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For a maize experiment involving 196 entries (including 6 checks) designed as a 

simple lattice and carried out over six sites, it was desired to develop a procedure to 

obtain entry means adjusted for interblock information and for multiple covariates at 

each site. An estimate of a component of variance for the 190 non-check entries at each 

site was desired. Also, estimates of entry x site and entry components of variance over 

sites were desired. Then, reallocation of resources would be studied to determine how to 

ma.'Cimize genetic advance. 

1. Introduction 

An experiment of 190 maize entries plus six maize checks was designed as a simple (double) 

lattice design and the experiment was conducted at six locations (sites). In addition to the yield of 

grain (unshelled) of maize and other characteristics, the number of plants (stand) in each plot 

(experimental unit) was obtained. It was thought that number of plants in the plot, number of 

plants in the two adjacent plots, and perhaps number of plants per plot squared should be used as 

four covariates. However, only the two covariates, number of plants per plot and the sum of the 

number of plants in the two adjacent plots, may be all that is necessary to account for stand 

variations and competition between adjacent plots. 

The method for analyzing data from a simple lattice experiment design with a covariate is 

described by Federer (1967), Sections XI-3.1, XI-8, XVI-7, and XVI-12.3. Following the outline of 

the analysis given there, we extend it to multiple covariance. In addition, it is desired to estimate a 
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variance component for the 190 entries in the experiment and to use this in calculating genetic 

advance as described by Federer (1951), Rojas and Sprague (1952), and Sprague and Federer (1951). 

In the following section, an analysis of covariance with multiple covariates is described for a 

simple lattice design. The results are illustrated with a numerical example. Anyone using computer 

software such as SAS should first try to obtain the results given in the numerical example. Computer 

programs do not always give the desired results, despite the claims as advertised. A list of references 

where this has been discovered is available upon request. 

In the third section, the expected values for the various mean squares from such an experiment 

as described above is obtained and is illustrated with a numerical example. Here again it is 

recommended that any computer program for obtaining coefficients for variance components be 

checked against the example. This is a necessary but not sufficient check on the correctness of a 

computer program. 

In the fourth section, we show how to combine experiments of the nature following a procedure 

suggested by W. G. Cochran and given in Cochran and Cox (1957), Sections 14.32 and 14.4. The 

entry means adjusted for interblock information and covariates are then used to study entry by 

environment interactions as described in Basford, McCulloch, and Murty {1992). 

In the last section, a discussion of other procedures is given. The interblock regressions could be 

different from the intrablock regression. This would be similar to the split plot situation where the 

error (a) and error (b) regressions differ (Federer and Meredith, 1991). Also, since the 190 entries 

represent a sample from a population, account needs to be taken of the distributional properties of 

entries (random effects). Some sort of shrinkage estimator such as BLUP (best linear unbiased 

predictor) may be appropriate. 
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2. Covariance Analysis for a Simple Lattice with Multiple Covariates 

For the experiment described above, let us use the following response model for the gth entry in 

the erth incomplete block in the eth complete block: 

(1) 

where J.l is an effect common to every observation (response), Pe is the effect associated with the eth 

complete block, 11' ef is the effect associated with the [lh incomplete block within the eth complete 

block, T g is the effect associated with the gth entry, tefg is a random error component which is 

identically and independently distributed with mean zero and variance u~, /3d is the partial regression 

coefficient associated with covariate Xdefg' and xd ... is the arithmetic mean of the dth covariate. 

The subscript e = 1, 2 = r denotes the number of complete blocks here, f = 1, 2, · · ·, 14 = k =the 

number of incomplete blocks in the eth complete blocks, and g = 1, 2, · · ·, 196 = k2 =the number of 

entries. It is convenient to number the entries as for a two-factor factorial with k levels of each 

factor. Then, let the levels of one factor be confounded with incomplete blocks in one of the two 

arrangements; also, let the levels of the other factor be completely confounded with incomplete blocks 

in the second confounding arrangement. This gives one-half intra-incomplete block (intrablock) 

information on the two pseudo-main effects and full intrablock information on the pseudo-interaction 

effects. This results in an intrablock efficiency factor of k/(k + 1) = 14/15 = 93.3% for this experiment. 

When interblock information is recovered the efficiency factor approaches unity (see Federer and 

Speed, 1987), and depends upon the ratio of u~ j ui where the ?ref are identically and independently 

distributed with mean zero and variance ui. 
The sums of squares and cross products of the response Y and the p covariates, X1, ···, XP, are 

computed in the usual manner for a randomized complete block design for the first five sources of 

variation given in Table 1 (these are listed in matrix form to conserve space). If the two pseudo-

factors are Ai and Bj, i, j =0, 1, ···, k-1, then the incomplete block (eliminating entry effects) with 

2(k-1) degrees of freedom is computed as 

~ 2/ +~(B·-B·)2/2k-(Yt··-Y2··)2 Byy = L. (A .-A ·) 2k L. 2 i=O Cl Ul j=O CJ UJ k 
(2) 
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Table 1. Analysis of covariance for a simple lattice design 

with p covariates and intrablock regression. 

Source of variation 
Degrees of 
freedom Sums of squares and products 

Total 

Correction for mean 

Complete block = R 

Entry (ignoring 
incomplete block) = V 

RxV 

Incomplete block 
(eliminating entry) 

Intrablock 

1 

1 

2(k-1) 

[ 

Y ... Y... Y ... XI· .• 

Y ••. ~p· •• XI· .. XP ... 

RV11P l 
RVPP 

RV111 

RVIp 



Source of variation 

Incomplete block 
(eliminating entry 
and regression) 

Intrablock 

Entry (adjusted for 
incomplete block) 

Entry (adjusted for 
incomplete block 
and regression) 

Incomplete block 
(eliminating entry) 
regression 

Deviations from 
block regression 

Intrablock regression 
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Table 1 (continued) 

Adjusted 8UJD8 of squares 

Degrees of 
freedom 

2(k-1) 

p 

2(k-1)-p 

p 

Sums of squares and products 



-6-

where Aci is the block total corresponding to the ith level of factor A, Aui is the ith level of factor A 

in the complete block where it is unconfounded with incomplete blocks, Bcj is the block total 

corresponding to the jth level of factor B in the complete block where it is confounded with 

incomplete blocks, Buj is the /h level of factor B in the complete block where it is unconfounded with 

incomplete blocks, and Ye. . is the eth complete block total. When k is a prime or prime power, 

there are k + 1 main effects and interactions, and sums of squares of levels among these effects, where 

they are unconfounded with incomplete blocks, results in the intrablock error sum of squares. For 

any k, the residuals could be computed, squared, and summed to obtain the intrablock error sum of 

squares. However, it is usually obtained by subtracting the sum of squares or products in (2) from 

the R x E sum of squares or products. Note that formula (2) is useful for computing products simply 

by writing (Aci-Au/ as (Aci-Aui) (Aci-Aui) and letting one of the quantities in parenthesis be for 

one variate, say X11 and letting the other quantity in parenthesis be for another variate, say XP. The 

correction term (Y1 •• -Y2 •• )2 jk2 would be replaced by (X11 •• -X12 •• )(Xpl· .-XP2 •• ) jk2, 

taking into account the sign of the difference of the quantity in the parenthesis. 

The sums of squares and products in the last matrix in Table 1 are used to compute Rt and the 

estimates of /3 d• the intrablock regressions. The matrix of sums of squares and products associated 

with R x V is used to compute R~,V = R~+E' Likewise, the sums of squares and products for entry 

(eliminating incomplete blocks) are used to compute Rt+E' To obtain R~, use the sums of squares 

and products associated with the incomplete block {eliminating entry) source of variation. The sums 

of squares and products for entry (eliminating incomplete block effects) may be computed in various 

ways. For example, 

Entry (ignoring blocks) + Block (eliminating entry effects) 

-Block (ignoring entry effects)= Entry (eliminating block effects) 

k2 
or solutions for the rg in matrix form under the restraint 2: fg = 0, e.g., are given by 

g=l 

{3) 

(4) 
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and the sum of squares in (3) is equal to 

(5) 

where i: is a k2 x 1 vector of f g' Y V is a k2 x 1 vector of entry totals, Y B is a 2k x 1 vector of 

incomplete block totals, N is a 2k x k2 matrix of zeros and ones to indicate when entry g occurs in 

block ef, nefg = 0, 1 are the elements of N, I is a k2 x k2 identity matrix, 2 is the number of replicates 

of each entry, J is a k2 x k2 matrix whose elements are all ones (i.e., gf/ g = 0} and c is a constant 

which makes as many zeros in NN' /k+cJ as possible under the restraint E t g = 0. The inverse of 

[21-NN'/k+cJ] times ut is the intrablock variance-covariance matrix for j:. 

To illustrate the above and to provide a numerical example as a necessary check on the 

calculations from a software package such as SAS, we present the following example. 

Example 1. The example is the one given by Federer (1967), Example XI-1, and two covariates X1 

and X2 have been added. The numerical values are given in Table 2. The factor B is confounded 

with incomplete blocks in complete block 1, and factor A in 2. The unconfounded levels of effects 

versus confounded levels of effects are given as A. 1-2A21 and B. ;-2B1;, as this computational form 

eliminates the necessity of computing the A1; and B2; values. The computations for the R x E sums 

of squares and products are given in Table 3. Likewise, the computations for incomplete block 

(eliminating entry effects) are also given in the table. The intrablock sums of squares and products 

were obtained by subtraction. Note that in computing the randomized complete block residuals 

( Y efgh-Y e ... - Y .• gh + Y . . . . ) these were all multiplied by the number of plots in the 

experiment, i.e., 2k2, and they were computed as 2k2Y efgh - 2Y .. gh-k2Y e ... + Y. . . . to 

eliminate rounding errors. Y .. gh is the gth entry total, Y e . . . is the eth complete block total, and 

Y. . . . is the grand total of the 2k2 plots. 

The various sums of squares and products for the data in Table 2 are given in Table 3. The 

entries (eliminating incomplete blocks) sum of squares for Y may be obtained by first computing the 

Q .. gh and j.& + r gh (orr gh) values as: 
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Table 2. Responses Y efgh for nine entries (gh = 00, 01, 02, 20, 11, 13, 20, 21, and 22) 

in a simple lattice design with two covariates. 

Blockll Block 12 Block 13 

Entry(gh) Y ugh Xn1gh X2ngh Entry Y 12gb Xn2gh X212gh Entry Y 13gb x113gh x213gh 

00 8 3 9 02 3 1 1 21 3 2 1 
20 5 2 4 12 2 1 1 11 7 3 4 
10 3 1 1 22 6 3 4 01 3 1 1 

BlO 16 6 14 B12 11 5 6 B11 13 6 6 

Block 21 Block 22 Block 23 

Entry(gb) Y 21gb X 121gb x221gb Entry Y 22gb x122gb x222gb Entry Y 23gb xi 23gb x223gb 

21 2 1 1 10 3 1 4 01 2 1 4 
20 2 1 1 11 3 2 1 02 4 1 1 
22 7 3 9 12 3 1 1 00 6 3 9 

A22 11 5 11 A21 9 4 6 A2o 12 5 14 
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Table 2 (Continued) 

Totals Block 1 Block 2 

Y 1 · · · Xn · · · X21 · · · Y 2 . . . X12. . . X22 ... y .... 

40 17 26 32 14 

18 (Residuals) 

y 

Block 00 01 02 10. 11 

1 10 1 -17 -8 28 
2 -10 -1 17 8 -28 

xl 

1 -3 -3 -3 -3 6 
2 3 3 3 3 -6 

x2 

1 5 -22 5 -22 32 
2 -5 22 -5 22 -32 

R x E sums of squares and products: 

E(18res)2(Y) I 182 = 4356/324 = 13.4444 

E(18res)2(X1) I 182 = 324/324 = 1.0000 

E(18res)2(X2) j 182 = 9432/324 = 29.1111 

E(18 res Y)(18 res X1) I 182 = 864/324 = 2.6667 

E(18resY)(18resX2) I 182 = 4446/324 = 13.7222 

E(18resX1)(18resX2) I 182 = 1242/324 = 3.8333 

31 

12 20 

-17 19 
17 -19 

-3 6 
3 -6 

5 32 
-5 -32 

Incomplete block (eliminating entry) sums of squares and products: 

72 

Grand 

xl· ... x2 .... 

31 57 

21 22 

1 -17 
-1 17 

6 -3 
-6 3 

5 -40 
-5 40 

Y: [(-5)2 + (-6)2 + 3~ I 6-(-8)2 I 18 + [22 +32 +32) I 6-82 I 18 = 8.2222 

YXl: [( -5)( -1) + ( -6)( -2) + 3(0)) I 6- (-8)(-3) I 18 + [2(0) + 3(1) + 3(2)] I 6-8(3) I 18 = 1.6667 

YX2: [(-5)(0) + (-6)(0) +3(5)] I 6-(-8)(5) I 18 + [2(-3) +3(0) +3(-2)] I 6-8(-5) I 18 = 4.9444 

Xl: [(-1)2 +(-2)2 +0~1 6-(-3)2 I 18+[02 +12 +2~1 6-32 I 18 = 0.6667 

X1X2: [(-1)(0) + (-2)(0) + 0(5)] I 6-(-3)(5) I 18 + [0(-3) + 1(0) + 2(-2)] I 6-3(-5) I 18 = 1.000 

x 2: [o2 + o2 +52] 16-52118 + [(-3)2 + o2 + (-2)2] I 6-(-5? 118 = 3.5556 
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Table 3. Sums of squares and cross products for Y, X1, and X2 

Sums of squares and products 
Degrees of 

Source of variation freedom yy YX1 YX2 x.x. x1x2 x2x2 

Total 18 354 151 309 67 133 333 

Correction for mean 1 288 124 228 53.39 98.17 180.50 

Complete blocks = R 1 3.56 1.33 -2.22 0.50 -o.84 1.39 

Entries= E 8 49.00 23.00 69.50 12.11 31.83 122.00 

RxE 8 13.44 2.67 13.72 1.00 3.84 29.11 

Incomplete block 4 8.22 1.67 4.94 0.67 1.00 3.56 
(eliminating entries) 

Intrablock 4 5.22 1.00 8.78 0.33 2.84 25.55 

Entries (eliminating 8 51.4444 23.3333 63.2222 12.3333 30.5000 100.4444 
incomplete blocks) 

Incomplete blocks 4 5.7778 1.3333 11.2222 0.4444 2.3333 25.1111 
(ignoring entries) I 
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Q = 14-(16 + 12)/3 = 14/3 
. ·00 

Q = 6-(16+ 9)/3 = -7/3 
. ·10 

Q = 7-(16+11)/3= -fi/3 
. ·20 

Q = 5-(13 + 12) /3 = -10/3 
. ·01 

Q = 10-(13+ 9)/3 = 8/3 
. ·11 

p+foo = 39/6 

p+f10 = 16/6 

p+f20 = 19/6 

jA + f 01 = 11/6 

p+f11 = 27/6 

jA + f21 = 12/6 

Q. _21 = 5-(13+11) 13 = -9/3 

Q··02= 7-(11+12)/3=-2/3 

Q = 5-(11 + 9) /3 = -5/3 
. ·12 

Q = 13-(11+11)/3 = 17/3 
. ·22 

p+f02 = 26/6 

p+ft2 = 21/6 

p+f22 = 45/6 

Note that these are intrablock solutions for entry means. Then, 

Note that p~Q . . gh = 0. Alternatively, this sum of squares may be computed from equation (3) as: 

49 + 8.222222-5.777778 = 51.444444 ' 

where 5. 777778 is computed as: 

and is the incomplete block within complete block (ignoring entry effects) sum of squares. The sum 

of products for Y and X, for blocks (ignoring entry) is 

1(16(6) + 11(5) + 13(6) + 11(5) + 9(4) + 12(5)]- A(40(17) + 32(14)] = 1.333334 . 

Then, the sum of products YX1 for entry (eliminating blocks) is computed as 

23 + 1.666667-1.333334 = 23.333333 • 

The remaining sums of squares and products in Table 3 are computed in a similar manner. 

The analysis of covariance given in Table 4 involves computation of several multiple correlation 

coefficients squared, R2• Since there are only two covariates, the following computational form is 

convenient: 

(6) 

where ry1 is the correlation coefficients for Y and X1, ry2 is the correlation coefficient for Y and X2, 

and r12 is the correlation between X1 and X2• Another general form is 



-12-

Table 4. Analysis of covariance for response Y and covariates X1 and X2• 

Degrees of 
Source of variation freedom Sum of squares 

Total 18 354 

Correction for mean 1 288 

Complete blocks = R 1 3.5556 

Entries (ignoring incomplete 8 49.0000 
blocks) =E 

RxE 8 13.4444 

Incomplete blocks 4 8.2222 
(eliminating entries) 

Regression 2 7.0736 

Deviations from regular 2 1.1486 

Intrablock 4 5.2222 

Regression 2 3.0524 

Deviations from regular 2 2.1698 

Incomplete block (eliminating 4 3.3138 
entry and regression) 

Entry (eliminating incomplete 8 6.0922 
block and regression) 

R~ (intrablock) = 0.5845 

R~(incomplete blocks (eliminating entries)]= 0.8603 

R~+E(intrablock+incomplete block (eliminating entries)]= 0.5921 

Rt+E(intrablock +entries (eliminating blocks)]= 0.8542 

Mean square 

-
-
-

-

-
2.0556 

3.5368 

0.5743 

1.3056 

1.5262 

1.0849 

0.8285 

0.7615 
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(7) 

where b;d is the standard partial regression coefficient for Xd (see, e.g., Snedecor and Cochran, 1980, 

p. 357). Using (6) and the intrablock error line in Table 3, 

R2 - (0.574468+0.577335-1.118132)- 0 5845 
E - 0.057608 - . . 

Using (7), 

Rl= 0.757937(0.3533223) + 0.759826(0.4177494) = 0.5845 . 

1 
In the above, by1 = 1.398493 and by2 = 0.188430. Then b;1 = 1.398493(0.333333/5.222222)2 = 

1 
0.3533223, and b;2 = 0.188430(25.555556/5.222222)2 = 0.4177494. 

The incomplete block (eliminating entry) sums of squares adjusted for regression is computed as 

follows. The sums of squares and products for blocks (eliminating entry) and for intrablock are added 

together; this gives the sums of squares and products in the R X E line in Table 3. The multiple 

correlation squared on this line is computed as 

Rkv = Rh+E = (0.72727272 +0.693623!!2-2(0.7104724)(0.7272727)(0.6936232)]/ 

(1-o.71047242 ) = 0.5921 ' 
1 

where rB+Ey1 = 0.7272727, rB+Ey2 = 0.6936232, and 3.833333 /[1(29.111111))2 = 0.7104724. 

Then ( 1-Rh+E)RVyy = (1-0.5921)(13.4444) = 5.483626 and 5.483626-( 1-Rl)Eyy = 5.483626-

2.1698 = 3.3138, which is the incomplete block (eliminating entry) sums of squares adjusted for 

intrablock error regression. 

Proceeding in a similar manner, we obtain the entry (eliminating blocks) sum of squares 

adjusted for intrablock error regression. The multiple correlation on the entry plus error sums of 

squares and products is 

J4+E = [0.90825252 + 0.085208592-2(0.8343770)(0.9082525)(0.8520859)]/ 

( 1-Q.83437702 ) = 0.8542 ' 
1 

where rT +Ey1 = (23.0000 + 1.0000) / [(51.444444 + 5.222222)(12.333333 + 0.333333}f = 0.9082525, 
1 

rT+Ey2 = (63.222222+8.777778) /[(51.444444+5.222222)(100.444444+25.555556))2 = 0.8520859, 

and rT+E12 = 0.8343770. Then, (1-0.8542)(51.444444+5.222222)-2.1698 = 8.2620-2.1698 = 

6.0922. 
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The multiple correlation coefficient for block means is computed from the incomplete block 

(elim. entry) line in Table 3. R~ = [0.71186852 + 0.91446942-2(0.6495191)(0.7118685)(0.9144694)] 

I (1-0.64951912) = 0.8603. Then R~Byy = 0.8603(8.222222) = 7.0736, and ( 1-R~)Byy = 

(1-0.8603)(8.222222) = 1.1486. Note that R~ is larger than R~, which may indicate that the 

incomplete block (eliminating entry) regression differs from the intrablock error regression. This fact 

would need to be taken into account when adjusting the entry means for regression (see Federer, 1967, 

Federer and Meredith, 1992, and Section 5 of this paper). 

The next step in the analysis of a set of data as described above is to obtain the adjusted means 

and variances of differences among the adjusted means. The equation for adjusted means for entry 

gh is: 

Y. ·gh(adj.); (r~2) {v. ·g-P'~ A.g-Aug)y +(B ·h -Buh)y 

-dt8d{(A.g-A,g)d +(B.h-Buh)}] }• (8) 

where 1l = (w-w')lk(w+w'), w = 1jE'yy = 111.0849 = 0.9217, w' = 11[2(0.8285)-1.0849] = 

1.7479, and k = 3. Therefore, 1.l = -o.3095. Note that when I'' is near zero or negative, the entry 

means would not be adjusted for incomplete block effects and that a randomized complete block 

analysis of covariance would be performed. However, in order to illustrate the computations, we 

proceed using the negative value for p.'. For each of the nine entries, the computations are given in 

Table 5 for the adjusted totals. The adjusted totals are divided by the number of replicates, which is 

two for the simple lattice discussed here, to obtain the adjusted means. The sum of adjusted means is 

the total Y . . . for the whole experiment. 

The approximate average effective error variance for a difference between two adjusted means is 

(e.g., Federer, 1967, p. 323), 

(9) 

which for our example is 

(1.0849)[1 + 2(3) <-0.3095) 1 4] = 1.os49[1 +3(-0.3095) 1 2]. 
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Table 5. Entry means adjusted for interblock information and covariates X1 and X2• 

Entry 

00 

10 

20 

01 

11 

21 

02 

12 

22 

Total 

Adjusted totals 

14-(-o.3095) [2-1.3986(0)-0.1884(-3) 

-5-1.3986(-1)-0.1884(0)] = 14.3207 

6-(-o.3095) (3-1.3986(1)-0.1884(0) 

-5-1.3986(-1)-0.1884(0)] = 6.6190 

7 -(-o.3095) [3-1.3986(2)-0.1884(-2) 

-5-1.3986(-1)-0.1884(0)] = 7.9352 

5-(-o.3095) [2-1.3986{0)-0.1884(-3) 

-6-1.3986(-2)-0.1884{0)] = 5.1973 

10 -(-o.3095) [3-1.3986(1) -0.1884(0) 

-6-1.3986(-2)-0.1884(0)] = 10.4956 

5-(-o.3095) (3-1.3986{2) -0.1884(-2) 

-6-1.3986(-2) -0.1884(0)] = 5.8119 

7- ( -o.3095) [2 -1.3986(0)- 0.1884( -3) 

+3-1.3986(0)-0.1884(5)] = 5.5691 

5-(-o.3095) (3-1.3986(1)-0.1884(0) 

+3-1.3986(0)-0.1884(5)] = 3.8674 

13-(-o.3095) (3-1.3986(2)-0.1884(-2) 

+ 3-1.3986(0) -0.1884(5)] = 12.1837 

71.9999 
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However, since tl is negative, a randomized complete error variance would be {( 1-RL+ E )Rv yy = 

5.483626} j (8-2) = 0.9139. Then, the average variance of a difference between two means adjusted 

for regression would be 2(0.9139)/(r = 2) = 0.9139. 

Note that if k is a prime or prime power, the entry means adjusted for interblock information 

may be computed directly rather than as described in equation ( 4). Formulas for doing this may be 

found in Federer (1967), Section IX-4.5 and Chapters XI and XII. 
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3. A Variance Component for Entry 

It is desired to obtain an estimate of the component of variance for the 190 non-check entries in 

the experiment. Several procedures for doing this are possible. We shall use a sum of squares among 

adjusted entry means to estimate a component of variance associated with entry. Note that the effect 

of incomplete blocks and of covariates has been removed when obtaining the adjusted entry means. 

This means that the entry effect, the overall mean, and an error component are the only elements 

involved in an adjusted mean. Therefore, the sum of squares among the 190 non-check adjusted 

means y .. gh is 

190 2 2/ E 'i. ·gh -(E -y. ·gh) 190. 
gh=1 gh 

(10) 

The expectation of this sum of squares is 

[ 190 _ 2 ( _ )2 I J ( 2 2) E E y •• gh - E y .• gh 190 = 189 tT * + tT T ' 
gh=1 gh 

(11) 

with 189 degrees of freedom. An estimate of u! is one-half the average variance of a difference 

between two adjusted means, equation (9), i.e., 

lEjy{ 1 +2kp' j (k+ 1)} = u! (12) 

as the variance of a mean is one-half of the variance of a difference of two independent means. The 

above approximation ignored the correlation among adjusted means. Then, u~ = the sum of squares 

in (11) divided by 189 minus (12). 

Example 2 

Using the data in Example 1 and considering that entry 11 is check and that a variance 

component for the remaining 8 entries is desired, the sum of squares among the 8 entry-adjusted 

means from Table 5 is 

l{ 14.32072 + 6.61902 + 7.93522 + 5.19732 + 5.81192 + 5.56912 + 3.86742 

+ 12.18372}- <72- ~~8~956)2 = 23.5545 ' 

where (1/2)2 = 1/4 was used because these are adjusted totals rather than means. Then, 

~~·f~~- o.9139/2 = 2.91 = u~. 
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Since 11' was negative, the randomized complete error was used here. An error component of variance 

would be r u!, which would be 0.9139 for the example. 

The next step is to consider all six sites and estimate variance components for sites by entry, 

entry over all sites, and an error component. Consider the two-way table of entry-adjusted means by 

sites. AB pointed out in the Cochran and Cox (1957) reference above, there are various ways of 

combining data over sites. For our purposes, we use an unweighted means procedure where means 

from each site are given equal weights. An ANOV A table for the above two-way table of adjusted 

entry means by sites would be as given in Table 6. To obtain the expected values for the mean 

squares from the entry and entry X site lines in the ANOVA, it is assumed that the following linear 

model holds: 

(13) 

where p* is a mean effect, 'Yi is an effect associated with site i, T gh is an average effect of entry gh 

over sites, 'YT ghi is an interaction effect of entry gh with site i, and e;hi is a random error effect. For 

the maize experiment described above, consider that the T gh are identically and independently 

distributed (TID) with mean zero and variance u~, the 'YTghi are nn(o, u~T} the 'Yi are nn(o, u~} 

and the e;hi are nn(o, u!•} Then the expectations of the means squares are given in Table 6. An 

estimate of u2 * would be obtained from the average of the estimated average variances of an adjusted 
l 

mean over sites, i.e., 

(14) 

Estimation of the remaining variance components is then straightforward. 

An alternate method would be to divide each of the adjusted means by their standard error of 

the mean before setting up the two-way table for entries and sites and obtaining the ANOVA in 

Table 6. Then, u~ may be taken as one and the u~T and 11~ obtained from this table would be ratios 

of variance components. 
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Table 6. An analysis of variance (AN OVA) for adjusted entry means by sites, Y .. ghi• 

Degrees of Expected value 
Source of variation freedom Sum of squares of mean square 

Total 
s v -2 

sv E E Y.ghi 
i=1 gh=1 

Correction for mean 1 (~ E Y ·ghiy /sv=C 
1 gh 

Site (s-1) ~(~ Y ·ghiy j v-C=S 
2 2 2 

u e* + u -yr + v u "Y 

Entry (v-1) ~ ("EY.ghi)2 /s-C=V 
2 2 2 

u e* + U-yr +sur 

Site x entry (s-l)(v-1) subtraction = I 2 2 
ue* +u-yr 
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4. Genetic Advance 

In any plant breeding program, it is desired to allocate resources in such a manner as to 

maximize progress in selecting for a characteristic such as yield. The resources are number of entries, 

number of replicates at a site, and number of sites. Formulas for doing this have been presented by 

Federer (1951) and Sprague and Federer (1951). The former paper does not consider costs; the latter 

paper does. Herein cost is ignored since the extra cost involved for CIMMYT would be the cost of 

sending separate seed packages and corresponding about the experiment at a given site. If these extra 

costs were available, the procedure in Sprague and Federer (1951) could be used. 

One criterion to consider in allocating resources for an experiment is to consider that the total 

number of plots is to be a constant, say N. Then, the experimenter may vary r the number of 

replicates at a site, v the number of entries, and s the number of sites, Let 

(15) 

and 

(16) 

be the unbiased estimates of ratios of variance components (see Federer, 1951), where fe = s(k2-

2k + 2). Then an estimate of the expected genetic advance is 

(17) 

This is approximately equal to 

(18) 

where u~( = r&~. from (14)) is the average of the average effective error variances over sites. Since fe 

will be quite large ( 6(195-26) = 1014f band dare essentially ratios of variance components and hence 

(17) approaches (18). Xm is the expected value obtained by selecting the largest observation from a 

unit normal population. Expected values for the first, second, third, and fourth largest values from a 
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unit normal are given in Federer (1951) for values of 101 :$; v :$; 200; the first five expected values are 

given for 41 :$; v :$; 100. The largest value Xv for v = 2, · · ·, 400 and for v = 500-1,000 by tens may be 

found in Pearson and Hartley (1954, Table 27). Note that Xv is equal to one-half the range. We 

illustrate the above with a numerical example. 

Example 3 

Genetic advances for various combinations of r, v, s, and ratios of variance components are 

presented in Table 7. Using formula (18), genetic advance is computed for the set u~ = 10 = u~ and 

u~T = 5, or ratios for b and d of 1/2 and 1. For the second set we use u~ = 5, u~T = 2.5, and u~ = 10, 

or b = 1/4 and d = 1/2. For the third set, u~ = u~T = 1 and u~ = 10 or b = d = 1/10. In Table 7, it 

may be noted that the maximum genetic advance for G1, the first set, is attained when v = 400, r = 1, 

and s = 6. The maximum for G2, the second set, is attained for v = 200, r = 1, and s = 12. Likewise, 

for set three, the maximum G3 is attained for v = 100, r = 1, and s = 24. Note that selecting N = 2400 

does not change the relative values; it was only selected as a common point for comparing all the 

allocations in Table 7. 

As long as u~T > 0, larger G values will always be obtained for r = 1, i.e., a single replicate at 

each site. When costs are considered this usually will not be the case. Several allocations may give 

approximately the same values for G and of course, the cheapest and easiest would be selected. To 

illustrate, for G2, v = 200, r = 1, and s = 12 gave almost the same value, 5.59, as v = 400, r = 1, and 

s ,;, 6. It may be cheaper to obtain an additional 200 entries than to use an additional six sites; 

therefore, the latter allocation would be used. As another example for v = 50, note that s = 12 and 

r = 4 and s = 24 and r = 2 give almost the same G values as s = 48 and r = 1. The use of fewer sites 

would definitely be attractive. 

Another point brought out by computations such as in Table 7, is that the smaller the value for 

d, the larger must be the values of r and s. For d = 1 v was 400, for d = 1/2 v was 200, and for 

d = 1/10 v was 100 in order to maximize G. It is necessary to have larger sample sizes, rs, to detect 

smaller differences among the entries. Selection in populations with large genetic variability and with 

a large mean is desirable in maximizing genetic progress. 
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Table 7. Genetic advance for various combinations of v, r, s, and values 

of variance components for N = vrs = 2400. 

v 4 8 Xv Gt G2 G3 

50 8 6 2.249 6.77 4.74 1.92 
4 12 6.90 4.83 1.98 
2 24 6.97 4.88 2.01 
1 48 7.00 4.90 2.03 

100 4 6 2.508 7.21 5.19 1.99 
2 12 7.48 5.29 2.05 
1 24 7.69 5.34 2.08* 

200 2 6 2.746 8.04 5.49 1.94 
1 12 8.19 5.59* 1.98 

400 6 1 2.968 7.27 4.90 1.55 
3 2 7.89 5.27 1.67 
2 3 8.13 5.42 1.71 
1 6 8.39* 5.58 1.76 

800 3 1 3.197 7.42 4.86 1.38 
1 3 8.20 5.28 1.48 

* Maximum value in column. 

Xv value obtained as range/2 (see Pearson and Hartley, 1954, Table 27). 

G1: u~ = 10, o-~1 = s, o-~ = 10. 

G2: u~ = 5, uh = 2.5, u~ = 10. 

G 2 1 2 A2 10 3: O'T = = O'T'Y' tTf =· • 
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5. Discussion 

It may be necessary to adjust means for interblock regression as well as intrablock. If so, 

equation (1) would be changed to: 
p p 

yefg = Jl+Pe+1ref+Tg+fefg+ E f3d(Xdefg- xdef·)+ E {Jd(xdef.- xd· . .)' {19) 
d=1 d=1 

where the {3d are the incomplete block regression coefficients complete from the incomplete block 

{eliminating entry effects) sums of squares and cross products (see Table 1). Because of the relatively 

large number of degrees of freedom, 169, for intrablock error at each site, equation {1) was used for 

illustration and should correct for the covariates, but it will only be an approximation since the above 

equation may be more appropriate. 

Since a large number of computations are involved, a computer software package such as SAS or 

GENSTAT should be used. As pointed out by Federer and Henderson {1979), Miles-McDermott eta/. 

{1988), and Meredith et a/. {1988), considerable caution must be used in using statistical packages 

when using covariance and different regressions such as intrablock and interblock. GENSTAT was 

the most successful and easiest to use. SAS should be able to handle the covariance analyses given in 

Section 2. In any event, any computer program selected should first be tried on the numerical 

example in Section 2. 

A better treatment and experiment design than the one used would be to include the standard 

check variety once in each incomplete block. A rough guide on the number of times to replicate a 

check entry or variety when the comparison is the check variety against a new variety is the square 

root of the number of entries, i.e., "(V. In this case, the check in each incomplete block would satisfy 

the above. 
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