or every second, or every third, etc. point is

displayed), and whether the graph is to be updated.

Data controls

The upper portion of the data controls panel contains program configuration pa-

rameters. The Quit button quits the program, the Megasweep button opens the

megascan panel, which we describe below, and the Load CFG and Save CFG but-

tons load and save the program configuration. The configuration consists of the

defined channels, and which channel is currently selected to be scanned. The de-

fault configuration has one input channel and two output channels, as indicated in

Fig. C.1.

The lower portion of the data controls panel defines how data is saved. The

data is saved in ASCII column format, by stacking together values from all defined

input and output channels. The scanned channel is in the first column, followed

by the input channels, and followed by the other output channels. The file name

for the data file has three parts: the name, the date, and the counter. The name

is defined by the user in the File Name field, the date is inserted automatically in

the “mmdd” format, and the counter is automatically incremented after each run.

The incrementing option can be turned of, if desired. Pushing the Save button,

saves the data and clears the buffer; pushing the Clear button, clears the buffer.

Megascan

The megascan panel is opened by pushing the Megasweep button on the data

controls panel. This panel consists of three subpanels: the scan controls, the data

controls, and the plot. These subpanels are very similar in their functions to the
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Figure C.2: Megasweep panel
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panels described above.

The scan controls subpanel defines the megascan to be performed. The scan

consists of one channel (the inner channel) being scanned up and down, while an-

other channel (the outer 1 channel) is incremented after each scan. Optionally, a

third channel (outer 2 channel) can be incremented at the end of each 2D megas-

can. The user selects, by name, the channels for the inner and outer loops, and

modifies the scan parameters: limits, increment, and speed. For the inner channel

the user must specify separately the up and down scan speeds, and for the outer

channels the user may set a delay field, which defined the time the program waits

(in seconds) after the increment of that channel. The scan parameters can not be

changed during the scan. The current value for the outer 1 and outer 2 channels

are displayed in the bottom of the subpannel.

The plot control displays graphically one of the input channels as a function

of the inner channel value. The data is displayed only after the data was taken,

i.e. when the outer channel is incremented. Optionally, the user may select not to

graph the data.

The data controls subpanel defines how the data is saved and contains program

controls buttons. The Quit button return to the main window, and the Start/Stop

button starts or stops the scan. The bin field allows the user to define the binning

the data, and the drop menu next to it allows the user to select whether the values

from the up-scan, or both, up- and down-scans, are saved. At the beginning of

the scan, the user is prompted for a filename. Again, as in the previous section,

the filename consists of three parts: the name, the date, and the counter. The

name is copied from the File Name field on the front window, the date is inserted

automatically in the “mmdd” format, and the counter in this case is by default



183

“M1u”, for the scan up, and “M1d” for the scan down, and is not automatically

incremented. As the program overwrites any existing files with the same name, the

filename must be edited or changed by the user at the filename prompt. Pressing

the Start/Stop button when the scan is running stops the scan, as soon as the

inner channel reaches the limit, not instantly. The data is saved to the file after

each scan of the inner channel. Consequent scans are appended. The direction

and the time left to completion are updated after each scan of the inner channel.

C.3 Internal coding

The following description of the code is very general and assumes knowledge of

Labview.

Variables

The three most important variables in the program are: Channels In and Channels

Out (arrays of clusters that contain information about the channels) and Data (a

number array that contains the measured data).

VIs

The program’s library contains 24 VIs; the top-level VI is “measureit.vi”. A list

of all other VIs is presented in table C.2, and the hierarchy of the VIs is shown in

Fig. C.3. In this section we discuss three most important VIs.

setChannel

The setChannel VI takes the channel number, and value as inputs and outputs

the error string. In the core of this VI is a case structure that, depending on
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Figure C.3: Hierarchy of the VIs used in measureit
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the channel number (the sequence number of the instrument in the sources.dat

file), either sets a particular DAC channel to the supplied value, or sends a GPIB

request to set the instrument to that value. Some instrument dependent limits are

hard-coded in the VI, and an error message is displayed if those limits are reached.

Detailed description of the controlling DAC and GPIB channels is given later.

measureit

This is top-level program. On the most outer layer it consists of a two frame

sequence. The first frame is initialization (Fig. C.4). During initialization, the

DAC card input channels are started and and input task is created. The the

channels are loaded from the default configuration file, using readCFG. The data

buffer is initialized.

The second frame is the main program. It contains an infinite loop wired to

the Quit button. The loop contains case structures for each of the buttons on the

front panel (Fig. C.5) and the code for normal operation (Fig. C.6). The loop is

executed every 150 ms, set by a timer. Every button is checked for being pressed,

and if so, the corresponding case structure is executed. Also, as indicated in Fig.

C.6, the input values are read-in, using DAQ getChannels, and the scan parameters

for the selected channel to scan are updated.

Figure C.5 shows some VIs wired to the their respective buttons. The Load

CFG, Save CFG, Megasweep and Save buttons are wired to the readCFG, saveCFG,

megascan and saveData, respectively. The Clear button is wired to the struc-

ture where the data buffer, Data, is set to zero. The Update button is wired to

setChannel.

Finally, the Start button is wired to the case structure that executes a single



187

Figure C.4: Initialization part of measureit.
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Figure C.5: An example of VIs wired to their respective buttons
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Figure C.6: Normal operation of measureit
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Figure C.7: The execution of the single channel scan subroutine.



191

channel scan. The scan consists of four parts. The first three parts are in the first

frame of the structure, shown in Fig. C.7; the last part is in the second frame of

the structure. Below is the pseudo-code for the scan. Each line is indicated in Fig.

C.7 by its respective number.

1. Start the DAC output channels

2. Start the DAC input channels

3. While the scan is within limits (checked by the stop scan)

(a) Calculate the new value for the inner channel and update the direction

of the scan (update in scan)

(b) Update the inner channel (setChannel )

(c) Read in the scan parameters

(d) Read in the input values (DAQ getChannels )

(e) Appended to the data array and are graph the data

4. Stop DAC output channels

5. Stop DAC input channels

6. Append the output values are appended to the data array (not shown in Fig.

C.7)

megascan

This VI is very similar to the operation of the scan structure in the front panel.

The two main parts are: channel initialization, and the megascan. The megascan

can be described with the following pseudocode:
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1. Sweep inner channel to initial conditions (sweepChannel). If the down speed

is set to 0, then set the inner channel (reset channel)

2. Create two files to save data (make filename and createMegaFile).

3. While the Start/Stop button is not pushed

(a) While the outer 1 channel is within limits

i. Scan the inner channel up (sweepChannel)

ii. Graph the results ( graph array).

iii. Scan the inner channel down (sweepChannel)

iv. Save Data to the up-scan, and down-scan files

v. Increment outer 1 channel 1

vi. Check if the scan is at limits (update in megascan)

vii. Update the time left for the scan (estimate time)

(b) If the scan is 3D and the 2D scan is over, update the outer 2 channel and

check if the scan is limits (update in megascan and reset channel)

4. Save the values of the in-channels and out-channels

DAC channels

The code for setting and reading the DAC channels is shown in Fig. C.8. For DAC

channels both operations have three parts: start, read /write, stop. Explicitly

executing this three parts ensures faster operational speed, as otherwise, the chan-

nel is started and stopped at during each access attempt. These three parts are

typically separated in the execution of the program. The channel is started during

initialization, read or written to during the main execution cycle, and stopped
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Figure C.8: Setting and reading DAC and GPIB channels
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after all the data is collected. Channel starting can be done in two ways. The

code for input channels in Fig. C.8 creates a new input task by accessing phys-

ical channels Dev1/ai0:3 with DAQmx Create Channel. Alternatively for output

channels, the code references the already created global output task AO0. Both

tasks are then started using DAQmx Start Task. The DAC channels are read with

DAQmx Read (Analog 1D DBL NChan 1Samp) and set by DAQmx Write (Analog

DBL 1Chan 1Samp). The tasks are stopped using DAQmx Stop Task.

GPIB channels: Adding another instrument

The code for talking to the GPIB-interfaced instruments is sightly simpler. Sample

code is shown in Fig. C.8. The value-to-set is transmitted using GPIB Write, which

takes instrument specific command and GPIB address as inputs. The command is

a string, whose format can by typically found in the instrument’s manual. A typical

command is: “FR 10MZ ” (sets the frequency of HP8657B source to 10MHz).

New GPIB-controlled instruments can be added to measureit. Adding another

instrument is done by modifying the sources.dat file and the setChannel VI. Below

is the procedure:

1. Modify the sources.dat file

(a) Open sources.dat in a text editor

(b) Add a line with the instruments name and function at the end. For

example: “HP8657B Freq” for a HP 8657B high frequency source, fre-

quency control channel. Do not delete the empty first line, and do not

modify the existing instruments

(c) Save the file as text
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2. Modify the setChannel.vi file

(a) Open setChannel VI in Labview

(b) In the main case structure add a new case. The number of the case

must match the sequential number of your instrument (the empty line

counts as zero)

(c) In the new empty case, make a comment with the name of your instru-

ment

(d) Copy the code from another case, for example case number 8 for the

“HP8657B Freq”

(e) Modify the code. Keep in mind that the value is passed in absolute

numbers, not scaled by a factor

i. Change the bounds to appropriate values

ii. Change the factor, if the instrument command takes scaled values

iii. Change the GPIB command string according to the instrument’s

manual. For example for “HP8657B Freq” the command string is

“FR ” + value [MHz] + “MZ ”

iv. Change the GPIB address

(f) Save the VI

3. Run setChannel.vi and try to set some value
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