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Abstract 

A problem of considerable importance lying at the interface of 
social dynamics, demography, and epidemiology is determining and 
modeling who is mixing with whom. In this article we describe a general 
approach, using nonlinear mixing matrices, for modeling the process of 
pair-formation in heterogeneous populations. Determining who is mixing 
with whom is complicated by a variety of factors, including the problem 
of denominators, which is, in our context, equivalent to the nonexistence 
of closely interacting social/sexual networks. We describe the use of a 
mark-recapture model for estimating the sizes of the missing link, that 
is, the size of the population having sexual contact with a specified 
population and hence at risk for sexually-transmit~ diseases. The need 
to estimate the size of the sexually-active subset before estimating the 
size of the population at risk introduces extra variability into the 
problem. An estimator of the variance of the estimated size of the 
population at risk that accounts for this extra variability and an 
expression for the bias of such an estimator have been derived. We 
illustrate our results with data collected from a population of university 
undergraduates, and make use of our axiomatic modeling approach for 
mixing/pair formation to compute specific mixing matrices. Complete 
details of this work will be published elsewh~e. 

1. Introduction 

The importance of social and sexual interactions in the spread of 
sexually transmitted diseases, especially AIDS, has been well documented 
by sociologists, modelers, public health officials, etc. However, the 
development of methods for quantifying social dynamical processes in 
ways that allow different rates of mixing between subgroups in sexually­
active populations has been quite difficult (but see Anderson et al., 1986, 
1989; Blythe et al., 1991, 1992; Busenberg and Castillo-Chavez, 1991; 
Castillo-Chavez, 1989; Castillo-Chavez, ed., 1989; Castillo-Chavez and 
Busenberg, 1991; Castillo-Chavez et al., 1991; Dietz, 1988; Dietz and 
Hadeler, 1988; Gupta et al., 1989; Hethcote and Yorke, 1984; Hethcote 
and Van Ark, 1987, 1991; Hethcote et al., 1991; Hyman and Stanley, 
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1988, 1989; Jacquez et al., 1988; Rubin et al., 1991; Sattenspiel and 
Castillo-Chavez, 1990; and references therein). Despite these efforts, 
work in this direction is still in its infancy in part because there is almost 
no adequate and/or sufficient data. Furthermore, the lack of substantial 
medical progress in dealing with HIV infections at the individual level 
has already had a strong impact on the dynamics of HIV at the 
population level. Dramatic changes of behavior have been observed in 
homosexually-active communities in San Francisco (Centers for Disease 
Control, 1985; McKusick et al., 1985a, 1985b; Shilts, 1987; Winkelstein, 
et al., 1988), New York (Martin, 1986a; McFarland, 1972), and Boston 
(Saltzman et al., 1987), demanding the development of dynamic models 
for the transmission of STDs that incorporate behavioral change. 
Unfortunately, epidemiological models that consider behavioral changes 
may not exhibit "typical" dynamics. In fact, multiple endemic equilibria 
may be quite common for models with state-dependent mixing/pair­
formation processes, and control policies may have unpredictable results 
in these circumstances. For some recent efforts in this direction, the 
interested reader is referred to the work of Blythe et al. (1991), Castillo­
Chavez (1989), Castillo-Chavez, ed. (1989), Huang et al. (1992) and 
Palmer et al. (1991). 

This article is organized as follows: in Section 2, we describe a 
general axiomatic approach, using nonlinear mixing matrices for 
modeling the process of pair-formation in heterogeneous populations and 
explain their role in the transmission dynamics of STDs. Determining 
who is mixing with whom is complicated by a variety of factors including 
the problem of denominators which is, in our context, equivalent to the 
nonexistence of closely interacting socialfsexuaJ networks. In Section 3, 
we describe an axiomatic framework for modeling human interactions 
such as dating, mixing, or pair-formation (other interpretations are 
possible). In Section 4, we describe the use of a mark-recapture model 
for estimating the sizes of the missing link, that is, the size of the 
population having sexual contact with a specified population and hence 
at risk for sexually-transmitted diseases. One must estimate the size of 
the sexually-active subset before estimating the size of the population at 
risk, which introduces extra variability into the problem. An estimator 
of the variance of the estimated size of the population at risk that 
accounts for this extra variability and an expression for the bias of such 
an estimator have been derived (see Rubin et al., 1991). In Section 5, we 
outline the possible use of these results with data collected from a 
population of university undergraduates, and by combining the results of 
Section 4 with our axiomatic modeling approach for mixing/pair 
formation we are able to compute specific mixing matrices (closed 
networks). In Section 6, we provide some conclusions and outline 
possible new directions . 



2. Modeling of human epidemics 

We begin with the description of a key component for a model of 
this type: the incidence rate (new cases of infection per unit time). To 
keep the level of discussion simple, we assume that we are dealing with a 
specific disease: gonorrhea. Therefore we have to consider, for a simple 
model, only two type of epidemiological classes: susceptibles and 
infecteds (here assumed infectious). The mixing probabilities, as well as 
other behavioral and epidemiological parameters, determine the rate at 
which new infections are generated. The incidence rate is given by a 
nonlinear function of the different interacting subpopulations and, in this 
context, we develop our approaches to estimating the social/sexual 
mixing structure of a population. 

The data used in applying this modeling framework consists of a 
population of heterosexually-active college students and, consequently, we 
formulate our ideas in the context of two-sex heterosexually mixing 

· populations (the description is considerably simplified when one deals 
with exclusively homosexually-active populations). Our heterosexually­
active population is divided into classes or subpopulations which may be 
defined by sex, race, socio-economic background, average degree of sexual 
activity, etc. Models that incorporate factors such as chronological age, 
age of infection, variable infectivity, and partnership duration also have 
been formulated (see Busenberg and Castillo-Chav~, 1989, 1991). 

For the purposes of this article, we consider only N-sexually active 
populations of females and L-sexually active populations of males, each 
divided into two epidemiological classes: sj(t) and s:n(t) (suscepti.ble 
femal~ and males, i.e., uninfected and sexually active at time t); Ij(t) 
and I!n(t) (infected females and males at timet); for j = 1,···,N and i = 
l,···,L. Consequently, individuals at risk (sexually-acth:e) of ~ sex 
~d each s'!bpopula~ion at t~me t are represented by Tj(t) = Sj(t) + 
I}(t) and T!n(t) = S!n(t) + I!n(t). We obviously do not need to oonsider 
other individuals if our only concern is, as in this paper, the study of the 
dynamics of sexually-transmitted diseases. 

Following the superscript notation, Bj(t) and B:n(t) denote the jth 
and ith incidence rates for females in group j and males in group i at 
time t, that is, the number of new infective cases in each subpopulation 
per unit time. AJ3 we shall see, Bj(t) and B:n{t) constitute a set of 
complicated expressions. In fact, they are functions of the frequency and 
type of sexual interactions that susceptible females of group j and 
susceptible males of group i have with all other sexually-active 
individuals (in this case, of the opposite sex, although this condition can 
be easily relaxed). 

A dynamic model needs a source of new individuals; the modeling 
of this demographic process could be extremely complicated (see 
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Dusenberg and Castillo-Chavez, 1989, 1991; Castillo-Chavez and 
Dusenberg, 1991; Castillo-Chavez et al., 1991). If one wishes, for 
example, to study the demographic consequences of a disease like 
HIV /AIDS, one needs to model carefully the "recruitment" of new 
individuals. Here we want to keep the demography simple and assume 
constant "recruitment" and constant per-capita ~ortality (removal from 
sexual activity) rates. Specifically, we )et Af and A!n denote the 
"recruitment" rates (assumed constant), P} and Pm d.enote t~e (constant) 
per-capita removal rates from sexual activity, and "Y} and "Y!n denote the 
(constant) per-capita recovery rates from gonorrhea infection. A simple 
model for the transmission dynamics of gonorrhea is given by the 
following set of differential equations: 

dSJ(t) . . . . . . 
dt = A}- Dj(t) - pjSj(t) + -yjlj(t), (1) 

dl}(t) . . . . 
~ = Dj(t)- (-rj + pj)Ij(t), (2) 

dS!n(t) = Ai _ Di (t) _ ,i si (t) + "Yi Ii (t) 
dt m m rm m m m ' (3) 

dli (t) . . . . dt = D!n(t)- (-y!n+ P!n)I!n(t), (4) 

i = 1,···, Land j = 1,· ··,N. 

Of course, this model is not fully specified until we provide explicit 
expressions for DJ(t) and D!n(t). The formulae are provided in two steps: 
first we provide expressions for the incidences in terms of a set of mixing 
probabilities {Pi;(t) and Q;i(t): i=1,···,L and j=1,· ··,N}; and secondly, 
we describe these mixing probabilities (in the next section) in terms of an 
axiomatic system for social/sexual interactions. More definitions are 
needed: 

Pi;(t): fraction of partnerships of males in group i with females in group 
j at timet, 

Q;i(t) :fraction of partnerships of females in group j with males in group 
i at timet, 

T!n(t): male population size of group i at timet, 

Tj( t) : female population size of group j at time t, 

ci: average (constant) number of female partners per unit time of 
males in group i, or the ith-group rate of male pair-formation, 

bj : average (constant) number of male partners per unit time of 
females in group j, or the jth-group rate of female pair-formation, 



P!.. : transmission coefficient (constant) of males in group ~ 

P} : transmission coefficient (constant) of females in group j. 

The following expressions for the incidence rates are a direct consequence 
of these definitions: 

and 

. . . N . IJ(t) 
B!n(t) = c'S!n(t) EPjPi;(t) ---, 

j==l Tj(t) 
(5) 

. . . L . Ii (t) 
Bj(t) = b'Sj(t) EfJ!nq;i(t) ~-

i==l T!n(t) 
(6) 

The modeling of the mixing/pair-formation probabilities constitute the 
body of the next section. 

3. Modeling of mixing/pair-formation probabilities 

Solutions for one-sex mixing populations have been previously 
obtained by Anderson et al. (1989), Blythe and Castilla-Chavez (1989), 
Castilla-Chavez and Blythe (1989), Gupta et al. (1989), Hethcote and 
Yorke (1984), Hyman and Stanley (1988, 1989), .Jacquez et al. (1988, 
1989), Nold {1980), and many others. A representation theorem 
describing all mixing/pair-formation solutions as random perturbations 
of random (proportionate) mixing, based on the work of Blythe and 
Castilla-Chavez (op. cits.), was obtained by Busenberg and Castilla­
Chavez {1989, 1991). Models that follow pairs of individuals (two-sex 
models) can be found (in a demographic context) in the works of Kendall 
(1949), Keyfitz {1949), Parlett (1972), and Pollard (1973). Formulations 
of the standard two-sex mixing pair-formation framework are found in 
the work of Fredrickson (1971) and Martin {1986b), while applications of 
the Fredrickson-McFarland framework to epidemiological models has 
been carried out by Castilla-Chavez (1989), Castilla-Chavez et al. (1991), 
Dietz (1988), Dietz and Hadeler (1988), Hadeler (1989a, ·1989b ), Hadeler 
and Ngoma (1990) and Waldstatter (1989). In this section we provide 
an alternative approach to modeling the process of pair-formation or 
social mixing. Like Fredrickson {1971), we use an axiomatic framework 
to describe the probabilities associated with possible interactions such as 
pair-formation, or social mixing (further details are found in Castilla­
Chavez et al., 1991, where some special solutions were given). 
Specifically, the set of mixing probabilities {pi3{t) and qji(t): i = 1,·· ·,L 
and j = 1,· • ·,N} establishes the mixing/pair formation in a 
heterosexually-active population in agreement with the following 
(postulated) set of properties: 
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Def (~(t), Q(t)) = (P;;(t), Q;;(t)) is called a mixing/pair-formation 
matrix if and only if it satisfies the following properties at all times: 

(Al) 

(A2) 

0 ~ Pij ~ 1, 
N L 

0 < q .. <_ 1, - ,. 
'E Pi · = 1 = 'E q ·i , 
j=l J i=l J 

i = 1, • • ·, L, j == 1, .. ·, N. 

(A4) If for some i, 1 ~ i ~ L and/or some j, 1 ~j ~ N, cibjT!nTj = 0, 
then we define Pij = Q;i = 0. 

Property (A3) can be interpreted as a conservation of partnerships law or 
a group reversibility property (applied to rates), while (A4) asserts, the 
obvious, that is, that the mixing of "non-existing" or non-sexually active 
subpopulations cannot be arbitrarily defined. A very useful solution is 
the Ross solution which corresponds to proportionate mixing when there 
are two clearly distinct sets of individuals who do not mix among 
themselves. Ross solutions naturally arise if we search for separable 
solutions. 

De£ A two-sex mixing/pair-formation function is called separable iff it 
is given by products of the form 

P;; = PiP· and Q;; = q,-<ii, 
where P;, i>;, qj, qi are ar-bitrary functions subject to the mixing 
constraints, i = I, • · ·, L and j = 1, · · •1 N. 

Theorem !: The only separable solution is Ross solution given by 
(p' ,q') , which are featured by superscripts and bars, and 

. biT'J. _, 
P = L .. ' 

'Ee'T' 
i=l m 

j = 1, • • ·, N and i == 1, • • ·, L . (7) 

Remark: From (A3) it follows that 

p·. biTj -i ....!l----.e.... 
Q;; - ciT!n - q:i ' {8) 

and hence (A4) implies that the. s~pport of any two-sex mixing function 
is contained in the support of (p' ,q'). 

We now use (7) to generate all solutions to axioms (A1)-(A4). We 
begin by introducing some new terms. Let 

( tPij) = males' structural covariance matrix (0 ~ tPij) denoting the 



degree of preference (i.e., the deviation from random mixing) 
that group i-males have from group j-females, j = 1,· • ·,N, 
i = 1,···,L. N . 

t!n - E i>"tP{k = weighted.average preference of group i males, 
k=t i = 1,· • ·,L. 

R!n _ 1 - t!n, i = 1, • • ·, L. (9) 

We require that R!n ~ 0, and that 

L . . L N k . 
E t' i>' = E E i> tP~i>' < 1 • 
i=l m i=l k=l 

(10) 

Similarly, let 

(tP~i) = females' structure covariance matrix (0 ~ tP~i) denoting the 
degree of preference (i.e., the deviation from random mixing) 
that group j-females have for group i-males, j = 1,···,N, i = 
y···,L. 

tj _ E CJ."tPI.k = weighted average preference of group j-females, 
k=l 1 i = 1,·. ·,N • 

j = 1, ···, N. (11) 

Again, we require that R} ~ 0, and that 

N .. N L kf. 
E tjq' = E E -q tP ;"CJ.' < 1 . 
j=l j=l k=l 

(12) 

All solutions to axioms (A1)- (A4) are given (formally) by the _fo~lowing 
multiplicative perturbations to the separable mixing solution (p' ,q'): 

i = 1,· · ·,L; j = 1,· • ·,N, (13) 

(14) 

The formal proof of this result can be found in Castilla-Chavez and 
Busenberg (1991). For future reference, we write down this theorem 
explicitly: 
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Theorem ~- Let { f/lij} and { f/1~;} be two nonnegative matrices. Let t!n 
N k . L k/ { .• = E p f/1~ and tj = E q f/1 ik' where (p', q'): j = 1,· • ·,N and i = 

k=1 k=1 

1,·· ·,L} 
denotes the set composed of R:oss solutions. We also let R!n = 1- t,i , 
i = 1, ... , L and R} _ 1- tj, j =:= 1, ... ,N,.and assume that f/lij and ~i 
are chosen in such a way that R!n and R} remain nonnegative for ;ji 
time. We further assume that 

L . . L N L • 

E e• ii' = E E ii"'fil~ii' < 1, m . L ak 
i=1 •=1 .. =1 

and 
N .. N L k/. 
E t}<i' = E E <i f/1 ·kCi' < 1 . 
i=1 i=1 k=1 J 

Then all the solutions to axioms (A1)-(A4) are given by Equations (13) 
and (14). 

Remark: f!lij and f/l~i can always be chosen in such a way that R!n and 
R} remain nonnegative for all time (i.e., let them be in the interval 
(0,1]). However, there is. no recipe_ for specifying necessary conditions for 
the nonnegativity of R!n and R} because their · values are intimately 
connected to the time-dependent values of Ross solutions and hence to 
the associated (and disease-dependent) dynamical system. 

4. Estimation of sizes of mixing subpopulations 

Our main purpose here is to compute explicit examples of 
mixing/pair-formation matrices from our data on mixing. These time­
dependent matrices describe the network of interactions between groups 
of individuals (who is mixing with whom). Our examples (to be 
illustrated in Section 5), albeit for a single time, provide the first mixing 
matrices computed from data. Knowledge of these matrices over a 
period of time is essential to any type of long-term forecasting. Because 
our purposes are limited and our data is too specific, we do not need to 
use sophisticated approaches in the construction of these matrices. Mark­
recapture methodology can be applied to survey data to estimate the 
number of different sexual partners from each of several groups that an 
individual bas bad in a fixed period of time, or to estimate the size of the 
population having sexual contact with members of a given group. Thus, 
one can apply this methodology to survey data to estimate the size of the 
population at risk for a sexually transmitted disease. Using data from 

.our survey conducted at Cornell University in 1989 (see Crawford et al., 
1990), we use mark-recapture estimators to provide estimates of the size 



of the population that has sexual contact with Cornell undergraduates 
but are not Cornell undergraduates. We use these estimates and our one­
and two-sex mixing framework to construct explicit mixing matrices (see 
Section 5). In our situation, prior to sampling, the population contains 
both marked and unmarked individuals: contacts (i.e., sexual partners) 
are either Cornell undergraduates or not and, obviously, we only have 
access to information about Cornell and non-Cornell partners from the 
Cornell students surveyed. It is appropriate to think of the students 
surveyed as observers in mark-recapture bird studies in which "rec­
apture" is done by sighting. Because the nature of our population, we 
need not worry about loss of marks or marks being overlooked, which is a 
problem in many applications of mark-recapture to bird and mammalian 
populations. For each student surveyed, the contacts reported are distinct 
sexual partners. However, any two Cornell students that were surveyed 
may share one or more sexual partners, either from the Cornell 
undergraduate pool, from the greater Ithaca area, or from the world. 
Thus, the combined number may contain multiple counts of the same 
sexual partner; we are sampling with replacement with respect to sexual 
contacts when we combine information across the students surveyed. 
Hence the closed population single mark release model, which is based on 
sampling with replacement (Bailey 1951), gives an appropriate first 
estimate of the population size. We believe that given the current 
availability of data on mixing, this approximation. is entirely appropriate 
for our purposes. Let the subscript k denote sex (k =male, female). Sre 
denotes the number of undergraduates of sex k registered at Cornell, and 
Tk of those (Sk) are sexually active. The total contacts with individuals 
(Cornell undergraduates, or not Cornell undergraduates) of sex k per unit 
time (two months) from respondents of the opposite sex is denoted by yk, 
and xk of those are cont~ts with Cornell undergraduates. Then the 
Lincoln-Petersen estimator N k is given by 

Nk=Tk(Yk+1)j(xk+1), (15) 

is a nearly unbiased estimator ofthe variance of Nre, when the number of 
· sexually active students is known. Because a given sexual partner can be 

reported by more than one of the students surveyed, the total number of 
contacts (y k) can be greater than N "' thereby increasing the precision of 
the survey for Nk (see Seber, 1982). 

However, we must estimate Tre from the survey data; Tk can be 
estimated with the maximum likelihood estimator under Bailey's 
approximate binomial model as 
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Tk = Sktk Irk= Ski"k' 

where ik estimates ?rk = Tk I sk, the probability of an individual of sex 
k in the surveyed population being sexually active, and rk and tk denote 
the number of Cornell undergraduates in the sample and the 
corresponding number that are sexually active. Hence, the corresponding 
estimator of N k is 

(17) 

which is a nearly unbiased estimator also, with proportional bias of order 

[1-1rk+""k exi>{-ykSkl (Nkrk>}fk = {B(NA:)tk. (18) 

An estimator of the variance of N k that takes into account the additional 
variability due to estimation of T k is given by 

where 

A(ik) = SfyA:(YA:+ 1)2 (NA:rff1rkik[{1-ak} +ik(rk-1){3-7ak} 

+ i~(rk-1){rk-2){1-6ak}-i~(rk-1)(rk-2)(rk-3)a,J, (20) 

with ak = Sk/(Nkrk), and 

C(i ,.J = i1rk{rk-1){rk-2){rk-3)y1a1 + 2i~rk(rk-1)(rk-2) 

xyfaf{3ykak+ 2}+i~rk{rk-1)y~a~{6(ykak+ 1)2 + 1} 

+ ikrkykak(ykak + 2){2 +Ykak(ykak+ 2)}+ 1 • 

The bias of this variance estimator is given in Rubin et al. {1991). 

{21) 

We wish to estimate the size of the population that has sexual 
contact with Cornell undergraduates but are not Cornell undergraduates, 
that is, 0 k = N k-T k· An estimate of Ok is given by 

ok = Nk-Tk = {tk(Yk+1) I (xk+1)}-tk 

= tk[{<Yk+ 1) I (xk+ 1)}-1]. (22) 

The estimated variance of Nk-Tk conditional on YA: contacts, is equal to 
the variance given in (19) plus 



(23) 

Mark-recapture estimators are design-based rather than model­
based; they do not rely on a probabilistic model, such as exponential or 
Weibull, for the growth of the population whose size the researcher 
wishes to estimate. Therefore, mark-recapture population estimates can 
provide an independent benchmark against which to compare estimates 
based on different probabilistic models. 

5. Mixing Matrices 

We (Castillo-Chavez, Crawford, and Schwager, see Crawford et al., 
1990) found in our recent survey of social/sexual mixing among Cornell 
undergraduates (CUSSP) that over a period of two months a larger 
fraction of females (111/253) than males (21/249) reported sexual act­
ivity. Those males that reported sexual activity during this two-month 
period had an average of 2.5 sexual partners while females reported about 
1.4 sexual-partners during the same period of time. Table 1 shows that 
female Cornell undergraduate· respondents that were sexually active 
during September and October 1989 had about 50% of their sexual 
contacts with Cornell undergraduates, and the remaining 50% with 
"outsiders", which includes Cornell graduate students, staff, faculty 
(GSF), and indiviudals not affiliated with Cornell (non-CU). The 
diagonal elements in Table 1 are always larger; that is, we see a strong 
"like-with-like" component. Further, the upper triangular elements are 
larger than the lower triangular elements, that is, females m~"t more often 
with upperclassmen, usually older males. We further note that Table 1 
is not a complete mixing matrix because the population is not closed. 
Estimates on the sizes and sexual activity of the external mixing 
populations are still required. 

Using the mark-recapture methods described above in conjunction 
with our survey data and using the mixing axioms to input "missing" 
values, one can complete plausible mixing matrices (see Figures 1 and 2 
below). 

The two figures constitute a sample of the type of matrices that one 
may get as one closes the network with the help of the estimate of the 
size of the sexually-active population that has sexual or social contact 
with the Cornell undergraduate population and with the use of the 
axioms for mixing (that is we "force" the conservation of partners law). 
Of course, many other matrices are possible for the same data. However, 
the continued repetition of the above procedure yields the . same 
qualitative picture if the number of groups is not too small or too large. 
The writing of this article had the purpose of describing the nature of the 
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mixing problem and an outline of a possible solution. The specific 
details involved in the construction of these mixing matrices will be 
published elsewhere • 

Female respondent- male partners 
Total 

number of Male Comell undergraduate partnen Other male partners 
female Tot./ 

respondents Freshman Sophomore JUDior Senior. SubtDt.l GSF non-CU SubtDt.l Comcc:u 
(X,.j.) (Y,.j.-x,.j.) (Y,.j.) 

Freshman 5 4 4 2 15 0 14 14 29 
20 (17~ (13~ (13~ (6.9"> (51.7"> ( O"l ( 48.3%} ( 48.3"> (100%} 

Sophomore 1 12 6 2 21 6 9 14 35 
26 (2.9%} (34.3"> (17.1"> (5.7"> (60.0"> (14.3"}(25.1%)(40.0"> (100%} 

Junior 1 4 11 7 23 0 18 18 41 
36 (2.4"> (9.8"} (26.8"}(17.1">(56.1"> (O"> (43.9">(43.9"> (100%} 

Senior 0 0 1 7 8 9 12 21 29 
28 (0"} (0") (3.5"} (24.1"> (27.6") (3Z.O")( 41.4"> (72.4") (100%} 

Total 7 20 22 18 67 14 63 67 134 
111 (5.2"> (15.0"> (16.4"} (13.4">(50.0"> (10.4"l(39.6")(50.0"} (100") 

Table 1. An extract from data derived from the sexual survey among 
Cornell undergraduates, Fall 1989. Data show the sexual mixing pattern 
of female respondents. All survey respondents classify their Cornell 
partners by college class. Therefore, three subscripts are required to 
tabulate Cornell sexual partners properly: k denotes the sex of the 
partner, j denotes the college class of the respondent and i denotes the 
college class of the partner. Above, Yki. denotes the total number of 
sexual contacts with individuals of sex k during the two month period 
reported by individuals of class j, and xki. denotes the total number of 
sexual contacts with Cornell undergraduates of sex k reported by 
respondents of class j • 
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Fig. 1. Mixing matrix !l(O) from suriey data. 

Fig. 2. Mixing matrix C!P(O) from survey data. 
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6. Conclusions 

Several conclusions can be drawn from our preliminary efforts in 
estimating the contact structure of a heterosexually mixing population. 
A large number of groups will present very difficult estimation problems 
because of the large number of parameters involved, and because some of 
the mixing probabilities will be near zero. But a very small number of 
groups will not capture the level of heterogeneity needed to understand 
the consequences of extreme sexual behaviors. Given the difficulties 
involved in estimating mixing probabilities, levels of sexual activity, and 
group preferences or affinities from data, we see very little practical use of 
models that involve more than 8 groups, and strongly recommend the 
use of 4 to 6 groups for detailed epidemiological studies. Here the 
"correct" scale is determined by data. The selection of useful models for 
detailed epidemiological studies has to be guided by our clear 
understanding of the key features in HIV transmission. While very detail­
ed epidemiological models may not be useful for specialized 
epidemiological investigations, their study is central to the theoretical 
understanding of the importance that several epidemiological and soc­
iological factors - including long periods of incubation, variable 
infectivity, age-structure, and social mixing- may have on the dynamics 
of HIV /AIDS. Numerical and analytical studies (see Thieme and 
Castillo-Chavez, 1989, 1990) of detailed models provide the basis for the 
selection of the less detailed models that are required to address specific 
practical questions. In summary, theoretical studies in combination with 
data help us sort out the boundaries between practice and theory. 
Theoretical studies, through mathematical models, help us rank the 
importance of biological detail and guide us in choosing, a priori, the 
most appropriate scales at which to address specific biological questions. 
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