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Abstract 

We consider the problem of estimating the mean of a 

regression function over a finite interval. Classical regression 

procedures yield conditionally unbiased estimators for that mean 

(conditioning on the model, and choice of observation points). In 

contrast, design-based sampling yields estimators that are 

unconditionally unbiased no matter what the form of the regression 

model. We propose a class of procedures that enjoy both 

properties: they are model unbiased, and unbiased-in-general. MSE 

properties of the class are examined, and illustrative examples 

are given. The proposed procedures perform well, especially in 

the typical case where the model is only partially correct. 

Key words: model-based, design-based, robust estimation, mean­

balanced. 

1. INTRODUCTION 

Many statistical problems reduce to estimation of an integral 

over a finite interval, or equivalently, to estimation of the 

average of some variable over an interval. Examples include block 

kriging in spatial statistics (Cressie 1991), estimation of 

average daily metabolic rates (Degen and Kam 1991), 
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bioavailability of various substances in feeding studies 

(Skelbaek, Anderson, Winning, and Westergaard 1990), toxicological 

studies (Stone, Spivey Fox and Hogye 1981), and medical studies. 

In pharmakokinetics, the bioavailability of a drug over time is 

measured by estimating the area under a curve; the curve 

represents the instantaneous presence of the drug in the 

bloodstream (e.g. Bailer and Piegorsch 1990). If the estimate is 

scaled by the length of the time interval, then the average 

bioavailability is being estimated. 

In this article, we consider the problem of estimating the 

average of the mean function of a random variable Y over an 

interval (indexed by X) in which the mean of Y given x is 

believed to follow a parametric function (with unknown parameters) 

over the interval. 

One approach is to use a parametric regression model: 

estimate the parameters of the model, and use them directly to 

estimate the value of the mean. At another extreme of approaches, 

one can take a simple random sample of observation points, and use 

the sample mean as an estimator. In the first (model-based) 

approach, one can derive great benefits if one has chosen the 

model well; in the second (model-free), one has an unbiased 

estimator no matter what the true mean function. 

We introduce a class of procedures which combine key 

properties from both of the above approaches. Our estimators are 

model-unbiased (MU): if the model is correct, the procedure is 

conditionally unbiased for the average of the function over the 

interval. Further, they are also unbiased-in-general (UG): the 

estimators are unconditionally unbiased for the average of an 

arbitrary mean function. Our proposal is the first broadly 

applicable class of procedures with both these properties. 
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The procedures have two components, one in which observation 

points are deterministically chosen; the other has randomly chosen 

points. The deterministic component comprises the model-driven 

element, while the stochastic component attends to robustness. 

The resulting estimator combines the two components such that the 

potentially biased model element is corrected to be unbiased. 

Until now, MU-UG procedures in a statistical setting have 

been studied only for polynomial models (Gerow 1984). Our MU-UG 

procedures are possible for any parametric model. In the sampling 

literature there are many examples of approximately MU-UG 

procedures: mean-balanced-sampling (Royall and Cumberland 1981) 

(which inspired this work), and regression estimators (e.g. 

Thompson 1992, chap. 8), to name but two. The novelty here is 

that our procedures are precisely ~u and UG. 

2 . FORMULATION AND PRELIMINARIES 

For notational convenience, we consider details of the 

problem for one dimension. Our model is 

Y; = ,u(X;) + Z; ; where 

X; E [ -1, 1] ; and 

(O,o-2!), ~ independent of 4· (1) 

In general, ,u(X) need not be parametric. Multiple 

observations are allowed at a given observation point. The goal 

is to estimate the average of the mean of Y over [-1,1]: 

(2) 

where ,u is assumed to be integrable. 

We wish to consider belief in a parametric model ,u0 (X; ~), 

linear in ~. We assume that g = g (..y, :r) is unbiased for ~. We 

wish to estimate ~ subject to constraints which reflect both 

belief about the regression function and the desire to be robust 
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against misspecification of that function. Correspondingly we 

define: 

Unbiased-in-General. A procedure employing estimator fi = fi !.K, Y) 

is said to be unbiased in general (UG) for ~ if 

Ex,z(fi) = tJ}.-1J.L (x) dx = ~ V integrable J.L (x). (3) 

Model-Unbiased. Given a model J.L0 (X;~), a strategy employing 

estimator fi=fi(.K,Y) shall be called model unbiased (MU) for J.L0 if 

(~ ) 1 Jl Ez J.L 1-K=.lf = 2 _ 1 J.L0 (x;~)dx. (4) 

Strategies that satisfy (3) and (4) will be labeled MU-UG 

strategies; that the MU part of the label depends upon a choice of 

model will be suppressed, but understood. MU and UG reflect the 

model input and desire for robustness in the sampling situation. 

3. THE PROPOSED MU-UG STRATEGY 

The basic idea behind the proposed strategy is to divide the 

sample into two parts. One part is used to satisfy the model 

constraint; the other to satisfy the robustness constraint. To 

the model (1), we add the following details. 

)[' = [4~ : )[~] , where 

4m is fixed, 4r "'/(J£rl , and 

n = nm+nr is the sample size. 

Subscripts rn and r refer to the model and robustness 

components of the procedure, respectively. Y is accordingly 

partitioned into Ym and Yr' similarly for ?· 

Model input to the procedure is as follows. Using 

~m = ~ !.Km, Yml, an estimator for the mean of J.Lo is 

_,.... 1 Jl _,.... 
~o,m = 2 -11-Lo (x;~ml dx, 

which is unbiased for ~ if J.L = J.Lo. 

(5) 

(6) 

The robustness input to the procedure is to apply any UG 

procedure for ~ to !Yr,.Krl. That one always exists is assured: a 
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simple random sample (SRS) of observation points ~r' with fi=Yr 

is UG. For simplicity and later to derive an unbiased estimate of 

The pair (Yrrf(~r)), 
~ 

Var(p), we will use this strategy herein. 

where f is the distribution used to generate ~r' we call the UG 

kernel of the associated MU-UG strategy. 

where 

Our procedure has as its estimator 

fi = fio,m + Yr - Po,r 

Jl.o,r = 

in words, Po,r is the average of values fitted to the random 

points, but with estimation of~ coming from the model points. 

One way to think about this estimator is to note that the first 
~ 

(7) 

term, Po,m , is a model-based estimator of p, which may be biased 

if ~o does not hold. The remainder of (7) corrects this potential 

bias. We proceed with an example, followed by,a proof of the MU­

UG property of the procedure. 

Example 1. Suppose ~0(x; ~) = 81 + B2x, ~ E JR?, is the belief model. 

We use the UG kernel ( Y rr ~ r "' SRS) . Let ~0(x; ~) be determined by 

least squares, based on the model observations. Thus the first 

termof (7) is, by (6), fio,m=Bt. Then, 

fi = Bt + Yr - ~E (o1 + 02xi,r). 

To see that (8) is MU, note that if ~o obtains, 

E(fi1~) = 81 + ~E(Bt +82xi,r) ~E(Bt +82xi,r) 

(since E(~1~) = ~' and E(?' I~)= Ql 

= 81 = "P-o • 

As for UG, note that Ex,z(Yr) = Ji for any ~· Since ?'m is 

independent of ~r' the last term of (8) has 

Ex,z(;tco~ +02X;,r)) = Ez.,1x(81) + Ez.,Jx(o2)Exr(x1,r) 

= Ez.,1x(81) (since Exr(X1,r) = 0). 
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This expectation is a function of the choice of ~m and the 

unspecified ~· Note that it is also the expectation of the last 

term of (8); thus 

Ex, z(fi) = Ezm1x(e1) + Ex,z(Yr) 
Ex,z(Yr) = Ji. 

For the simple linear belief model of this example, the estimator 

looks like a classical difference estimator, or, for that matter, 

a regression estimator (e.g. Thompson 1992). The choice of 

virtually any other belief model dispells that apparent identity. 

It is convenient for what follows to write the true 

regression function in (1) as 

~(X)=MXl'~+i(X) (~is lengthp). (9) 

Thus Ti= ~~J'~+;y, where!!:::_ {f_\hi(x)dx}p' and 7= ~f_\r(x)dx. If 

f..L = f..Lo, then != 0. If f..L =I= ~0 I ~ is defined conditional upon 

design points and I . In particular, if we denote the least 
-m 

squares estimate of ~ by D1Y then D'[ = 0. 
- -I - -m 

Theorem 3.1. MU-UG Theorem for the proposed strategy. 

We use model (1), with details of ~(X) given in (9) and the 

following assumptions: 

(A1) ~ is the least squares estimator for ~; 
(A2) (Ynf(x,)) is UG for p.; and 

the 

If (A1) and (A2) obtain, the estimator (7) is MU under ~0 , and UG. 

Proof: See the appendix. 

Remarks: 

1. If ~o is nonlinear in ~ and~ is asymptotically unbiased, then 

the procedure is UG and asymptotically MU. Proof follows that for 

Theorem 3.1, employing the usual asymptotic tools (e.g. Seber and 

Wild 1989). 

2. If function evaluations are made without error (a numerical 

quadrature setting), then for both linear and nonlinear models, 
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least-squares g are exact for ~· Then the strategy yields exact 

answers under ~0 , and is UG. 

3. The procedure can easily be extended to higher dimensional ~· 

All we need is a model for which ~ is unbiased; the strategy (Yr, 

lfrrvSRS) is still UG. 

3.2. Variance of the Proposed MU-UG Estimation Strategies. 

We now develop the variance of the procedure, for which we 

need some notational apparati: 

Nl. Write ra~,r := Ex(!;.(1r _·;:nf = J_\ · · · f_\(g(1r -7) fi(~r)d~, where 

f(x_r) is the distribution of the "robustness points", },. is I(Jfrl, 

and Ex,z(t'!) = r;=y. Note that under simple random sampling, 
- 2 

0"~, r = ~ f_\ (I (X ) - 7) dx . 

N2. The design component has Dm observations (chosen so that nmiP 

is an integer); we write~ as an (Dm/p)-replicate of the (assumed 

to exist) minimal design~.: 

~. = {hj(Xi,m)} . 
pxp 

N3. By (A2), (Y,j) is UG so Ex,z(!~Il) = FJ; write y 

where ~ is the observation matrix {hj(xi,r)} . 
flrrP 

Theorem 3.2. Under the assumptions of Theorem 3.1, for linear ~0 , 

Var(fi) = .;;{a~,r + a~ + ~a~tr((~~~.tY) }· (10) 

Proof: See the appendix. 

Remarks: 

1. If the model is correct, a~,r = 0 in (10). 

2. If the UG kernel is (Yn lfr rv SRS), then 

Var(fi) = .;;{a~,r + a~ + ;;a~tr((~~S1Y1 ) }, (11) 

where y1 is y for Dr= 1. The variance in this form is 

particularly amenable to deducing optimal allocation of Dm and Dr· 
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3. In an application where belief in ~o is strong, it may be 

reasonable to assume that a;, r < a;. Then 

Var(p) < a~ {2 + _E_tr((M~M.)- 1v)}. nr nrnm - - -
(12) 

4. The variance under nonlinear models is analogous to the linear 

one; 

where 

U 0(9) -( 811-o(x;;~)) • --12 
-mxp = - - - 80j ' Z- , 1 

j = 1, 2, - - -, p, and where V is the variance-covariance matrix of a: 

':}1 = ;, (EaJ-L:(x;;~)/8BJ,L,8~o(x;;~)/8B2, · · · ,L,8~0 (x;;~)!8B:). 
Note: -g is a function of ?;m only, so is independent of );f, .. 

When the UG kernel is (Yrr .?{r"' SRS), we have a surprisingly 
~ 

simple estimator of the variance (10). Let {j = Y - Y be the rv,·rvr rvr 

residuals at the random observation points, and s~ be the sample 

variance among them. An estimator for Var(p) is as follows. 

Theorem 3.3. Unbiased Estimator of Var(p). 

Under the conditions of Theorem 3.1, and with the UG kernel 

(Yr,.?{r"' SRS), 

Ex,z( ::) ;, { aL + a~ + ;;;a;tr( (lf.!.'.)'Y,)} 

Var(p). 

Proof: See the appendix. 

Remark: If one has multiple observations at the model points with 

which to estimate "pure error" (a;), one can decompose the 

variance estimator to arrive at an estimate of a;. 
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4. EXAMPLES AND COMPARISONS 

The variance (10) suggests that the optimal design for ~m is 

given by A-optimality, i.e. by minimizing the trace of (~'~t1 • 

Given a choice of design ~m' we can then use (11) to optimally 

choose m and r, given n. In particular, if one assumes that the 

model is nearly correct, i.e. assume~;~ 0, the calculations are 

generally quite tractable. To facilitate the examples, we will 

assume that ~r is chosen via a SRS, so that we can apply the 

simplifying features of (12) and Theorem 3.3. The following 

example demonstrates these aspects. 

Example 1, continued. Suppose f..L0 (x; ~) = 81 + 82x. We will 

consider two cases: the model is correct, and that the true 

function is in fact f..L(x; 8) = 81 + 82x + 83x2 • We will compare our 

strategy to a simple random sample and to a purely model based 

strategy: take all n observations at x = 0, and use }1 = Y. 

The correct A-optimal design for ~m is to have an equal 

number of observations at 1 and -1. Under the model, and using 

simple random sampling for choosing ~r' (11) reduces to 

Var (}1) < -k-( 1 + 3~m). 
From this, we deduce that the optimal sample apportionment is 

nm = 2, for n ::=:; 30; it becomes nm = 4 for 31::::; n ::=:; 82, and jumps to 

nm = 6 at that point. 

The MSE can be decomposed into functions of parameters only 

and of~;. The MSE components for this example are displayed in 

Table 1. We can examine this MSE behavior visually for any set of 

parameter values. For example, to illustrate a case where the 

model is incorrect, set 82=2, 83=2. Figure 1 shows the ratios 

var (MU-UG) and var (MU-UG) for a range of n. 
Var(SRS) ' Var(model)' 

The behavior we see here is a general property of the MU-UG 

strategy. If the model is correct, one can do somewhat better by 

wedding oneself to the model. If the model is incorrect, one can 
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(depending on the confluence of parameter values and a;), often 

experience significant gains by having "partially" specified the 

true mean function, while limiting the damage that could be 

experienced by having wedded oneself to the incorrect model. Note 

that if 03 is very small, the MU-UG strategy will not necessarily 

be competitive against the pure model-based strategy. If there is 

no regression (J-L = B1), then the SRS strategy also outperforms the 

MU-UG strategy. 

Example 2. We illustrate the use of our MU-UG technique on a 

subset of a well-known spatial statistics data set, the Wolfcamp­

aquifer data (Cressie 1991, p. 212). Cressie gives the locations 

(~.~), and the piezometric-head values, ~ for 85 wells located 

near Amarillo, Texas. We take as our inferential goal the 

estimation of the average of the piezometric-head value over the 

rectangle given by -45 :S x1 :S 105 and 10::; x2 :S 210. 

Since our procedure has a deterministic and a stochastic 

component we will pretend that the observations at the (xi, x2) 

values given by (-2.23054,29.91113), (103.26625,20.34329), 

(42.78275,127.62282), (83.14496,159.11558), and (-24.06744, 

184.76636) are the model-based, deterministic observations and 

that the remainder of the observations with -45 :S x1 :S 105 and 

10::; x2 :S 210 represent a random, uniformly distributed sample from 

the rectangle. So we have 5 deterministic and 64 stochastic 

observations. We could also arrive at this situation by starting 

with a SRS of points and operating conditionally on a randomly 

chosen subset. 

As a simple belief model which a geologist might have had 

before the data were gathered, we take 1-Lo, i = Bo + el Xlj + B2Xzj. 

Using the model observations gives 00 = 2502.4817, 01 = -5.9218, 

and 02 = -5.4813, so that 
r (~ 

Jio,r = ~L Bo + 
i=l 
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B0 + 8130 + 82 110 = 1721.5556 ; and 

Yr 1844. 5556. 

We therefore have 
.:::::: 
1-l 1721.5556 + 1844.5556- 1838.8886 = 1727.5544, 

with a standard error of sal Jn = 24. 6516. 

For comparison, treating the entire sample as a SRS gives 

1-lsRS = YsRS = 1833.2059, 

and using a strictly model-based approach gives 

1-LMoo Bo + 8130 + 82110 

2589.3885- 6.8993(30) - 6.0387(110) 

= 1718.1417, 

where the Bi are now calculated from the entire data set. In this 

case, the MU-UG approach yields an answer intermediate to the 

other two techniques. 

5. DISCUSSION 

We considered the problem of estimating the mean of a 

regression function over an interval, where some parametric model 

is supposed but not assumed for the function. We have presented a 

class of procedures for that problem, members of which have the 

property of being simultaneously MU and UG. The strategy employs 

explicit model-based and robustness-based components, combining 

the two in a special way. 

The variance of the strategy was obtained in general, as well 

as an unbiased estimator for it in the special case where the 

random points are chosen according to a SRS. Examination of the 

variance of the proposed strategy, both in its general form, and 

through an example, reveals that it works as one might expect. If 

the model is only partially correct (a realistic situation), one 
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can gain greatly using our strategy over a model-dedicated 

approach, while still being better than a simple random sample. 

The strategy can be applied even if some of the independent 

variables can have some known non-uniform distribution over the 

range for which one wishes to estimate the mean. The concept of a 

SRS over the interval (which induces a uniform distribution) 

simply has to be modified to reflect the joint distribution of the 

variables of interest. 

APPENDIX: PROOFS 

Proof of Theorem 3.1. Additional Notation: Let 

Thus 

l-r { 1, 1, · · ·, 1 }' be of length r; 

J.L(x) 

lJ 

~(mxp) 

-H-crxp) 

= !}(x)'~ + 1(x); !} and ~ are of length p; 

{IJi}P = {J!1hi(x)dx}P 

{hj(Xi)} ;i = 1, · · ·, nm (~ is fixed through ~ml; 
= {hj(Xi)}; i= nm+1, · · ,n C·.H- is stochastic 

through JSr) ; 

= Jd.~ +1m+ ~m (analogously for Yr) ; 

"Q1 = (~'~y·~, so ~m = "Q'Y m; and 

p. 
... o,r MJSS~ (estimates of J.L0 at Jf-rl. 

With this machinery in hand, 

p = l1'Y - l1' (Ji. l + lH'fJ r -r- r r -r -o,r 2 - ~ 

= ~g(-H-~+Jr+?'r-.{l~--H-.Q'?'m) + !IJ'(~+.Q'?'m) 
= ~!~(Jr+?'r-.{l.Q'?'m) + !IJ'(~+.Q'?'m)• (A.1) 

li' -v + lH'O. r-r ..!r 2- -

If the model is true, 1(x) = 0 by definition: the estimator is MU. 

Otherwise, Ez,x (p) = E( Ez!x (p)) = ~!~!r-;y + !IJ'~ = J.L. D 

Proof of Theorem 3.2. From (A.1) 

= E[(P-IL/] Var(p) 
and using /l = !IJ'~ + )', 

{( 11' -) + = nr-r'lr- '1 
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= Var(;r!~:!r -7) + Var(kg~r) + 
Var( (H!'- k!~IZ)P'~m) 

(since all cross-product terms have expectation zero) 

= -k { nra;, r + nra~ + a~tr[Q'QY]} , 

This last equality holding by applying Theorem 1, p. 55 of Searle 
. I _ p ( 1 )-l (1971) twice. Sl.nce DD-- M*M* , 

- - nm 

var(P) ~ ;,{a-L + a-~(1 + n,';;;tr((tf.!:!.r1Y))}. o 

Proof of Theorem 3.3. Since the 51 are exchangeable, they have 

the same means and variances and are equicorrelated. It is 

therefore easy to show that E(sD = Var(DJ) - Cov(DJ,Dj). It 

remains to calculate the variance and covariance. The variance is 

The 

Ex,,(o,-~,)' ~ Ex,,{ Y1 - f1 - 'Y r 

Ex,,{l!'IXJl~ + ?IXJ) + ZIX,)- l!'IXJ)~- 'Yr 

Ex,,{ (>IXJ)- 1) + Z(X,)- l!'IXJlQ'{i'm r 
{ a;,r + a~( 1+ n:nm tr( (~J;:q-ly) + a~Jl;,p'IJilh)} · 

crossproduct expectation is 

Ex,z{ (YJ - Y1) (Yj - Yj)} 

Ex,z{ (')'(XJ) + Z(XJ) - ~'(XJ)Q'~m) 

(')'(Xj) + Z(Xj) - ~· (Xj)Q'~m)} 

(A.2) 

(the terms Z(X1 ), Z(Xj), and ~m have expectation zero and are 

mutually independent, so all their associated crossproduct terms 

can be conveniently ignored) 

= Ex,z{')'(XJ)')'(Xj) + ~'(XJ)Q'~m.?'mQ~(Xj)} 
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(to the last term, apply the bilinear version of Theorem 1, p. 55, 

Searle ( 1971), denoting E( .g' (X1 )) by 1-'h) 

= ;:yz + a~p~Q'Qph • 

Thus the covariance is a~p~Q'Qph. Subtract this term from (A.2), 

divide by nr, and the result is proved. D 
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Table 1. MSE components of estimators under an assumed model 

J.Lo = 81 + 82x and also when J.L = 81 + 82x + 83xl. 

(error) component and a model component. 

Each MSE has a a2 
z 

MSE Under the Model 

MU-UG + 0 45 (nr-nml 
ri l(~ 48;) SRS + ...1... + + n 3n n n 3 45 

02 
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model-based :J. + + :_]_ 
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Figure 1. Plot of v~~~~~?l, and ~=~~:~~~! for J.Lt = 81 + 2x (a) and 

1J2=8t+2x+2x2 (b), with J.L0 =81+82x; a~=l. 
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