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ABSTRACT 

Challenge studies are often implemented for assessing whether a subject is sensitive to 
a certain agent or allergen. In particular, researchers test groups of subjects to determine 
if there really exists a causal relationship between some agent of interest and a response. 
To answer such a question, we need to detect the presence of the phenomenon in just one 
individual. Typically, however, there are a large number of unknown risk factors associated 
with the response and a potentially small population prevalence. Hence, standard statisti­
cal techniques, by averaging the treatment effect across the group, may miss a significant 
response of a single individual and lead to inconclusive results. We develop an alternative 
approach based on union-intersection testing that will allow a practitioner to correctly ex­
amine observations on an individual apart from the other subjects and test the hypothesis 
of interest: does the phenomenon exist in the population. More specifically, we show how 
this technique adjusts for the multiple number of tests encountered when analyzing data 
for each individual subject separately. Furthermore, we demonstrate power calculations for 
the determination of sample size prior to performing the study. The performance of the 
union-intersection approach in comparison to linear models and semi-parametric techniques 
is considered through sample size calculations and simulations. The union-intersection test­
ing methodology out performs the Kolmogorov tests. However, the nested linear model 
performs as well if not better than the union-intersection tests. To illustrate the ideas 
presented in the paper, we provide an application in which we analyze psychological data 
collected by way of a challenge study design. 

Key Words: hypothesis testing, multiple tests, power analysis, population prevalence, Kol­
mogorov tests, application 
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1 Introduction 

What statistical procedures should a researcher use in order to test whether a particular 

agent can cause measurable responses when it is expected that only a small fraction of the 

subjects under study will respond to the agent? Usually, the majority of subjects in a study 

are expected to respond to the agent in question. For example, smoking is thought to result 

in decreased lung capacity. This response would be expected in all individuals regardless 

of other possible risk factors. On the other hand, one does not expect all persons who 

smoke to develop cancer. There are risk factors other than smoking that are involved in the 

development of cancer. Some of these risk factors are known, but there may also be some 

unknown factors. What if the risk factors for the response in question are mostly unknown? 

It would then be nearly impossible to select a sample in which all subjects would give the 

expected response. In fact, if the number of responders in the general population is very 

small and it is unknown what causes a person to be a "responder," the researcher may have 

difficulty even showing that the phenomenon exists. 

This problem may arise in many studies directed at establishing a link between food 

additives and child behavior. Feingold (1975) suggested that food colors may be associated 

with hyperactivity in children. However, many subsequent attempts to study the hypoth­

esized relationship have offered inconclusive results (see Prinz (1985) and Van-Dusseldorp 

(1989) for reviews of the literature). The large number of potential causes of hyperactive 

behavior (Pollock and Warner (1990), Prinz (1985)) and the conceivably small population 

prevalence may explain the lack of significant results in the literature. In this paper, we 

will present a methodology for directly testing whether a particular rare phenomena with 

unknown risk factors exists (i.e., prevalence is greater than zero) given that we can test any 

individual multiple times. 

Tests of the hypothesis that the prevalence of a phenomenon is zero occur in the allergy, 

asthma, and food sensitivity literature. The repeated challenge study (Prinz (1985), Warner 

(1987), and Metcalfe and Sampson ( 1990)) is one study design that has been used to test 

such hypotheses. This design consists of repeatedly challenging subjects with the agent 

under consideration (e.g. food additives) and with a control substance (placebo). Following 
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each challenge, a response (e.g. behavior) is measured. At the conclusion of all the chal­

lenges, the scientist checks for a statistically significant difference between the placebo and 

non-placebo responses. If such a disparity occurs, we may infer that there is a significant 

relationship between the agent and the response (e.g. an association between food additives 

and hyperactivity). The challenge study design may be thought of as a generalization of a 

crossover design whereby each subject receives the placebo and agent on alternating sessions 

beginning from a random starting point. (Note that we should not confuse the crossover 

design with the analysis.) For examples of challenge studies see Behar et al. (1984), Rosen 

et al. (1988), Rowe (1988), Roshon and Hagen (1989), and Pollock and Warner (1990). 

Typically, the observations from a challenge study have been analyzed using an analysis 

of variance (ANOVA) with repeated measures or crossover analysis techniques (related 

to the ANOVA). Such analyses, while taking into account that the observations for an 

individual subject are correlated over time, average the treatment effect across the group of 

subjects. The treatment effect here refers to the difference in response between the placebo 

(control) and non-placebo (agent) challenges. Hence, these approaches consider the average 

treatment effect for the group in making the decision of whether or not the phenomenon 

exists. If in fact the true prevalence of the phenomena under study is minuscule, only a 

small fraction of the subjects may be significantly effected by the agent or treatment. The 

ANOVA techniques will interpret the significant responses of the few true responders as 

merely part of the chance variation in the observations. Thus, these analyses may conclude 

no significant relationship between the agent under study and response even though some 

individuals in the group display a true significant treatment effect. Consequently, the typical 

analyses may mask a real effect and lead to the incorrect inference of no association between 

agent and response for all individuals. 

The central problem with the ANOVA/crossover approach is that, by combining all of 

the data into one statistic, they are testing the wrong hypotheses. The ANOVA procedure 

tests against the alternative hypothesis that the average treatment effect is significantly 

different than zero. If the alternative hypothesis is true, then we can conclude that, in 

at least a few of the subjects (and probably in the majority), the phenomenon exists. 
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However, given the effect of the treatment varies from subject to subject, we gain no insight 

into the effect of the treatment on any one individual if the test does not conclude that the 

average treatment effect is different than zero. Yet, if there is at least one individual for 

whom the true treatment effect is not zero, then we would like to reject the null hypothesis 

and conclude that the prevalence of the phenomenon is positive. Thus, for testing the 

null hypothesis that the prevalence of a theorized phenomenon is zero, we should study 

each individual and establish if the observations for the particular individual indicates a 

treatment effect (specific to that subject) which is significantly different than zero. This 

can be accomplished through a technique called union-intersection testing. This scheme 

allows us to analyze observations on each individual subject separately rather than at the 

group level. Thus, we will be able to make inferences about the hypothesis of interest. 

We should note that the above comments are applicable for statistical analyses of many 

studies outside the repeated challenge study design framework. For example, often in stud­

ies dealing with perception, learning, memory, and cognition, the psychological hypotheses 

of interest imply some law holds for a single individual, not just averages computed across 

individuals. Therefore, the methods developed in this paper are useful for behavioral re­

search in general. 

As an alternative to the ANOVA-type approach, we first introduce a technique based 

on union- intersection tests. In Section 2 we present the methodology and power calcula­

tions for the union- intersection testing approach. Note that we are considering repeated 

challenge studies here instead of an experiment in which the subjects are challenged with 

the placebo and agent once each. The reason for such a design is that, when testing each 

subject independently, a proper diagnosis for an individual can be reached only by repeated 

administrations of the placebo and agent (Pearson (1985), Milich et al. (1986), Warner 

(1987), and Metcalfe and Sampson (1990)). The difficulty is, how many challenges and 

how many subjects are necessary to obtain a desired power for the tests? This question is 

answered in Section 3. Section 4 compares the union-intersection methodology with alter­

native approaches through sample size calculations and simulations. Section 5 presents an 

analysis of a data set dealing with the effect of dopamine on behavior in rats to emphasize 
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and illustrate some results from the previous sections. 

2 Union-Intersection Tests 

When conducting a challenge study, the hypothesis of interest is 

Ho: ¢9 = 0 vs. HA : ¢9 > 0, 

where ¢9 is the prevalence of the phenomenon in the general population. In testing this 

hypothesis, we will take a sample of N subjects and for each one test whether or not they 

exhibit the phenomena. In other words we test whether the population from which the 

sample is drawn has a prevalence of zero or not. Therefore, we are testing the hypothesis 

Ho : ¢ = 0 vs. HA : ¢ > 0, (1) 

where ¢ denotes the prevalence in the sample. It is clear that 

cP > 0 => cPg > 0 (2) 

since the individuals in the sampled population are part of the general population. 

The population from which one selects a sample is assumed to have a prevalence ¢ 

which is greater than or equal to the prevalence in the general population, i.e., ¢ 2: ¢9 • 

This assumption is reasonable because, in general, a challenge study consists of subjects who 

believe they are sensitive to the treatment. For instance, in trying to select children who are 

hyperactive after ingesting a particular food additive, it is possible to start with a prevalence 

that is higher than that for the rest of the population by only selecting children whose 

parents believe them to be sensitive. The self-selected sample will ensure that the prevalence 

in the sample is greater than the prevalence in the general population. Consequently, if we 

fail to reject the hypothesis that the sample prevalence is zero, then we can conclude that 

the population prevalence is zero as well. In mathematical terms, if¢ = 0 and ¢ 2: ¢9 , then 

¢ = 0 => cPg = 0 (3) 

Equations (2) and (3) imply that the hypothesis concerning the prevalence of the general 

population and the hypothesis concerning the prevalence of the sample are interchangeable. 
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Hence, from this point on in our discussion, we will refer only to the hypothesis of the 

sampled prevalence (1). 

Under the null hypothesis of (1), we expect none of the subjects to show a response 

to the challenges. If we conclude that at least one of the subjects does show a response, 

then the prevalence of the sampled population must be greater than zero. Therefore, at the 

experimental level, we actually test the hypothesis 

Ho : (} = 0 vs. HA : at least one Oi =f. 0, (4) 

where the ith element of the N- dimensional vector (} is the treatment effect for the ith 

subject. Rejection of the null hypothesis of (4) implies rejection of the null hypothesis (1). 

Notice that the null hypothesis in ( 4) can be rewritten as the intersection of the null 

hypotheses from the individual tests of the treatment effect. In other words, since individual 

hypotheses are of the form 

(5) 

we can write H0 as {0 : Bi = 0 for all i} = n~dOi = 0}. Consequently, the rejection 

region for testing H0 is the union of the rejection regions for each of the individual tests 

(5). That is, H0 is rejected if any one of the subjects shows a significant treatment effect, 

i.e., if we reject any of the N hypothesis tests in (5). This method of breaking down a 

complicated hypothesis into the intersection of simpler hypotheses and_ then constructing 

a rejection region to be the union of the rejection regions of the simpler hypothesis tests 

is identified as union-intersection testing in Casella and Berger (section 8.2.4, 1990). The 

union-intersection principle was first introduced by Roy (chapter 2, 1957). 

The union-intersection setup allows us to test each individual separately and thereby 

more easily test the desired hypothesis. Keep in mind however, that the actual a-level and 

power calculations will still be based on ( 1) or equivalently ( 4). The overall a-level will be 

much greater than the significance level at which we test each individual hypothesis. In 

performing N separate tests, we have a multiple testing problem. Thus, the alpha levels 

that should be used for the individual tests will be a function of the number of subjects 

being tested and the desired overall alpha level of the test. Likewise, the power of the 
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overall hypothesis test will be a function of the number of subjects N, the powers of the 

individual hypotheses, and the prevalence </J. To find these associations between the powers 

and a-levels for the overall and individual tests, we will assume that there is independence 

between subjects, i.e., between the individual tests. 

Let us first consider the a-level for testing (1). If prevalence equals zero, then none of 

the subjects chosen will ever have a true non-zero treatment effect. Therefore 

a0 P(reject Ho I </J = 0) 

P(at least one H~ rejected I </J = 0) 

1- P(no H~ is rejected I </J = 0) 
N 

1- Il(l-a) 
i=l 

where a is the alpha level for each of theN individual tests (5). Hence, given the desired 

overall alpha level, a 0 , the alpha levels for the individual tests can be determined by the 

formula 

(6) 

For example, for N = 5 subjects we need to set the a-level at 0.01 for the tests on each 

individual subject in order to attain the 0.05 level of significance for the overall test (4). 

For an overall alpha level of 0.05, the individual a-level drops off sharply between 1 and 5 

subjects and then levels off at very small levels for larger N. In the remainder of the paper, 

we shall assume an overall alpha level of ao = 0.05. 

Next let us consider the power calculations for testing (1). If the population prevalence 

is greater than zero, then any number of the subjects may be sensitive to the treatment. 

In other words, between zero and N of the individual treatment effect parameters, (}i (see 

5), may be truly not equal to zero. Furthermore, the probability that any specific ()j is not 

equal to zero is ¢,the prevalence. Thus, j, the number of subjects who are truly sensitive 

has a Binomial( N, </J) distribution. Let 1 - f3 be the power of each individual test, i.e. the 

probability of accepting the alternative given that (}i f: 0. Then the overall power, 1 - f3o, 

can be determined as follows: 

1 - f3o = P(reject Ho I </J > 0) 
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N 

L P(reject Ho I j Oi's "I 0,¢ > 0) · P(j Oi's "I 0 I ¢ > 0) 
j=O 

(Bayes theorem) 
N 

= L P(reject at least one H~ I j Oi's "I 0,¢ > 0) · P(j Oi's # 0 I ¢ > 0) 
j=O 

(Union-intersection test) 
N 

L (1 - P(reject no H~s I j Oi's "I 0,¢ > 0)) · P(j Oi's # 0 I ¢ > 0) 
j=O 

N 

L (1- [P(do not reject Hh I Oi # O)]j · [P(do not reject Hh I Oi = O)]N-j) X 
j=O 

P(j Oi's "I 0 I ¢ > 0) 
N 

~ (1- {3j(1- a)N-j) · (1) <!Ji(1- </J)N-j, (7) 
J=O 

This series of equations leads to a general power formula for a union-intersection test given a 

prevalence¢, a number of subjects N, and an a-level and power 1-{3 for the individual tests. 

Unfortunately, a closed form for 1- {3 cannot be found as a function of the overall power 

due to the summation. In addition, we must specify a particular value for the prevalence 

¢, which will usually be a very rough estimate. Also, note that in these formulas we have 

assumed 1 - {3 to be constant across individuals. Using derivatives, one can show that an 

increase of at least one individual's power will result in an increase in the overall power of 

the test. 

To get an idea of how the prevalence affects the overall power, Figure 1 shows for N = 10 

subjects the change in overall power as¢ increases from 0 to 0.6 with powers of0.6, 0.7, and 

0.8 for the individual tests (5). Note that the overall power "levels off" for prevalences of 

0.5 or greater. Therefore, the experimenter planning to sample ten subjects should strive to 

obtain a sample such that the prevalence among the subjects is believed to be at least 0.5. 

He/she should not, however, worry too much about getting a prevalence very much higher 

than 0.5 since that will not significantly improve the overall power. Similarly for N = 5 

subjects (Figure 2), the power "levels off" after a prevalence of 0.7. At¢= 0.6, the overall 

power is greater than 0.9 in all three cases. Therefore, since overall power reaches the 0.9 

level more quickly (in relation to prevalence) for ten than for five subjects, one would want 
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to use more subjects if the experimenter expects the prevalence to be low. Recall that in 

general we will have a self-selected sample, thus resulting in a larger sample prevalence as 

compared to the overall population prevalence. Hence, we hope to usually find ourselves 

near the asymptotes of the curves in Figures 1 and 2, i.e., the overall power will be high. 

3 Sample Size Determination 

In planning any study, an essential question is how big should the sample be? In the case 

of the challenge study, the "sample size" has two components: the number of subjects to 

include in the study and the number of visits to plan (or number of observations) for each 

subject. The first step in determining these two components is to choose an overall a-level 

and power and estimate the prevalence for the pool of potential subjects. Having made these 

decisions, particular combinations of values of N, the number of subjects, and values for the 

individual powers will result in the appropriate a-level, power, and estimated prevalence 

(see Table 1). For example, with a= 0.05 and the prevalence¢= 0.50, we find that testing 

three individuals, each at a power of 0.81, and testing four individuals, each at a power of 

0.65, will both achieve the same desired overall power of 0.80. 

After determining how many individuals to test at an individual power using Table 1, the 

experimenter can calculate the number of visits needed for each subject given the number 

of subjects, N, in the study and a desired overall power. These power calculations will 

depend on the kind of data that is collected and the analysis that is planned for each test. 

In the present context, the response variable is assumed to be a single continuous variable. 

The test to be conducted on the individual subject's data is an F-test. 

More formally, consider the general linear model 

y (8) 

where € "" N(O, E), ()i is the treatment effect, Y is the response, and X is the design 

matrix for the experiment on the ith individual. The generalized least squares estimators 
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are (section 5.8, Searle (1971)) 

(9) 

and the estimated variance-covariance matrix of these estimates is 

(10) 

So ei will be the second element of the vector in (9) and Var(Oi) will be the element in the 

second row and second column of {10). Notice that since the dimension of E and X are 

dependent on visits, v, both of the estimators are functions of v. 

In this terminology, our hypothesis test (5) can be written 

(11) 

where KT = (0, 1) and hence KT Ti = (}i· From linear model theory, (11) can be tested 

using the F-statistic (section 3.6, Searle {1971)) 

Furthermore, F'"" F(1, N- rank(X), 6) where, for a desired detectable difference of~' 

.!).2 

6 = . ' 
2 · Var(Oi) 

(12) 

is the noncentrality parameter. Under the null hypothesis in (11), F has a central F 

distribution with 1 and N- rank(X) degrees of freedom so that 

a= P(F >fa I (}i = ~ = 0). 

Therefore, we can easily find fa from the F distribution tables. In the situation when some 

hypothesis HA : KT Ti = D., not Ho in (11), is assumed true, the power can be calculated 

using the noncentral F distribution, 

(13) 
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Notice that Var(Bi), and hence 8, is a function of v. Therefore, given N, ~'and a, we can 

compute the number of visits, v, required to obtain a specified power 1- f3 for the individual 

tests (5) from equation (13). Unfortunately no closed form expression can be given for v in 

terms of 1 - {3, fan ~' and N due to the nature of the noncentral F distribution and E. 

However, if we assume a certain structure for E, we can solve (13) for v. 

Suppose, for example, that all of the observations from one subject are equicorrelated. 

In other words, € is distributed N(O, E) with 

where I is a v x v identity matrix and J is a v X v matrix with all its elements equal to one. 

The inverse of this matrix is 

E-1 - 1 [r - pJ ] 
- (1- p)a2 1 + (v -1)p · 

This inverse exists only if p > -1/(v- 1) (section 3.2, Press (1982)). 

For simplicity we will assume that a non-placebo challenge is administered every two 

visits so that for every one non-placebo challenge there are three additional placebo chal­

lenges. Therefore, our estimate of the number of visits needed to obtain some particular 

power will be some multiple of two. (In practice, under the assumption of an equicorre­

lated error structure, estimates of Bi and P, will not depend on where in the sequence the 

challenges appear). Hence our design matrix is 

xr = ( 1 1 
1 0 

Under this setup it can be shown that 

1 1 

1 0 

1 1 1 

1 0 1 

(XTE-tX)-1 
[2,2] 

4(1- p )a2 

v 

and the noncentrality parameter, ( 12), is then 

~2v 
8= . 

8(1 - p )a2 

12 

(14) 



If the observations are assumed independent, just substitute p 0 in all of the above 

equations. 

Now that we have specified how to find v, the number of visits per subject, given the 

individual powers, we can study the relationship between v and N for testing our original 

hypothesis (1) at a desired a-level and power. Equations (13) and (14) allow us to easily 

evaluate this relationship. For example, using the powers of the individual tests given in 

Table 1, Tables 2 and 3 display the number of visits, v, required assuming independent 

(with u = 1) and equicorrelated (with p = 0.75 and u = 1) observations within a subject 

respectively. We assume here that the detectable difference is two standard deviations, 

/:),. = 2u = 2. Notice that in general far fewer visits are needed when the observations are 

equicorrelated than when they are independent. Additionally, increasing v seems to have 

a greater proportional impact on power than increasing N. For example, in Table 2, with 

seven subjects, to increase 1 - f3o from 0.90 to 0.95 we can include eight more subjects 

keeping the number of visits at 12 (a proportional increase inN of 214 %) or ask the seven 

subjects to visit the site 14 times (a proportional increase in v of 117 %). 

Finally, one could argue that the hypothesis of interest is better represented by one-sided 

alternatives. In these cases, the desired tests are based on Wald statistics for the treatment 

parameter (section 3.1, Neter, Wasserman, and Kutner (1990)). Calculations analogous to 

those in this section can then be performed to extend the results to the one-sided situation. 

4 Comparisons with Alternative Methods 

A natural question to ask is how the union-intersection methodology compares with pro­

cedures typically utilized when analyzing data from a repeated challenge study. We shall 

consider four alternative techniques including three general linear models (LM) and one 

semi-parametric method for comparison with the union-intersection approach. In Sec­

tion 4.1 we will introduce these four procedures. In Section 4.2, we provide an initial 

comparison between the union-intersection method and the LM approaches via a power 

analysis analogous to the development in Section 3. Section 4.3 compares all the techniques 

based on powers estimated via Monte Carlo simulations. The simulations not only provide 
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a means of comparing the nonparametric approach with the others, but also allows for a 

fair comparison of all four procedures under a controlled, common framework. 

4.1 Alternative Methods 

One standard approach for analyzing repeated measures type data is to fit a general linear 

model (LM) to the observations. The LM allows us to account for effects due to subjects, 

treatments, and random error in the data under the assumption that these factors are 

additive; similar to the two-factor analysis of variance. The main issue in specifying such 

a model is the assignment of fixed and random effects (see Searle, Casella, and McCulloch 

(1994) chapter 1 for a discussion of this dilemma). The subjects are essentially blocks each 

receiving both placebo and challenge treatments. Classically, blocks are presumed to be 

random effects. Furthermore, the particular subjects used in a given experiment are not 

actually of interest. The treatment effect may be modeled in a number of different ways. 

We shall consider three. 

To motivate the first model, recall the treatment factor represents the effect of the 

control and challenge on the response. Since we are interested specifically in these two 

levels, a fixed treatment effect would be appropriate. Therefore, we may consider the mixed 

model 

where 

Yijk = fL + Ctj + Sj + Eijk 

si iid N(o,a;) 

Eijk iid N(o,a;) 

i = 1, 2; j = 1, ... , n; k = 1, ... , v/2. 

(15) 

Here Yijk is the observation from the kth visit during the ith treatment on the jth subject, Sj 

represents the random subject effect, ai represents the fixed treatment effect, Eijk represents 

the random error, and fL is the constant overall mean. This model assumes no interaction 

between the subject and treatment factors. Furthermore, the constraint a 1 = 0 so that 
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a2 corresponds to the average of treatment differences previously represented by the (}i 's in 

Section 3. 

One could certainly argue for the presence of an interaction between subject and treat­

ment. Therefore the second model considered is the same as the first with interaction. That 

is, let 

where 

Yijk = J.L + ai + Sj + (as)ij + Eijk 

Sj iid N(O, a;) 

(as)ij iid N(o,a;s) 

Eijk iid N(O, a;). 

(16) 

The parameters here are the same as before with the addition of an interaction effect 

represented by (as )ij. Since s j is a random factor, (as )ij must also be assumed random. 

A third model assumes the treatment factor is nested within the subjects. This supposi­

tion allows for a model with random treatment effects, one for each individual. The nested 

model is written 

where 

Sj iid N(O, a;) 

aii iid N(o,a;;) 

Eijk iid N(o,a;) 

(17) 

The notation here is the same as that in the previous models except aij represents the effect 

of treatment i within subject j. This model most closely approximates the situation for 

which we have proposed the union-intersection test, in which the treatment difference varies 

across individuals. The nested model differs in that here, the treatment effects are drawn 

from a normal distribution. For the situation described in this paper, there is a proportion 

of individuals (1 - <P) for which the treatment difference equals zero. For a more detailed 

description of these three LMs see Searle, Casella, and McCulloch (1994) chapter 4. 
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The general linear models (15), (16), and (17), however, are susceptible to the drawbacks 

discussed in Section 1. In particular, though the three models may be appropriate for 

modeling the repeated measurements within a subject inherent in our design, they do not 

directly test the hypothesis of interest. 

Alternatively, we may consider a method based on semi-parametric statistics. The fourth 

approach, the Kolmogorov procedure, tests the hypothesis that for all individuals, the test 

statistic comes from a particular distribution (chapter 6, Conover (1980)). In other words, 

we are testing 

Ha : F =Fa vs. HA: F f= Fo. (18) 

In the problem examined in this paper, we are interested in testing whether the t-statistics, 

one for each subject, arise from a central T-distribution corresponding to a treatment dif­

ference of zero. Thus, to test that the treatment difference is zero for all individuals, set 

Fa in (18) equal to a central T- distribution. When the null is rejected we conclude that at 

least one of the test statistics comes from a distribution other than a central T-distribution. 

Another interpretation is that rejection of the null indicates that the statistics come from a 

distribution which is either stochastically greater or smaller than the central T, suggesting 

that the average treatment difference is either smaller or greater than zero. 

The test statistic for the Kolmogorov procedure is given by 

(19) 

where 

FN(t) = [number oft; :::; t] jn. (20) 

FN(t) is commonly referred to as the empirical cdf of the test statistics ti. The null hy­

pothesis is rejected when Dn is too large. Critical values for this statistic are equal for all 

distributions Fa with support on the real line and are given for selected a-levels and sample 

sizes, N, in Table IX of Conover (1980). 

This test seems particularly promising for cases where the errors of the observations 

do not all necessarily come from a normal distribution with mean zero. In addition, this 

test, along with the union-intersection test, allows for the possibility that variances and 
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correlations differ between subjects. The previous three alternatives do not explicitly allow 

for this possibility. 

4.2 Power Comparisons 

Let us first compare the union-intersection methodology with the LM approach to analyzing 

challenge study data. Analogous to the work in Section 3, the hypothesis test of interest 

in each of the models (15), (16), and (17) may be tested by some statistic, :F, defined 

by the appropriate ratio of mean squares. Recall from linear model theory (e.g., Searle, 

Casella, and McCulloch (1994) chapter 4) that :F is proportional to an F-statistic. Sample 

size determination proceeds by fixing the number of subjects N, a-level, and detectable 

difference~' and determining the number of visits v required per subject to attain a specified 

power 1 - {3. We first calculate fa utilizing the equation 

Then we plug fa into the equation 

1- {3 = P(:F > fala2 = ~ :f 0). 

As we will show shortly, :F is a function of v. Hence, upon fixing ~' these two equations 

can be solved simultaneously and will give us the number of visits necessary to obtain 

a specified power. The only difficulty in these computations, then, is determining the 

detectable difference ~ and the precise distribution of :F. 

The detectable difference, ~' we desire under the general linear models is different 

than that used for the union-intersection power calculations. Recall from Section 3 we 

assumed an individual susceptible to the phenomena of interest will show a response of two 

standard deviations or 2o-e greater than the baseline when challenged. In the population of 

subjects, then, we expect a percentage, </>, to display a response to the challenge where </> 

is the population prevalence. Therefore, a single individual from our sample will exhibit a 

treatment effect of 2o-e with probability </>and zero with probability 1- </>. 

We need to relate this concept to the components of the LMs considered in Section 4.1. 

The fixed treatment effects, ai, in the mixed models (15) and (16) measure the average 
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treatment difference across all N subjects. Therefore, we expect ai to take on a value of 

(2ae · N<P+ 0 · N¢)/N = 2ae¢ from the above definition. The random "interaction" effects 

(as)ij and Gij in the mixed model (16) and nested model (17) respectively are the variances 

of the treatment effect for a subject. Thus we expect these variances to take on the value 

4a; · ¢( 1 - ¢ ). Therefore, when testing the fixed effects ai, the detectable difference ~ is 

assigned 2a e<P under the alternative. For the tests of the random effects and (as )ij and Gij, 

~ = 4a; · ¢(1- ¢). Notice if O'e = 1 and ¢ = 0.5, then ~ = 1 in both cases. Also, note 

that due to the manner in which the LMs approximate the situation assumed in this paper, 

these calculations are at best approximations. 

We now must determine how v and N affects the F-statistics for treatment effect in 

each of the three LMs. Let :F be the generic test statistic in each testing scenario defined 

by the appropriate ratio of mean squares. In the mixed model with no interaction (15) we 

are interested in testing the null hypothesis of no treatment effect, ai = 0 for all i. From 

mixed model theory (see Searle, Casella, and McCulloch (1994) section 4.3 c, 4.5 a, and 

4.7 b for details of the calculations to follow), :F has a non-central F distribution with 1 

and 2N v - N - 1 degrees of freedom and noncentrality parameter 

denoted F( 1, 2N v- N- 1; 8). Under the null hypothesis, ~ = 0 and hence :F has a central 

F distribution. 

Similarly, for testing ai = 0 in the mixed model with interaction (16), :F has distribution 

F(1, N - 1; c5) where the noncentrality parameter is 

N~2 
8 = (2 2j)" 2 0"018 + 20"e V 

Using this model, we would also interested in testing the hypothesis that 0";8 = 0 for all i 

and j. Tests of the random parameters are simpler since :F is proportional to a central F 

distribution over the whole parameter space. In particular, for testing 0"; 8 = 0 in the mixed 

model with interaction, :F is proportional to the F( N - 1, ( v - 2) · N) distribution. The 

constant of proportionality is (1 + vCT;j2CT;). 
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Likewise, for testing a~ = 0 in the nested model ( 17), :F is proportional to the F( N, ( v-

2) · N) distribution, with constant of proportionality (1 + va~j2a;). 
Therefore, given o: = 0.05, <P = 0.5, O"e = 1 so that 6 = 1 under the respective 

alternative hypotheses, we may calculate the combination of subjects and visits necessary 

to attain an overall power 1- {3. Tables 4, 5, 6 display the sample size determinations for 

various overall powers. 

The test of the fixed effect in the mixed model with interaction (16) is not included 

because it requires more than 100 visits per subject to attain a power of 0.50 for thirty 

subjects. In comparison to Table 3, note that all three LMs require more visits than the 

union-intersection method for a small number of subjects. For a large number of subjects, 

the LMs perform well with four visits per subject in contrast to the union-intersection 

approach which needs at least six to obtain an overall power greater than 0.80. Furthermore, 

the no interaction mixed model in Table 4 attains the best subject to visit ratios amongst 

the three LMs. 

As described in Section 2, we assume some individuals may display a positive treatment 

effect whereas others show a zero treatment effect. The alternative linear models do not 

represent this situation. Therefore a comparison of sample sizes via the calculations above 

is misleading. A better comparison of the four models requires a common sequence of data 

sets over which sample size and power determinations may be made. The simulations in 

the next section provides the perfect framework for such a comparison. · 

4.3 Simulations 

In order to further examine the power of the union-intersection approach compared with the 

four alternative procedures under the exact same testing conditions, we conducted a number 

of Monte Carlo simulations. We consider the powers of these five tests under a number of 

different sample sizes, visits, and correlation structures. We also allow the variances to 

differ from subject to subject. All of the simulations presented here are based on 50,000 

replications. 

These simulations were completed using GAUSS (Aptech Systems, 1992). In partie-
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ular, random normal variables were generated by the fast acceptance-rejection algorithm 

proposed by Kinderman and Ramage (1976). The initial seed was chosen from a random 

number table. Each subsequent seed is a function of the previous seed: 

new seed = (a X oldseed) mod m, 

where a= 397204094 and m = 231 - 1. 

First, suppose that eight visits are conducted for each subject, four with the placebo 

and four with the challenge. Furthermore, suppose that for each individual, the visits have 

a correlation of 0.75 with variance of one and each individual mean placebo response is 

drawn from a standard normal distribution. Tables 7-9 show the powers for each of the 

five tests with prevalences of 0.25, 0.50, and 0.75 respectively. Within each prevalence, 

powers are determined for treatment differences, o, of 1, 2, and 3, and sample sizes, N, 

of 2, 4, 6, 8, and 10. In each cell of the table, the powers are presented for the following 

order of tests: union-intersection methodology, Kolmogorov procedure, LM with only fixed 

treatment effect, LM with nested treatment effect, and LM with both fixed treatment effect 

and interaction with subject. In the last category, the power for the test of no treatment 

effect is listed first and the test of no interaction second. 

Notice that in all cases, the nested model performs at least as well as the other tech­

niques, and often times much better. The union-intersection approach is comparable when 

the prevalence is low, .25, or when the treatment effect is moderate to large. 

The tests using Kolmogorov procedure has a consistently low power when compared 

to all of the other models. The nonparametric aspect of this procedure seems to be a 

disadvantage. Being able to make assumptions about a set of data allows us to employ 

more powerful tests which are customized to those assumptions. 

Further simulations demonstrate that as the correlation increases, the power of the 

union-intersection tests look more and more like the power of the tests under the nested 

model. As the correlation decreases however, the nested model is more powerful. 

Now suppose that the variance of responses is different for each individual, and that the 

treatment effect varies from individual to individual as well. In the Monte Carlo simula­

tions, we assume that the variance comes from an exponential distribution with mean 2. 
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Furthermore, the treatment effect is assumed to be proportional to the individual standard 

deviation such that the constant of proportionality is drawn from a uniform distribution. 

Mathematically speaking, 

(Jt iid Exp(2) (21) 

and 

(22) 

where 

Ci iid U(O, 3). (23) 

These simulations were done for prevalences of <P = 0.25, 0.50, and 0.75 and sample sizes 

N as before. The resulting powers are given in Table 10. 

Note that for smaller sample sizes, the union-intersection test actually does better than 

its major competitor, the tests under the nested model, when variances vary across individ­

uals. As the sample size increases however, the tests under the nested model again perform 

at least as well as the union-intersection tests. 

In summary, the simulations demonstrate that the tests of parameters in the nested 

general linear model are frequently the most powerful. The Kolmogorov tests perform 

poorly in general. The union- intersection tests perform similarly to the tests under the 

nested model, although sometimes a bit less powerfully, and is even more powerful when 

the sample size is small or the prevalence is small. 

Despite the fact that the nested model performs quite well in these simulations, we wish 

to extend a few words caution for those who would like to conclude that the nested model 

should be used over of the union-intersection approach. First note that occasionally, anec­

dotal information motivates an analysis of individual subjects following a challenge study. 

In these cases, there is no formal way of studying individual subjects once the nested model 

has been fit to the data. Second, the interpretation of the statement "the null hypothesis 

was rejected" is quite different under these two methodologies. Perhaps increasing the sam­

ple size and then applying the union-intersection procedure may be preferable to making 

the wrong interpretations using the LM. 
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5 Application 

We will consider the practical implications of the theory developed in the previous two 

sections. To accomplish this task we will analyze data from a small portion of an experiment 

conducted by Bayer, Snow, and Strupp (1994). In this part of the study, eighteen rats 

were measured for performance on a task after being challenged with either dopamine or 

a control substance (purified, deionized water). The treatment administrations consisted 

of six injections (three dopamine, three control) randomly assigned to six experimental 

sessions for each rat. The injections were at least 48 hours apart to allow for an appropriate 

washout period. 

The animals were tested fifteen minutes after the injections and received approximately 

100 test trials on the task in a given session. The task required the rat to poke her nose 

in one of three funnels. A correct response corresponded to a poke in the funnel with a 

light cue. The data, therefore, consist of the percent of correct responses for each rat on 

a session of the experiment. This response is presumed to be a measure of attentional 

function or distractibility. The question of interest, then, is: does dopamine significantly 

affect attention in rats. 

Hence, we are confronted with a challenge study design where the hypothesis under 

consideration is whether there exists a rat affected by dopamine; i.e., 

H0 : <P = 0 vs. HA : <P > 0, (24) 

where <Pis the "prevalence" of the effect of dopamine on rats as in (1). By way of union­

intersection testing methodology, we can test (24) by checking for the existence of an effect 

in each rat individually and combine the results as described in Section 2. In other words, 

analogous to (5), we need to test each of 

H~ : fh = 0 vs. H~ : (Ji i- 0, i = 1, ... , 18, (25) 

where ()i is the treatment effect for the ith rat. Under the assumption of independent 

observations over a given rat, we can test (25) by way of an F-test from the analysis 

of variance (ANOVA). The treatment effect here is measured by comparing responses on 
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the dopamine trials to those on the control trials. Independence is not a valid assumption, 

however, since the set of six observations comes from a single animal. One might expect any 

particular rat to respond in a similar manner from session to session. Thus an assumption 

of equicorrelated observations may be more appropriate. Using matrix manipulations, the 

distribution of our test statistic under the null hypotheses in (25) can be shown to be exactly 

the same using the independence or equicorrelation assumption. Hence the AN OVA p-values 

are identical under either correlation structure. 

Table 11 displays the p-values for testing (25) for each of the eighteen rats. According 

to (6), the a-levels for each of the individual tests (25) needs to be 0.0028 for an a-level in 

the overall test (24) of 0.05. Therefore, even though two p-values are less than 0.10, none 

of the rats are significantly effected by dopamine at the desired level of 0.0028. 

The lack of significance may be due to an insufficient number of challenges or rats. 

A power analysis may help us reach such a conclusion. For example, let us assume a 

constant variance, 0'2 , across rats and use the average mean square error from the data, 

D-2 = 0.00292, as an estimate of this variance. In the notation of Section 2, there are N = 18 

rats studied during v = 6 sessions. Suppose the desired detectable difference, ~' is 2 · o-. 
Then, utilizing (13) and (14) we can calculate the power for testing (25). As a function of p, 

the correlation between observations on a given rat (assuming observations on each rat are 

equally correlated), Figure (3) indicates the probability of a Type II error (false acceptance) 

is less than 0.0025 for all p. Therefore, it seems unlikely the large numb~r of nonsignificant 

results is due to Type II errors. 

Note that the power for testing the hypothesis of zero prevalence is at least 0.9975 

(Figure 3). However, the researchers may perhaps be satisfied with an overall power of 

0.90. It is interesting to know how much we need to change N or v to obtain a power of, 

say, 0.90. For sake of illustration, suppose p = 0. Then in each of the N = 18 tests, by (13) 

and (14), we would need to test the rats on two sessions. On the other hand, if we have 

the facilities to challenge and test the rats on six sessions, we need eight rats to obtain the 

same power for the individual tests (25). Therefore, fewer challenges or rats seem necessary 

in this experiment to attain a desired power of 0.90 for testing (24). 
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6 Conclusion 

In planning a repeated challenge study, the investigator needs to carefully consider what 

the true hypothesis of interest is. When the question of interest centers around whether a 

phenomenon exists, the union-intersection analysis directly tests the hypothesis of whether 

the prevalence equals zero. The Kolmogorov test is a nonparametric method whlch also 

correctly tests the hypothesis ofinterest. However, the union-intersection test almost always 

has significantly greater power than the Kolmogorov test. On the other hand, the simulation 

studies indicate that the test from a nested linear model is often more powerful than the 

nonparametric and union-intersection methods. The union-intersection test, though, may 

be preferred because of its interpretation. 

The union-intersection approach presented in this paper is not limited to the repeated 

challenge study. The concepts introduced by this methodology may provide insights into 

experiments in many other fields. Also, the union-intersection technique may be used to 

combine results of other tests besides F-tests. Furthermore, the analysis is straightforward 

and easy to implement in a variety of studies from a broad range of disciplines. 
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levels of the individual tests. N = 10, ao = 0.05. 
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TABLE 1 

Powers needed in individual tests for specified overall power and N. 4> = 0.50, a0 = 0.05 

1-{3/N 2 3 4 5 6 7 8 9 10 15 20 30 
0.80 - 0.81 0.65 0.54 0.46 0.40 0.36 0.32 0.29 0.20 0.15 0.10 
0.85 - 0.92 0.74 0.62 0.53 0.47 0.42 0.37 0.34 0.23 0.18 0.12 
0.90 - - 0.86 0.73 0.63 0.55 0.49 0.45 0.41 0.28 0.21 0.15 
0.95 - - - 0.89 0.78 0.69 0.62 0.56 0.51 0.36 0.28 0.19 
0.99 - - - - - 0.96 0.87 0.80 0.73 0 .. 53 0.41 0.28 
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TABLE 2 

Number of visits needed in individual tests for specified overall power and N. 
Correlation structure of independence 

Beta/ N 2 3 4 5 6 7 8 9 10 15 20 30 
0.80 - 14 12 12 12 10 10 10 10 10 10 8 
0.85 - 18 14 12 12 12 12 10 10 10 10 10 
0.90 - - 18 14 14 12 12 12 12 10 10 10 
0.95 - - - 18 16 14 14 14 14 12 12 10 
0.99 - - - - - 24 20 18 16 14 1-± 12 
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TABLE 3 

Number of visits needed in individual tests for specified overall power and N. 
Correlation structure of equicorrelation with p = 0. 75 

Beta/ N 2 3 4 5 6 - 8 9 10 15 20 30 I 

0.80 - 8 6 6 6 6 6 6 6 6 6 6 
0.85 - 8 8 6 6 6 6 6 6 6 6 6 
0.90 - - 8 8 8 6 6 6 6 6 6 6 
0.95 - - - 8 8 8 8 8 8 6 6 6 
0.99 - - - - - 10 8 8 8 8 8 8 
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TABLE 4 

Number of visits needed in tests of the fixed effect in the mixed model with no interaction 

Beta/ N 2 3 4 5 6 7 8 9 10 15 20 30 
0.80 - 12 10 8 6 6 6 4 4 4 4 4 
0.85 - 14 10 8 8 6 6 6 4 4 4 4 
0.90 - 16 12 10 8 8 6 6 6 4 4 4 
0.95 - 18 14 12 10 8 8 6 6 4 4 4 
0.99 - 24 18 16 12 12 10 8 8 6 4 4 
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TABLE 5 

Number of visits needed in tests of the interaction in the mixed model with interaction 

Beta/ N 2 3 4 5 6 7 8 9 10 15 20 30 
0.80 - 26 16 12 10 8 8 6 6 6 4 4 
0.85 - 36 20 14 10 10 8 8 8 6 4 4 
0.90 - 54 26 18 14 12 10 8 8 6 8 4 
0.95 - 104 42 26 18 14 12 10 10 8 8 4 
0.99 - 384 100 50 32 24 20 16 14 10 10 6 
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TABLE 6 

Number of visits needed in tests of the treatment effect in the nested model 

Beta/ N 2 3 4 5 6 7 8 9 10 15 20 30 
0.80 - 16 12 10 8 8 6 6 6 6 4 4 
0.85 - 20 14 12 10 8 8 8 6 6 4 4 
0.90 - 26 18 14 12 10 8 8 8 6 6 4 
0.95 - 42 26 18 14 12 12 10 10 6 6 4 
0.99 - 104 52 34 24 20 16 14 12 8 8 6 
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TABLE 7 

Powers of test when treatment effect fixed given person has the sensitivity where 
Prevalence=.25 and Total visits=8, correlation=.75 

fJ IN 2 4 6 8 10 
.210a .338 .388 .417 .436 
.142b .152 .178 .220 .250 

1 .219c .297 .375 .441 .503 
.311d .455 .568 .651 .717 

.o5oe .2041 .055 .346 .094 .458 .141 .550 .189 .624 
.459 .678 .797 .866 .907 
.149 .166 .185 .262 .274 

2 .376 .493 .604 .695 .760 
.463 .699 .826 .901 .941 

.058 .389 .037 .687 .071 .821 .136 .898 .213 .939 
.466 .697 .830 .905 .944 
.150 .165 .183 .2.59 .27.5 

3 .446 .591 .693 .778 .838 
.466 .696 .831 .906 .94.5 

.068 .408 .033 .693 .069 .831 .125 .906 .212 .945 

In this and all following tables in this section, the rows in each box correspond to tests using 

the a: union intersection methodology, b: Kolmogorov procedure, c: fixed effects model, d: 

nested model, e and f: mixed model testing the fixed effect and interaction respectively. 
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TABLE 8 

Powers of test when treatment effect fixed given person has the sensitivity where 
Prevalence=.50 and Total visits=8, correlation=.75 

0 IN 2 4 6 8 10 
.457 .561 .616 .648 .675 
.315 .407 .508 .642 .721 

1 .426 .618 .757 .844 .900 
.532 .748 .866 .928 .961 

.081 .252 .169 .447 .323 .593 .480 .706 .614 .791 
.756 .927 .973 .990 .995 
.340 .451 .. 537 .738 .779 

2 .646 .818 .917 .964 .982 
.762 .940 .983 .996 .999 

.130 .506 .153 .869 .362 .964 .580 .990 .744 .998 
.765 .939 .985 .997 .999 
.341 .451 .535 .737 .77<8 

3 .738 .877 .949 .980 .993 
.764 .940 .985 .997 .999 

.175 .527 .145 .880 .367 .970 .603 .993 .776 .998 

37 



~ ... 

TABLE 9 

Powers of test when treatment effect fixed given person has the sensitivity where 
Prevalence=.75 and Total visits=8, correlation=.75 

8 IN 2 4 6 8 10 
.624 .721 .766 .797 .818 
.572 .747 .862 .946 .978 

1 .677 .883 .960 .988 .996 
.731 .922 .978 .994 .998 

.148 .202 .445 .349 .699 .459 .862 .549 .943 .624 
.933 .993 .999 1.000 1.000 
.628 .804 .895 .983 .990 

2 .852 .971 .995 .999 1.000 
.938 .996 1.000 1.000 1.000 

.267 .388 .457 .684 .798 .821 .944 .898 .986 .938 
.940 .996 1.000 1.000 1.000 
.622 .806 .897 .982 .990 

3 .919 .985 .998 1.000 1.000 
.940 .997 1.000 1.000 1.000 

.369 .407 .450 .696 .829 .828 .957 .905 .991 .947 
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TABLE 10 

Powers of test when treatment effect and variance for an individual are random where 
Total visits=8, correlation=. 75 

¢>/N 2 4 6 8 10 
.336 .502 .616 .698 .757 
.127 .133 .152 .196 .211 

.25 .269 .349 .429 .505 .563 
.333 .495 .610 .695 .757 

.035 .283 .025 .464 .036 .585 .059 .672 .086 .735 
.569 .773 .869 .922 .951 
.271 .350 .424 .570 .627 

.50 .480 .645 .762 .843 .898 
.558 .761 .865 .924 .957 

.042 .436 .048 .697 .122 .822 .234 .895 .367 .937 
.753 .912 .965 .984 .993 
.480 .645 .764 .898 .939 

.75 .685 .862 .943 .978 .991 
.744 .909 .969 .988 .995 

.060 .518 .126 .809 .340 .917 .581 .962 .768 .983 
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TABLE 11 

F-test p-values of tests for treatment effect 

For overall alpha level of 0.05, need to reject the individual tests at alpha levels of 0.0028 
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