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Estimating vaccine efficacy in stochastic SIR epidemic 
models with non homogeneous mixing. 

Summary 

Carlos M. Hernandez-Suarez 
Carlos Castillo-Chavez 

A stochastic SIR epidemic model with a "leaky" vaccine is developed, and it is shown 

that if the population can be divided in groups such that there is homogeneous mixing within 

groups, then, regardless of the mixing preferences among them, the amount of exposure to 

infection is the same for every individual within a given group, although individuals of different 

groups may have different amount of exposure. As a consequence, the usual method to estimate 

vaccine efficacy (VE) can be applied to each group and a weighted estimate of VE can be 

constructed. It is not required that all groups have the same size or the same contact and removal 

rates, and the fraction of vaccinated may be different for every group. The method does not 

require final attack data, nor information on the mixing proportions between groups. Stochastic 

simulations prove the feasibility of the method. The results can be considered the stochastic 

analog ofthose ofHaber et. a/. (1995a). 
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In the fight against disease there is no doubt that prevention has always been the best 

alternative, and for many diseases (measles, polio, influenza), vaccination is the only practical 

alternative to reduce an individual's susceptibility to infection. Evaluation of the protective 

effects of a vaccine is generally done by standardizing the amount of exposure of the vaccinated 

and the unvaccinated, and measuring some form of the effects of the disease in both groups. 

Several indexes have been suggested, not all of them measuring the same quantity. The range of 

conditions required to apply these methods is very broad, for instance, some methods can only be 

applied at the end of the outbreak, others require a specific underlying transmission model, or the 

knowledge of the distribution of the latent and infective period, etc., or at least some of its 

moments. 

In the transmission of the disease, it is assumed that an individual makes contacts at the 

points of a Poisson process with rate ..\. These models assume that infection of a susceptible 

occurs with probability one when this has contact with an infective, which can be modified to 

include a probability of transmission f3 that could depend for instance on a preventive measure 

such as vaccination. The parameter for the rate of infection becomes then ). /3. 

A vaccine could have a heterogeneous effect in the population, and thus f3 could have a 

distribution with mean {30 for the unvaccinated and /31 for the vaccinated. The different types of 

effects of a vaccine give raise to different models, for instance, when all vaccinated people 

respond equally to the vaccine then the vaccinated individuals have susceptibility /31. If /31 > 0 

then the vaccine is called "leaky", or modell (Halloran et al., 1992a). It would be possible also 

that the vaccine offers complete protection to all vaccinated, then /31 = 0, in addition, some of 

the vaccinated individuals could have susceptibility /31 while others a susceptibility (32, /31 =/= (32. 

If {31 = 0 and {32 = {30 then the vaccine is completely effective in a fraction of the vaccinated . 



• Halloran et al. (1992a) called this the "all-nothing" (1/0) vaccine model or model 2. When 

f3o > (31 > 0 and (32 = f3o, then the vaccine has no protection in a group and a "leaky" effect in 

the other, this model is the "leaky/nothing" or model 3. When f3o > (32 > 0 and (31 = 0, then the 

vaccine has complete protection in a group and a "leaky" effect in the other, this model is the 

"alVleaky" or model 4. Finally, when 0 < (31 ::; (32 ::; f3o the model is called "general" or model 

5. For more discussion of these models see Halloran et al. (1991,1992a), Haber et al. (1991a), 

Farrington (1992), and Longini et. al. (1993b). 

• 

• 

Vaccines may also have a waning effect, which makes the estimate to be dependent on 

time. For estimation of VE in the presence of waning see Durham et. al. (1997). Also, the 

vaccine may not only reduce the susceptibility of a vaccinated individual to infection, but also 

could reduce the infectiousness of an infective, as it is the case of oral polio vaccine and 

Haemophilus influenza type b vaccine, affecting the transmission ofthe infectious agent (Longini 

et. a/., 1996). An example of a vaccine that affects only transmission is the malaria transmission 

blocking vaccine (Halloran et. al. 1992b ). For, estimation of VE for susceptibility and 

infectiousness see Longini et. al. (1996). 

Several quantities provide information on the effects of a vaccine. Assume that a fraction 

f of the population is vaccinated and that a proportion ai of the vaccinated have susceptibility 

f3i· One important parameter to estimate is~= 'L ai f3i, the average susceptibility of vaccinated 

individuals, as well as the average vaccine efficacy, ~ / (30 , also called summary vaccine efficacy. 

A different measure of the effect of vaccination is given by the population effectiveness of 

vaccination, which is the fraction of the disease cases prevented by a vaccination campaign, that 

is the ratio of the attack rates in the vaccinated population and the expected attack rate in the 

unvaccinated population. Since once a fraction of the population has been vaccinated the 

unvaccinated individuals are provided with herd immunity, the information provided by the 

unvaccinated individuals on the effects of non-vaccination is biased. Significative advances in 



• this problem under non homogeneous mixing have been done by Haber et. al. (1995b, 1997). See 

also Halloran et. al. (1996). 

Here we deal with model 1 and 2 vaccines, and use the measure of vaccine efficacy 

defined by Haber et. al. (1991a). 

VE = 1- f3df3o 

which standardizes for exposure among vaccinated and unvaccinated individuals. 

Halloran et. al. (1992a) gives an account of some of the problems that arise in the 

estimation of vaccine efficacy. Among the assumptions usually required in evaluation of vaccine 

efficacy, homogeneous mixing of the population is perhaps the most difficult to fulfill. Although 

it could be realistic to assume homogeneous mixing at some level, like households, 

neighborhoods or schools, it is not likely that this assumption will hold between groups. This 

imposes a problem when estimating vaccine efficacy since some individuals will be subject to 

• higher exposure than others and it may be possible that vaccinated individuals have had higher or 

lower exposure to the infectious agent, and thus the estimate of VE is biased. In an attempt to 

uniformize for exposure, the VE can be estimated using household secondary attack rates 

(SAR's) or with methods that require knowledge of the mixing proportions. In this paper we deal 

with this problem and show that good estimates can be constructed as long as groups of 

individuals that mix homogeneously can be identified. 

• 

The outline of the paper is as follows: in section 2 current methods to estimate vaccine 

efficacy are reviewed. In section 3 a different construction of an SIR epidemic model due to 

Sellke (1983) is presented. Based in this construction, we derive a relationship between the 

number of susceptibles and the current severity of the disease or accumulated exposure, and 

show that this holds for a more general class of epidemic models and conditions. Using this 

relationship, we derive the classical estimates of vaccine efficacy in section 2. In section 4, 

current methods to estimate vaccine efficacy for heterogeneous mixing are reviewed, whereas in 
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section 5 the results of section 3 are extended to this situation. Section 6 presents results of 

stochastic simulations. 

2 Current results for estimating vacctne efficacy with 

homogeneous mixing. 

Longini et a/. (1993b) described five desirable properties in a vaccine efficacy (VE) 

estimate: 

(i) have a clear and meaningful biological interpretation, 

(ii) measure only the direct biological effect ofimmunization on vaccinated persons, 

(iii) be theoretically invariant across different populations and study designs, 

(iv) provide comparable exposure to infection for the unvaccinated and vaccinated, and 

(v) standardize the exposure to infection in the unvaccinated and vaccinated. 

There are several levels of information that one can have on an epidemics, mainly event 

time data or attack data. Rhodes eta/. (1996) classify the information in more levels depending 

on the detail. According to that classification, we deal here with level IV information in which 

we only know whether an infection occurred or not to each individual in the population in some 

time period. 

For level IV data, as described by Longini et. a/. (1993b) there are basically three 

measures of vaccine efficacy: those based in the attack rates, those based in transmission rates 

VE(,B) and those based in household secondary attack rates VE(SAR) or household transmission 

rates VE(,B*). Whether the outbreak is over or not defines if the level IV data corresponds to final 
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attack data or not. We use a slight modification of the notation in Longini et a!. (1993b ), to 

consider the possibility of estimating the VE before the outbreak is over: 

no number of unvaccinated in the population. 

Xo(t) number of unvaccinated who get the disease by timet. 

n1 number of vaccinated in the population. 

X 1(t) number ofvaccinated who get the disease by timet. 

ARo(t) = Xo(t)/no attack rate in the unvaccinated by timet. 

AR1 ( t) = X1 ( t) / n1 attack rate in the vaccinated by timet. 

Hereafter, whenever the time index t is not specified, indicates that the value corresponds 

to the value at the end ofthe outbreak . 

The first measure of vaccine efficacy was suggested by Greenwood and Yule (1915) with 

the equation 

VE = ARo - AR1 = l _ AR1 
ARo ARo' 

(3.1) 

which is the classical measure based in the attack rates. The main drawback of (3.1) is that it 

measures the overall effect of a vaccine in a vaccinated population under a particular set of 

circumstances, which will make it vary with the degree of transmission in the community, for 

instance, it is known that the vaccine has indirect effects on the susceptibility of the population 

by reducing the number of infectives (herd immunity) and thus in this situation the efficacy of a 
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vaccine will be overestimated. In other words, attribute (v) will not be satisfied. Longini et. al. 

( 1993b) showed that (3 .1) increasingly underestimates {31 / {30 with the level of transmission. 

Vaccine efficacy based in transmission rates are based either in solving deterministic 

system of equations (Haber et. al., 1991a, Longini et. al., 1995) or in its stochastic analog 

(Becker, 1982). The measure based in the deterministic model is as follows: 

Let Sv(t), Iv(t) and Rv(t) be respectively the number of susceptible, infective and 

removed individuals with vaccination status v at time t, with v = 0, 1, 2, ... , m. Let av be the 

proportion of individuals in stratum v. The system of differential equations describing the 

deterministic model is: 

(3.2) 

I~(t) =A f3v(t) lv(t) Sv(t)jn- 'Y lv(t), (3.3) 

R~(t) = 'Y Iv(t), (3.4) 

with initial conditions Sv(t) = nv, Rv(t) = 0, Iv(t) > 0. The parameter Bv = f3v/ f3o is the 

relative susceptibility of individuals vaccinated in stratum v against the unvaccinated, and the 

summary relative susceptibility is 8 = E av Bv. 
v 

The attack rate by time t is 

ARv(t) = 1- Sv(t)/nv. (3.5) 

Substituting (3.4) in (3.2) and evaluating at (3.5) gives 



• f3v = 'Y 
n>..R(t) log(1- ARv(t)), (3.6) 

for a leaky vaccine v = 1 and thus (3.6) ts evaluated at the defined vaccme efficacy 

1 - {3/ f3o = 1 -(),yielding 

(3.7) 

where ARt (t) and AR2(t) are estimates of the attack rates of the epidemics at time t, (the 

current epidemic is a realization). Since they are binomial proportions, 

ARv(t) ~ N[ ARv(t), ARv(t)(1- ARv(t))/nv ]. (3.8) 

• Using the delta-method, 

as nv-+oo and I(t) large. Therefore, an estimate ofthe variance ofVE(()) is: 

(3.10) 

Test ofhypothesis and confidence intervals can be derived from (3.9) and (3.10). 

Becker (1982) and Longini et. al. (1993a) derived similar results to (3.7)-(3.10) using a 

Martingale approach . 

• 
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3 An altemative construction of an SIR epidemic with 

homogeneous mixing. 

Sellke (1983) derived an elegant yet simple construction ofthe stochastic SIR epidemic 

model. His goal was to provide a simple proof of Daniels' result (1967) regarding the distribution 

of the final number of removed, the "size" of the epidemics. Daniels stated that under the 

assumption that the initial number of infectives was small, then ' ... when the threshold is large but 

the population size is much larger, the distribution of the number remaining uninfected in a large 

epidemic has approximately the Poisson form with deterministic mean N e-N I P. ' Here, 

P = Nf-l>.-1. 

Sellke's derivation relaxed the requirement of a small number of initially infectives, but 

still needed the assumption of exponentially distributed infectious period. Here, Ball (1986) 

version of Sellke's construction is preferred, since it does not require the assumption of 

exponential distribution of the infectious state. 

Suppose that a initially infectives are introduced in a population of N susceptibles. Let 

L1 , L2 , · · · L N be independent an identically distributed exponential random variables with 

parameter >.j N. Let T-(a- 1), T-(a- 2), ···,TN be a sequence of independent and identically 

distributed random variables, each distributed according to T1. the duration of the infectious 

period. Let L(1), L(2), · · ·L(N) be the order statistics of L 1 , L 2 , ···LN. Then the epidemic can be 

constructed as follows: Fori= -(a- 1), -(a- 2), .. ·, 0 the initially infective individual i 

remains infective for a time Ti, after which it is removed. The i-th susceptible individual 

accumulates 'exposure to infection' at a rate equal to the number of infectives present. When the 

total exposure of infection of individual j reaches Li then individual j becomes infected. The j-
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th individual so infected remains infective for time Tj and is then removed. The epidemic 

terminates with exactly n initial susceptibles infected when 

n 

I: Ti < L(n+1), 
i =-(a-1) 

and the total size of the epidemic R is given by 

R=min{n: t Ti < L(n+1), n 2: o}, 
i= -(a-1) 

R 
where the total area under the trajectory of infectives, W, is given by W = 2:.: Ti. 

i=-(a-1) 

The explanation of the construction above can be facilitated with the aid of Fig. 1: 

Ta Ts 

_l ___ l_l _____ l_l ____ _ 

_ l_l_l ____ l_l _______ _ 

Fig. 3.1 Construction of an SIR epidemic model. The intervals in the top line 
correspond to the duration of the infectious state of individuals and the 
marks in the line of the bottom the amount of severity required to 
infection . 



• In Fig. 1, the intervals on the line on the top correspond to the durations of the infectious 

period of the individuals in the order they became infected, and the line in the bottom represent 

the exposure required to achieve infection. 

Thus, the first individual requires a 'exposure to infection' equal to L(l). Since (in Figure 

1) this value is smaller than T1, the amount of severity required for the first susceptible 

individual to become infective can be provided by the initial infective. Now, the second infection 

can be achieved if a susceptible individual is exposed to L(2) units of severity, and since this 

value is smaller than T1 + T2 , there is enough severity to get a second infection, and so on. Then 

the epidemics terminates with R cases when the R + 1 th infection requires more than 

T1 + T2 + · · ·TR units of exposure. The total exposure produced in this epidemics corresponds to 

the severity. In Fig. 1 the size of the epidemics (excluding the initial infective) is 5, since 
6 

L(6) > L.: T6• This method of construction proves to be very fast in the simulation of SIR 
i=l 

• stochastic epidemic processes. 

• 

Some remarks 

The epidemic can be constructed similarly by assuming that there is only one 

infected along the duration of the epidemic, who "marks" individuals (instead of infecting them) 

and that every time that this occurs, the infective extends its infection period for a random 

amount Tj. Thus, all of the remaining individuals have had the same amount of exposure to the 

infected. After some fixed timet, the amount ofunmarked individuals (susceptibles) can be used 

to estimate the current amount of severity of the epidemics. Define W ( t) the amount of severity 

by time t, and define W ( oo) = W 00 , clearly, if the epidemics is over at some time t then 

W ( t) = W 00 • Observe that, by construction, the number of observations greater than a fixed 

value of severity w is 
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Binomial(N, e->.wfN), 

therefore 

E{si(t)/ni} = 1- Exp[- >..wfN] (3.11) 

which can be used to make inferences on >.. W ( t) / N. 

The above model assumes that contacts between an infective and a susceptible results in 

immediate infection of the susceptible. We can include here a fixed probability that such a 

contact will result in infection of the susceptible. Consider a "leaky" vaccine that divides the 

population on n 1 vaccinated (status 1) and n0 unvaccinated (status 0). Since there is 

homogeneous mixing, all individuals have had the same amount of "exposure to the infective", 

namely W(t). Hence si(t), the number of susceptible individuals with vaccination status i by 

timet follows a Binomial distribution with parameters ni and e->.fJ; W(t)/ N, i = 0, 1. 

Svensson (1991,1994) found that for large populations the following balance equation 

holds 

I(t)f N = 1- Exp[- '"Y W(t)], (3.12) 

where '"Y is the susceptibility of infection. We can see that S ( t) being a random quantity, the 

equality holds for the expectation in the left side. 

Observe that by the construction that led to (3.11 ), upon conditioning in a given severity, 

the fate of a particular individual in the population is independent of that of the other, which 

leads to conclude the conditional independence of si(t) given W(t). Since E{si(t)/nil 



• W(t)} = e->..{3;W(t)fN, the natural choice to estimate the vaccme efficacy 
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VE = 1 - 0 = 1 - {3J/ f3o is 

1 _ _l o_g-'-( s_1 (;_;t )-'-/_n I_;_) 

log(so(t)/no)' 
(3.13) 

which is precisely (3.7). Observe that (3.13) is the maximum likelihood estimate of 1-0. By 

the conditional independence of the random variables involved 

E{O} = E{ log(s1(t)/n1)} < E{log(s1(t)/n1)} = >..{31 W(t)/ N = (31 
log(so(t)/no) - E{log(so(t)/no)} >..f3oW(t)/N f3o 

which is an alternative proof of the result of Haber et. a/. (1991a) in the sense that 1- (j 

overestimates the vaccine efficacy. 

4 Current methods to estimate efficacy under non 

homogeneous mixing . 
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The methods presented in this section, based in the secondary attack rates (SAR) can be 

applied also under homogeneous mixing. In the absence of homogeneous mixing, current 

estimates of vaccine efficacy are based on household secondary attack rates, the number of 

infections caused by an infective in a household. The idea behind this approach is as follows: a 

susceptible individual in the population could be infected from other member of his household or 

from other member of the community. If one could estimate the household probability of 

infection for both vaccinated and unvaccinated individuals then we could construct an estimate 

of efficacy of a vaccine using the ratio of both probabilities. 

Denote by /ki the probability that during a short time unit a susceptible person from 

stratum k and vaccination status i becomes infected from a single infected household member. If 

there are two kinds of individuals, unvaccinated (group 0) and vaccinated (group 1 ), the vaccine 

efficacy in stratum k is defined as 

Define SARki the probability of a susceptible in stratum k and vaccination status i becoming 

infected from a single infected person in the household during the duration of his infectious 

period. Then 

where Tis the average duration of the infectious period. The estimate of vaccine efficacy is then 

(3.15) 
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In Longini et a/. (1993b) a review of the methods to estimate the SAR is made. These are: the 

conventional method, the model-based method of Longini et a/. and the model-based method of 

Rampey eta/. We briefly review these methods following the notation ofLongini eta/. (1993b). 

Let 

{30 = transmission rate within the household to an unvaccinated susceptible, where 

j30(t)fl.t + o(fl.t) is the probability that an unvaccinated susceptible is infected due 

to contact with an infected person in fl.t units oftime within the household. 

j3j = transmission rate within the household to an unvaccinated susceptible. 

SARo = household secondary attack rate to an unvaccinated susceptible. 

SAR1 = household secondary attack rate to a vaccinated susceptible . 

Method I The conventional method. 

In this method, the researcher makes decisions about who is secondary to who among the 

infections in a household. Clearly, a knowledge on the duration of the latent, incubation and 

infectious period of the disease is required. Fixed intervals for these states are established and 

secondary cases are identified according to if they occurred in a given state of the index case. As 

mentioned by Longini et a/. (1993b), the method presents some drawbacks, for instance 

misclassification errors and that it ignores co-primary cases. 

Method II The model-based method of Longini et al . 
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This method was developed by Longini and Koopman (1982, 1988) and requires final 

value data. Define CPI as the community probability of infection (infection from a member 

outside the household). They showed that the probability that exactly j persons become infected 

in a household with s initial susceptibles is 

s-1 

where 'lrss = 1- L 'lrjs• an expression that allows for maximum likelihood estimation of CPI 
j=O 

and SAR without having to identify primary and secondary cases. 

Method Ill The model-based method of Rampey et al . 

Rampey et al. (1992) developed a model that uses all information on infections and does 

not require that the epidemics is over. The method requires the specification of the probability 

distributions for the latent, incubation and infectious period. 

In general, when there is illness incidence data available, one can estimate f3i given the 

relationship between this and the SARi: 

(3.16) 

where T1 is the expected value of the length ofthe infectious period. Substituting this into (3.15) 

yields 
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VE(SAR) = 1- 1- (1- J3itl 
1 - (1 - J30)T1 

Longini et al. (1993b) stated that if r 1 =/::. 1, VE(SAR) =/::. J3d j30 and hence both measures of 

efficacy are different. As mentioned by Longini et al. VE(SAR) and /31/ j30 are both measures of 

efficacy over different exposure times. Clearly J3d j30 compares the probabilities of infection per 

contact between a susceptible and an infective. 

Of these three methods, Method II seems more plausible due to the possibility of 

misclassification of method I and the need of assuming distributional properties of method III. 

Still, method II requires knowledge on the expected duration of the infectious period, and can 

only be applied to final attack data. 

Haber et al (1995a) derived the following result for a deterministic SIR epidemic model 

for a population that is divided in groups with non-random mixing between groups and random 

mixing within them: 

Ai = 1- Exp[- TAiLPij/3ijAj] 
J 

(3.17) 

where Ai is the attack rate in group i, T is the length of the infectious period (which is assumed 

to be the same for all groups), Ai the contact rate of group i, Pii is the proportion of contacts that 

a person of group i makes with a person of group j, and /3ij is the proportion of contacts between 

a susceptible from group i and an infective from group j that result in a new infection. For this 

deterministic model, Haber et. al. (1995a) showed that if vaccination does not affect the contact 

rates, then an estimate of the vaccine efficacy in group k is 
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(3.18) 

regardless of the mixing proportions between groups. Observe that if groups are of size one and 

there is homogeneous mixing at rate>., then AiPii = A./ N. If f3ij = {3 V i,j, then we have 

Ai = 1-Exp[ -T>.f3LAi/N] 
J 

since Ai = 0, 1, the term in the exponent is the severity of the disease at the end of the outbreak 

times a constant. Observe that if T is random then this is (3 .11 ). With the results of section 3 .2, 

the stochastic analog of (3.17) is straightforward. 

5 Estimation of the VE for a leaky vaccine under non 

homogeneous mixing. 

The main conclusion of section 3 was that we can construct the maximum likelihood 

estimate of the ratio () = {3, / f3o as long as both types of individuals, vaccinated and unvaccinated 

have had the same amount of exposure to infection, which is guaranteed under homogeneous 

mixing. When the population is divided in strata such as neighborhoods, schools, households 

etc., then we still can estimate {31 / {30 for any subgroup of the population as long as the 

individuals in the group have had the same amount of exposure. We need to add a subscript to 



• the estimate 7J to refer to stratum k, k = 1, 2, · · ·, m. Let nki be the number of individuals in 

group k with vaccination status i, i = 0, 1, and nk = L:nki the total size of group k, then the 
i 

MLE of 1 - f3I / f3o for stratum k when both types of individuals have had the same amount of 

exposure to infection is 

log( Skt ( t) /nkl) 
1 - ------,---

log(sko(t)/nko) · 
(3.19) 

Hereafter we use the term group for disjoint subsets of the population of individuals such 

that 

a) the individuals of group k have a contact rate >..k and mix homogeneously among them, and 

• b) the proportion of contacts that an individual of group i has with a member of group j is Qij· 

• 

Let vk(t) be the accumulated number of infections in group k by timet, and let Xki(t) be 

the duration of the infectious period of individual i in stratum k up to time t. The severity of 

stratum k up to time t is then 

Vk(t) 

Wk(t) = LXki(t), k = 1, 2, ... , m. 
i=l 

The probability that an individual with vaccination status i survives infection up to a 

given timet is the probability that s/he survives infection from all infected in all groups. For the 

sake of simplicity, assume as in section 3 that contacts between infective and a susceptible will 
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result in immediate infection, thus the probability that an individual in stratum k will not meet 

with an infective in stratum j is Exp[ -A QkjWj(t)/nil· 

Again, we use an analogy similar to that of section 3, where instead of infecting 

individuals, there is at most one single infective in every group. This infective "marks" 

individuals in his own group but can produce the first infection in other groups. Infections in his 

own group extends his infection period by a random amount xk corresponding to group k, 

whereas infections produced in other groups add a random amount to the newly infected, (not 

necessarily with the same distribution). Using this construction, the relationship between the 

number of susceptibles in every group and the accumulated severity in the whole population is 

easier to derive. 

First, consider group k with nk initial susceptibles. Since the probability that a 

susceptible in this group meets an infective in any group (including his own) are independent 

events, the probability that an individual of this group is still susceptible at time t is the product 

of the probabilities that he did not meet the infectives in all groups by time t, which is given by 

Exp[ -A QkjLWi(t)/ni]· 
J 

Incorporating now the vaccination effect on the i-th individual in group k, the probability 

becomes 

Exp [ -A Qkjf3ki ~Wj(t)fni l· 
J 

Assume that the vaccine does not affect the contact rates ofvaccinated individuals, then 
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A qkiL Wj(t)jnj 
j 

is the same for all individuals in the k-th group, that is, once a group has an infective, except for 

the term f3ki all of the remaining nk - 1 members of a group have had the same amount of 

exposure to the initial infected in his own group as well as to the initial infective in the other 

groups, if any. Therefore, the number of susceptibles in a group at an arbitrary but fixed time t 

provides information on the total amount of exposure at which individuals of that group have 

been subjected. The exposure rates of both vaccinated and unvaccinated in a given group k 

should differ only by the effect of vaccine f3ki, thus the distribution of the number of susceptibles 

with vaccination status i in stratum k, that have survived a severity Wj from stratum j by timet is 

(3.20) 

where Zki = Zki - 1 if the index case in this group was of vaccination status i and Zki = nki 

otherwise, that is, similarly to the SAR's, we do not consider the index case in every group. 

The expected number of infected obtained from (3.20) is the stochastic analog of (3.17) 

since in that result r, the time of infection is assumed constant for all individuals in all groups. It 

can be seen in (3.20) that it is the total severity what matters, which implies that (3.20) holds 

independently of the distribution of the duration of the infectious state, and it may even be 

different for every group or every individual. This may be useful if one wishes to consider the 

possibility of some groups (or individuals) being more efficient in the removal or isolation of 

infectives, which may be a realistic situation if removal or isolation is affected by socioeconomic 

status . 
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In general, whatever the contact structure of the population, if this can be divided in 

groups with the defined properties, then the individuals of any group have the same amount of 

exposure, although individuals of different groups may have different exposure. If there is a 

group related vaccine effect, that is, if f3i becomes f3ki where k is the stratum index, then (3.19) 

still gives the specific VE for every stratum. In Haber Longini et. al. (1991b) a situation is given 

in which there is a population of individuals mixing homogeneously but the population is divided 

in k strata with related vaccine efficacy ()k for stratum k. Observe that these strata meet the 

conditions a and b that define a group, therefore ()k can be estimated via (3 .19). 

If there is no vaccine related effect then we can construct an estimate of the vaccine 

efficacy across groups with 

k 

VE* = 1- Lwufiu (3.21) 
u =l 

with Bu calculated as in (3.19) and Wu is the weight given to the estimate in group u. With 

random vaccination there is no reason why the number of vaccinated and unvaccinated 

susceptibles in every group should be equal, thus using the group sizes as weight is discarded. A 

natural choice for the Wu would be 

-2 (J. 
Wu = t 

" -2 L..J(Ji 
i 

the reciprocal of the normalized variance in group u, as in Haber et a!. ( 1991 b), see also Casella 

(1990) p.338) although it must be remembered that the estimates are not unbiased . In practice 

we would substitute an estimate of this variance. The estimated variance ofO in (3.21) becomes 
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If there is a stratum associated susceptibility, for instance age, then there is a constant 

multiplying f3d (30 that becomes absorbed by the contact rate, therefore, (3.21) still provides an 

estimate of(). 

6 Simulations 

In order to test the estimate the estimate (3.21), some stochastic simulations of SIR 

epidemics were performed. The population has 560 individuals in three groups, of sizes 

n 1 = 300, n2 = 60 and n3 = 200. The contact rates for each group are: A.1 = 1.5, A.2 = 7.5 and 

A.3 = 4.5. The mixing proportions are given by the matrix Q: 

[
0.5 

Q = 0.3 
0.1 

0.3 
0.6 

0.05 

0.2 l 0.1 
0.85 

where { Qij } is the proportion of contacts that a person of group i makes with a person of group j. 

The matrix Q satisfy the balance conditions niAi Qij = njAj Qji, i, j = 1, 2, 3. In the simulations 

(30 is set to one and (31 varies as well as the fraction of vaccinated in each group . 
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The values of f3I were 0.05,0.1 ,0.2, and 0.3, whereas three different vaccination schemes 

were tested, these are {0.6,0.4,0.5}, {0.7,0.4,0.2} and {0.2,0.5,0.7} where {!I, f2, h} is the 

fraction of vaccinated in groups 1,2 and 3 respectively. Vaccination is random in every group. 

With the combination of parameters above, three sets of simulations where run. In the 

first set (cases 1-3), the removal rate is equal for all groups and the data is collected at the end of 

the epidemics. In the second set of simulations (cases 4-6) every group has different removal 

rate, and the data is also taken at the end of the epidemic. The third set of simulations (cases 7 -9) 

is similar to the previous except that the data is taken when the severity reaches 100. 

The duration of the infectious state was assumed to be exponential with mean p;;;1 for 

group k, whereas an individual in group k makes contacts according to a Poisson process of 

intensity Ak. Thus, the process is simulated according to a continuous time Markov chain. Let 

Si(t) andJi(t) be the number ofsusceptibles and infectives in group i at timet. The removal rate 

when the state ofthe system is {Si(t), Ji(t)} is p,/L Ji(t) whereas the infection rate is 
i 

L Ii(t) L (f3oSoj(t)/nj + f3IS1j(t)jnj), 
i j 

where Svj(t) is the number of susceptible individuals in group j with vaccination status v, 

v = 0, 1. 

For each combination of parameters 300 simulations were run using Matlab. The 

estimated VE using (3.21) as well as the estimated VE using ignoring the structure of the 

population using (3 .13) were calculated. The weighted estimate using (3 .21) is referred as VE*, 

whereas the estimate constructed without considering the structure ofthe population as in (3.13) 

is refereed as the crude VE. For every simulation VE* and the crude VE where calculated and 

their averages and standard deviations are shown. The code is in the appendix (A4). Results are 

shown in Tables 1-3 . 
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The estimate VE* proved to be accurate in all cases. Both estimates consistently 

underestimated the true value of VE, and in general the bias decreased with the vaccine 

efficiency. The bias of the crude VE estimate was generally larger than that of VE*, specially in 

low vaccine efficacy situations. The crude VE estimate proved to be very good when the fraction 

of vaccinated was about the same in the three groups (cases 1 and 4), but it proved to perform 

very poorly in the other four cases, where the variation in the fraction of vaccinated was larger. 

In general, VE had smaller variance than VE*. 

Heterogeneous removal rates did not affect both estimates significatively. The differences 

between the calculated VE* for the case of equal removal rates and that with heterogeneous 

removal rates had an average of 0.039, and it was within 3 decimal places in 10 of the 12 cases. 

For the crude VE it was within 2 decimal places. VE* should be preferred to VE, since there are 

no more assumptions to use the former than the required to use VE, except that groups are 

identifiable and thus estimates for every group can be obtained . 

Estimation of VE before the end of epidemics (at a severity of 1 00) did not affect VE* of 

VE significatively. By comparing cases 5 and 8 it can be seen that for a true VE of 0.7, 

evaluating at W=lOO corresponded to estimation of VE at about half of the total cases with 

respect to evaluation at the end of the epidemic. 

7 Discussion 

The method presented here tells that the current measures of VE based in transmission 

rates can be applied under non-homogeneous mixing as long as the population can be divided in 

groups that mix homogeneously among them regardless of the contact structure between groups . 



TABLE 1 Results of stochastic simulations. Evaluation at the end of the outbreak. 
mu1 = mu2 = mu3 = 1 

Case 1 ) 
f 1 ;:;; 0.6 

Case 2) 
f 1 = 0.7 

Case 3) 
f 1 = 0.2 

f 2;:;; 0.4 

f 2 = 0.4 

± 
0.961 ± 0.01 

f 2;:;; 0.5 

*Average of 300 simulations 
t using (3.21) 
:t: ignoring structure of population 

f 3;:;; 0.5 

f 3 = 0.2 

± 
0.923 ± 0.015 

f 3 = 0.7 

± 
0.616 ± 0.074 

± 
0.665 ± 0.04 

± 
0.775 ± 0.029 

± 
0.403 ± 0.1 



TABLE 2 Results of stochastic simulations. Evaluation at the end of the outbreak. 
mu1 = 1.5 mu2 = 0.6 mu3 = 1.0 

Case 4) 
f 1 = 0.6 

Case 5) 
f 1 = 0.7 

Case 6) 
f 1 = 0.2 

f 2 = 0.4 

f 2 = 0.4 

± ~. 
.955 ± 0.010 

f 2 = 0.5 

*Average of 300 simulations 
t using (3.21) 
:t: ignoring structure of population 

f 3 = 0.5 

f 3 = 0.2 

. 912 ± 0.015 

f 3 = 0.7 

.822 ± 0.037 

± ~ . 
.834 ± 0.023 

.7 

.625 ± 0.055 

± ~ . 
. 663 ± 0.037 



TABLE 3 Results of stochastic simulations Evaluation at a severity W=100 

Case 7) 
f 1 = 0.6 f2 = 0.4 

mu1 = 1.5 mu2 = 0.6 mu3 = 1.0 

f 3 = 0.5 

.941 ± 0.013 
± v. 

.885 ± 0.019 

Case 8) 
f 1 = 0.7 

Case 9) 
f 1 = 0.2 

f 2 = 0.4 

f2 = 0.5 

* Average of 300 simulations 
t using (3.21) 
+ ignoring structure of population 

f 3 = 0.2 

f 3 = 0.7 

± v. 

. 639 ± 0.055 

± v • 

. 681 ± 0.041 

± v • 

. 791 ± 0.032 

± . 
.448 ± 0.086 



TABLE 4 Results of stochastic simulations. Evaluation at W = 70 
mu1 = 1.5 mu2 = 0.6 mu3 = 1.0 

Case 10) 
f 1 = 0.6 

Case 11 ) 
f 1 = 0.7 

Case 12) 
f 1 = 0.2 

f 2 = 0.4 

f 2 = 0.4 

f 2 = 0.5 

± 
0.912 ± 0.027 

*Average of 300 simulations 
t using (3.21) 
::t: ignoring structure of population 

f 3 = 0.5 

f 3 = 0.2 

± ± 
0.931 ± 0.018 0.862 ± 0.028 

f 3 = 0.7 

± ± 
0.827 ± 0.040 0.660 ± 0.067 

± 
0.798 ± 0.036 

± 
0.491 ± 0.089 
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It is expected that such a groups could be small (i.e. households) hence the usual asymptotic 

arguments used in 3.8-3.10. Nevertheless, for certain mixing patterns, individuals of different 

groups may have had approximately the same amount of exposure, and thus it is always possible 

to form larger groups. The notion behind a group is that they constitute the basic unit of 

homogenous mixing and thus, every individual in a group have the same "internal" amount of 

exposure to infection and whatever the distribution of the infectives outside the group and the 

mixing pattern between them, those individuals have the same amount of "external" exposure to 

infection. Larger groups can be formed by merging groups as well as every individual in the 

newly formed group has had the same amount of both "internal" and "external" exposure to 

infection. Let A be an arbitrary subset of groups. The probability that individual in A belonging 

to group i has survived infection by time t is Exp[ - U i] where Ui is the amount of exposure to 

infection of individual in group i, 

Ui = L>. qikWk(t)/nk + >. qijWj(t)/nj + >. qiiWi(t)/ni. 
k¢A 

(3.22) 

In some situations there are groups i,j such that Ui = Uj, for instance, assume that all groups 

have the same size, and consider two groups i and j in the arbitrary set A. If Qik = qjk V k E A c, 

that is, if individuals in groups i and j mix at equal probabilities with all groups outside A, then 

since all groups have the same size qii = Qjj. therefore (3.22) holds for individuals in groups i 

and j as long as Wi(t) = Wj(t), that is, ifboth groups have had the same amount of severity up 

to time t. If these conditions are met, then the exposure for both types of individuals in both 

groups is the same and therefore the attack rate data be merged. 

Consider for instance the case of M neighborhoods, each one with h households each 

with nk susceptibles. If the probability that an individual will contact an individual from other 
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house in the same neighborhood is the same for all houses within the neighborhood, then 

qij = qji· Thus we can group houses within neighborhoods ifthe assumption that the severity on 

each house is the same is valid. For final attack data, houses that had the same number of cases 

can be assumed to have had generated same amount of severity, and thus they can be merged in 

principle. Observe that no knowledge on the qi/s is required. More research on how to treat 

small groups is required. 

One important assumption is that the contact rate of vaccinated individuals does not 

change, which is a somewhat difficult assumption in some cases. As previously stated, this 

affects the VE estimate by including indirect effects. Nevertheless, at least during the field trials 

of the vaccine it is sometimes possible to reduce this factor, for instance, with the use of 

placebos, thus, a potential vaccine effect on the contact rates affects equally vaccinated and 

unvaccinated individuals. 

Finally, although here the VE is constructed with total attack rate data, adaptation for a 

sample ofthe population is straightforward. 
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