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ABSTRACT 

The EM algorithm is often a practical method 
for obtaining maximum likelihood estimates. For 
the vector parameter case, we provide a faster 
method than Meng and Rubin (1989) for obtaining 
the derivative of the EM mapping, which can be 
used to obtain the observed variance-covariance 
matrix. Our method exhibits good behavior for a 
simple example. Aitken's acceleration is commonly 
used to speed convergence of EM near a solution. 
Because Aitken's acceleration often fails to converge 
we propose a mixture of EM and Aitken accelerated 
EM which satisfies the generalized EM (GEM) 
criteria, assuring convergence. We show that such a 
mixture sequence exists and demonstrate good 
convergence behavior for a heuristic approximation 
to this mixture. 

1. INTRODUCTION 

The EM algorithm is often a good iterative 
approach for difficult maximum likelihood 
estimation problems, providing answers that are as 
good as J,he likelihood surface allows. The major 
shortcommg of EM is that it is often slow to 
converge, particularly near the end of the search. 

We represent EM as a mapping from a 
parameter estimate, o< k)' to a new estimate o< k + 1) 

' 
o(k + 1) = M(O(k)). 

Associated with this mapping, we define the 
derivative of the mapping, DM(O(k)), as the 
Jacobian of the component derivatives of M(O(k)) 
with respect to o(k), 

DM(o(k)) = {rij}, 

oM(o<k>). 
where r·. = ' 

lj (k) . 
81JJ 

The derivative of the EM mapping has interesting 
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and useful properties from both algorithmic and 
statistical viewpoints. For likelihoods with 
continuous derivatives in 0, the derivative of the 

mapping, DM(O(k))), converges to DM(O*) as 

o(k)-+IJ*, where o* is a local maximum of the 

likelihood surface. 

Aitken's acceleration, applied to EM, does not 
converge reliably unless it is started close to a local 
maximum (Louis, 1982). Louis (1982) suggests 
using EM for early iterations, where it is stable to 
poor starting values, and Aitken accelerated EM for 
late iterations, where EM is slow to converge. We 
propose criteria for deciding when to begin 
accelerating EM. 

We seek an accelerated version of EM that will 
preserve both the stability of EM to a wide range of 
starting values and its easy implementation for 
statisticians. We show that mixing the EM and 
Aitken steps can yield a generalized EM (GEM) 
step, which will preserve the good convergence 
properties of EM (Wu, 1983). We present a 
heuristic mixture that performs well. 

2. DEFINITION OF EM AND NOTATION 

EM is formally defmed following Dempster 
Laird and Rubin, (1977; subsequently denoted ~ 
DLR, 1977) as follows. Postulate two sample spaces 
$ and CV and a many-to-one mapping from $ to '\1, 
denoted y = y( z ). The observed data y are a 
realization from c:y. We observe z in $ only 
indirectly through y. We call z the "complete data" 
and y the "incomplete data". The subset of $ in 
which the complete data lie is denoted $(y) = { z: y 
= y(z)}. The family of densities f(z I 0) induces a 

related family of sampling densities g(y I 0), 

g(y I 0) = J f(z I O)dz. 

$(y) 



The common parameterization, O, for f and g is an 
essential feature of the EM setup. ~· 

The EM mapping usually consists of two steps 
an Expectation step and a Maximization step. In 
practice these steps are combined. The general 
definition of EM does not refer to these E and M 
steps; instead we maximize the expected log of the 
complete data likelihood at each step, so that 

rP + 1> = M(o<k>) 
{o<k + 1): Q(o<k + 1) I o<k>) = fe~ Q(o I o<k>)}, 

where 

Q(O' I 0) = E( log f(z I O') I y,o) 
= J log{ f(z I O')} f(z I O)dz. 

$(y) 

For GEM (Generalized EM) we need only increase Q 
rather than maximize Q at each step, satisfying 

Practical use of EM demands a density f(z I 0) where 
at least one of the E and M steps is easy to 
calculate. For the E-step we calculate, 

t(k) = E$(y) {t(z) I y, o(k)} 

where t(z) is the set of sufficient statistics for 0. 
The M-~tef. is then, 

EM then maximizes L(O I y) without evaluating 
L(O I y), L(O I z) or even Q(O'I 0). 

3. PROPERTIES OF DM(O(k)) 

We desire an estimate of [ 1 (I and Iz are 
the Fisher Information for t~e o~served and 
complete data respectively) to construct variance 
estimators based on the observed (incomplete data) 
Fisher Information (Efron and Hinkley, 1978). We 
use EM when it is difficult to evaluate the observed 
data likelihood. Thus, it is usually easier to evaluate 
I~ and DM(O*) and exploit the exponential family 
relationship reported in DLR {1977) 

DM(O*) = V(t(z) I o*,y)V-\t(z) I O*) 

* -1 where V(t(z) I 0 ,y) = Iz I !I and Iz I !I= Iz- Iy. 

Hence, we can derive 

-1 * -1 -1 -1 
Iy =(I- DM(O ) ) Iz, 

which, as Meilijson (1989) has pointed out, is 
incorrectly reported in Louis (1982). The asymptotic 
rate of convergence of EM is a one minus the largest 
eigenvalue of DM(O*) when this eigenvalue is less 
than one (DLR, 1977). Under mild regularity 
conditions, DM(O(k)) converges to DM(O*). We 
propose using a near convergence criterion 
(technically lack of change) on DM(e(k)) to indicate 
that EM is "stable." We call EM "stable" when it is 
taking many small steps in essentially the same 
direction. 

4. ESTIMATING DM(O(k)) and DM(O*) 

Meng and Rubin (1989) propose estimating 
DM from forced EM steps. For the vector 
parameter case they take differences from o* at each 
step using 

and 

with (k +1) 
(k) 0. ( i)- 0~ 

r = 3 1 
ij o(k)- o~ 

I I 

and 

(k+1) (k) 
B(i) =M{et,e;, ... , ef-1 , ei , et-1, ... , e~}. 

Note that their method yields the transpose of the 
usual Jacobian. This approach requires knowledge 
of O*; hence, we must first find iJ*, the MLE for 0. 
This requires running EM. twice, first to estimate O*, 
and second until all elements of DMm(e(k)) have 
-satisfied appropriate convergence criteria. This is a 
substantial duplication of EM steps. 

We extend Meng and Rubin's (1989) idea from 
the scalar parameter case to the multiparameter 



case, using the step sizes of the mapping to estimate 
the derivative of the mapping. Dennis and Scl:-nabel 
(1983) recommend using these step sizes for 
derivative estimation. We use 

where 

and 

0 (k+1) (k+1) 
(k) - (} i (j)- 0; 

qij - (k+1) (k) 
(}. -fJ. 

3 3 

0 (k + 1) (k) (k) (k + 1) (k) (k) 
fJ (j) =M{01, ••• ,oi_1,oi ,oi_2,. .. ,od }. 

For both methods, we can stop taking the jth forced 
EM step when row j of DM has converged. In our 
example both methods exhibit convergence before 
the denominator becomes too small. Calculating 
DM(O*) =~DM1(9(k)) on the first (and only) 

pass through the EM sequence, has worked well in 
simulation studies on a simple example. This 
approach appears promising for more complex 
problems. 

5. EM, AITKEN'S AND A MIXTURE OF THEM 
(k + 1) 

The Aitken acceleration estimate, (}A , can 
be written in terms of the current estimate of(}, (J(k), 
the next EM estimate of 9, (J(k+ 1), and the inverse 
of (1- DM(fJ*), 

(}~ + 1) ~ (J(k) + (I- DM(fJ*)f (o(k + 1)- (J(k) ), 

assuming that all the eigenvalues of DM(fJ*) are less 
than one in absolute value. DM(fJ(k)) is often used 
in place of DM(fJ*) in Aitken's acceleration (Louis, 
1982). 

One of the most useful properties of EM and 
GEM is their reliable convergence. Combining the 
EM and Aitken acceleration steps so that each mixed 
step is a GEM step would assure convergence. 

Theorem 1. For (J(k) an estimate of 9, there exists a 
constant A (k), O<A (k)<1, such that 

(k+l) (k) (k+l) (k) (k+l) 
0 = A fJ A + ( 1 - A ) (}EM 

(k+1) 
will satisfy the GEM criteria, with (}EM and 

(k+1) 
(}A the usual EM and Aitken estimates. 

(k + 1) ( (k)) (k +1) 
Proof: (}EM will maximize Q (} I 0 and 0 A 

may increase or decrease Q(o I o(k)). Yet, for a GEM 

step we need only satisfy Q(9 1 o<k>);::: Q(9(k) 1 o(k)} 
there is clearly a constant A (k), 0 < A (k) < 1, which 
will produce the desired result. 0 

By induction we can establish that a sequence 
of As, which produce a GEM sequence, exists. We 
expect some of these mixtures to converge more 
rapidly than EM. For this paper we suggest some 
functions for A (k). A simple choice for A (k) , !• 
performs surprisingly well for our three parameter 
EM problem. Other functions we examine include 
powers of the cosine of the angle between the EM 
and Aitken step, and the ratio of the lengths of the 
EM and Aitken steps. When EM is "stable" it takes 
many small steps in the same direction. This 
motivates our use of the cosine to weight the Ait"ken 
step more heavily when it goes in approximately the 
same direction as EM. Higher powers of the cosine 
weight EM more heavily. The relative lengths of the 
EM and Aitken steps are the only other current step 
information available. Because EM takes small 
steps, relative step length seems less likely than 
cosine to perform well. 

6. EXAMPLE 

To evaluate candidates for A (k) we constructed 
a simple example. We sampled from a bivariate 
normal population (x,y) ...... BVN(tt1, J.t2, u~, u~, p) 
with some pairs incomplete (all missing observations 
were from y). Most of our simulations used nx = 15 
and ny = 5, with (} = {J.t11 tt2, ui, u~, p} 
= {5,10,3,3,.9}. Other sample sizes and parameter 

values gave similar results. For each sample we 

construct MLEs for tt1 and uy using all nx 

observations. Using only the ny observations with 
both x and y observed we construct starting 

_estimates of J.t2, u~ and p. Three sequences were 

constructed for each sample: 1) EM, 2) EM followed 
by the Aitken accelerated EM, and 3) EM followed 
by the mixture described in section 5. The latter 



two sequences changed from EM to accelerated 

versions when DM(9(k)) is "stable" 

lmax(DM(9(k+l))-DM(9(k))) I < 0.4. We used 

a it{xed step size numerical estimate of DM(9*) 
because we cannot guarantee the convergence of o(k) 
which is required by both our and Meng and Rubin's 
(1989) DM estimation methods. 

Table 1 indicates that the 4th power of the 
cosine performed about as well as Aitken's method. 
Aitken's failed to converge for approximately 25% of 
our samples while the cosine based mixtures 
converged slightly more often, but requiring slightly 
more steps. The methods based on relative step 
lengths did not perform well, as expected. Figure 1 
illustrates a situation where Aitken's acceleration 
and the cosine mixture both converge, yet the cosine 
requires fewer steps. The mixture path is closer to 
the EM sequence and smoother than the Aitken's 
acceleration path. Figure 2 illustrates a case where 
the Aitken acceleration fails to converge. 

7. SUMMARY 

We modify Meng and Rubin's (1989) method 
of estimating the derivative of the EM mapping to 
require only one EM sequence. Their and our 
method relies on the convergence of the derivative of 
the EM mapping which depends upon convergence of 
o(k)-+9*. We propose near convergence of the 
derivative of the EM mapping to indicate when to 
begin using'Aitken-like acceleration methods. 

We show that a there exists a sequence of 
steps, composed of convex mixtures of EM and 
Aitken steps, which is a GEM sequence. For several 
simple heuristic approximations to this mixture we 
demonstrate convergence for a simple EM problem. 
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Table 1. Comparison of EM, Aitken acceleration 
and mixtures of the two, in terms of number of 
times that each failed to converge (EM never failed) 
and the average number of steps to convergence in 
100 trials. 

Method 

EM 
Aitken 
cos4 

percent 
convergence 

100 
75 
76 

mean number 
of steps 

62.7 
5.4 
6.8 

Figure 1. Sequences of EM (+) , Aitken (D) and 
mixed ( 6.) estimates where the mixture does very 
well. Note the extremely slow progress of the EM 
-algorithm, particularly in the last part of the 
sequence. 
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Figure 2. Sequences of EM (+), Aitken (D) and 
mixed (!::..) estimates where the Aitken sequence fails 
to converge. At the last point in the Aitken 
sequence shown, at the top right of the figure, the 
next step for the Aitken method would be out of the 
parameter space. 
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