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SUMMARY 

Principal components analysis is shown to be equivalent to maXImum likelihood 

estimation for a linear model with independent Gaussian error terms. Theoretical properties 

are discussed and related to results on a linear functional measurement error model with 

equicorrelated errors. Conditions for consistency of the estimators are established and their 

finite sample performances are examined via simulations. 

Keywords: principal components analysis; maximum likelihood ordination; functional 

measurement error models; incidental parameters; consistency. 

1. Introduction 

Consider an ecological investigation where a researcher samples n different sites and 

for each site records the abundances (e.g. biomass, percentage, frequency) of m different 

species of flora/fauna. The resulting samples-by-species data matrix can then be examined via 

ordination. On the one hand, this involves generating low-dimensional summaries of the data, 

and principal components analysis (PCA) has a long history as such a method (Goodall 1954, 

Orl6ci 1966, Anderson 1971, Gauch 1982). On the other hand, specific models can be 

postulated and hypothetical species and sites scores estimated using maximum likelihood (ML) 

or least squares (Gauch et al. 1974, Ihm & van Groenewood 1984). Ter Braak and Prentice 

(1988) further pointed out that "PCA provides the 1\IIL-solution to the multidimensional linear 

ordination problem if the errors are independent and normally distributed with constant 

variance across species and sites". However, formal discussions concerning the properties of 

the estimators obtained using PCA or l\llL ordination seem scarce in ecological applications. 

Furthermore, the models that have been proposed typically assume species to act 

independently of each other, when in fact symbiosis and competition effects are common in 

ecological studies. This paper formally equates PCA with ML estimation for a linear 

functional measurement error model. Asymptotic and finite sample properties of the 

estimators are then examined assuming an equicorrelated covariance structure; i.e. when there 
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is equal correlation between any two species within a site. This particular correlation structure 

may not truly reflect how species interact in reality but it serves as an initial approximation, and 

allows for tractable asymptotic results. 

2. Model 

We assume the response (possibly transformed) for each species to be a linear function 

of the latent environmental variable with Gaussian additive error. Formally, let yiJ be the 

abundance of the jth species at site i, X; the latent environmental value at site i, a1 and b1 the 

intercept and slope for species j respectively, and c the baseline species slope, such that 

y if = a 1 + ex; b 1 + eif, (i = 1, ... , n; j = 1, ... , m), (1) 

where e; = (e;J> ... , e;m)'- iid N(O, V), 0 is am x 1 vector of zeros, V=cr;(l-p)I + pcr;J, I is a 

m x m identity matrix, J is a m x m matrix of ones, cr; is the error variance, and p is the 

correlation between species. The x;'s, b/s, and c are unknown parameters, whereas the a/s and 

V are assumed given. The introduction of the baseline slope c may seem artificial and letting a1 

and V be known may be unduly restrictive, but this is to illustrate how PCA is related to ML 

estimation in model (1 ). The objective is to recover the underlying linear model by estimating 

the b/s. However, the parameters c, X; and b1 are only identified as a product, and thus 

identifiability constraints must be imposed to obtain unique estimates; e.g. 

IbJ=l and Ix/=1. 
j 

With such a normalization, b1 is identified up to a change in sign. 

Model (1) belongs to the class of linear functional measurement error models since it 

can be rewritten as 

Yol = v. + eC1l 
' 1 J ' 

h (I) _ (y )' (I) _ ( )' (I)_ ( )' J3 _ bl ( } w erey; - i2> ... ,yim, a - a2, ... ,am, e; - ei2> ... ,eim, - m-1 b2, ... , b~), and 

V; = (a2 + cx;b2, ... , am+ cx;bm)' is the latent variable which is only observed as y;1> because of 
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measurement error. In another context, model (1) is the factor analysis model where the cb/s 

are factor loadings and x = (x;, ... , xn)' is an unobservable factor but with fixed instead of 

random components. Both the functional measurement error model and the factor analysis 

model have been studied extensively especially in the econometrics and psychometrics 

literature (Gieser 1981; Anderson 1984; Anderson & Ameniya 1988). However most of these 

results have not been made readily accessible to ecologists partly because of the unfamiliar 

notation, and independent errors are often assumed. In the following sections, we summarize 

some of the results that relate specifically to PCA and ML ordination. 

3. Existence of MLE 

It is well known that the existence of maximum likelihood estimators (MLEs) for 

functional measurement error models hinges on the structure of the covariance matrix. If V 

were unknown and totally arbitrary, the likelihood would be unbounded and no maximum is 

attainable (Anderson & Rubin 1956; Kendall & Stuart 1979; Gieser 1981). The log-likelihood 

for model (1) is 

logL =- m; log(2n")- ~ logjVj- ~ f (z; - CX; b)' V-1 (z; - CX; b), (2) 
1=1 

where b = (b1, ... , bm)', z; = (z; 1, ••. , Z;m)', and we write zij = yij- a1 for notation convenience. 

Now, 

JVJ = a;mJ(1-p)l+pJJ = a;m(l-p)m-i (1 +(m-l)p), 

and 

v-1 = 1 (I - P J) . 
cr;(l-p) 1-p+mp 

Therefore logL is proportional to 

n 
--(mlogcr; + (m- 1) log (1 - p) + log(l + (m- 1) p)-

2 
1 n p ' 

2 ~)r((I- 1 J)(z; -ex; b)(z; -ex; b) ). 
2cre(l- p) i=1 - P + mp 
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By inspection, we see that c, X; and bj cannot be chosen such that (z; - ex; b )(z; - ex; b)' is 

identically zero because of identifiability constraints on the x;'s and b/s. This implies that the 

log-likelihood is bounded away from positive infinity since the terms involving p and cr; that 

can drive the likelihood towards infinity compensate each other. Hence, for an equicorrelated 

V the existence of MLEs in model ( 1) is guaranteed, although in general this must be checked 

for each individual covariance structure. In ML ordination, interest is traditionally on 

estimating the mean structure and so we assume V to be given. This avoids the issue of 

nonexistence ofMLEs and illustrates the connection between ML estimation and PCA. 

4. MLE as an Eigenvector Solution 

With V known, the likelihood equations for the parameters c, x, and b are respectively 

c(b'V-lb)(x'x) = x'ZV-Ib, 

cx(b'V-1b) = ZV-1b, and 

cb(x'x) = Z'x, 

(3a) 

(3b) 

(3c) 

where Z ={zif} is the nxm matrix of species abundances. Equation (3a) can be derived from 

either (3b) or (3c) and hence is redundant. According to (3b) and (3c), the MLE of X; is 

obtained by a weighted regression of the rows of Z on b, whereas the MLE of bj is obtained by 

regressing the columns of Z on x. This suggests that instead of jointly maximizing the 

likelihood (2), one can find the ML estimates by iterating between the individual likelihood 

equations (3b) and (3c) until convergence. T!tis algorith..tn is k_nown as the Gauss-Seidel-

Newton (GSN) method (Ortega & Rheinboldt 1970; Thisted 1988). Equations (3b) and (3c) 

can also be combined to give 

Z'ZV-1b = c2b and 

ZV-1Z'x = c2x, 

(4) 

(5) 

using the normalizations b'V-1b = 1 and x'x = 1 to ensure identifiability of the parameters. This 

shows that c2 is an eigenvalue, and x and b are eigenvectors. In fact the following proposition 

holds. 
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Proposition 1. Let model (I) hold. The MLEs ofx and bare then the dominant eigenvectors 

(i.e. those associated with the largest eigenvalue) of(4) and (5). 

Proof: See Appendix. 

5. Principal Components Analysis 

Introduced to ecologists by Goodall (I954}, PCA provides an orthogonal least squares 

approximation to the data via a singular value decomposition (Greenacre I984). Let W = 

{yii-yi} be the nxm matrix of species abundances with the mean of each species subtracted 

from its columns. IfW has rank r, the singular value decomposition ofW is 
r 

W = :L..tk Pk q~, such that (6) 
k=J 

lkqk= W'pk and lkpk= Wqk, 

WW'pk= A2k Pk, 

W'Wqk= ..l~ qk, 

p ~ p 1 = Q~ Ql = 0 kl, Where Okl is Kronecker'S delta. 

(7) 

(8) 

(9) 

PCA is usually used by ecologists as a data reduction technique, with the output summarized in 

a 2-dimensional plot. The first two terms in (6) are selected and the coordinates (..l1p 1;, ~P2;) 

(I= I, ... , n) and (q1j, q2)(j = I, ... , m) or its other rescaled versions are then plotted together 

for a visual appraisal of the relationship between species and sites (Gabriel I97I). This 

application is mainly descriptive and does not explicitly require a model for the data. 

However, PCA can also be viewed as multivariate linear regression with latent predictors. 

Choose a rank one approximation to W by selecting only the first term in ( 6}, then 

/...q = W'p and /...p = Wq, yielding 

W'Wq = ..l2 q, and 

WW'p= ..l2 p. 

(10) 

(II) 

(12) 

Observe that (II) and (I2) have the same form as the likelihood equations (4) and (5) but with 

V = I. Now since 

(13) 
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and (e;1- e:P ... , eim- e:m)' ~ iid N(O, (1 - n-1)V), the likelihood for (13) has the same form as 

that for model (1 ). Therefore, solving for A., P;, and q1 in (1 0) is equivalent to finding the 

:MLEs of c, X;- x, and b1 respectively in (1) but assuming p = 0. 

6. Consistency 

The previous section showed that PCA is equivalent to ML estimation of the species 

and sites parameters in model ( 1 ), but the number of site parameters, X;, increases with the 

sample size n. This leads to the infinite incidental parameters problem (Neyman & Scott 

1948), and causes the :ML approach to give inconsistent estimators unless some 'population' 

assumption is imposed on the x;'s. In order to establish consistency we make use of the 

following lemma. 

Lemma 1 (Ortega 1972). An eigenvalue is a continuous function ofthe matrix elements. If it 

is also simple (i.e. has multiplicity one) then its associated eigenvector is a continuous function 

of the matrix elements. 

Proposition 2. Let model (1) hold. If lim Lx;2 = h, where hE(O,oo), and A-max' the maximum 
n~oo n 

eigenvalue of Z'ZV-1 is simple, then the MLE of b consistently estimates sb for some nonzero 

constants. 

Proof: See Appendix. 

The condition that lim u; be positive and finite is in fact the univariate version of Gieser's 
n~oo n 

( 1981) assumption C for establishing consistency for estimators in errors in variables 

regression models. Anderson & Taylor (1975) also required a similar condition for proving 

strong consistency of the least squares estimator when the number of independent variables 

increases with sample size. Intuitively, this suggests that we regard X; as coming from some 

population with finite variance, which is reminiscent ofK.iefer & Wolfowitz's (1956) approach. 

For the PCA estimator; i.e. the eigenvector ofW'W, additional conditions on the eigenvalues 

are required for consistency. 
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Proposition 3. Let model (1) hold. If lim rx; is positive and finite, b'l = 0, A-max ofW'W is 
n-->OO n 

I:(x -x/ 
simple, and pcr;(t'l) < c2 ~(b'b), where ~ = ; Then the PCA estimator 

n 

consistently estimates sb for some nonzero constants. 

Proof: See Appendix. 

In ordination, sometimes only the ordering of the species is important and thus it 

suffices to estimate the parameters up to a location and scale change. In such cases, the PCA 

estimator is consistent up to a location and scale change given only the 'population' assumption 

on the x/s. 

Corollary. Let model (1) hold. If lim u; is positive and finite, and A-max of W'W is simple, 
n-->OO n 

then the PCA estimator consistently estimates (s11 + s2b) for nonzero constants { s 1, s2 }. 

The previous results on consistency are derived assuming that the number of species m 

remains fixed but the number of sites n increases to infinity. This scenario seems appropriate in 

most ecological studies, but in other applications where it is reasonable for both m and n to 

increase to infinity, consistency can be attained without requiring any condition on the x/s 

(Haberman 1977; Portnoy 1988). The main condition for consistency is that the ratio of the 

parameter size over the samples size tends to zero. This implies that consistent estimates of 

both x and b in model (1) can be obtained when mrr1 ~ 0. Nevertheless, the question still 

remains as to how large n needs to be relative to m before accurate estimates can be attained. 

7. Simulations 

We compared the finite sample performance of the PCA estimator of b (i.e. the MLE 

assuming independence) with the MLE assuming equicorrelated species. The latter represents 

the ideal (albeit unrealistic) case when we know the species covariance structure. Data were 

generated according to model (1), with X; simulated from a random uniform (0,1) generator. 

(Without loss of generality, x was normalized to have zero mean.) The number of species, m, 

was fixed at 5, and 4 levels of p (.8, .2, -.1, -.2) and 2 levels of n (30,200) were chosen. Each 
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simulation used 1000 replicates. Tables la and lb contrast how the behavior of the estimates 

of b depend on the value of 'L xJ . 

In Table la with 'LxJ set equal to n, the PCA estimates behaved according to 

Proposition 3. When mpcr; was larger the estimates converged to 1. When c2CY; 2: bJ was 

larger they converged to b, and this will be the case whenever p < 0. (Note that absolute 

values of the estimates were taken since estimates are only determined up to a sign-change.) 

The mean square errors for the ML estimates were smaller than those for the PCA estimates 

when p > 0, but were larger when p < 0. This suggests that naively assuming independence 

may have its advantages under special circumstances. 

In Table 1 b, 2: xJ was fixed at 4 and 2: b'j was increased such that the variability in the 

y's was comparable to that in Table la. As expected, the mean square errors of both the PCA 

and the ML estimates no longer diminish with sample size, indicating the inconsistency of the 

estimators. However, the behavior of the PCA estimates can still be predicted by the 

magnitudes of mpcr; and c2CY; L bl. When p > 0, c2CY; 'Lbl can be less than mpcr; for large 

sample sizes, thereby causing the PCA estimates to converge to 1. As in Table la, the mean 

square errors of the PCA estimates were larger if p > 0 but were smaller if p < 0. 

Table 2 compares PCA and ML in terms of a summary statistic which is location and 

scale invariant, and thus without having to specify the identifiability constraints used in model 

(1 ). The particular statistic chosen was 
i m A A 2 

A A 2 L(b1 -bm) , 
( b[l] - b[m]) j=l 

where b[JJ and b[mJ are respectively the minimum and maximum elements of the estimate of b. 

As predicted by theory, the biases of the PCA estimates approached zero with increasing 

sample size regardless of the correlation. The standard deviations of the ML estimates were 

smaller, although the differences were minimal except for large correlations. 
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8. Summary 

ML ordination seeks to uncover the underlying relationship between species and 

environmental data by alternately estimating the species and site parameters for a specific model. 

We addressed several important aspects of this technique. First, the model was extended by 

allowing for interaction between species. Second, the issue between identifiability constraints and 

uniquely defined estimates was delineated. Third, conditions for consistent estimators of the 

species parameters were established when the number of latent site parameters increased with 

sample size. We demonstrated how model ( 1) is equivalent to a functional linear measurement 

error model. For this model, PCA is the same as ML estimation of the x/s and h/s for 

independent errors. It should be noted however that ML allows the estimation of certain error 

structures but PCA assumes the covariance structure to be known. The MLE of b is inconsistent 

unless some 'population' assumption is imposed on the site parameters. The PCA estimator 

requires in addition that 'Lh1= 0 and c2CJ! L.b; > mpa;, although in general it is consistent up to 

a location and scale change. For finite samples, simulations indicated that the mean square errors 

of the PCA estimates were larger than those of the ML estimates for positive correlations but can 

be smaller for negative correlations. Therefore, using PCA may be advantageous when there is 

reason to believe that species have a negative equicorrelated covariance structure. Whether this 

would hold true for other covariance structures remains to be verified separately. When the 

results were summarized in terms of a location and scale invariant statistic, the performances of 

PCA and ML were generally similar, although the ML estimates tended to have slightly smaller 

mean square errors. 
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Table la. Absolute values and mean square errors of ML and PCA estimates. 

L.x; = n, L.bJ = 4, 'Lb1 = 0, a;= 2, c = 1, and b' = (-0.853 -0.689 -0.361 0.295 1.607) 

ML PCA 
p n lh1 l mse(~) c2~ L.b} mpfi; 

0.8 30 0.817 0.065 0.854 0.065 
0.660 0.060 0.850 0.072 
0.368 0.049 0.850 0.261 4 8 
0.321 0.042 0.847 0.323 
1.545 0.061 0.884 0.698 

200 0.851 0.010 0.891 0.010 
0.689 0.010 0.892 0.048 
0.362 0.010 0.892 0.284 4 8 
0.291 0.011 0.888 0.353 
1.592 0.009 0.883 0.552 

0.2 30 0.822 0.073 0.796 0.123 
0.646 0.078 0.648 0.114 
0.386 0.062 0.435 0.093 4 2 
0.318 0.048 0.388 0.084 
1.534 0.051 1.440 0.164 

200 0.850 0.012 0.844 0.028 
0.690 0.013 0.686 0.027 
0.361 0.013 0.363 0.026 4 2 
0.299 0.013 0.299 0.025 
1.589 0.007 1.570 0.024 

-0.1 30 0.816 0.080 0.818 0.076 
0.654 0.087 0.654 0.083 
0.392 0.065 0.389 0.062 4 -1 
0.349 0.062 0.345 0.059 
1.520 0.043 1.526 0.037 

200 0.844 0.012 0.845 0.011 
0.679 0.013 0.680 0.012 
0.361 0.013 0.362 0.013 4 -1 
0.296 0.014 0.296 0.014 
1.597 0.005 1.598 0.004 

-0.2 30 0.793 0.085 0.794 0.081 
0.662 0.089 0.667 0.086 
0.384 0.065 0.382 0.064 4 -2 
0.352 0.060 0.346 0.056 
1.529 0.038 1.533 0.034 

200 0.845 0.013 0.845 0.013 
0.689 0.016 0.689 0.015 
0.353 0.015 0.353 0.015 4 -2 
0.292 0.015 0.292 0.014 
1.593 0.004 1.594 0.004 
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Table lb. Absolute values and mean square errors ofML and PCA estimates. 

L.xJ = 4, L.bf = 100, "f.bi = 0, cr; = 2, c =I, and b' = (-4.263 -3.443 -1.804 1.476 8.034) 

ML PCA 
p n lhil mse(b) c2 ci; L.bf mpd; 

0.8 30 4.208 0.453 4.064 2.033 
3.407 0.493 3.314 1.967 
0.771 0.482 1.928 1.431 13 8 
1.466 0.448 1.683 1.232 
7.944 0.427 7.544 2.729 

200 4.220 0.547 4.469 0.106 
3.414 0.528 4.468 1.098 
1.808 0.525 4.466 7.118 2 8 
1.469 0.536 4.469 8.989 
7.905 0.512 4.450 13.016 

0.2 30 4.232 0.468 4.227 0.546 
3.425 0.525 3.421 0.604 
1.798 0.509 1.801 0.571 13 2 
1.432 0.487 1.434 0.538 
7.925 0.290 7.907 0.374 

200 4.149 0.786 3.849 4.160 
3.361 0.810 3.546 3.459 
1.832 0.772 3.034 3.993 2 2 
1.492 0.727 2.983 4.609 
7.898 0.471 5.828 13.162 

-0.1 30 4.221 0.467 4.222 0.457 
3.446 0.503 3.447 0.493 
1.779 0.533 1.778 0.526 13 -1 
1.479 0.534 1.479 0.527 
7.920 0.193 7.923 0.183 

200 4.207 0.824 4.213 0.748 
3.357 0.922 3.362 0.840 
1.784 0.856 1.780 0.818 2 -1 
1.512 0.736 1.503 0.704 
7.868 0.358 7.885 0.272 

-0.2 30 4.232 0.463 4.233 0.458 
3.401 0.498 3.402 0.490 
1.784 0.559 1.785 0.552 13 -2 
1.489 0.522 1.489 0.513 
7.934 0.147 7.935 0.140 

200 4.157 0.819 4.163 0.776 
3.373 0.956 3.372 0.902 
1.823 0.922 1.822 0.900 2 -2 
1.566 0.852 1.556 0.847 
7.858 0.325 7.869 0.273 
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Table 2. Biases and standard deviations of ML and PCA estimates of a location and scale 

invariantstatistic. LX;2 =n,cr;=2,c=1,andb'=(0.054 0.108 0.217 0.433 0.866). 

ML PCA 
p n B" I as Std B. tas Std 

0.8 10 .086 .266 .154 .356 
20 .035 .213 .074 .257 
40 .012 .160 .031 .197 
80 .001 .128 .009 .153 
160 .000 .090 .002 .113 

0.2 10 .310 .438 .317 .442 
20 .199 .357 .202 .356 
40 .078 .272 .082 .272 
80 .044 .217 .044 .222 
160 .019 .173 .021 .174 

-0.1 10 .391 .475 .396 .485 
20 .220 .403 .218 .402 
40 .118 .317 .119 .317 
80 .064 .249 .065 .252 
160 .020 .186 .021 .187 

-0.2 10 .354 .456 .370 .487 
20 .212 .373 .231 .380 
40 .109 .307 .123 .309 
80 .062 .251 .070 .256 
160 .029 .190 .034 .192 
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APPENDIX 

Proof of Proposition 1. From (2) the negative log-likelihood is proportional to 
n 

L:tr((z; -cx:;b)'V-1 (z; -cx:;b)) 
i=l 

n 

= 2:tr(V-1(z; -cx:;b)(z; -cx:;b)') = tr(V-1(Z- cxb')'(Z- cxb')) 
i=l 

= tr(V-lZ'Z) + tr(c2b'V-1bx'x)- 2tr(cV-1bx'Z). 

With b'V-lb = 1 and x'x = 1, tr(c2b'V-1bx'x) = c2 and from (3b) 

2tr(cV-1bx'Z) = 2tr(c2xx') = 2c2. 

Therefore, the log-likelihood is proportional to c2 and attains its maximum for the largest c2, 

which implies that the dominant eigenvectors of(4) and (5) are the MLEs. 

Proof of Proposition 2. Recall that the MLE is the dominant eigenvector of (4). Under model 

(1), the (j,k)th element (j,k= 1, ... , m) ofZ'Z is 

L:Zifzik = L(cb1x; +eif )(cbkxi +e;k) 

According to the iid Weak Law ofLarge Numbers, 

1" 2C.. k d1" 2 2 - L...Jeifeik~ pcre J.Orj -:f:. , an - L...;eik ~ ae. 
n ; n ; 

Furthermore, when lim_!_ LX;2 = h, for hE(O,oo), 
n~oo n i 

lim~ Var(L x;e;k) =lim~ L X;2 0: =lim hd; = 0, 
n~oo n i n~oo n i n~oo n 

Lx:e.k :u:z 
and thus lim-'-' ~ 0. Define fizx = -' . It follows that 

n~oo n n 

Observe that 

L = (a;(l- p)l + pcr;J + C2Ji.2xbb') 2 
1 (I+ 1 p J) 

cre(l-p) -p +mp 

k(b'l) c2 

= (I + kbb' - P bl ') where k J..lzx 
(1- p + mp) ' cr; (1- p) · 
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The eigenvectors of~ are equivalently those defined by the equation 

(kbb'- k(b'l)p bl')u =(A.- l)u 
(1- p + mp) , 

where A is an eigenvalue of~ and u some vector. Now kbb' - (l k(b'l)p ) bl' has rank 1, 
-p + mp 

p(b'l) 2 

and it is easily verified that b is an eigenvector with eigenvalue k(b'b ) The 
1-p + mp · 

other m - 1 eigenvalues all equal zero. This implies that ~ has eigenvalues 

1 + k(b'b 1 p(b'l) 2 
), and 1 with multiplicity m - 1. 

-p + mp 

Furthermore, since 

_Ab'l)2 

k(b'b- ) > 0 within the range of p, 
1-(m-l)p 

b is the dominant eigenvector. To complete the proof, let b be the dominant eigenvector of 

Z'ZV-1 with eigenvalue Amax· It follows by Lemma 1 that since n-1Z'ZV-1~ ~. n-1 Amax 

converges to the largest eigenvalue of~, and n-1b converges to its dominant eigenvector; i.e. 

sb for some nonzero constant s. 

Proof of Proposition 3. Under model (13), the (j, k)th element ofW'W is 

~wv.wik = c2b1bk'L(x;- .X)+ cb1'L(xi- x)eif+ cbk'L(xi- .X)bfk + 'L&ifbfk, 
i 

1~ 2~ . k dly,.2 2 - £..J Bij&ik ~ fXJe lOr]-::;:. , an - £..... G;k ~ Cje. 
n; n; 

When lim u; is positive and finite, x is finite and thus lim..!_~ (x; - x)&;k ~0. With 
n-+ao n n-+CO n j 

a: = L( X; - xi , it follows that 
n 

n-1W'W ~~.where~= cr;(l-p)l + pcr;J + c20:bb'. 

The eigenvectors of~ are equivalently those defined by 

(pcr;J + c20:bb')u =(A- cr;(l-p))u. 
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Now (pcr;J + c2 0:bb')b = pcr;(l'b)l + c2 0:(b'b)b which cannot be a multiple of b unless 

b'l = 0. The matrix pcr;J + c2 0:bb' has rank 2. When b'l = 0, it has eigenvectors 1 and b 

with eigenvalues pcr;(l'l) and c2 0:b'b respectively. The other m- 2 eigenvalues all equal 

zero. This implies that L has eigenvalues 

mpcr; + (1- p)cr;, c2a;(b'b) + (1- p)cr;, and (1- p)cr; with multiplicity m- 2. 

Let b be the dominant eigenvector of W'W with eigenvalue A-max· It follows by Lemma 1 that 

when c2 0: (b' b) > m ,ocr;, n-1 b converges to sb for some nonzero constant s. 

A 

Proof of Corollary. According to Proposition 3, n-1 b converges to the dominant eigenvector 

ofL, which is also the dominant eigenvector of pcr;J + c2 a;bb'. Now since 

all nontrivial eigenvectors of pcr;J + c2 a; bb' are of the form (s11 + s2b) for nonzero constants 

s1 and s2 . Observe that 

(pcr;J + c2a; bb')(s11 + s2b) = pcr;(ms1 + s2(b'l))l + c2a;(ms1 + s2(b'b))b. 

This implies that (s11 + s2b) is an eigenvector whenever 

pcr;(ms1 +sib'l))=A.s1 andc2 a;(ms1 +sib'b))=A.s2, 

which solving for 2 gives 

mc20:s( +s1simpcr; -c2 a;(b'b))+pcr;(b'l)si =0. 

T!-o..is coPic equation always has a nonzero solution set {s1,s2}, and thus the PCA estimator is 

consistent up to a location and scale change. 
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