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When Fisher first defined consistency in 1922, critical assumptions about restrictions 

on estimators were omitted from the definition. As a consequence, his definition appears to 

include both Fisher consistency and probability consistency, definitions which are taken to be 

distinct today. The evolution of the definition(s) of consistency is studied; the goal being to 

better understand this inconsistency. To further this aim, the conditions under which 

probability consistency and Fisher consistency are equivalent, and under which Fisher 

consistency and unbiasedness are equivalent (which is most of the time) are examined. 

§1. Introduction 

The development of the definition of consistency as we know it today has, for such a 

seemingly simple concept, a rather interesting history. When Fisher first defined consistency 

in 1922, critical assumptions about restrictions on estimators were omitted from the definition. 

As a consequence, his definition appears to include both what is now known as Fisher 

consistency (hereafter FC) and what is currently known as consistency (hereafter PC, for 
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probability consistency), definitions which are taken to be distinct today. 

The evolution from 1922 to 1956 (in Fisher's writings) of the definition( s) of 

consistency is studied, the goal being to better understand the nature of this inconsistency. 

To further this aim, the conditions under which PC and FC are equivalent, and under which 

FC and unbiasedness are equivalent (which is most of the time) are examined. 

Central to this discussion is the use of the multinomial as a model for sampling (iid, 

sample size n) from any distribution. Relevant notation and a few basic results are presented 

in §2. It is difficult to appreciate the subtle ways in which the definitions of consistency have 

evolved, in particular the shortcomings of the early definitions, unless one has an 

understanding of the contemporary usage of FC and PC. Current definitions and some initial 

observations about FC and PC are discussed in §3. 

Then, having provided a perspective from which to view the history, in §4 we review 

the pertinent literature to study the evolution of the definitions of FC and the (now) usual 

definition of consistency, namely PC. When it is appropriate with respect to the telling of the 

history, we include, as asides, discussion of comparative details of FC and PC. Finally, we 

discuss the lessons to be drawn from this history in §6. 

§2. Mathematical Background. 

When sampling (with finite sampling size) from a distribution Fx(x), the resultant 

data are, because of limits on measurement precision, clearly discrete, no matter whether 

Fx(x) is discrete or continuous. Thus a multinomial model (with theoretical bin probabilities 

determined by Fx(x)) is reasonable in that setting. We quote Basu (1988, p. 23): 
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"I hold firmly the the view that this contingent and cognitive universe 

of ours is in reality only finite and, therefore, discrete. In this essay we 

steer clear of the logical quicksands of 'infinity' and the 'infinitesimal'. 

Infinite and continuous models will be used in the sequel, but they are 

to be looked upon as mere approximations to the finite realities." 

Taking the sampling procedure "to the limit" is potentially tricky; however, even in 

the limit, it is reasonable (in the sense of "reasonable: possessing of a large reality quotient") 

to suppose that a multinomial model still holds. 

It is fairly easy to imagine the sample size increasing without limit; it is quite another 

thing to imagine shrinking the bin size (by improving the measurement process) infinitely. In 

the limit (as sample size increases to infinity) we may have a particular continuous distribution 

fx(x) which we wish to use to determine the multinomial probabilities, but it's reasonable to 

assume that we always have a discrete random variable to deal with. Consider the following 

example. 

Suppose the measurement precision of our observations is 6; in other words, in taking 

observations, we map [x-8, x+6) to x. Then our multinomial bins have, as centers, the set 

{· · ·, x-28, x-8, x, x+8, x+28, · · ·},for any x E lfit 

If one presumes, for instance, that the true underlying distribution is normal with mean 

p, and variance u 2 , then one is in fact sampling from a multinomial distribution with cell 

probabilities determined by 

P[we observe x] 

x+8-p, 
--u-

P[ x-8 ~X< x+6] = J if>(t)dt, v(x E 1R 1), 

x-8- p, 
-u-

where ¢( ·) is the standard normal pdf. 
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§2.1 Empirical distribution functions. 

Without loss of generality, we let X be a non-negative, integer valued random variable 

from an arbitrary distribution Fx(x). Define c(x) to be the number of occurrences of x in an 

iid sample of size n from F X ( x). Then the empirical cdf may be written as 

Loo c(i) . 
Fn(x) = ---n I[ ](1). -oo, x 

i=O 

Further, the empirical pdf is just 

fn(x) = c~x), defined for all non-negative integers. 

For example, consider the following random sample of n = 10 iid observations from a 

discrete U[1, 10] distribution. 

K = ( 4, 3, 2, 9, 5, 8, 5, 3, 8, 6). 

= (2, 3, 3, 4, 5, 5, 6, 8, 8, 9), when ordered. 

Then, for instance, 

~ c(i) . 
F10(5) = LJ 10 1[2 5](t) = 0 + 0 + 0.1 + 0.2 + 0.1 + 0.2 = 0.6, 

i = 0 , 
and 

c(5) 
f10(5) = ---u- = 0.2 . 

An important asymptotic feature of iid sampling from any arbitrary Fx(x) is the result 

given by the Glivenko-Cantelli Theorem, which we state here without proof (for details, see 

Rohatgi, 1976, p. 300): 

If Fn(x) is the empirical cdf corresponding to an iid sample of size n from Fx(x), then Fn(x) 
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converges uniformly to Fx(x). That is, forE > 0, 

lim P{ sup IFn(x) - Fx(x)l > E} 0. 
n->oo oo<x<oo 

Thus, in the sequel, we may make reference to Fn(x) converging to Fx(x) as n goes to 

oo and be assured that this convergence is guaranteed. 

§2.2 The disguises of a statistic 

When Fisher discussed consistency, he usually considered only statistics which were 

functionals of the empirical cdf or pdf. We commonly think of statistics as functions of the 

observations. To aid in the switch from this mindset to the Fisherian one, we offer the 

following discussion and example. 

First, we note that it is appropriate to view the (empirical or true) pdf (or, 

equivalently, the cdf) as a vector. Then, considered as a functional, the statistic maps points 

in an infinite vector space to points on the real line. For instance, considered as a vector, the 

pdf fx(x) (of an integer valued non-negative random variable) is the vector 

while the cdf is 

( 7ro, t1r., 't,1r., t,1r. · · ·) · 
0 1 0 1 0 1 

For the sample of 10 observations from U[1, 10] considered above, the empirical pdf is 

f10(x) = ( 0, 0, p 2, p 3 , • • ·, p8 , p9 , 0, 0, · · ·) 

(o, o, 0.1, 0.2, 0.1, 0.2, 0.1, o, o.2, o.1, o, o, .. ·), 

while the empirical cdf is 
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F 10(x) = ( 0, 0, p 2 , ~Pi ,- · ·, ~pi' 1, 1, · · ·) 

= (o, o, 0.1, o.3, 0.4, o.6, 0.1, 0.1, o.9, 1, 1, .. ·). 

For example, let us examine a common statistic, the sample mean. We will show it in 

its usual guise as a function of the observations (1), then transform it into a function of the 

the empirical pdf (2), and finally present it as a function of the empirical cdf (3). 

Without loss of generality, we restrict attention to a random variable which takes on 

non-negative integer values. As above, we define c(x) to be the number of occurrences of x in 

the sample. Then 

- 1 n 
x = nL xi 

i=1 

00 

L i·fn(i) 
i=O 

The steps to get from (2) to (3) are somewhat tedious, but not difficult. The 

(1) 

(2) 

(3) 

formulation of the sample mean as a functional of the empirical cdf is a standard result. See, 

for instance, Mood, et al, 1974, pp. 64-65. 
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§3. Fisher Consistency and Probability Consistency: an introduction. 

§3.1 Definitions 

Currently, Fisher consistency is a little used concept, appearing mainly in historically 

oriented papers such as this one or, for example, Savage (1976), or Feinberg, et al (1980). We 

begin with current definitions of FC and PC. Geisser (1980, p. 60) defines FC in terms which 

are readily accessible: 

"A statistic is consistent (Fisher consistent) if, when calculated from 

the whole population, it is equal to the parameter describing the 

probability law. Thus for every n let F n(x) be the empirical 

distribution function and let Tn = g(Fn(x)) be an estimator of(), 

Then Tn is Fisher consistent (F.C.) for() if g(F(xiB)) =B." 

With respect to the definition of PC, we would now say, mathematically, that the 

sequence of estimators T n of a parameter (), based on a sample of n is consistent (in 

probability) for() if for an arbitrary £>0, 

P(ITn- Bl>f)- 0 as n- oo. 

To see quickly that these definitions are in fact different, consider the statistic T = x 
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+ ft· This statistic is PC, but not FC in the current setting, where X is a discrete random 

variable. The main reason for this is that T is not strictly a functional of the empirical df, but 

a functional of that and sample size. FC specifically precludes consideration of such statistics. 

Note, however, that if we were entertaining a mythical continuous random variable, then n 

would be the number of jumps in the empirical cdf (since ties couldn't happen), and thus a 

function of it. 

§3.2 Initial Observations 

There are several features of these definitions worth noting. Fisher consistency is more 

than an asymptotic result. Thus, when it is applicable, FC is a stronger condition than PC. 

It demands virtuous behaviour even in the finite sample setting. Of course, the main weakness 

with PC is that it is primarily an asymptotic result; it is useless for the development of a 

theory of small samples. For instance (with, say xi iid N(B, 1), where 0 ~ 0, suppose we 

define T n = 0 for n = 1, 2, · · ·, 1010000 ; thereafter define T n = x. Then T n is PC, but not 

very virtuous in any practical sense. 

We mentioned above, with reference to FC, the phrase, "when it is applicable". In 

order for a statistic to be FC, two conditions must apply. First, it must be that we are doing 

iid sampling from some distribution. In other words, there must indeed be an F(xiB) to plug 
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into the function g( ·) in order to be able to determine consistency. Thus one weakness of FC 

is that it is restricted to iid sampling. It cannot be used, for instance, in situations such as 

studies of time series, where observations are not independent. For further discussion, see 

Savage (1976). 

The second condition which must be satisfied in order for FC to apply is that the 

statistic must be an explicit functional of the empirical cdf (or, equivalently, the empirical 

pdf). That is why, for instance, T = x + ft fails to be FC. This condition is crucial to the 

finite setting strength of FC, since it restricts attention to statistics which are well behaved in 

finite samples. FC defines as inconsistent a wide range of statistics whose finite sample 

properties are not desirable. 

In sum, PC has wider applicability, but FC is a stronger finite sampling condition. 

§4. History and evolutions of definitions 

Fisher discusses two definitions of consistency, the first of which (chronologically) bears 

his name today. In the definition numbering in what follows, definitions 1.1, 1.2, .. ·, are 

various wordings of the definition of FC (showing its evolution), while definitions 2.1, 2.2, 

refer to the evolution of the definition of PC. When it is convenient, we will refer to FC as 
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definition 1 and PC as definition 2 (meaning, in both cases, the respective collections of 

definitions). 

As we proceed through the history, we'll occasionally pause for side discussions on 

various relationships between FC and PC (and unbiasedness) which will, hopefully, illuminate 

the unfolding of the history. The history presented here is in large part found in L. J. Savage's 

1976 paper, "On Rereading R. A. Fisher". 

§4.1 Beginnings 

Historically, the first definition went like this (definition 1.1) (Fisher, 1922, p. 309): 

"A statistic satisfies the criterion of consistency, if, when it is 

calculated from the whole population, it is equal to the required 

parameter." 

Later in the same paper, he describes a consistent estimator thusly (p. 316) (definition 1.2): 

"That when applied to the whole population the derived statistic 

should be equal to the parameter". 

What does, "when applied to the whole population", mean, anyway? Fisher meant that the 

consistency criteria can be applied in one of two ways. One is to compute g(fx(x)), where 

fx(x) is the true pdf one is sampling from. The other is to observe the sequence Tn. For Tn 
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to be consistent, the limiting value of the sequence T n should be the required parameter. By 

one criterion (the g(fx(x)) one), consistency isn't just a limit property of a sequence of 

estimators, as we think of it today. The second criterion does indeed imply that consistency is 

a property of a sequence of estimators. 

Left unsaid at this point (see Kallianpur and Rao, 1955) was that the statistic T is 

explicitly a continuous functional of the empirical pdf: T = g(fn)· We shall see later how this 

hidden assumption plays a critical role in the evolution of the concept of consistency. 

The next definition he used is more recognizable as the definition of consistency (PC) 

we are familiar with today (definition 2.1) (Fisher, 1925, p. 702): 

"A statistic is said to be a consistent estimate of any parameter, if 

when calculated from an indefinitely large sample it tends to be 

accurately equal to that parameter." 

At this point, however, he still would not have distinguished between FC and PC. He was, 

from his perspective, simply discussing consistency. The phrase, "from an indefinitely large 

sample", operationally was meant to include use of either of the two criteria described above. 

Compare this definition to a current definition of PC and of FC ( Geisser's definition in §3, for 

instance). 

As noted above, it is difficult to differentiate between definitions 1.1 and 2.1. In fact, 

for many years, Fisher took his two definitions to be describing the same thing. Thirteen 

11 



years after the first definition appeared, Fisher had this to say about consistency (1935, p. 

42: note his clever definition of inconsistency!) (definitions 2.3 and 1.3, respectively): 

"First, we may distinguish consistent from inconsistent 

estimates. An inconsistent estimate is an estimate of something other 

than that which we want an estimate of. If we choose any process of 

estimation, and imagine the sample from which we make our 

calculations to increase without limit, our estimate will usually tend, in 

the special sense in which that word is used in statistics, to a limiting 

value, which is some function of the unknown parameters. Our 

method is then a consistent one for estimating this particular 

parametric function [PC]1, but would be inconsistent for estimating 

any different function. The limiting value is easily recognised by 

inserting for the frequencies in our sample their mathematical 

expectations [FC]1." 

Fisher's definition of consistency here still includes both PC and FC. There are in fact 

circumstances under which FC ¢:> PC. This is an appropriate place for a side excursion to 

explore the properties of FC and PC in a little more detail. In particular, we explore the 

conditions under which FC ¢:> PC (§4.2) and under which FC ¢:> unbiasedness (§4.3). 

1[ ·] represents an addition by the present author to the quote 
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§4.2 Coincidence of FC and PC: 

Many of our commons statistics are such that they are both FC and PC. We 

demonstrate this by the following three propositions. 

Proposition 4.2.1. If the estimator of (}, the statistic T n, is a continuous functional of the 

empirical cdf Fn(x), then FC and PC coincide. 

Proof: 

To see this, suppose that Tn = g(Fn(x)) is FC. FC says that T 00 = g(Fx(x)) = 8. Note 

that, by continuity, Fn(x) close to F 00(x) (= Fx(x)) implies Tn close to T 00 • Recall the 

Glivenko-Cantelli Theorem of §2.1: Fn(x) converges uniformly to F 00(x). Thus, as n goes to 

oo, Fn(x) converging to F 00(x) implies Tn converges to T 00 = 8, by which we see that Tn is 

PC. In the other direction, suppose that T n is PC. Then, by definition, as n goes to oo, T n 

converges in probability to 8. But, as n goes to oo, F n(x) converges toF 00(x). Continuity 

then implies that Tn converges to T 00 , so T 00 = 8, and Tn is FC. 

Many of our commonly used statistics are in fact continuous functionals of the 

0 

empirical distribution function, hence are such that, if they are FC, they are also PC, and vice 

versa. The following two propositions lend credence to this statement. 
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First, we need some notation and definitions to carry this discussion. Consider two 

random variables X and X* of sample sizes n and n* from distributions fx(x) and fX_(x), 

respectively. Without loss of generality, we assume that X and X* may take on positive 

integer values only. 

Define 

Define 

m = min{ x[1]' x[1]}' and 

M = max{ x[n]' x[n*]} 

This = 1, for fx itself; of greater interest is 

M 
= .L lfx(i) - fX_(i)l 

1=m 

Suppose we are considering a statistic of the form 

n 
T = i:w(i)fn(i) 

i=1 

00 

.L ( c(i)w(i) )fn(i), 
1=0 

namely a linear combination of the frequencies. 
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Proposition 4.2.2: If the statistic can be written as a linear combination of the observed 

frequencies, then it is a continuous functional of the empirical distribution function. 

Proof: 

Given f. > 0, let b = _,: , where w * is defined to be . max { w(i)}. 
* 1 c: [m, M] 

Suppose llfn-±rill ~ b. 

M 
Further, define bi = lfn(i) - fri(i)l so that L bi = b. 

1=m 

Then 

M 
IT - T*l = .L w(i)(fn(i) - r;;_*(i)) 

I=m 

M 
~ .L w(i)lfn(i) - f:*(i)l 

I=m 

M 
= L w(i)bi, 

i=m 

=f., 

soT is continuous. 

The following proposition shows that many common statistics can be written as a 

D 

linear combinations of the frequencies, so that, for these statistics, the above proposition holds. 
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Proposition 4.2.3: A statistic which is a sum of an arbitrary function evaluated at each 

observed x can be written as a linear combination of the frequencies. (Fisher (1935) asserted 

that this is true if the function in question is continuous, but we see here that it needn't be.) 

Proof: 

n 
T = Lg(xi), for arbitrary g(·), 

i=1 

00 L c(i)g(i) 
i=O 

a linear combination of the observed frequencies, as asserted. 

What we have shown here is that if the statistic is a continuous functional of the 

empirical pdf, then FC ¢> PC. Then followed two propositions which demonstrated that 

0 

many of our usual statistics are such that they are continuous functionals of the empirical pdf, 

hence are such that FC ¢> PC. 

In fact, it is easy to see that, for instance, maximum likelihood estimators are always 

FC, since they are explicitly functionals of the likelihood function, which is just an arbitrarily 

scaled pdf (see Rao, 1962, p. 83 for further discussion). 
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§4.3 Coincidence of FC and unbiasedness 

This discussion is built around an example and discussion in Fisher (1935, pp 142-144). 

Let F X be the cdf of a multinomial with some (perhaps infinite) number of classes. 

Let ?ri be the probability of occurrence of class i Cl:>i = 1), where the ?ri's are a (known) 

function of the (potentially vector valued) parameter II. Let the observed proportions from a 

n. 
sample of size n be pi = n1 O::::ni = n). Suppose the parameter of interest is () = g(II) = 

Two observations may be made. First, T n is FC. Second, since it is a linear 

combination of the frequencies (with the correct weights!), Tn is unbiased for B. Further, as 

seen in §4.2, functions of the form l:c(x) can be reformulated as a linear combination of the 

frequencies pi and thus are both FC and PC. Now we see that these functions are also 

unbiased for the appropriate linear combination of the ?ri 's (recall Proposition 4.2.3). 

Several authors (see §3) have pointed out that Fisher meant to restrict his discussion to 

estimators which are linear functions of the observed frequencies, hence are both FC and 

unbiased. He later relaxed this condition, so that, now, FC and un biasedness are not 

equivalent. Consider the following example (Fisher, 1956, p. 143): 

but biased for B. In a related case, though, ln(Tn) is both FC and unbiased for ln(B). 
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§4.4 Consistent Consistency 

Kallianpur and Rao (1955) report (from conversations with Fisher) that Fisher had in 

mind only analytic functions of the frequencies. Thus, it seemed that he intended, at least at 

first, to restrict (for consistency purposes) consideration to estimators for which FC {::} PC. 

They say (p. 333): 

"It, thus, clear [that] by consistency Fisher had in mind both the 

properties of the statistic tending to a limit in probability and the 

limiting value being attained by the statistic as the expected value of 

the frequencies." 

Eventually Fisher differentiated between FC and PC by making explicit and relaxing his 

assumptions about the form of the estimator. At this point, he decided that consistency 

should be what we now call Fisher consistency. Effectively, he discarded PC as a useful 

definition of consistency in favour of FC. From Fisher (1956, p. 144) (definitions 1.4 and 2.4, 

respectively): 

"A Consistent Statistic may then be defined as: a function of the 

observed frequencies which takes the exact parametric value when for 

these frequencies their expectations are substituted. This definition is 
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applicable with exactitude to finite samples. 

A much less satisfactory definition has often been used, namely 

that the probability that the error of estimation exceeds in absolute 

value any value f, or, symbolically, 

Pr{IT - Ol>f }. 

shall tend to zero as the size of the sample is increased, for all positive 

values f, however small." 

In the discussion preceding this quote, Fisher has given up some of the restrictions he 

previously had placed upon estimators (in order, it seems, to be able to differentiate between 

FC and PC more easily). In particular, he gives an example in which the estimator is FC, but 

is not a linear combination of the observed frequencies (see §4.3 discussion of FC and 

unbiasedness). Hence, by 1956, the definitions of FC and PC were clearly distinguishable. 

Godambe (1976), citing Fisher (1935, pp. 45-46, and 1956, pp. 142-143) asserts that 

Fisher used the concept of linear estimating equations to define FC. The definitions Fisher 

used (definitions 1.3 and 1.4) do not bear this out. Further, in the 1956 discussion, Fisher 

used as an example of FC an estimator which was not a linear estimating equation (the (} 

The definition of FC has been formalized by Rao (1962, p. 82) as (definition 1.5): 

"A statistic is said to be FC for a parameter (} if 
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(1) it is an explicit function of the sample distribution function Sn, (or 

the observed proportions [p1 , •· ·, pk] in the case of a multinomial), and 

(2) the value of the function reduces to B identically when Sn is 

replaced by the true distribution function F( B), (or the true 

proportions [1r1(B), .. ·, 7rk(B)] in the case of [a] multinomial." 

Another, more recent formalization is offered by Savage (1976, p. 454) (definition 1.6): 

"A FC estimate is mathematically a functional defined on distributions 

that coincides with the parameter to be estimated on the family of 

distributions governed by the parameter. Employed as an estimate, 

this functional is applied to the empirical distribution of a sample of n 

independent drawings from an unknown distribution of the family." 

For a definition of FC which is in terms slightly more concrete that those of Savage, 

we recall the definition of Geisser (1980, p. 60): 

"A statistic is consistent (Fisher consistent) if, when calculated from 

the whole population, it is equal to the parameter describing the 

probability law. Thus for every n let Fn(x) be the empirical 

distribution function and let Tn = g(Fn(x)) be an estimator of B. 

Then Tn is Fisher consistent (F.C.) forB if g(F(xiB)) =B." 
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§6. Summary 

When one is a beginning student of statistics, it is easy to become intimidated by 

reading journal articles where (hopefully!) results are presented in a fairly polished form. In 

particular, it is often difficult to see the true methods by which the results were obtained, since 

the required evidence (piles of scrap paper, broken pencils, etcetera) often has been sent out 

with the trash. 

Consistency (meaning PC) is a relatively simple idea, one students are commonly 

introduced to at the senior undergraduate level. It is illuminating to realize that it took, at 

least as far as the published evidence indicates, Fisher 34 years to polish the definitions of 

consistency to their present form. In the early goings, he left unstated critical assumptions 

about the form of estimators under discussion. It appears that Fisher himself was not aware 

of the importance of these assumptions for quite some time. When he did become cognizant of 

the consequences of these assumptions, he quickly relaxed them sa as to better differientate 

between "his" form of consistency (FC) and what he considered to be a much poorer definition 

, namely probability consistency. 

As a student of statistics (and we all are, to varying degrees, and at different stages), 

we may draw a heartening moral from this story. One shouldn't expect in general that new 

ideas, however simple they seem, will necessarily resolve themeselves easily or become polished 

quickly. Be patient, and keep on plugging. 
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