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ABSTRACT 

Ordination methods are techniques often used in ecology and other fields to provide a 
simple arrangement or structure to a multivariate sites by species (or more generally 
observations by variables) data matrix. Though such techniques are widely used for 
descriptive statistics, researchers often want to additionally use them to make inferences. 
Our goal is to elucidate the basic performance of such methods under reasonable models 
for the ecological context. Maximum likelihood ordination operates by simultaneously 
estimating the species parameters and latent site parameters in a model approximating the 
relationship between species and sites. Principal component analysis is shown to be 
equivalent to maximum likelihood ordination for a linear functional model with 
independent Gaussian error terms and specific identifiability constraints. The model is 
extended to allow for interaction between species using an equicorrelated error structure. 
Conditions for consistency of the estimators from maximum likelihood ordination and 
principal component analysis are established and related to results on linear functional 
measurement error models. Finite sample performances are then examined via 
simulations. 

Keywords: principal component analysis; maximum likelihood ordination; functional 

measurement error models; consistency. 

1. INTRODUCTION 

Suppose a researcher samples n different sites and for each site records the abundances 

(e.g. biomass, percentage, frequency) of m different species of flora/fauna. The resulting 

samples-by-species data matrix can be examined via ordination. On the one hand, this 

involves generating low-dimensional summaries of the data, and principal component 

analysis (PCA) has a long history as such a method (Goodall 1954, Or16ci 1966, 

Anderson 1971, Gauch 1982). On the other hand, models can be postulated and the 

species and site parameters estimated using maximum likelihood (ML) or least squares 

(Gauch et al. 1974, Ihm and van Groenewood 1984). Ter Braak and Prentice (1988) 

pointed out that "PCA provides the ML-solution to the multidimensional linear ordination 

problem if the errors are independent and normally distributed with constant variance 

across species and sites". However, these references do not elaborate on inferential 

aspects and omit discussion of theoretical properties of the estimators. Furthermore, the 

proposed models assume species act independently of each other, when in fact correlation 

is expected due to symbiosis or competition effects or it can be induced through site 
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effects. This paper addresses the assumptions for doing inference using PCA. In section 

2, we propose a linear functional model that incorporates interaction between species 

using an equicorrelated covariance structure where equal correlation exists between any 

two species within a site. This particular correlation structure may not truly reflect how 

species interact in reality but it serves as an initial approximation, and allows for tractable 

asymptotic results. Sections 3 and 4 discuss the existence of ML estimators and show 

how estimates can be computed. PCA is introduced in section 5 and equated with ML 

estimation for our functional model. Conditions for consistent estimators of the species 

parameters using both ML and PCA are established in section 6. Section 7 examines the 

asymptotic results under finite sample sizes, while section 8 uses two small datasets to 

illustrate how estimators can be constructed. Finally, section 9 pinpoints some 

similarities and distinctions between ML and PCA, and suggests a possible alternative 

approach to the ordination problem. 

2. MODEL 

We assume the response (possibly transformed) for each species to be a linear function of 

some latent environmental variable with Gaussian additive error. The latent variable can 

represent a hypothetical gradient, or it can be some environmental characteristic that is 

too expensive to be measured or can no longer be retrieved such as in studies of fossil 

records. Formally, let yij be the abundance of the jth species at site i, xi the latent 

environmental variable at site i, a1 and b1 the intercept and slope for speciesj respectively, 

and c the baseline species slope, such that 

Yij = a1 + cxibJ + eij, (i=l, ... ,n; j=l, ... ,m), (1) 

where ei=(en, ... ,eim)'~iid N(O,V), 0 is a mxl vector of zeros, V=cr;(l-p)l + pcr;J, I is am 

xm identity matrix, J is a mxm matrix of ones, cr; is the error variance, and p is the 

correlation between species. The x/s, b/s, and c are treated as unknown parameters, 

whereas the a/s and V are assumed given. 
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The introduction of the baseline slope c may seem artificial and letting a1 and V be 

known may be restrictive, but this is to illustrate how PCA is specifically related to ML 

estimation in model (1). The objective is to recover the underlying linear model by 

estimating the b/s. However, the parameters c, xi and bi are only identified as a product, 

and thus identifiability constraints must be imposed to obtain unique estimates; e.g. 

L b} =k1 and L x? =~ for nonzero constants k1 and ~­
.i 

With such a normalization, b1 is identified but only up to a change in sign. 

Model ( 1) belongs to the class of linear functional measurement error models 

since it can be rewritten as 

Yi! = a1 + P'(vi-a0l) + eil, 

Y(IJ = v. + e(ll 
I l I ' 

h (l)_(y )' w ere Y; - i2, ... ,yim ' 
fl.! b] ( 1 1 ) 
P = m -1 b' · · ·' b ' and 
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measurement error. In another context, model (1) is the factor analysis model where the 

cb/s are factor loadings and x=(xi, ... ,xn)' is an unobservable factor but with fixed instead 

of random components. Both the functional measurement error model and the factor 

analysis model have been studied extensively especially in the econometrics and 

psychometrics literature (Gieser 1981; Anderson 1984; Anderson and Ameniya 1988). 

However most of these results are not readily accessible or directly usable in ordination, 

because of the different parameterization used in measurement error models and the 

independent error structure typically assumed in factor analysis models. In the following 

sections, we provide results that relate to PCA and ML ordination according to model (1). 

3. EXISTENCE OF MLE 

It is well known that the existence of maximum likelihood estimators (MLEs) for 

functional measurement error models hinges on the structure of the covariance matrix. If 

V were unknown and totally arbitrary, the likelihood would be unbounded and no 
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maximum is attainable (Anderson and Rubin 1956; Kendall and Stuart 1979; Gieser 

1981 ). The log-likelihood for model (1) is 

mn n 1 ~ 1 _, 

logL = --log(2n)- -logJVJ-- LJ(z; -cx;b) V (z;- cx;b), 
2 2 2 i=l 

(2) 

JVJ = cr;"'J(1-p)l + pJJ = cr;"'(l-p)m-1 (1 + (m-1)p), 

and 

y-I = 2 1 (I- p J). 
·cre(l-p) 1-p+mp 

Therefore logL equals 

mn n 
--log(2n) --(mlogcr; + (m- 1)log(1 - p) + log(1 + (m- 1)p))-

2 2 
1 n P 1 

2 Itr((l- J)(z; -cx;b)(z; -cx;b) ). 
2cr e (1- p) i=l 1 - p + mp 

We first argue that the sum in the above expression must be positive. It takes its 

minimum value (as a function of p) when p= 1, in which case it is equal to sum of squared 

deviations of the elements of Z;- cx;b. By the identifiability constraints this sum must 

therefore be positive. Next, as a function cr; for fixed p, it takes its unique maximum in 

the interior of (O,oo ). Finally, that profile likelihood as a function of p also takes a unique, 

finite maximum on the interior of its range, (--=..!...._ ,1) . The likelihood is thus bounded 
m-1 

away from positive infinity. Hence, for an equicorrelated V the existence ofMLEs in (1) 

is guaranteed, although for other covariance structures this must be checked individually. 

In ML ordination, the focus is on estimating the mean structure and likewise we assume 

V to be given. This avoids the issue of nonexistence of MLEs and will serve to illustrate 

the connection between ML estimation and PCA. 

4. MLE AS EIGENVECTOR SOLUTION 

With V known, the likelihood equations for the parameters c, x, and b are respectively 

c(b'V-1b)(x'x)=x'ZV-Ib, 

cx(b'V-lb)=ZV-1b, and 
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cb(x'x)=Z'x, (3c) 

where Z={z!i} is the nxm matrix with entries {y!i-a). Equation (3a) can be derived from 

either (3b) or (3c) and hence is redundant. According to (3b) and (3c ), the MLE of X; is 

obtained by a weighted regression of the rows of Z on b, whereas the MLE of bj is 

obtained by regressing the columns of Z on x. This suggests that instead of jointly 

maximizing the likelihood (2), one can find the ML estimates by iterating between the 

individual likelihood equations (3b) and (3c) until convergence. This algorithm is an 

example of the Gauss-Seidel-Newton (GSN) method (Ortega and Rheinboldt 1970; 

Thisted 1988). Equations (3b) and (3c) can also be combined to give 

Z'ZV-Ib=c2b and 

ZV-1Z'x=c2x, 

(4) 

(5) 

using the normalizations b'V-1b=1 and x'x=1 as identifiability constraints. This shows 

that c2 is an eigenvalue, and x and b are eigenvectors. ML estimates can then be 

computed using standard algorithms for calculating eigenvectors without having to 

perform joint maximization via Newton-Raphson. In fact, the following proposition 

holds. (The proofs of all the propositions and corollaries stated in the text are given in the 

Appendix.) 

Proposition 1. Let model (1) hold. The MLEs of x and b are then the dominant 

eigenvectors (i.e. those associated with the largest eigenvalue) of ( 4) and ( 5). 

5. PRINCIPAL COMPONENT ANALYSIS 

Introduced to ecologists by Goodall (1954), PCA provides an orthogonal least squares 

approximation to the data via a singular value decomposition (Greenacre 1984). The 

popular method is species-centered PCA (Orl6ci 1966), where the mean of each species 

has been subtracted from the columns of the data matrix. Formally, if W= y!i- y-.i has 

rank r, the singular value decomposition ofW gives 
r 

W = L A-kpkq~ , such that 
k=l 
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A.kqk=W'pk and AkPk=Wqk, 

WW'pk=A~ Pk, 

W'Wqk=A.~qk, 

P~P1 = q~q 1 = 8k1 , where 8k1 is Kronecker's delta. 

(7) 

(8) 

(9) 

This definition encompasses the usual formulation of PCA, which finds orthonormal 

vectors qk that maximizes the norm of Wqk, yielding (9) and with the A.~'s being the 

maxima attained for each qk. Since the columns of W sum to zero, (9) also shows that qk 

is an eigenvector of the sample covariance matrix. 

Ecologists typically use PCA as a data reduction technique, with the output 

summarized in a biplot (Gabriel 1971). The first two terms in (6) are selected and the 

coordinates (AJPu,ALfJ2;) (i=1, ... ,n) and (qlj,q2) (j=1, ... ,m) or their rescaled versions are 

then plotted together for a visual appraisal of the relationship between species and sites. 

This application is mainly descriptive and does not explicitly require a model for the data. 

However, PCA can also be viewed as multivariate linear regression with latent predictors. 

Choose a rank one approximation toW by selecting only the first term in (6), then 

A.q=W'p and A.p=Wq, yielding 

W'Wq=A.2 q, and 

WW'p=A.2 p. 

(10) 

(11) 

(12) 

Observe that (11) and (12) have the same form as the likelihood equations (4) and (5) but 

with V=l. Now since 

w!i = y!i- Y-1 = c(x;- x)b1 + (e!i- e._;), (13) 

and (ei!-e_ 1, ••• ,eim-e.m)'~ iid N(0,(1-n-1)V), the likelihood for (13) has the same form as 

that for model (1). Therefore, solving for A., pi, and q1 in (10) is equivalent to finding the 

MLEs of c, x;-x, and b1 respectively in (1) but assuming p=O. It should also be noted 

from this definition of PCA that the species intercepts and covariance matrix cannot be 

estimated, which is why the ajs and V are treated as known in order to establish the 

equivalence of PCA with ML estimation. 
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6. CONSISTENCY 

The previous section showed that PCA is equivalent to ML estimation of the species and 

sites parameters in (1) when V=l, but the number of site parameters increases with the 

sample size n. This leads to the infinite incidental parameters problem (Neyman and 

Scott 1948), and causes the ML approach to give inconsistent estimators unless some 

'population' assumption is imposed on the x/s. 

6.1 Consistency of the MLE 

Proposition 2. Let model (1) hold. If lim 'i.x; =h, where he (O,oo ), and A,*max, the 
"~"' n 

maximum eigenvalue of Z'ZV-1 is simple, then the MLE of b consistently estimates sb 

for some nonzero constant s. 

The condition that lim 'i.x; be positive and finite is in fact the univariate version of 
"~"' n 

Gieser's (1981) assumption C for establishing consistency for estimators in errors in 

variables regression models. Anderson and Taylor (1975) also required a similar 

condition for proving strong consistency of the least squares estimator when the number 

of independent variables increases with sample size. Intuitively, this means that we 

regard xi as coming from some population with finite variance, which is reminiscent of 

Kiefer and Wolfowitz's (1956) approach. 

6. 2 Consistency of the PCA estimator 

For the PCA estimator, i.e. the dominant eigenvector of W'W, additional 

conditions on the eigenvalues are required for consistency. 

Proposition 3. Let model (1) hold and let b be the PCA estimator, i.e., the eigenvector 

associated with eigenvalue "-mroc Suppose lim 'i.x; is positive and finite, and "-max is 
"~"' n 

simple, then the following are true: 
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i) Ifb'l=O and mpcr; < c2cr;(b'b), where 1 is the mxl unit vector and cr; = L:(x; -x)2
, 

n 

then b consistently estimates sb for some nonzero constants. 

ii) Ifb'l=O and mpcr; > c2cr;(b'b), then b converges to sl for some nonzero constants 

and is inconsistent. 

iii) yb- pcr;(t'b)l, where y = "-maxb'b- cr;(l- p), consistently estimates sb for some 

nonzero constant s. 

In ordination, sometimes only the ordering of the species IS important. It 

therefore suffices to estimate b up to a location and scale change, and the PCA estimator 

consistently estimates the ordering of the species under the following conditions. 

Corollary. Let model (1) hold. If lim L.x? is positive and finite, and "-max is simple, then 
n~ro n 

the PCA estimator consistently estimates (s11 + s2b) for nonzero constants {s1,s2}. 

Proposition 3 and its corollary are in fact special cases of a more general result 

which shows what particular structure the covariance matrix needs to possess in order for 

the PCA estimator to be consistent. 

Proposition 4. Define wif = c(x;- x)b1 + Eif, where E;~·iid N(O,VE). When lim L.x? is 
n~ro n 

positive and finite, and "-max of W'W is simple, the following conditions hold: 

i) IfVEb = sb for some nonzero constants, and c2cr;(b'b) +sis the dominant eigenvalue 

of c2cr; bb' + V&, the asymptotic matrix ofW'W, then the PCA estimator is consistent up 

to a scale change. 

ii) If the equation 

has a nonzero solution set {s1,s2} and A is the dominant eigenvalue, then the PCA 

estimator is consistent up to a location and scale change. 
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6.3 An adjusted PCA estimator for general Ve 

So far we have only dealt with a special kind of covariance matrix which may not 

hold true in real examples. In order to establish consistency under a general covariance 

matrix, an adjusted PCA estimator can be derived using an estimate of the covariance 

matrix. Unfortunately such an estimate needs to be obtained from either a separate study 

or a confirmatory sample. 

Proposition 5. Let Ve be an estimator of V e· When lim u; is positive and finite, and 
~~~"" n 

Amax of w•wvE-1 is simple, the dominant eigenvector of w·wv&-1 consistently estimates 

b up to a scale change. 

The previous results on consistency are derived assuming that the number of 

species m remains fixed but the number of sites n increases to infinity. This scenario 

seems appropriate in most ecological studies, but in other applications where m and n can 

both increase to infinity, consistency can be attained without requiring any condition on 

the x/s (Haberman 1977; Portnoy 1988). Nevertheless, the question still remains as to 

how large m and n need to be before accurate estimates can be attained. 

7. SIMULATIONS 

We compared the finite sample performance of the PCA estimator of b (i.e. the MLE 

assuming independence) with the MLE assuming equicorrelated species. The latter 

represents the ideal (albeit unrealistic) case when the covariance structure is known. Data 

were generated according to model (1), with xi simulated from a random uniform (0,1) 

generator. (Without loss of generality, x was normalized to have zero mean.) The 

number of species, m, was fixed at 5, and 4 levels of p (.8,.2,-.1,-.2) and 2 levels of n 

(30,200) were chosen. Each simulation used 1000 replicates. Tables 1a and 1 b contrast 

how the behavior of the estimates of b depend on the value of 2:: xi. 
In Table 1a with :Lx; set equal to n, the PCA estimates behaved according to 

Proposition 3. When mpcr; > c2cr; :Lb] the estimates converged to a constant vector in 
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accordance with the inconsistency result (part (ii)). When c2cr~ 'Ib2 was larger they 
.I 

converged to a b, and this will be the case whenever p<O. (Note that absolute values of 

the estimates were taken since estimates are only determined up to a sign-change.) The 

mean square errors for the ML estimates were smaller than those for the PCA estimates 

when p>O, but were larger when p<O. This suggests that naively assuming independence 

may have its advantages under special circumstances. 

In Table 1 b, 'I xi was fixed at 4 and 'I bJ was increased such that the variability 

in the responses was comparable to that in Table 1a. As expected, the mean square errors 

of both the PCA and the ML estimates no longer diminish with sample size, in agreement 

with the inconsistency results. However, the behavior of the PCA estimates are still 

predicted by the magnitudes of mpcr; and c2cr~ 'I b}. When p>O, c2cr~ 'I b} can be less 

than mpcr; for large sample sizes, and the PCA estimates converged to a constant vector. 

As in Table 1 a, the mean square errors of the PCA estimates were larger if p>O but were 

smaller if p<O. 

For the general case when the species slope parameters do not have mean zero, we 

compared the corrected PCA estimates constructed using Proposition 3(iii) with the ML 

estimates. ML performed better in terms of bias and mean square error, but the advantage 

diminished with weaker correlations and larger sample sizes (Table lc). This is to be 

expected since PCA corresponds to ML estimation under independence, and both 

methods are asymptotically equivalent under the conditions of Propositions 2 and 3. 

Table 2 compares PCA and ML in terms of a summary statistic which is location 

and scale invariant, and thus without having to specify the identifiability constraints. The 

particular statistic chosen was 
1 Ill 

" ~ ~ 2 ~ ~ 2 L..,.(bj-bn,)' 
(b[l]-b[m]) j=l 

where b[11 and b[mJ are respectively the minimum and maximum elements of the estimate 

of b. The biases of the PCA estimates approached zero with increasing sample size 

regardless of the correlation. The standard deviations of the ML estimates were smaller, 
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although the differences were minimal except for large correlations. This suggests that 

PCA may be reasonable for ordering the species slopes under model (1 ), especially for 

the case where p and cr; are unknown and we expect the variability of the ML estimates 

to increase due to their estimation. 

8. EXAMPLES 

We illustrate the construction of the estimator proposed in Proposition 3(iii) using data 

from the national records for men track races in 55 countries (Belcham and Hymans 

1984), which was analyzed by Dawkins (1989) using PCA and the biplot. For our 

purposes, only the completion times (in min./km) of the 1.5 km, 5 km, 10 km, and 

marathon races are analyzed. The assumption of fixed site/country effects seems tenable 

since the countries may be of interests in themselves, and we hypothesize that the 

completion times vary linearly with a latent athletic ability variable. Furthermore, we 

assume an equicorrelated error structure among these four long-distances races, with an 

estimated correlation of 0.93 and variance of 0.11. This was arrived at by using 100 

bootstrap samples of size 20 taken from the original 55 countries. 

(0.58 0.84 0.95 1.06) 
I 1.39 1.52 1.761 

w·w~l 1.76 2.01J and 
2.58 

the PCA estimator is given by b' = (.290 .470 .534 .640) with Amax= .112. The rates of 

change for the four races are then given by (.160 .141 .135 .124). This gives an 

ordination in agreement with the distances of the races and the spacings suggest that the 5 

km and 10 km races are most similar whereas the 1.5 km race is more distinct from the 

other three races. 

Our second example is taken from an agricultural experiment of 40 plots designed 

to test whether intercropping diminishes weed productivity (Mohler and Liebman 1987). 

The authors performed a PCA on the log transformed and standardized weed composition 
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and concluded that there is a latent gradient which runs from barley to intercrop to pea to 

unplanted controls with the least productivity in barley plots and the most in the 

unplanted controls. We split the 40 plots into two random samples, one of which was 

used to estimate the covariance matrix and the other was used for the PCA. The 

estimated correlation matrix of the 3 most abundant weed species, Brassica kaber, 

Ambrosia artemisiifolia and Agropyron repens, was 

-.11 

1.0 
.561 (to 

-.47j, and W'W =l 
1.0 

-.12 

1.0 
.441 

-.40j. 
1.0 

The predicted relative growth rates of the three weed species are then obtained by the 

dominant eigenvector ofW'WV&_, according to Proposition 5, which gives an ordination 

ofthe three species of(-.357 .236 .379)'. 

9. SUMMARY AND DISCUSSION 

ML ordination seeks to uncover the underlying relationship between species and 

environmental data by alternately estimating the species and site parameters for a specific 

model. We formally equated ML ordination with PCA in model (1) for independent errors. 

However, several points should be highlighted. Firstly, ML allows for the estimation of the 

species intercepts aj and certain covariance structures, but PCA does not. Secondly, the sole 

purpose of including the baseline slope c in (1) was to show its relation to the dominant 

eigenvalue in PC A. In fact, ML estimation is simpler in (1) without c, and one of the 

identifiability constraints can also be removed. Thirdly, ML estimation and likewise PCA 

may not even be desirable because of the incidental parameters problem which can lead to 

inconsistent estimators. Lastly, estimates of b are not unique because of its identifiability 

constraint, which implies that asymptotic results can at best establish consistency up to a 

scale change unless the identifiability constraint is known a priori. 

For an equicorrelated error structure, the PCA estimator was shown to be consistent 

up to a scale change when LbjO and c2cr! L b} > mpcr;, but consistent up to a location and 
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scale change without the conditions. For a general covariance matrix, conditions for the 

PCA estimator to be consistent were derived, and when an external estimate of the 

covariance matrix is available, the adjusted PCA estimator is consistent up to a scale change. 

For finite samples, simulations indicated that the mean square errors of the PCA estimates 

were larger than those of the ML estimates for positive correlations but can be smaller for 

negative correlations. Therefore, using PCA may be advantageous when there is reason to 

believe that species share a negative equicorrelated covariance structure. When the results 

were summarized in terms of a location and scale invariant statistic, the ML estimates tended 

to have slightly smaller mean square errors, although in general the performances of PCA 

and ML were similar. This suggests that PCA may be robust for estimating the ranks of the 

species slopes in a linear model with equicorrelated errors. Together, these asymptotic and 

finite sample results strengthen the appeal of PCA for the linear model. 

The proofs of consistency depend on the 'population' assumption of the site 

parameters, which is a consequence of treating the x;'s as fixed effects. This has been the 

traditional approach in ML ordination, yet in cases where the sites are a random sample of 

ecological environments it may be reasonable to treat the x;'s as random effects and thereby 

remove the problem of incidental parameters. The social science literature contains many 

such examples, and their methods may possibly be adapted for use in ordination. Likewise, 

the results here also carry over to other disciplines where the response varies linearly with 

some latent fixed effect. Finally, although the linear model may not be realistic in certain 

situations it serves as an approximation over small ranges of the environmental variable for 

nonlinear models. Research has also begun on the properties of estimators from PCA and 

correspondence analysis in unimodal models. 
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Table la. Absolute values and mean square errors of ML and PCA estimates. 

L.xi=n, L.b}=4, L.b1=0, cr;=2, c=1, a_FO, and b'=(-0.853 -0.689 -0.361 0.295 1.607) 

ML PCA 
p n lb;l mse(b) I b; I mse( b1) c2 cr~ L bJ mpcr; 

0.8 30 0.817 0.065 0.854 0.065 
0.660 0.060 0.850 0.072 
0.368 0.049 0.850 0.261 4 8 
0.321 0.042 0.847 0.323 
1.545 0.061 0.884 0.698 

200 0.851 0.010 0.891 0.010 
0.689 0.010 0.892 0.048 
0.362 0.010 0.892 0.284 4 8 
0.291 0.011 0.888 0.353 
1.592 0.009 0.883 0.552 

0.2 30 0.822 0.073 0.796 0.123 
0.646 0.078 0.648 0.114 
0.386 0.062 0.435 0.093 4 2 
0.318 0.048 0.388 0.084 
1.534 0.051 1.440 0.164 

200 0.850 0.012 0.844 0.028 
0.690 0.013 0.686 0.027 
0.361 0.013 0.363 0.026 4 2 
0.299 0.013 0.299 0.025 
1.589 0.007 1.570 0.024 

-0.1 30 0.816 0.080 0.818 0.076 
0.654 0.087 0.654 0.083 
0.392 0.065 0.389 0.062 4 -1 
0.349 0.062 0.345 0.059 
1.520 0.043 1.526 0.037 

200 0.844 0.012 0.845 0.011 
0.679 0.013 0.680 0.012 
0.361 0.013 0.362 0.013 4 -1 
0.296 0.014 0.296 0.014 
1.597 0.005 1.598 0.004 

-0.2 30 0.793 0.085 0.794 0.081 
0.662 0.089 0.667 0.086 
0.384 0.065 0.382 0.064 4 -2 
0.352 0.060 0.346 0.056 
1.529 0.038 1.533 0.034 

200 0.845 0.013 0.845 0.013 
0.689 0.016 0.689 O.D15 
0.353 0.015 0.353 O.D15 4 -2 
0.292 0.015 0.292 0.014 
1.593 0.004 1.594 0.004 
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Table lb. Absolute values and mean square errors ofML and PCA estimates. 

Ix;2 =4, .LbJ=lOO, .Lb.i=O, cr;=2, c=l, ar=O, and b'=(-4.263 -3.443 -1.804 1.476 8.034) 

ML PCA 
p n lb.il mse(b.i) I bA I (bA ) c2cr2 "b~ .i mse .i xL- 1 

0.8 30 4.208 0.453 4.064 2.033 
3.407 0.493 3.314 1.967 
0.771 0.482 1.928 1.431 13 8 
1.466 0.448 1.683 1.232 
7.944 0.427 7.544 2.729 

200 4.220 0.547 4.469 0.106 
3.414 0.528 4.468 1.098 
1.808 0.525 4.466 7.118 2 8 
1.469 0.536 4.469 8.989 
7.905 0.512 4.450 13.016 

0.2 30 4.232 0.468 4.227 0.546 
3.425 0.525 3.421 0.604 
1.798 0.509 1.801 0.571 13 2 
1.432 0.487 1.434 0.538 
7.925 0.290 7.907 0.374 

200 4.149 0.786 3.849 4.160 
3.361 0.810 3.546 3.459 
1.832 0.772 3.034 3.993 2 2 
1.492 0.727 2.983 4.609 
7.898 0.471 5.828 13.162 

-0.1 30 4.221 0.467 4.222 0.457 
3.446 0.503 3.447 0.493 
1.779 0.533 1.778 0.526 13 -1 
1.479 0.534 1.479 0.527 
7.920 0.193 7.923 0.183 

200 4.207 0.824 4.213 0.748 
3.357 0.922 3.362 0.840 
1.784 0.856 1.780 0.818 2 -1 
1.512 0.736 1.503 0.704 
7.868 0.358 7.885 0.272 

-0.2 30 4.232 0.463 4.233 0.458 
3.401 0.498 3.402 0.490 
1.784 0.559 1.785 0.552 13 -2 
1.489 0.522 1.489 0.513 
7.934 0.147 7.935 0.140 

200 4.157 0.819 4.163 0.776 
3.373 0.956 3.372 0.902 
1.823 0.922 1.822 0.900 2 -2 
1.566 0.852 1.556 0.847 
7.858 0.325 7.869 0.273 
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Table lc. Absolute biases and mean square errors of ML and adjusted PCA 

estimates. L.x?=n, L,b}=4, cr;=1, c=1, a_rO, and b'=(0.156 0.467 0.778 1.090 1.401) 

ML PCA 
A 

p n I bias( bj )I mse( bj) I bias( bj )I rose( bj) 

0.8 30 .037 .018 .133 .084 
.021 .021 .040 .039 
.019 .Oil .065 .041 
.012 .007 .044 .023 
.000 .008 .004 .017 

300 .004 .003 .005 .006 
.002 .002 .008 .004 
.002 .001 .003 .002 
.001 .000 .001 .001 
.000 .001 .001 .002 

0.4 30 .056 .024 .071 .034 
.016 .031 .032 .039 
.012 .029 .028 .037 
.019 .020 .025 .025 
.023 .017 .018 .020 

300 .003 .004 .005 .005 
.004 .003 .007 .004 
.002 .002 .004 .003 
.002 .002 .001 .002 
.000 .002 .001 .002 

0.2 30 .044 .021 .044 .022 
.006 .037 .012 .038 
.021 .032 .024 .033 
.020 .026 .021 .027 
.024 .020 .020 .020 

300 .001 .004 .002 .004 
.000 .003 .001 .004 
.003 .003 .002 .003 
.002 .003 .002 .003 
.002 .002 .002 .002 

-0.2 30 .039 .021 .048 .024 
.001 .034 .002 .036 
.014 .033 .013 .034 
.022 .030 .024 .033 
.029 .020 .033 .022 

300 .000 .004 .000 .004 
.002 .004 .003 .004 
.001 .003 .002 .004 
.003 .003 .003 .003 
.002 .002 .002 .002 
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Table 2. Absolute biases and standard deviations of ML and PCA estimates of a 

location and scale invariant statistic. 

"'x?=n, cr;=2, c=1, a;=O, and b'=(0.054 0.108 0.217 0.433 0.866). 

ML PCA 
p n IBiasl Std IBiasl Std 

0.8 10 .086 .266 .154 .356 
20 .035 .213 .074 .257 
40 .012 .160 .031 .197 
80 .001 .128 .009 .153 
160 .000 .090 .002 .113 

0.2 10 .310 .438 .317 .442 
20 .199 .357 .202 .356 
40 .078 .272 .082 .272 
80 .044 .217 .044 .222 
160 .019 .173 .021 .174 

-0.1 10 .391 .475 .396 .485 
20 .220 .403 .218 .402 
40 .118 .317 .119 .317 
80 .064 .249 .065 .252 
160 .020 .186 .021 .187 

-0.2 10 .354 .456 .370 .487 
20 .212 .373 .231 .380 
40 .109 .307 .123 .309 
80 .062 .251 .070 .256 
160 .029 .190 .034 .192 
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APPENDIX 

Proof of Proposition 1. From (2) the part of the log-likelihood containing the unknown 

parameters is proportional to 
tl 

Itr((z; -cx;b)'V-1(z; -cx;b)) 
i=l 

tl 

= L tr(V-1 (z;- cx;b )(z;- cx;b )') = tr(V-1(Z- cxb')'(Z- cxb')) 
i=l 

= tr(V-1Z'Z) + tr(c2b'V-lbx'x)- 2tr(cV-lbx'Z). 

Assume without loss of generality that b'V-1b=l and x'x=l, then tr(c2b'V-lbx'x)=c2 and 

from (3b) 

2tr(cV-lbx'Z)=2ctr(ZV-lbx')=2ctr(cxx')=2c2. 

Therefore, the log-likelihood attains its maximum when c2 is the largest, which implies 

that the dominant eigenvectors of ( 4) and ( 5) are the MLEs. 

In order to establish Proposition 2 we make use of the following lemma. 

Lemma 1 (Ortega 1972). An eigenvalue is a continuous function ofthe matrix elements. 

If it is also simple (i.e. has multiplicity one) then its associated eigenvector is a 

continuous function of the matrix elements. 

Proof of Proposition 2. Recall that the MLE is the dominant eigenvector of (4). Under 

model (1), the (j,k)th element (j,k=I, ... ,m) ofZ'Z is 

Iz!izik = L(cbixi +e!i)(cbkxi +e;k) 
i i 

According to the iid Weak Law of Large Numbers, 

I"' 2.1-': .k dl"'2 2 - L..e!ieik ~pcre 10rJ"* , an - L..eik ~cre. 
n ; n ; 

Furthermore, when lim_!_ IxJ =h, for hE(O,oo), 
n-->o:> n i 

1. 1 TT c"' ) 1" 1 "" 2 2 1" hcr; Q Im-2 rar L,.x;e;k = tm-2 L,.X; cre = 1m--= , 
,___,., n i ,___,., n i n-->ro n 
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"~ "--2. L.M, . e .k L.M, 

and thus lim-'-'-~0. Define f.l 2x = -' . It follows that 
n-+oo n n 

Observe that 

L = (cr;(l-p)l + pcr;J + c2f.l2xbb') 2 
1 (1- p J) 

crJ1- p) 1- p+ mp 

= (I + kbb' - k(b' 1 )p b1 '), where k = c2 f.l 2x • 

(1 - p + mp) cr; (1- p) 

The eigenvectors of L: are equivalently those defined by the equation 

(kbb'- k(b'1)P b1')u = C"--1)u, 
(1-p+mp) 

where "- is an eigenvalue of L: and u an eigenvector. The matrix in parentheses on the left 

hand side of the equation has rank 1, and it is easily verified that b is an eigenvector with 
(b' 1)2 

eigenvalue k(b'b - p ). The other m-1 eigenvalues all equal zero. This implies 
1-p+mp 

that L: has eigenvalues 

1 + k(b'b - p(b' 1 )2 
), and 1 with multiplicity m-1. 

1-p+mp 

Furthermore, since 
(b' 1)2 

k(b'b - p ) > 0 within the range of p, 
1-(m -1)p 

b is the dominant eigenvector. Let bmte be the dominant eigenvector of Z'ZV-1 with 

eigenvalue "-~nax. It follows by Lemma 1 that since n-1 Z'ZV-1 ~ L:, n-1 "-:ax converges to 

the largest eigenvalue of L:, and n-1 bmte converges to its dominant eigenvector; which is 

sb for some nonzero constants. 

Proof of Proposition 3. Under model (13), the (j,k)th element ofW'W is 

L wii w;k = c2b1bk'f-(x;- .X)+ cb1L-(xi- x)Eik + cb~(xi- x)Eii + 1:-siisik, 
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When lim L.x{ E(O,oo), x is finite and therefore lim_!_ .~)xi -x)Eik---)0. With 
11---><XJ n n--->oon i 

cr~ = L(Xi - x)2 
' it follows that 

n 

n-1W'W---)L, where L=cr;(l-p)I + pcr;J + c2cr~bb'. 

The eigenvectors of L are equivalently those defined by 

(pcr; J + c2cr~ bb')u = (A. - cr; (1-p ))u. 

i) The matrix pcr;J + c2cr~bb' has rank 2. When b'1=0, it has eigenvectors 1 and b with 

eigenvalues pcr;(1'1) and c2cr~b'b respectively. The other m-2 eigenvalues all equal 

zero. This implies that L has eigenvalues 

mpcr; + (1-p )cr;, c2 cr~ (b'b) + (1-p )cr;, and (1-p )cr; with multiplicity m-2. 

It follows by Lemma 1 that when c2cr~(b'b) > mpcr;, n-I"b converges to sb for some 

nonzero constant s. 

ii) Otherwise, 1 is the dominant eigenvector and n-1 b converges to s1 for some nonzero 

constants. 

iii) Using a spectral decomposition on L, we have 
Ill 

cr;(l-p)I + pcr;J + c2cr~bb' = L"-kuku~. 
k=l 

Since the uk's are orthogonal to each other, it follows algebraically that 

(A.1u1'u1 - cr;(l- p))u1 - pcr;(l'u1)1 = c2cr~(b'u 1 )b. 

By Lemma 1, n-1 b converges to u 1 and the result follows. 

Proof of Corollary. According to Proposition 3, n-1 b converges to the dominant 

eigenvector of L, which is also the dominant eigenvector of pcr;J + c2 cr~ bb'. Now since 

(pcr;J + c2cr~ bb')u = pcr;(l 'u)1 + c2cr~ (b'u)b, 

all nontrivial eigenvectors of pcr;J + c2cr~bb' are of the form (s11 + s2b) for nonzero 

constants s1 and s2. Observe that 

(pcr;J + c2 cr~ bb')(s11 + s2b) = pcr;(ms1 + sib'1))1 + c2 cr~ (ms 1 + s2(b'b))b. 

This implies that (s 11 + s2 b) is an eigenvector whenever 
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which solving for 'A gives 

mc2cr: s~ + s1simpcr;- c2cr:(b'b)) + pcr;(b'l)si = 0. 

This conic equation always has a nonzero solution set {s1,s2}, and thus the PCA estimator 

is consistent up to a location and scale change. 

Proof of Proposition 4. Under the conditions of Proposition 4 and following similar 

arguments as in Proposition 3, 

n-IW'W~ c2cr;bb' + VE. 

Observe that if u is an eigenvector of c2cr: bb' + VE, then u is proportional to 

c2cr:(b'u)b + V&u. 

Conditions (i) and (ii) then follow by applying Lemma 1. 

Proof of Proposition 5. Under the conditions of Proposition 5, 

n- 1W'WV-1~L = c2cr2 bb'V-1 + V v-1 
E E X E E E' 

The rest of the proof is similar to that for Proposition 2. Observe first that LE and bb'Ve-1 

share the same eigenvectors. Now bb'Ve-1 has rank 1 and b is its eigenvector with 

eigenvalue c2cr: (b'Ve-1 b). It follows that LE has eigenvalues 

c2cr:(b'Ve-1b)+1, and 1 with multiplicity m-1, 

with bas the dominant eigenvector since c2cr:(b'Ve-1b) is always positive. Therefore, by 

Lemma 1, the dominant eigenvector of W'WV"-1 consistently estimates b up to a scale 

change. 
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