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1 Introduction 

The multinomial pro bit (MNP) model for unordered categorical data has its roots in the biometrics 

and econometrics literature (Ashford and Sowden 1970, Hausman and Wise 1978 and Daganzo 

1980). The appeal of this model is that arbitrarily complicated covariance structures (including 

multi-period data) can be modeled quite naturally, unlike the multinomiallogit model. However, 

despite its broad applications in discrete economic choice behavior, usage has been limited by the 

computational burden associated with estimating the parameters. Evaluation of the likelihood 

function for this model requires a method to compute multi-normal orthant probabilities. This 

calculation is difficult unless the dimension of the multi-normal distribution is less than five, or the 

error variance matrix has a special structure (Hajivassiliou, McFadden, Ruud, 1992). 

Previous work on a likelihood analysis of the MNP model focuses on numerically maximizing 

a simulation-based estimate of the likelihood function (Lerman and Manski 1981, Geweke 1989, 

Stern 1992, Barsch-Supan and Hajivassiliou 1993). This simulated maximum likelihood approach 

suffers from two severe drawbacks. First, it deals with likelihood calculations which are typically 

computationally difficult compared to log-likelihood calculations. Often this drawback manifests 

itself in the form of numerical instabilities, sensitivity to starting values and poor convergence 

properties, especially for larger problems. Second, there appears to be a misplaced focus on the 

accuracy and precision of the simulator, rather than efficient maximization using such a simulator. 

For problems with a large number of parameters, efficient maximization should be as important a 

concern. 

Some work has been done on developing alternative estimation methods (McFadden 1989, Ha­

jivassiliou and McFadden 1990, Keane 1993, McCulloch and Rossi 1994). McFadden (1989) pro­

posed the method of simulated moments (MSM) which involves substitution of simulated orthant 

probabilities into moment conditions. The computational effort required for this method grows 

quite rapidly relative to the size of the problem, especially for multi-period models. Keane (1993) 

suggested a computationally feasible variant of this MSM approach which factors the choice prob­

abilities into transition probabilities. McCulloch and Rossi ( 1994) describe a Bayesian analysis of 

the MNP model using very diffuse, but proper priors. Their justification for using proper priors 

rests on the fact that improper priors do not necessarily lead to proper posterior distributions for 

this class of models (see Natarajan and McCulloch (1995) for a proof for a special case). 
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This paper describes maximum likelihood estimation in the MNP model via a Monte Carlo EM 

(MCEM) algorithm (Wei and Tanner, 1990). Our motivation for using EM is three-fold: (i) it 

circumvents direct evaluation of the likelihood function which is a tremendous computational ad­

vantage; (ii) the iterates are automatically confined to lie in the parameter space; (iii) in practice, it 

has been found to converge from a wider range of starting values than other iterative maximization 

routines. A Monte Carlo implementation of Louis' (1982) method is developed to estimate the 

asymptotic variance matrix of the MLE. We compare our MCEM approach with the smooth simu­

lated maximum likelihood (SSML) approach advocated by Barsch-Supan and Hajivassiliou (1993), 

which they show to be superior to extant methods. We demonstrate through a simulated example 

that MCEM converges to the MLE more quickly and accurately than SSML. The computational 

time required for each of these methods to converge is also reported for some larger problems. 

Extensions of this MCEM method for analyzing multi-period models and non-normal data are 

developed. We show that our approach can be adapted very naturally to accommodate complicated 

panel models with any number of fixed effects and arbitrary variance structures. While the SSML 

approach can also be generalized to handle panel data, it does so by directly estimating the high­

dimensional integrals that result from repeated observations on each individual. This method can 

become computationally intensive and inefficient for large problems with several discrete choices 

and time periods. Lastly, an important advantage of the MCEM framework is the fact that it is not 

dependent on the normality assumption of the MNP model. In fact it can be readily adapted for 

other limited dependent variable models (multinomiallogit, Tobit regression). This has not been 

previously possible. Current likelihood procedures for the MNP model are intrinsically dependent 

on distributional assumptions. 

This paper is organized as follows. The MNP model (for a single time period) is formulated in 

Section 2. By way of notation, we will use boldface characters to denote vectors and 1 for the trans­

pose operator. In Section 3 we describe maximum likelihood estimation for this model. Estimation 

of the asymptotic standard errors is discussed in Section 4. In Section 5 the computations are 

illustrated through two examples. The first example is a simulated 3 choice data set with a single 

fixed effect. We show that MCEM is more accurate and efficient than SSML. The second exam­

ple is actual customer data on the quantity demanded of several menu items at a medium-priced 

family restaurant (Kiefer, Kelly and Burdett, 1994). In Section 6 we demonstrate that MCEM 
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can be easily modified to handle multi-period data as well as non-normal models. We use this 

multi-period MCEM procedure to study consumer panel data on the household purchase of peanut 

butter (ERIM panels, A. C. Nielsen). 

2 The Model 

Assume that N agents/individuals choose among a set of c choices. The observed data is a multino­

mial vector Wi = {Wit. ... , Wic}' for every agent i. Each component of Wi is binary and specifically: 

Wij = I (agent i chooses choice j) , 

where I(.) is the indicator function. Further, the set of c choices are discrete so that l::j=1 Wij = 1. 

The MNP model arises by postulating the existence of a latent continuum Ui = { Uit. ... , Uic}' 

which generates the observed Wi in the following manner: 

(1) 

and 

Ui ,...., Nc (Xt {3*' n*)' (2) 

where Xt is a known c X p design matrix of exogenous variables, /3* the unknown p x 1 vector of 

fixed effects, and f!* a c X c variance matrix. 

It is typical to regard the Ui as the un-measured utility or value of the c choices to the ith 

individual. Thus, model ( 1) suggests that an agent picks the choice that has the largest utility 

to them. It is unimportant whether we actually believe in these underlying Ui or simply use it 

as a mechanism for estimation. However, in practice there are numerous applications where the 

existence of the underlying continuum can be easily justified (marketing, economics, biometrics, 

public health). 

The choice model as stated in (1) and (2) is not identified (Dansie, 1985). In order to achieve 

identification it is conventional to re-formulate it in terms of the relative differences of the utilities 

from some baseline utility. Define Yij = Uij - UiCl V j. It is easy to see that Yi = {Yil, ... , Yic-d' 

satisfies: 

(3) 
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where Xi, (3, n are the appropriate transformations of Xi, /3*, !1*. Further, (1) can be re-expressed 

as 

(4) 

Since the scale of the relative utilities Yii is indeterminate, we set the first diagonal element of n 
equal to 1 (Geweke, Keane and Runkle, 1994). 

2.1 The Estimation Problem 

The focus of this paper is on maximum likelihood estimation of j3 and n. In practice there can 

be several other quantities of interest, for example, the choice probabilities, gradients of these 

probabilities, etc. The MNP likelihood is given by: 

N e 

L(/3, n ;w1, ... , wN) rrrr 
i=l j=l 

Wij 
7r .. 

ZJ (5) 

where 1rij is the probability that individual i chooses choice j. For each i, these 1rij satisfy the 

constraints: 
e 

1rij > o, I.: 1rij 1, 
j=l 

and are given by: 

1rij P (Yii = mkx{yik}) , 

j <Pe-l (Xi /3, !1) I (Yii = mkx{Yik}) dyi, 

where <Pe-l (.) is the ( c - 1) dimensional multi-normal density function. The above integral does 

not have a closed form except for special cases of n. 
Thus, the estimation problem is complicated since the likelihood is typically not available in 

closed form. Further, if the number of discrete choices is greater than five, numerical integration 

estimates of the 1rij are not a computationally feasible or accurate option (Hajivassiliou, McFadden 

and Ruud, 1992). Current techniques to estimate the MLE focus on obtaining a simulation-based 

estimate irij of the choice probabilities 1rij· Numerical routines are then used to maximize the 

estimate of the likelihood function formed by inserting irij into (5). Several estimators of 1rij have 

been proposed (Lerman and Manski 1981, Geweke 1989, Stern 1992, Barsch-Supan and Hajivassiliou 
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1993). However, despite the extensive results published on the accuracy and precision of these 

simulators, there have been very few results on the accuracy of the resulting approximations to 

the MLE. The examples described in Section 5.1 suggest that if the goal is maximum likelihood 

estimation, it is not adequate to only focus on good estimates of the likelihood, but in fact efficient 

maximization should be as important a concern. 

We develop a Monte Carlo EM approach to estimate the MLE of j3 and n. This approach 

circumvents direct evaluation and maximization of the observed likelihood by taking advantage of 

the latent structure of the model. We demonstrate through three examples that our approach 

is computationally feasible for any number of choices, fixed effects parameters and arbitrarily 

complicated covariance structures. 

3 Maximum Likelihood Estimation 

In this section we describe maximum likelihood estimation using a Monte Carlo EM algorithm. The 

Expectation Maximization algorithm (Dempster, Laird and Rubin, 1977) is a powerful numerical 

tool used for computing ML estimates in standard incomplete data problems. The basic premise 

is that the maximization based on the observed (incomplete) data is computationally intractable. 

However, by augmenting the observed data, the hard maximization can be reduced into a sequence 

of easier problems. We first review the EM algorithm in general and then describe the specifics for 

the MNP model. 

3.1 Review of the EM algorithm 

In the usual EM terminology let z = {y, w} denote the complete data, where w is observed and 

y is missing data. We assume that z is indexed by ad-dimensional parameter 0, and the goal is to 

find the MLE of 0. If z were observed, the objective would be to maximize: 

£(0;z) = ln[ziOJ 

where [ .] denotes probability density or mass functions. However, since only the w are observed, 

we need to maximize: 

£(0; w) ln [w I OJ 
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= ln j [y, w I B] dy. 

It is the integration which can make the maximization of the observed data log-likelihood tedious, 

even when maximizing the complete data log-likelihood is trivial. The EM algorithm maximizes 

£(0; w) by iteratively maximizing E [£(0; z) I w]. Each iteration has 2 steps: an Expectation-step 

and a Maximization-step. The ( m + l)st E-step computes: 

Q(B I o(m)) = E [£(0; z)] 

where the expectation is with respect to the conditional density of the missing data given the 

0 bserved data, namely, [y I w' o( m) ]. The ( m+ 1 )st M -step then finds O( m+ 1 ) to maximize Q ( 0 I o( m)). 

Although this algorithm works quite generally for any model, it is particularly useful when the 

complete data are from an exponential family, since the E-step merely reduces to finding the 

complete-data sufficient statistics. 

Sometimes the computations required for the E-step are hefty. In such cases a Monte Carlo 

estimate can be obtained by estimating Q(B I O(m)) by 

E~=l £(0; y(r), w) 
R 

where y(r) "' [y I w, o(m)], r = 1, ... , R. This leads to a Monte Carlo EM method (Wei and Tanner 

1990). 

3.2 MCEM for the MNP Model 

We use the EM algorithm with the following definitions. We regard the missing data as the 

vector of relative utilities {y;, i = 1, ... , N}. Once the Yi are assumed known, the observed w; are 

degenerate. Hence, the complete data is simply the multi-normal vector {yi, i = 1, ... , N}. It is 

this fact that allows EM to circumvent direct evaluation of the likelihood function. We will see later 

that the observed Wi only comes into play in terms of defining the appropriate region of truncation 

for Yi· The complete data log-likelihood is given by: 

N 
N I 1 L I -1 -- ln 1 n - - e. n e · 2 2 . l l 

1=1 

- ~ ln 1n1 - ~ tr (n-1 t ei e:) 
1=1 
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where ei Yi - Xi {3. The E-step is conceptually simple. For each i, we need to calculate: 

TheM-step is also straightforward. We maximize 

N 1 ( N ) -- In 1!11-- tr n-t L Qi(f3) 
2 2 i=l 

with respect to {3 and the ( c (c;t) - 1) parameters in n. It is well known that the joint maximizing 

values of {3 and n are not in closed form. Thus, we adopt Meng and Rubin's (1993) suggestion 

of replacing this M-step with 2 conditional M-steps; the first is a maximization with respect to {3 

conditional on the elements of n, and the second is a maximization over the unknown elements 

of n conditional on the updated value of {3. This leads to a Monte Carlo Expected Conditional 

Maximization (MCECM) algorithm. However, in the rest of this paper, we will continue to refer 

to our approach as a Monte Carlo EM (MCEM) method for brevity. The conditional ML estimate 

of {3 is simply the generalized least squares estimator: 

while the conditional ML estimate of n is obtained by maximizing 

(6) 

with respect to the parameters in n. Although the maximization of (6) requires an iterative 

procedure, it is a standard calculation and would need to be performed even if the Yi were observed. 

Non-linear functions such as (6) are relatively well-studied and there are several extremely efficient 

algorithms to perform the maximization (Jennrich and Schluchter 1986). 

Thus, we have shown that the only additional computations required for ML estimation of 

discrete choice data is the calculation of E [Yi I wi] and Var [Yi I wi]. We are now ready to make 

a formal statement of the EM algorithm. The superscripts in parentheses on Var [Yi I wi] and 

E [Yi I wi] indicate that current parameter values have been substituted. 

8 



3.3 The Algorithm 

Step 0) Obtain starting values {3( 0 ) and f2(0l. Set counter m = 0. 

Step 1) (E-step) For each i, calculate: 

Step 2a) (Conditional M -step 1) Set: 

{J(m+l) = [~ Xf n!m)-1 xf1 [~ Xf n!m)-1 E(m) [y; I w;]l 

Step 2b) (Conditional M-step 2) Maximize: 

over the unknown elements of n to obtain n(m+l). 

Step 4) If convergence is reached set ~MCEM = f3(m+l) and nMCEM 

counter m by one and return to Step 1 ). 

n(m+l). else increment 
' 

Most of the computational effort is expended in computing the conditional means and variances 

of Yi given the observed data Wi. For small problems, and simple covariance structures n these 

can be computed using direct numerical integration. However, for more complicated models we 

propose the use of the Gibbs sampler (Geman and Geman 1984) to estimate them. More details 

on this will be discussed in Section 3.5. An important consideration in implementing Monte Carlo 

EM is the monitoring of convergence. We will now discuss this issue. 

3.4 Convergence of MCEM 

The convergence of MCEM can be monitored by plotting the parameter value at each iteration 

versus the iteration number. After a certain number of iterations the plot will reveal random 

fluctuation about the maximum likelihood estimator, due to the randomness introduced by the 

Monte Carlo Estep (see Figures 1 and 2). At this point one may either terminate the algorithm, or 

continue with a large number of Gibbs samples to decrease the Monte Carlo variability. Chan and 

Ledolter (1995) provide a stopping criterion as well as rules for selecting the appropriate Monte 

Carlo sample size. 
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From our experience on both simulated and real data sets we have found the convergence of 

MCEM to be fast. For the examples we studied, we also found MCEM to be extremely robust to 

the choice of starting value. We will now discuss the estimation of the expectations involved in the 

E-step. 

3.5 The Gibbs Sampler 

The computational difficulties associated with calculating the moments of the conditional distri­

bution [Yi I wi] can be burdensome, since it involves integrals similar to those that appear in the 

likelihood function. We propose the use of the Gibbs sampler to provide a simulation-based esti­

mate of these moments. This application of the Gibbs sampler is rather unusual in that it is used 

to solve for ML estimates directly rather than within a Bayesian framework. McCulloch (1994) 

developed a similar Monte Carlo EM algorithm for the simple two choice problem with random 

effects. 

The efficient implementation of the Gibbs sampler rests on the fact that fast acceptance-rejection 

algorithms exist to generate from truncated univariate normal distributions (e.g. inverse transform 

method, Devroye 1986). In order to generate a sample from the density [Yi I wi] using the Gibbs 

sampler, we need to cycle through the full conditional specifications 

where Yi(-j) = {Yib ... , Yij-1, Yij+ll ... , Yic}'. Using standard results on normal theory, it can be 

shown that these conditional densities are simply univariate truncated normal distributions (Searle, 

Casella and McCulloch 1992). Here is an outline of how the Gibbs sampler is used to generate a 

sample of Yi from the conditional distribution of [Yi I wi] for a fixed i. 

a) For each j = {1, ... , ( c- 1)} calculate: 

2 
(J'jl-j 

/3j l-j 

Var [Yij I Yi(-j)J, 

Cov [Yij, Yi(-j)] . 

These are standard calculations for normally distributed variates. 

b) For each j = {1, ... , ( c- 1)} calculate: 

Jlijli(-j) E [Yij I Yi(-j)]' 
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= Xij/3 + f3j l-j (Yi(-j)- Xi(j)f3), 

where xi(j) = X; with TOW j deleted and Xij is the lh TOW of X;. 

c) Simulate Yij from a truncated normal distribution with mean J.lij 1 i(-j) and standard deviation 

t7j 1-i· If Wij = 1, simulate Yij truncated above max{Yi(-j)}; else simulate Yij truncated below 

max{Yi(-j)}· 

Repeat Steps b) and c) a large number of times, say M, to obtain y}l}, y~2 ), ... , y~M). Discard a 

suitable number from the beginning of the sequence, nburn, and then accept every nskipth one to 

form a sample of size nrep. This sample is then used to estimate E [y; I w;] and Var [Yi I w;]. There 

are no hard and fast rules on the choice of nburn, nrep and nskip. On account of the iterative 

nature of EM and the desire to take as few Gibbs samples as possible at the beginning of EM, we 

decided to let these numbers depend on the iteration of EM; i.e., later iterations do more Gibbs 

sampling. 

It is evident that this approach can accommodate arbitrarily complicated covariance structures 

since they only affect Step a), which is performed only once before initiating the Gibbs chain. We 

will now discuss the calculation of standard errors for the ML estimates of f3 and n. 

4 Standard Error Calculations 

In this section we describe a Monte Carlo approach to Louis' method (1982) to estimate the 

asymptotic standard errors of the MLE of the MNP model. Guo and Thompson (1992) outline a 

similar method for genetic models. 

4.1 Louis' Method 

Louis developed a technique to compute the observed information matrix within the EM framework. 

It requires computation of the complete data gradient vector and second derivative matrix and can 

be embedded quite simply in the EM iterations. In order to describe his method we use the notation 

developed in the review of EM in Section 3.1. Louis proved that the observed information matrix 

Iw( 0) satisfies the following identity: 

Iw(O) = E [- ::2 ln[z I OJ w]- Var [:o ln[z I 0]1 w], 
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= -E [H(z; 0) I w]- Var [S(z; 0) I w], (7) 

where S and H are the complete data score vector and Hessian matrix respectively. Of course, 

they need be evaluated only on the last iteration of EM at the MLE. 

Despite the conceptual simplicity and elegance of Louis' identity, this method has not been used 

extensively due to computational difficulties in evaluating the expectations involved. A computa­

tionally feasible variant of Louis' identity can be obtained by replacing all the expectations in (7) 

by their Monte Carlo estimates, in the following manner: 

1) Generate y(r) f'J [y I w, 0], r = 1, ... , R. 

2) Replace each term in (7) by its Monte Carlo estimate, e.g., replace the first term by 

1 R 
- R L H(y(r), w; B). 

r=l 

We use this Monte Carlo implementation to estimate the observed information matrix for the 

MNP model. Expressions for the elements of S and H are given in Appendix 2. Although the 

matrix manipulations look messy, they are all one-time calculations and we can exploit the general 

form of n to obtain simple expressions ( Jennrich and Schluchter, pg 813, 1986). We will now 

demonstrate the calculations involved through two examples. 

5 Examples 

In this section we provide two examples to illustrate the feasibility of MCEM. The first example is a 

simple 3 choice simulated data set. The second is actual customer data on the quantity demanded 

of several menu items. 

5.1 Variance Components Setup 

The first example is intended to serve as a comparison with the SSML approach of Supan and 

Hajivassiliou ( 1993). Consider a simple 3-choice model with a single fixed effect and a low order 

factor structure for the error variance matrix. More formally we consider the following latent 

structure for the relative utilities: 

Yij 1, 2, 
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Ui "' N (0, 0)' 

fij "' N (o, 1). 

Hence S1 is characterized by one parameter 0 and is given by: 

S1=(1+0 (} )· 
0 1+0 

(8) 

The contribution to the observed data likelihood by the ith individual is ITJ=1 1rijij, where 11"ij are 

the choice probabilities and are given by: 

11"il 

j oo qy (~) ((Xi2- Xit)f3 + (1+8)) 
-~==;...~ du~, 

-Xi2f3 .Jf+9 1¥11 
and 

and ¢, ~ are the standard normal probability and cumulative density function respectively. Thus, 

the observed data likelihood function is not too hard to calculate for this example. It is therefore a 

good situation to compare MCEM and SSML. Figures 1 and 2 show the results of calculating the 

MLE for a single 50-observation data set generated from the model given in (8). The exogenous 

variables Xit, Xi2 are drawn independently from a uniform distribution on ( -0.5, 0.5). The true 

values used for the generation were {3 = -2, 0 = 0.5. 

The MLE for {3 and 0 were found by direct numerical maximization of the likelihood (evaluating 

it by Laguerra integration, 15 points) to be {3ML = -0.76 and {JML = 1.01. This is indicated 

in Figures 1 and 2 by a dashed line. Three iterative methods were employed to try to reproduce 

this value: MCEM, SSML (with a simulation sample size of 10 to estimate the likelihood) and 

SSML (with a simulation sample size of 50 to estimate the likelihood). All three methods used 

the same starting values. We used the SSML method in conjunction with a GAUSS optimization 

routine (GAUSS Applications (1992), Optimization) to maximize the estimated likelihood. In 
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order to implement MCEM, we selected nburn = 3 X iter+ 1, nskip = 1 + integer( iter /10) and 

nrep = 5 X iter+ 1, where iter is the EM iteration. These numbers are small in relation to those 

recommended in the literature, but we noticed no convergence problems. 

Several facts are obvious from the plots and are representative of the general behavior of these 

estimators. 

(i) MCEM approaches a neighborhood of the MLE very quickly, but continues to bounce around 

the ML estimate even after a fairly long time. The number of Gibbs samples would have to be 

increased drastically (after approximately 12 iterates) to achieve higher accuracy. Note that this 

is not done in figures displayed; instead we simply let the simulation sample size increase linearly 

with the EM iteration. We tried several different starting values and found MCEM to be extremely 

robust to the choice of starting value. 

(ii) The SSML method (using a sample size of 10) is somewhat slower that MCEM. Although it 

provides an accurate estimate of ~ML, it does not yield an accurate estimate of OML· Even for this 

simple problem, we found SSML to be sensitive to the choice of starting value. This is not caused 

by the particular optimization routine used, since the same routine was used within MCEM to find 

conditional ML estimates of(} with no problems. 

(iii) The SSML method (using a sample size of 50) is considerably slower than the other methods, 

but more accurate. However, the computational time required for this method to converge can 

increase quite drastically relative to the size of the problem. Sensitivity to starting values was also 

noticed. 

Table 1 compares the performance of these three methods in terms of proximity to the true 

MLE, after 1 minute, 3 minutes and 15 minutes. The numbers displayed are the average over 50 

independent runs of each of these methods. The simulation standard error is reported in parenthe­

ses. It is evident that the MCEM iterates approach the MLE much more quickly than the other 

two methods. 

Once the final estimates were obtained, 1000 realizations with 10 cycles between two consecutive 

realizations were collected to estimate the asymptotic variance-covariance matrix. Table 2 displays 

the asymptotic variance-covariance matrix of the parameters obtained by Monte Carlo Louis as 

well as direct numerical integration. A substantial agreement is noted. 

Thus, for this simple problem we have demonstrated the feasibility and accuracy of MCEM 
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compared with the SSML method. We also compared the convergence times of MCEM and SSML 

(using a sample size of 50) for two other simulated data sets. For a three choice problem with three 

parameters and a data set of size 500, MCEM took approximately 10 minutes to converge while 

SSML took nearly one hour. For a six choice problem with 15 parameters and a data set of size 

1500, the corresponding times were one hour and a day respectively. Thus, while both methods 

offer a computationally feasible and accurate method of estimation for smaller problems, MCEM 

continues to be more efficient and just as accurate for larger problems. 

5.2 Menu Pricing Data 

We now illustrate our MCEM method on data gathered on the quantity demanded of several menu 

items at a medium-priced family restaurant offering a range of entrees including steak, seafood as 

well as specialty sandwiches (Kiefer, Kelly and Burdett, 1994). We are interested in studying the 

demand of four menu items: fish fry, steak and other seafood, Pinesburger and the Tullyburger. 

Together these items account for more than 65% of the total items ordered. Kiefer, Kelly and 

Burdett (1994) present a subset of this data on the demand for fish fry, a popular item priced at 

$8.95. Of special interest in their study was the effect of changes in price on the demand for fish 

fry. Four price levels were experimented with ($8.95, $9.50, $9.95, $10.95). The data were collected 

over four winter weekends (Friday /Saturday). Actual checks were presented at original price levels 

so that the customer did not suffer any monetary loss. 

Table 3 displays the menu items under study along with the sample frequency of demand over 

the four weekends, for a total of 97 4 orders. Our approach is to build a simple choice model to 

illustrate the computational feasibility of the MCEM method. We re-parametrize the model (as 

explained in Section 2) using fish fry as the reference item. Nine regressors are considered: three 

item-specific intercepts, three day-specific intercepts and the effect of price of fish fry on demand. 

Thus, the latent model for the relative utilities is (dropping the subscript for individual) given by: 

Ysteak 

Ypines 

Ytully 

t3steak + f /steak+ P 8steak + Esteak 

t3pines + j /pines + p bpines + Epines 

t3tully + f /tully + P 8tully + Etully 

where the ,8 are item-specific intercepts, f is an indicator for day (1 for Friday and 0 for Saturday), 
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1 measures the effect of Friday on the different items, and p is the price of fish fry with its corre­

sponding effect o. The error variance matrix n is assumed to be a. general 3 x 3 matrix. Thus, 

there are 14 identified parameters in this model. Figure 3 graphs the convergence of the MCEM 

iterates for the fixed effect parameters. Table 4 displays the ML estimates and asymptotic standard 

errors of these parameters. The Friday effect on the demand of fish fry is clearly seen. The price 

coefficients are small but not statistically significant. Thus, it appears that even with a. fairly large 

data. set, the response of customers to a. price change in fish fry is small and insignificant. Our 

conclusions are consistent with the results of Kiefer, et. a.l. (1994) who analyzed the data. using a.n 

independent logit model. Hence a. price increase could be supported without serious substitution 

effects. In fact, the price increase has occurred ($10.95) without any appreciable change in the 

menu mix or the overall sales. 

Figure 4 displays the ML estimates (with standard deviation bars) of the error cova.ria.nces 

between menu items. None ofthe cova.ria.nces appear to have significant mass a.wa.y from zero. Thus, 

the evidence in our data. favor a.n independent probit/logit structure; hence a. reduced analysis is 

adequate. 

6 Extensions of MCEM 

In this section we describe extensions of our MCEM approach to handle complicated multi-period 

(panel) choice models a.s well a.s non-normalla.tent distributions. 

6.1 Panel Data 

Several studies investigate discrete choices made by individuals or households over time (Allenby 

and Lenk 1992, Geweke, Keane and Runkle, 1994). Such data is known a.s panel (longitudinal) 

data.. In modeling this data., it is typical to allow the repeated observations on a. household to be 

correlated. We describe how MCEM can be easily adapted to handle panel data., when the relative 

utilities (for each time period) follow a. mixed model. All the ideas extend directly for other general 

covariance structures (e.g., autoregressive patterns, general covariance patterns, etc.), a.s well a.s 

random coefficient models. 

Assume that for each individual i, we observe Ti correlated multinomial vectors Wit = { Witl, ... , Witc}'. 
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Further, suppose the latent utilities Yit follow a mixed model in the following manner: 

and 

where Zit is the incidence matrix. Thus, the random effects bi provide a convenient mechanism to 

model the correlation for an individual across time. The parameters of interest are the fixed effects 

{3, the cross correlation parameters in n and the serial correlation parameters in D. To implement 

the MCEM approach, we simply treat the vector of unobserved random effects bi as part of the 

complete data, in addition to the latent utilities Yi = {Yib ... ,YirJ. A formal description of the 

algorithm is displayed below: 

Step 0) Obtain starting values {3(0), f!(O) and D(o). Set counter m = 0. 

Step 1) (E-step) For each i and purchase instance t, calculate: 

Step 2a) Set: 

N 

N-1 L: E(m) (bi b~ I wi] . 
i=l 

Step 2b) Set: 

Step 2c) Maximize: 

over the unknown elements of n to obtain n<m+I). 

Step 3) If convergence is reached set /3MCEM = f3(m+I)' nMCEM = f!(m+I) and bMCEM = n(m+I); 

else increment counter m by one and return to Step 1). 
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In order to estimate the expectations involved in the E-step, we propose the use of the Gibbs 

sampler to generate from the conditional specifications: 

This involves generation from truncated normal and normal distributions respectively. Thus, the 

MCEM implementation is straightforward for this complicated panel data model. 

6.2 Non-normal Latent Distributions 

A fairly serious criticism of the multinomial probit model is the assumption of multivariate nor­

mality for the latent utilities. While this is a mathematically tractable assumption, very little has 

been done by way of model diagnostics to verify such distributional assumptions. In this section 

we describe how the MCEM approach does not rely on normality and in fact can quite easily be 

adapted for non-normal latent distributions. Thus, the MCEM method provides a much more 

flexible framework of estimation than the simulated likelihood approaches, since the latter are 

intrinsically dependent on the normality assumption. 

Assume that the relative utilities y are distributed according to some multivariate distribution 

g(.). In order to implement the Monte Carlo E-step we need to generate variates from the con­

ditional density [y I w]. The advantage of postulating normality is the resulting normality of the 

full conditional specifications. Hence a Gibbs implementation is straightforward. However, this is 

not true for any arbitrary distribution g(. ). In such cases we propose the use of the Metropolis 

(Hastings, 1970) algorithm to generate variates from the appropriate conditional densities. The 

following is an outline of how the Metropolis algorithm is used to generate variates from [y I w]: 

Step a) Obtain starting values y(0). Set counter m = 0. 

Step b) Generate y* "' h(.) where h(.) is any multivariate density with support on the cone defined 

by the observed w. A possible choice for h(.) is the truncated normal distribution. 

Step c) Calculate the acceptance probability 

. (h(y*) g(y(m)) ) 
p = mm h(y(m)) g(y*), 1 . 
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Step d) Accept y(m+l) as: 

y(m+l) = { y* 
y(m) 

Increment m by one and return to Step b). 

with probability p 

with probability (1- p ). 

Repeat Steps b) through d) a large number of times to form y(l), y(2), •.•• Discard a suitable 

number nburn from the beginning of the sequence and then accept every nskipth one to form a 

sample of size nrep. Thus, the ease of implementation of the E-step is unaffected by the choice of 

latent distribution. However, the M step might be more complicated depending on the choice of 

g(.). 

7 Panel Data Example 

This example illustrates the feasibility of MCEM calculations for a simple panel data choice model. 

We study consumer purchases of six different brands of peanut butter (ERIM panels, A. C. Nielsen, 

1985-1988). The six brands under consideration are: Jiff (Creamy & Chunky), Peter Pan (Creamy 

& Chunky) and Skippy (Creamy & Chunky). Together these brands account for more than 75% 

of all purchases in the peanut butter category. Our sample of 105 households have 1761 purchase 

records for these six top brands. Table 5 displays the brands, sample frequency of purchase and 

the unit price (in cents) averaged over the 1761 records. 

The reference brand is Skippy (Creamy). We fit a simple model for the relative utilities: 

Eit rv Ns(O, Is) 

where Xit is a 5 X 6 design matrix corresponding to five brand-specific intercepts and the log of 

price. The above model allows for household heterogeneity in the intercept. The component of 

variance, (} captures the variability among household preferences. Table 6 reports the ML estimates 

(along with asymptotic standard errors) of the parameters f3 and (}. As might be expected in a 

choice situation with close substitutes, the price coefficient is large and negative ( -6.33). Peter 
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Pan (Chunky) has the largest negative intercept, indicating that households accord a much lower 

utility to this brand. This fact is further corroborated by the large negative intercept (-2.00) of the 

Peter Pan (Creamy) brand as well. The estimate of (} is large and significantly different from zero, 

supporting the belief that households are extremely heterogeneous in their choice behavior. 

8 Discussion 

We have developed a flexible framework of estimation which is computationally feasible and accu­

rate for a large class of problems. Our MCEM method overcomes the drawbacks of the simulated 

likelihood approaches by taking advantage of the latent structure of the MNP model to simplify 

calculations. For simple problems with a small number of parameters, both methods offer a com­

putationally feasible framework of estimation. However for larger problems, while the simulated 

likelihood methods become computationally intensive and time-consuming, MCEM continues to 

offer a flexible and efficient framework of estimation. From our experience we have found MCEM 

to be robust to choice of starting values; a property that is not shared by the simulated likelihood 

approaches. Further, MCEM can be very naturally modified to handle more complicated models, 

like panel data, as well as other models for limited dependent variables (Tobit regression, multi­

nomiallogit etc.). Although SSML can accommodate panel data as well, it does so by directly 

estimating the high-dimensional integral that result from repeated observations on each individual 

(Supan, Hajivassiliou, Kotlikoff and Morris, 1992). This could exacerbate numerical problems and 

instabilities, especially since the dimension of these integrals grow very quickly with the number of 

choices and time periods. 
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Appendix 1 

HARDWARE AND SOFTWARE SPECIFICATIONS 

The random number generator used was a multiplicative-congruential generator (Kennedy, W. 

J. Jr., and Gentle, J. E. "Statistical Computing", Marcel Dekker, Inc., 1980, pp 136-147). The 

programs implementing the method proposed in the paper are written in GAUSS (Aptech Systems, 

1992). All computations were carried out on Sun (Spare 10 and 20) workstations. 
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Appendix 2 

DERIVATIVES OF COMPLETE DATA LIKELIHOOD FUNCTION 

Expressions for the elements of S and H are: 

N 8 
sfJ = ~ 8(3 ln(y; 1 (3, n] 

Hf3f3 

N 

'""" X~ n-1 e· L.J t t 

i=1 

N 8 
~ 8wrs ln(y; I (3, n] 

N 
N -1 . 1 '""" I -1 . -1 -- tr(Q ilrs) +- L.J e;il ilrsil e; 
2 2i=1 

N 82 
~ 8!32 ln(y; 1 (3, n] 

N 

-2: x:n-1 X; 
i=1 

N 82 £; 8(3 8Wrs ln(y; I (3, n] 

N 

-'""" x~n- 1 !1 n-1e· L.J t rs t 

i=1 

N 82 
£; 8Wtu 8wrs ln(y; I (3, n] 

N 

~ tr(n-1ntun-1nrs)- 2: eiil- 1(iltun- 1ilrs + nrsn-1ntu)n-1 e; 
i=1 

where Wrs is the ( T, S )th element of fl, Qrs = B~rs fl and e; 
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CAPTIONS FOR TABLES 

Table 1: MCEM and SSML Iterates after 1 minute, 3 minutes and 15 minutes. (Averaged over 50 

independent runs; Simulation standard errors reported in parentheses). 

Table 2: Asymptotic Variance-Covariance Matrix of ML Estimates Obtained by Numerical Inte­

gration and Monte Carlo Louis. 

Table 3: Purchase Frequencies of Items from the Menu-Pricing Data. 

Table 4: Parameter Estimates (Asymptotic Standard Error) for 4-Choice Model for the Menu­

Pricing Data. 

Table 5: Purchase Frequencies and Costs for the Peanut Butter Data. 

Table 6: Parameter Estimates (Asymptotic Standard Error) for 6-Choice Hierarchical Model for 

the Peanut Butter Data. 



CAPTIONS FOR FIGURES 

Figure 1: Convergence of MCEM and SSML for {3. 

Figure 2: Convergence of MCEM and SSML for 0. 

Figure 3: Convergence of MCEM Iterates for Fixed Effects Parameters for Menu-Pricing Data. 

Figure 4: ML Estimates (Standard Error Bars) of Error Covariances. 



PARAMETER TRUE MLE ELAPSED CPU TIME PARAMETER ESTIMATE 

(IN MINUTES) MCEM SSML (10) SSML (50) 

1 -0.7534 -0.7399 -0.7350 

(0.0074) (0.0067) (0.0303) 

f3 -0.76 3 -0.7599 -0.7591 -0.8702 

(0.0065) (0.0057) (0.0053) 

15 -0.7601 -0.7591 -0.7581 

(0.0053) (0.0057) (0.0033) 

1 0.9577 1.1970 0.7346 

(0.0359) (0.0422) (0.0046) 

() 1.01 3 1.0375 1.1043 1.0851 

(0.0248) (0.0275) (0.0122) 

15 1.0381 1.1043 1.0095 

(0.0202) (0.0275) (0.0146) 



MONTE CARLO LOUIS NUMERICAL INTEGRATION 

{3 (J {3 (J 

{3 0.3945 -0.2705 {3 0.3966 -0.2735 

(J -0.2705 2.1254 (J -0.2735 2.1538 



MENU ITEM 

Steak and Other Seafood 

Fish Fry 

Pines burger 

Tully burger 

FREQUENCY OF DEMAND 

0.22 

0.22 

0.43 

0.13 



Item Intercept 

f3steak 

J3pines 

f3tully 

"Friday Effect" 

/steak 

/pines 

/tully 

Price Coefficient 

15steak 

!)pines 

"tully 

PARAMETER ESTIMATE ASYMPTOTIC STD ERROR 

0.1683 

0.7450* 

-0.3619 

-0.5016* 

-0. 7970* 

-0.3133* 

-0.0719 

-0.0511 

0.0950 

0.3898 

0.2606 

0.3400 

0.1781 

0.1703 

0.1563 

0.0716 

0.0703 

0.0762 

* : statistically significantly different from 0 at the 5% level. 



BRAND FREQUENCY OF PURCHASE UNIT PRICE (IN CENTS) 

Jiff (Creamy) 0.26 9.81 

Jiff (Chunky) 0.08 10.00 

Peter Pan (Creamy) 0.07 9.61 

Peter Pan (Chunky) 0.03 9.96 

Skippy (Creamy) 0.33 9.32 

Skippy (Chunky) 0.22 9.18 



PARAMETER ESTIMATE ASYMPTOTIC STD ERROR 

BRAND INTERCEPT 

Jiff (Creamy) -0. 7212* 0.1743 

Jiff (Chunky) -1.7177* 0.1930 

Peter Pan (Creamy) -1.9813* 0.1972 

Peter Pan (Chunky) -2.4235* 0.2099 

Skippy (Chunky) -0.9683* 0.1725 

PRICE COEFFICIENT -6.3353* 0.5946 

VARIANCE CoMPONENT 2.4510* 0.0714 

* : statistically significantly different from 0 at the 5% level. 
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