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Abstract 
.. --. 

It is not unusual, when considering conditionally independent hierarchical models 

(ClliM's) within a Bayesian framework, to assign improper prior distributions to the parameters 

of the second stage. Unfortunately, the technical difficulties which lead to the use of Markov 

chain Monte Carlo techniques (e.g. the Gibbs sampler) for sampling from the resulting posterior 

distributions also cause problems in establishing the integrability of these posterior distributions. 

In this work, we give conditions which guarantee the integrability of the resulting posterior 

distributions for some frequently used CIHM's. These CIHM's include the linear mixed model and 

those in which the first and second stage distributions can be written as a one-parameter 

exponential family and its two-parameter conjugate exponential family, respectively. 



1. Introduction 
.. ·· . 

.. ··. 

Bayesian hierarchical models often lead to situations in which the posterior distribution is 

impossible to deal with analytically while the conditional distributions required for Gibbs sampling 

are of a simple form. A lack of prior information about the hyperparameters in these models often 

leads to the use of improper prior distributions. When using improper priors it is, of course, 

necessary to check that the posterior distribution is proper, i.e. that the marginal distribution of 

the data is not infinite. This is not always easily done, however, when using complicated 

hierarchical models. If one uses improper priors within a Bayesian hierarchical model and finds 

that the conditional distributions required for Gibbs sampling are of a simple form, it might be 

tempting to simply assume that the posterior is a proper distribution and implement the Gibbs 

sampler. Unfortunately, existence of the "Gibbs conditionals" in no way guarantees that the 

posterior distribution is proper. This is a dangerous situation since the Gibbs sampler can 

sometimes be employed when the posterior distribution is improper. This could clearly lead to 

seriously misleading conclusions. 

For example, consider the common beta-binomial hierarchy 

Yl p-Binomial(n, p) 

p-Beta(a,b) 

(1.1) 

where the posterior distribution from (1.1) is 1t(piY,a,b), a beta density. With the added 

computational power of the Gibbs sampler, it is now possible to specify a prior distribution on the 

beta parameters, and fully marginalize. That is, if we add a prior g( a, b) to ( 1.1 ), Gibbs sampling 

can allow us to calculate the posterior distribution by iteratively resampling from the three 

conditional posteriors n(plY,a,b), 1t(a1Y,b,p) and n(biY,a,p). The full posterior can then 

seemingly be approximated (to any degree of accuracy) by 
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(1.2) 

~ --. 

where M denotes the number of Gibbs iterations. 

The problem arises when, as is often the case in practice, the prior g(a,b) is improper, i.e. 

J g(a, b) da db= oo. It also often happens that, in such cases, the three conditional posteriors will 

all be proper densities, and can be used to generate random variables. Proceeding along, (1.2) can 

then be used to approximate n(pl y) but, as we shall see, n(pl y) may not exist. Thus, we could 

be in a case where the right-hand side of (1.2) gives a beautiful picture, but the picture is phony: 

there is nothing for it to approximate. This example is fully developed in Section 2. 

The reason for this problem is that a set of conditional densities is not sufficient for 

determining a joint density. For random variables X1 , ••• , Xn, consider the set of densities 

(1.3) 

where x_; represents the set {x1,x2 , ... ,xH,xi+I>····xJand we use the notation /(·1·) to stand for 

a generic density. Gelman and Speed {1993) call this set the "full conditional specification" and 

give conditions under which it uniquely determines a joint distribution f(xi> ... ,xn). This is the 

underlying workings of the Gibbs sampler, but existence of a full conditional specification (FCS) 

does not guarantee the existence of a unique joint distribution (see Example 2 in Casella and 

George (1992)). It is therefore quite important, when using improper prior distributions, to make 

sure that the posterior distribution is proper before using a Markov chain Monte Carlo (MCMC) 

technique such as the Gibbs sampler. In this paper we consider two fairly general models and give 

some conditions (on the prior distributions) under which the posteriors are guaranteed to be 

proper. This then allows the implementation of the Gibbs sampler with the assurance that it will 

converge to a legitimate posterior distribution. 
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An insidious feature of this problem is that it may be undetectable to a practicioner, as the 

right-hand side of (1.2) will often look pretty. Moreover, even monitoring raw histogr~·--will 

not always reveal an underlying problem. A reason for this difficulty is that, if the posterior 

distribution is improper, we have a null Markov chain (Meyn and Tweedie 1993), which can be 

. quite difficult to detect. In fact, this problem was brought to our attention by a colleague in 

Animal Science, who had been using a Gibbs sampler for almost two years until it "blew up" one 

day. 

Thus, at this point, the only reliable mechanism for detecting improper posteriors is to 

eliminate them from consideration. In Section 2 we consider a hierarchical exponential family 

model, and show which improper priors will result in proper posteriors. We also look at a 

number of detailed examples. Section 3 considers the general linear mixed model, where in some 

cases we can give necessary and sufficient conditions for proper posteriors. Section 4 treats the 

one-way random effects model in detail, and illustrates the output from Gibbs chains with 

improper posterior distributions. Lastly, Section 5 is a short discussion. 

2. Hierarchical Exponential Family Models 

The first set of models we discuss are those in which the data are distributed according to 

a one-parameter exponential family, whose parameter is distributed according to the conjugate 

two-parameter exponential family (George, Makov and Smith 1992) and the hyperparameters are 

assigned improper priors. The model is 

(2.1) 

a.,~-1t(a.,~) 
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where \fi(S)=InJa(y)e~dy and <J>(a.,f3)=InJexp{f3(a.9-\j/(9))}aU. We assume thaf"..all 

distributions in the first two stages of the above model are proper and that J 7t{a.,f3)da.df3=oo. 

Conditionally on the 9 's, the Y's are assumed to be independent. In the same manner, the 9 's are 

assumed independent given (a.,f3). The Y's are also assumed conditionally independent of {a.,f3) 

given the e 's. 
The joint posterior distribution of e = (91> ... , e K), a and f3 is given by 

7t(9,a.,f31y) = - 1-TI(llf{yifl91) 1*(91I<X,f3)7t(a.,f3) 
m(y) I i r 

The joint posterior distribution, 7t{9,a.,f31y) is a proper distribution if and only if m(y) is finite. 

Given the exponential family structure of our model, we can evaluate part of the integral in (2.2) 

by noting that 

where y1. = LYii. Substituting {2.3) into (2.2) gives the following proposition 
j 

Proposition 1. Given model (2.1), the posterior distribution, 7t{9,a.,f31y), will be proper iff 
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where Y;. = LYif. 
j 

(2.4) 

We now discuss three special cases of model (2.1 ). All three models possess legitimate 

FCS's and therefore lend themselves to Gibbs sampling. On the other hand, using Proposition 1, 

we show that all three of these models can lead to improper posterior distributions. 

Example 1 Consider the following Bayesian hierarchical model which could, for instance, be 

used to analyze the famous "pump failure" data (Gaver and O'Muircheartaigh 1987) . 

.fyiA.; ~ Poisson(A.;) i=l,2, ... ,K }=1,2, ... ,J 

A;lr,s~Gamma(r,s) 

dF(r,s)=s"dsdr (a>-1) 

We say X- Gamma(r,s) if jx(t) oc (-1 exp( -st). The FCS for this model is 

'A)r,s,y-Gamma(y;. +r,J +s) i=l,2, ... ,K 

j(rly, A,s)ocs"' (r<rlf'( l) A, r 
j(siy, A,r )ocs"'~ ex~ -s ~A,}. 

(2.5) 

George, Makov and Smith (1992) show that f(rly, 'A.,s) is an integrable function for r E vr while 

f(sly,A.,r) is clearly integrable for s e~n+ when a> -1. The FCS therefore consists oflegitimate 
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densities. We now use Proposition 1 to show that the posterior distribution, 1t(A.,r,sly), is 

improper. Substituting into (2.4) we have ~ . ·. 

(2.6) 

If y_ :::;; a+ 1, then the inside integral diverges. If y_ >a+ 1 we have that (2.6) is equal to 

(2.7) 

If a ;:::: 1, then it is clear that 

fro nr(Y;. +r) r(Kr+a+1) dr > fro(r(Kr+g+ 1))fr{f(Y;. +r)}dr 
co rK(r) r(y_ +Kr) -co r(y_ +Kr) ~J r(r) (2.8) 

where q denotes rounding a down to the nearest integer. Evaluating the ganuna functions 

ro(f(.Kr+q+1)) K fr(y .. +r)} fro rY .. 
c { ' dr;::::c dr 
[ r(y_+Kr) Dl r(r) o(y_+Kr-lr-g-l 

(2.9) 

But the integral on the right-hand side diverges as g ;:::: 1. Finally, if a E ( -1, 1), 

fronr(Y;. +r) f(Kr+a+1) dr > J(f(Kr+a+1))Ii{f(y;. +r)}dr 
c 0 rK(r) r(y_ + Kr) - c 2 r(y_ + Kr) i=l r(r) 
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since the integrand is positive. For r e(2,oo), we may replace a with -1 to get another lower 

bound 
., ··. 

~ ··• 

cj(r(Kr+a+l))fl{r(y;. +r)}dr ~ cj( r JY-dr. 
2 r(y_ +Kr) i=l r(r) 2 (y_ +Kr-1) 

(2.10) 

The integral on the right-hand side is divergent. Thus, by Proposition 1, the posterior 

distribution, 7t(A.,r,sly), is not proper for the hierarchical model (2.5). This example 

demonstrates a situation in which a person could use a perfectly reasonable FCS to construct a 

Gibbs chain in which the conditionals can be sampled but which cannot converge to a proper 

posterior distribution. 

For the sake of concreteness, suppose K=J=2 and a= 0. The FCS in this case is 

Constructing a Gibbs chain in this situation would be quite straightforward. (Since, the posterior 

corresponding to this FCS is improper, a Gibbs chain generated using it is formally not a Gibbs 

chain. We henceforth use the term pseudo-Gibbs when referring to such chains.) The Metropolis 

algorithm (Smith and Roberts 1993) could be used to simulate from the conditionals 

corresponding to r and s. We believe this to be a dangerous situation since it is possible to 

construct a pseudo-Gibbs chain and then use the results of this chain to make inferences about a 

nonexistent posterior distribution. 

Example ~ Consider another special case of model (2.1 ), a full hierarchical specification for the 

beta-binomial model given in the introduction: 
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Y;jlp; -Binomial(n,p;) i=1,2, ... ,K j= 1,2, ... ,J 

P;lr,s- Beta(r,s) 

dF(r,s)=dsdr. 

The FCS for this hierarchical model is 

p;lr,s,y-Beta(y;. +r,Jn- Y;. +s) i=1,2, ... ,K 

.. ·· . 
. -·. 

(2.11) 

George, Makov arid Smith (1992) show that f(rly,p,s) and j(sly,p,r) are integrable functions 

whenever K;?: 2. We now use Proposition 1, as before, to show that the posterior distribution, 

n(p,r ,sjy), is improper. (y/e were unable to use the results of George, Makov and Smith (1993) 

to show that the FCS is legitimate for a more general prior like dF(r,s) = sarbdsdr .) Substituting 

into (2.4) we have 

= I"' I"' TI r(Y;. + r)r(Jn- Y;. + s)r(r+s) dsdr 
0 0 i r(r)r(s)r(Jn+ r +s) . 

Using the fact that · 
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r(Y;. + r)r(Jn- Y;. +s)r(r +s) 
r(r)r(s)r(Jn +r+s) 

(y;. +r -1)(y;. +r -2)···r(Jn- Y;. +s-1)(Jn-Y;. +s-2)···S 
= 

(Jn+r+s-1)(Jn+r+s- 2)···(r +s) 

we have 

jjrr r(yj. +r)r(Jn-Y;. +s)r(r+s) dsdr 
0 0 j r(r)r(s)r(Jn+r+s) 

00 00 y Jn-y 00 "" 00 £..."1· 

> IT r l·s J. dsdr = L...YJ. s ds dr { } { 
KJn-""" } 

-H , (Jn-!+r+st [r [(Jn-!+r+s)'"' · 

The inside integral in (2.12) will be infinite if LY;. :<::; 1. If LY;. > 1, we have 

where c represents a constant which is independent of r. It follows that 

"'-· . 
., ··. 

(2.12) 

Therefore, the posterior distribution, n(p,r,sjy), for the hierarchical model (2.11) is improper. 
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Example J. The last special case of model (2.1) we consider is the normal model. 

~~~;-Normal(~;,!) i=1,2, ... ,K }=1,2, ... ,J 

~;Ill, cr2 - Normal(Jl,cr2 ) 

dF(Jl, cr2 ) = ( cr2) -(a+!) djl dcr2 . 

.. -·. 

(2.13) 

The posterior, 1t(~, Jl, cr2 ly), for model (2.13) exists iff -K + 1 < 2a < 0 (Berger and Robert 

1990), while it is possible to sample from the FCS (and construct a pseudo-Gibbs chain) 

whenever -K < 2a. (If -K < 2a, cr2 given ~, Jl and the data has a proper inverted gamma 

distribution.) Berger and Robert (1990) also show that, in this case, a proper posterior 

distribution implies existence of the posterior expectation and covariance matrix of the ~ •s. 

Model (2.13) is a special case of the models in Section 3. 

3. Hierarchical Linear Mixed Models 

The second set of models we discuss are Bayesian hierarchical versions of the linear mixed 

models (Searle, Casella and McCulloch 1992). The main interest in this section, as in the previous 

section, is to classify those improper priors that lead to legitimate Fcs•s into those for which the 

posterior distribution is proper and those for which it is not. We use a parametric improper prior 

distribution for the variance components which yields many standard improper forms, such as 

those discussed in Hill (1963) and Tiao and Tan (1965), as well as many not so standard forms, 

such as flat priors, as special cases. A nice property of this parametric improper prior is that its 

use leads to a manageable FCS which is identical in form to that given in Gelfand and Smith 

(1990) who describe the Gibbs sampler for the one-way random effects model using proper priors 

at all stages. 
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We define the model equation to be 

... --. 

Y=Xf3+Zu+e (3.1) 

where Y is an N x 1 vector of data, f3 is a p x 1 vector of fixed effects (parameters), u is a q x 1 

vector of random effects (random variables), X and Z are known N x p and N x q design 

matrices, receptively, and e is anN x 1 vector of residual errors. We assume that u can be 

partitioned into a series of r sub-vectors 

, 
u = [ u; u; · · · u~] . 

We also assume that (Z'Zt and (X'Xt exist. 

A typical Bayesian hierarchy used for mixed models such as this begins with the 

assumptions 

where 

(i) ulcr;, ... ,cr;-N(O,D) 

(ii) n(P) = 1 

(iii) elcr;- N(O,Icr;) 

It is clear that (iii) implies Ylf3, u,cr;- N(Xf3 + Zu,Icr;). Now consider the following (improper) 

priors for the above hyperparameters 

(3.2) 
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where the ai 's and bare known constants and each distribution is supported on the positive. half-

line. We use this form because it resembles that of the usual inverted gamma (proper) prior 

distributions. We write the Bayesian hierarchical model defined above as 

Ylu,cr!.~- N(X~+Zu,Icr!) 

n(~) = 1 ulcr~ , ... ,cr;- N(O,D) (3.3) 

( 2 ) ( 2)-(a;+l) n. cr. Ia. = cr. 
l I J I • 

If b >- ~ and ai >- ~ for all i, the FCS for model (3.3) is as follows. 

f(a!ia~ , ... ,a~,y,u,p) = I~b+ ~ ,2{(y-(XP+Zu))' (y-(Xfl+Zu)JF') 

(3.4) 

Before stating Theorem 1, which gives necessary and sufficient conditions for the posterior 

distribution, n(cr;,cri, ... ,cr;,u,~ly), to be proper, we develop an interesting connection between 

model (3.3) and the estimation technique called restricted maximum likelihood (REML). We can 

write the likelihood function of the variance components for model (3.3) as 
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L( cr;, cr~, ... ,cr;ly) ~ J( Ylcr;, cr~ , ... ,cr;) 

= J /(Yiu,J3,cr;)/(ulcr; , ... ,cr;)dudj3 

., ··. 
"'··. 

where we have used the following three assumptions concerning the conditional independence 

structure of model (3.3): (i) given u, Y is conditionally independent of cr: , ... ,cr;, (ii) given 

cr;, ... , cr;, u is conditionally independent of J3 and cr;, and (iii) J3, cr; and cr:, ... , cr; are mutually 

independent. This likelihood is evaluated in the Appendix, and is given by 

exp{iy'((ZDZ' +Icr;)-1X(X'(ZDZ' +b;r1xf'X'(ZDZ' +:rcr:r1 -(ZDZ' +10';)-1 )y} 

N-p N-q .!_ .!_ 

(21t)-2 (cr;) 2 IX'(ZDZ' + Ia;f1XI21Z'Z +cr;n-112 
(3.5) 

The above likelihood is equivalent to the REML likelihood (Searle, Casella and McCulloch 1992 

p.323) derived in the frequentist setting by considering the density function of a linear 

transformation ofthe data, K'y, given the variance components. The matrix K is any N x (N-p) 

matrix of rank N-p such that K'X = 0. This transformation is justified in a number of ways 

(Searle, Casella and McCulloch 1992 p.249) and leads to data independent of J3. The REML 

likelihood can also be written in terms of the matrix K (Searle, Casella and McCulloch 1992 

p.323). This correspondence further motivates our study of model (3.3). 

We now state the theorem. 

Theorem 1. Assume that N- p > q and let t = rank(Z'PxZ) ~ q where Px = (I- X(X'Xt1 X'). 

There are two cases : 

16 



Case 1: If t = q or if r = 1 then conditions (iv), (v) and (vi) below are necessary and 

sufficient for the posterior distribution of model (3.3) to be proper. 

Case 2: If t < q and r > 1 then conditions (iv), (v) and (vi) are sufficient for the posterior 

of model (3 .3) to be proper while necessary conditions result when (v) is replaced 

with (v') q1 > -2a1 • 

(iv) a1 < 0 

(v) q; > q- t- 2a; 

(vi) N + 2 L a1 + 2b- p > 0. 

Proof See the Appendix. 

Before we explore some pseudo-Gibbs chains we note that since the priors on the variance 

components in·model (3.3) are simple powers, Theorem 1 can be used to quickly ascertain which 

posterior moments· of the variance components exist. For instance, assume we are in case 1 and 

we have already discovered that the posterior for our special case of(3.3) is proper. Suppose we 

would now like to know if the marginal posterior distribution of a; has a second moment. We 

can answer this question quickly using Theorem 1 by exploiting the following fact. The existence 

of the second moment of the marginal posterior distribution of a; is equivalent to the integrability 

of the posterior of a slightly different version of our model in which a1 is replaced by a; - 2. 

Therefore the marginal posterior distribution of a; necessarily has a second moment if conditions 

(v) and (vi) ofTheorem 1 still hold when a1 is replaced by a1 -2. 

Since interest here is in estimation of variance components, study of the model (3 .1) is 

sometimes simplified with the additional assumption that f3, the fixed effects vector, is known. In 

such a case we get a stronger result than Theorem 1, whose proof is virtually the same. 
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If f3 is known, the FCS is still given by (3.4) without the density for f3. The following 

theorem can be proved. 
.., ··, 

... --. 

Theorem 2. The posterior distribution for model (3.3), with f3 known, will be a proper 

distribution if and only if the following three conditions are satisfied fori= l, ... ,r. 

(i) a; <0 

(ii) qi > -2ai 

(iii) N +2:La; +2b > 0. 

4. A Detailed Example: One-Way Random Effects 

In this section we consider the one-way random effects model in detail. First it is shown 

that all of the densities in the FCS are proper under minimal restrictions. The conditions required 

for a proper posterior distribution are then derived and compared with these minimal restrictions. 

Finally, a simulated data set is used to demonstrate what happens to the Gibbs sampler in two 

situations where the FCS consists of proper densities, but the posterior distribution is improper. 

Consider the standard one-way random effects model 

i = 1, 2, ... 'k j = 1, 2, ... ' J (4.1) 

where B; iid N(O,a~), eij iid N(O,u!), and the B 's and e 's are mutually independent. If we 

write this model as a Bayesian hierarchical model (using the priors discussed above) we have 
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7r(p) = 1 (4.2) 

2 ( 2)-(a+l) 
7r( CT e) = CT e • 

One further assumption, which is not obvious from the model, is that of conditional independence 

which states that, conditional on the 8 's, the .Yg. 's are independent of u~. This assumption makes 

sense since a knowledge of u; should not effect the distribution of the ~ 's if we already know the 

(} 's. 

Model (4.2) is a fairly complicated Bayesian hierarchical model. No closed form solution 

exists for the posterior distribution n(cr~,cr;,e,~ly). This fact might lead one to consider using 

the Gibbs sampler in order to estimate some features of this posterior. However, after a bit of 

algebra, the FCS which is necessary for Gibbs sampling is given by 

where 
1 J 

Y;. = JLYij 
j=l 

19 
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The inverted gamma densities have the parameterization described in Berger (I985 p.56I). These 

four conditional densities will be legitimate densities whenever k + 2a > 0 and N + 2b > 0, so~"the 

Gibbs sampler may be implemented whenever these two conditions hold. 

Although the posterior distribution may not be calculated in closed form, we can, through 

the use of inequalities, establish which a's and b's lead to proper (integrable) posteriors. Since this 

model is a special case of the one, considered in Section 3, we can apply Theorem I to derive 

conditions which· guarantee a proper posterior. 

If we regard the model (4.2) in matrix form, and reconcile notation with the general mixed 

model notation (3 .I), we find that the X matrix is a vector of ones and the Z matrix is an 

incidence matrix. With some matrix algebra we then find that the rank of Z'P.._Z is equal to k -1. 

We now apply Theorem I, Case I, with t = k-1, p = 1, q; = q and a;= a to get the following 

Corollary. 

Corollary 1. The one-way random effects model (4.I), with prior specification (4.2), will haye 

a proper posterior distribution if and only if 

(i) k-1>-2a>0 

(ii) N +2a+2h-1>0 

Note that the (a,b) pairs that satisfy Corollary 1 are a subset of those that satisfy 

k+2a>0 and N +2h>0, the conditions that make all ofthe densities in (4.3) proper. Thus, a 

proper posterior necessarily yields proper conditionals, but it is possible to have a legitimate set of 

densities in (4.3) that correspond to no proper posterior. In particular, choosing a= 0 results in 

an improper posterior. 

If the FCS consists of legitimate densities, but the posterior distribution is not proper, 

what happens to the pseudo-Gibbs chain? We now attempt to shed some light on this question 
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with some simulations. The follo~g data were simulated using model ( 4.1) with a~ = 5, a; = 2 

and ,u= 10. 

Class Yi! Yn 

i = 1 8.60 8.98 

i=2' 11.32 11.36 

i = 3 7.74 5.05 

i=4 10.64 9.84 

i = 5 14.08 10.74 

i= 6 9.44 8.29 

i = 7 11.35 10.98 

Data vii 

Y;3 Y;4 

9.32 7.07 

9.18 9.02 

7.38 6.11 

11.36 11.33 

14.13 14.84 

8.18 8.59 

11.71 8.73 

8.23 

10.43 

6.31 

10.01 

14.84 

8.91 

11.05 

8.44 

10.26 

6.52 

10.64 

13.73 

8.68 

10.76 

In our experience with pseudo-Gibbs chains based on model ( 4.1) we have seen two different 

phenomena. In order to demonstrate these, we form two pseudo-Gibbs chains based on the two 

models shown in the table below. 

Modell Model2 

(a!t 1 
g 

1 1 

~ 
--3 

(cr~)2 

1 
' 

1 

m(Y) < oo? NO NO 
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Model 1 corresponds to the (a, b) pair ( -112, -17) and model 2 to (1/2, -112). The prior 

distribution on u! in Model 1 is admittedly ridiculous. However, any choice of b which violates 

the condition N + 2b + 2a - 1 > 0 will probably lead to a ridiculous prior if the magnitude of a is 

much smaller than N. 

These two models were chosen for the following reasons. 

a. They both yield legitimate FCS's, so a pseudo-Gibbs chain can be constructed for 

each. 

b. They both have improper posterior distributions, so the output from the pseudo­

Gibbs chain is nonsense. 

c. Modell is "extremely bad" and can be detected as such. The impropriety ofModel 

2 is virtually undetectable by monitoring the output of the chain. 

The same arbitrary starting values were used for both chains. For each chain a "burn-in" 

of 2 million was used (attempted) and then a final Gibbs chain of length 2000 was created by 

taking the next 2000 observations after the 2,000,000th. Write the chain as 

where the superscripts on the left refer to iteration number (by one iteration we mean one full 

cycle through all ten variables) and the variables with superscripts equal to 1 correspond to the 

starting values. We now describe the results. 

The pseudo-Gibbs chain for model! could not be constructed because the chain "blew up" 

after about 1500 iterations. To be specific, each time we attempted to bum the chain in, the 

GAUSS program would terminate with an overflow message and at the time of termination, each 

of the ten variables had a value exceeding 10300 • Figure 1 is a histogram of the observations (i) cr~, 
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j = 1,2, ... , 1200. (The minimum, maximum and mean of these numbers were 

(0.80,18x1060 ,5.7x1057).) Figure 2 is the analogous plot for a~. 

The pseudo-Gibbs chain for model 2, on the other hand, was quite well behaved. Figure 3 

is a histogram of the observations (i+2,ooo,ooo) a~, i = 1, 2, ... , 2000 along with a density estimate for 

1t( a~ly) calculated using the formula 

1t tl ~--- ex ---
A 1 2000 1 { 1 } 
cr~( y) 2000 ~ r(a)P~ta+l P Pit 

(4.4) 

where a. = ( k 12) +a and ~. = ( 21 t. , .. Uo') e:) as in ( 4 .3). Figure 4 is the analogous plot for cr~. 

Both pictures appear quite reasonable and give no obvious indication that no joint posterior 

distribution, 7t(a~,a;,e,J..LIY), exists. 

The conclusion from this example is that although some pseudo-Gibbs chains may "blow 

up" and warn the user that a problem exists, others can appear quite reasonable. This fact brings 

up an interesting question. "What are the probabilistic properties of these pseudo-Gibbs Markov 

chains and what do the usual Monte Carlo sums converge to if they converge at all?" 

5. Conclusions 

It is often the case that use of improper prior distributions within hierarchical exponential 

family and hierarchical linear mixed models lead to full conditional specifications with simple 

forms. Given these simple forms, it is easy, in fact trivial in some cases, to construct a Gibbs 

chain converging to a stationary distribution which is the posterior distribution. The existence of 

an FCS does not, unfortunately, guarantee that the corresponding posterior distribution is proper. 

It is therefore important to ascertain which improper priors result in proper posterior distributions 
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for these models. The fact that it is possible to construct reasonable looking pseudo-Gibbs chains 

magnifies this importance. ., ··. 

In this paper, we have somewhat addressed this problem for hierarchical exponential 

family models and hierarchical linear mixed models. It should be noted that these two models are 

special cases of the conditionally independent hierarchical models (CUJMls) defined in Kass and 

Steffey (1989). It may be possible to find more general conditions for the existence of proper 

posterior distributions in terms of ClliM's. 

Monte Carlo sums of observations from a true Gibbs chain possess many nice properties 

such as asymptotic normality (Tierney 1991). Many of these properties obtain because the Gibbs 

chains are positive Harris recurrent (Meyn and Tweedie 1993). The authors conjecture that this 

may not be the case when dealing with pseudo-Gibbs chains. An interesting problem would be to 

explore the transience/recurrence properties of these chains and their ramifications on Monte 

Carlo sums. 
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Appendix 

Before developing conditions under which the posterior distribution is proper, and hence 

so is the Gibbs chain, we define some notation and give a Lemma which is needed in the sequel. 

Let the (real-valued) eigenvalues of a v x v symmetric matrix S be written as 

Further, let A.sp(S) represent the smallest non-zero eigenvalue of S. Then we have the following 

result. 

Lemma (Marshall and Olkin 1979): Iftwo symmetric matrices S1 and S2 are both n.n.d. then 

v 

IS! +S21~ TI[A.;(Sl)+A.;(S2)] and 
• 

lSI +S2I~ TI[A.;(Sl)+A.n-i+l(S2)]. 
i=l i=l 

Proof of Theorem 1. 

Using the conditional independence structure of model (3.3), we can write. 

1t( a~,a~ , ... ,a;, u,f31y) 

_ f{Yiu,cr~)!( ulcr~ , ... ,cr;)1ts( cr~lb )1t1( cr~lllt) ·· ·1tr( a;lar )1t(f3) 
- J f{Yiu,cr~)!( ulcr; , ... ,cr;)1ts( cr~lb)1t1 ( a;lllt) ·· ·1tr( a;lar )1t(f3) dudf3da~ .. ·da; da~ 

(A. I) 

Let m(y) represent the denominator of (A. I). The likelihood is 

L{cr~,cr~, ... ,cr;ly) = J /(Yiu,f3,cr~)/(ulcr:, ... ,cr;)dudJ3 (A.2) 



The integral on the right-hand side of(A.2) can be evaluated as follows. The inner integral (w.r.t. 

u) can be calculated by "completing the quadratic form" and recognizing the multivariate norinal 

density kernel. The outer integral (w.r.t. f3) is done the same way using the fact that 

(A.3) 

which follows from the Schur compliment (Searle 1982 p.261). Evaluation of this integral gives 

exp{~ y'( (ZDZ' -t Icr;r1 X(X'(ZDZ' + 1cr;r1 xr X'(ZDZ' + 1cr;r1 - (ZDZ' + 1cr;r1 )y} 
N- N-q 1 1 • (A.4) 

(21t)-f(cr;)-2 IX'(ZDZ' + ~a;r1 x121z'Z +cr;n-112 

Using (A 3) we can rewrite the determinant 

I p 11 1.! IX'(ZDZ' +Icr;r1XI2 = (cr;)2 IX'xj2 I-(X'xtx'z(z'Z+cr;n-1tZ'X 2 

= ( cr; r~IX'xj!II-Z'X(X 'X) -1 X'z( Z'Z + cr;n-1) -
11! 

p II .! 1 
= (cr;)2 1X'xj2 cr;o-1 + Z'(I- X(X'Xtx')~2 IZ'Z+cr;n-f2 . 

Substituting this into (A.4) yields 
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exp{ t y'( (ZDZ' + Icr~r1 X( X'(ZDZ' + Icr~r1 xtX'(ZDZ' + Icr~f1 - (ZDZ' + Icr~ r 1 )y 
N-p N-q-p 1 1 ! 

{2x) 2 { cr~) 2 jDj2jX'Xj2jcr~n-t + Z'Pxzj2 
(A.S) 

.... ··.-·. 

where Px is defined in the statement of Theorem 1. We use the following notation throughout the 

remainder of this proof. 

The next step is to find conditions for which the integral 

is finite. We first examine the exponential function in (A6). Write it as 

where t = { cr~ , ... , crn. A straightforward, but lengthy, differentiation argument will verify that 

f( t) is non-decreasing in all of its arguments. Since 

and 

/(0) = exj-~y'PxY} 1 20'8 
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(A7) 



where p z = (I- z( z I zt Z') ' the exponential term is bounded and the integral in (A. 6) will be 

finite if and only if 

(AS) 

Note that we have assumed that X'PzX is invertible. If this is not the case, a similar argument 

using the generalized inverse {X'Pzxr can be used to establish condition (A.6). 

This is the point where the proofs of cases 1 and 2 become different. 

Case 1: t = q (Z'PxZ is of full rank) or r = 1. 

We first consider t = q. From the Lemma we have 

Substituting into (AS) shows that the integral is finite if 

(A.9) 

Analogously, replacing "-min(Z'PxZ) in (A.9) with "-max(Z'PxZ) will result in a necessary 

condition for finiteness of (A.8). However, if (A.9) is true with A.min(Z'PxZ), it is also true with 

"-max(Z'PxZ), which results in the condition that (AS) is true if and only if 

(A.IO) 
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where A.> 0 is constant. If a; < 0 and q; > -2a; then ...... ··. 

(All) 

where c; is constant w.r.t. cr~. If either one of these conditions is not satisfied, the integral will 

diverge. Therefore, the product of integrals in (A.9) will be finite if and only if conditions (iv) 

and (v) of Theorem 1 are satisfied. When they are indeed satisfied, we have 

(A.l2) 

where c is constant w.r.t. cr~ and we use the fact that Lq; =q. 

Combining expression (A.12) with (A.6), and adding the integral over cr;, we find that 

m(y) will be finite if 

(A.13) 

where we have replaced the exponential term in (A.6) with the upper bound in (A 7). However, 

{A.lO) is proportional to an inverted gamma density, and therefore the integral in (A.13) will be 

finite if condition (vi) of Theorem 1 is satisfied. 

Thus, we have proved that conditions (iv), (v) and (vi) are sufficient. It is easy to 

demonstrate that they are necessary using only what has already been estimated. Replacing the 
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exponential function in (A6) with the lower bound in (A.7) shows that conditions (iv) and (v) are 

necessary. That condition (vi) is necessary given that (iv) and (v) hold follows from the fact that 

(A.14) 

since, as before, the integrand in (A.I4) is the kernel of an inverted gamma density function. 

We have thus proved the Theorem when t = q, that is, if Z'P xZ is of full rank. The other 

part of Case 1 is where r =I, but Z'PxZ is not of full rank. In that case write 

where H isorthogonal and A is a diagonal matrix of the eigenvalues of Z'PxZ=Z'P~PxZ. 

Since Z'PxZ is a positive semi-definite (p.s.d.) matrix it has t positive eigenvalues and q- t zero 

eigenvalues. Therefore 

The arguments above can then be used to establish the theorem. 

Case 2: t < q and r > I. 

In order to integrate over 91'+ in (A.8), we will integrate over the mutually exclusive sets 
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V\,15) 

where (4, ... ,ir) is one ofthe r! permutations of(l, ... ,r) and then addthe results. LetS denote 

the set in (A15) with (4, ... ,ir) = (l, ... ,r) and consider 

(A.16) 

Using the Lemma we have 

q 

lcr;D-1 + Z'Px~ ~ · IT [ A.i( cr;D-1) + A.i( Z'PxZ)] 
i=1 
t q 

~ IT[ A.i( cr;n-1) + A.sp(Z'PxZ) ]IT[ A.i( cr;n-1)] 
i=1 . i=t+1 

and on the set S 

Substituting into (A 16) gives 
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(A.17) 

As in the previous argument, under conditions (iv) and (v) the integral in (A.17) equals 

where c is a constant which does not depend on cr;. This result depends on the permutation 

( 4, ... , ir) = ( 1, ... , r) only through the constant c. Therefore 

where, again, c' does not vary with cr;. The remainder of the proof of this case closely resembles 

the corresponding part of the proof of Cas~ 1. 
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Figure 3. Deillsity estimate of 1t( cr~ ly) and histogram of (t+2·lo') cr~, i = 1, ... , 2000, for model2. 
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Figure 4. Dens~ty em'imate of1t(cr!ly) and hi.stogram of (l+2·lo')cr~, i := 1, ... ,2000, for model2. 
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