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ABSTRACT 

A discussion of Cornell's epidemiology group work on the mathematical 
modelling of (1) the myxoma-rabbit system in Australia and Europe, (2) the 
interaction of multiple strains of influenza in an age-structured population, and 
(3) the interaction of human immunodeficiency virus with specific human 
populations is presented. The role of supercomputers with vector and parallel 
processing capabilities in the analysis of these models is also discussed. It is 
argued that "the increased availability of a data base for infectious diseases, the 
new theoretical advances in dynamical systems theory, the power of 
supercomputers, and the ethical considerations regarding experimentation with 
human subjects have made the use of numerical simulations--when guided by 
careful mathematical analyses--an essential component in the study of disease 
dynamics." This paper will be presented on March 24, 1989 at the European 
Symposium on High Performance Computing, to be held in Montpellier, France 
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Introduction: 

1 

In 1760, physician and mathematician Daniel Bernoulli presented to the Royal 
Academy of Sciences in Paris a simple mathematical model to demonstrate the increased 
life expectancy of those individuals innoculated against smallpox. After this early 
beginning, the theory of mathematical models of infectious diseases made no significant 
advances until one hundred years ago with the work of the Russian physician P. D. En'ko 
in 1889 (see Dietz 1988). En'ko constructed the first chain binomial model (wrongly 
attributed to Frost), and used it while at the St. Petersburg Alexander Institute to fit several 
observed epidemics there. These so-called Reed-Frost models still play a very important 
role in theoretical and applied epidemiology. 

However, the key.concepts in the development of a mathematical theory derive from 
the English physician Sir Ronald Ross (1911 ), although partial credit should be given to 
Brownlee (1907) and McKendrick (1912). Ross introduced the assumption--historically 
and overgenerously attributed by Soper to Hamer (see the discussion in Volume 92 of 
the Journal of the Royal Statistical Society, 1929)-- that the rate of new infections is 
proportional both to the number of susceptibles and to the number of infectious 
individuals. Ross also developed the first mathematical model for the spread of a vector-· 
transmitted disease (malaria), and later concluded that to eradicate malaria it was 
sufficient to bring the vector population below a threshold level. This theoretical result, the 
first threshold theorem, implied that a succesful controlprogram did not require 1he 
elimination of the whole mosquito population. McKendrick, another english physician, 
extended this result after being drawn into the field of mathematical epidemiology under 
Ross's encouragement and influence (Dietz pers. comm.). In 1927, he co-authored his 
celebrated paper with Kermack establishing that 'standard' mathematical epidemiological 
models imply that a threshold number of susceptible individuals must be available if an 
epidemic is to take place. This key idea has provided the theoretical justification for the 
implementation of vaccination programs .. Soper's 1929 study of the causes of periodic 
disease outbreaks represents the next important breakthrough, opening up what ·is still a 
very active and important area of research (see Hethcote and Levin, 1989). 

Ross was keenly aware of the necessity of considering the effects of 
nonhomogeneous mixing, demography, seasonality, geographical distribution, and the 

1 Biometrics Unit, 341 Warren Hall, Cornell University, Ithaca, NY, 14853-7801 
2 Center for Applied Mathematics, Cornell University 
3 Department of Mathematics, Pomona College, Claremont, CA 91711 
4 Section of Ecology and Systematics, Cornell University, Ithaca, NY, 14853 
5 Center for Environmental Research, Cornell University 



.. .-.. 

2 

genetic variability of hosts and pathogens in order to increase the predictive and 
explanatory power of mathematical models in epidemiology as well as to increase their 
value in the developmeot of control measures. This level of detail, however, could only be 
introduced by the stratification of populations into subpopulations according to specified 
criteria, and by a detailed description of the interactions of individuals within and between 
subpopulations. The numerical study of hierarchically-constructed models of this type will 
be greatly enhanced by the systematic use of supercomputers because their 
sophisticated vector and parallel processing capabilities are well suited to numerical 
simulation of models of this type. 

What follows will briefly outline our investigations into two viral diseases­
myxomatosis and influenza--as well as our current work on the retroviral disease AIDS, 
and will illustrate some important theoretical questions in this area. Our work is both 
analytical and numerical, and has made use of the Cornell National Supercomputer 
Facility (CNSF). 

I. Myxomatosis 

By the middle of this century. the devasting effects of a burgeoning introduced rabbit 
population, on the natural vegetation of Australia were readely apparent. Clearly, the 
European rabbit, Oryctolagus cuniculus, was destroying the fragile ecological balance of 
the continent. In the early 1950s, the myxoma virus, the etiological agent of the often-fatal 
disease myxomatosis, was introduced in Australia, with mosquitos as mechanical vectors. 
The first epidemic outbreaks brought the rabbit population under control. Shortly 
thereafter, similar introductions in England and France led to huge reductions in rabbit 
populations in those countries as well. The introduction of the myxoma virus became a 
textbook success story of biological control. 

However, the early successes dissipated within a few years as evolutionary changes 
took place. The most virulent grade of the myxoma virus can kill more than 99% of 
infected and non-immune rabbits within two weeks. However, over the last 38 years, 
rabbits have evolved resistance to the virus, and the virus itself has generated less 
virulent forms. A key theoretical issue in this coevolutionary process is whether or not a 
balance will be reached between host resistance and the virulence of the infecting agent; 
a key. practical question for the myxoma-rabbit system is whether or not the virus can 
remain an effective control agent. 

Fenner and Ratcliffe (1965) have used the case mortality of rabbits injected with one 
specific strain of myxoma (KM 13) to measure the resistance of rabbits from different field· 
populations. In addition, Fenner has worked with other colleagues (see Fenner and 
Ratcliffe 1965) to develop a set of categories to track grades of virulence. The most . 
virulent strains--those causing 99% mortality of infected labor~tory rabbits--constitute 
grade I, while those causing 50% mortality underthe same conditions were placed in 
grade V. Since as early as 1952, most field isolates of the virus have been graded as 
having a virulence level of Ill (subdivided into IliA and 1118) and IV. In addition, the case 
mortality of rabbits to KM 13 has declined from about 90% after the first outbreak in 1950-
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51, to less than 30% only eight years later, after about seven outbreaks (Marshall and 
Douglas 1961 ). 
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Levin and Pimentel (1981) and Anderson and May (1982) developed simple 
mathematical models to show how natural selection can favor the intermediate or less 
virulent grades of the myxoma virus over the more extreme categories. Recently, Dwyer, 
Levin, and Butte! (1989) have built a data-based model that is both more mechanistic and 
more biologically sound. Their model includes differences in infectiousness as a function 
of time since infection, differences in efficiency of vector(s), and differences in grade­
induced disease mortality. In addition, the host's age structure has been incorporated 
through the use of juvenile (non-reproductive) and adult classifications, and through the 
recognition of a seasonally varying birth rate that exhibits a strong peak in the spring and 
a lesser peak in the fall (data from Gilbert et al. 1987). However, the model assumes an 
exponentially growing rabbit population in the absence of disease, and initially ignores 
the host's genetic variability. 

Single grade computer simulations for this model are initiated by specifying a 
reproductive data set, a natural mortality rate, and an age at first reproduction. Results of 
a set of simulations for strain 1118 can be found in Dwyer et at. (1989) for the reproductive 
data set determined at the Texas station in Queensland (see Marshall et al. 1957) and an 
age at first reproduction of 150 days. As the natural mortality J1 is increased to .004, the 
disease controls the rabbit population; for J1 = .005 the population enters a cycle with a 
period of two years, for J1 =.0065 and J1 =.007 the rabbit population, though still controlled 
by the disease, enters a cycle with a very long, or perhaps aperiodically fluctuating period 
(see Fig , taken from Dwyer et al. 1989). Figure 1 shows the output for a single strain (1118) 
model (the population dynamics for total rabbit population form 20 to 40 years). 

When J1 =.0085, the virus fades out of the population and the rabbit population goes 
extinct as Jl exceeds the birth rate. Extensive simulations with a variety of grades lead · 
Dwyer et al. (1989) to the conclusion that small changes in either virus virulence or 
natural mortality lead to very distinct population dynamics. In particular, for fixed 
reproductive parameters and fixed age of first reproduction, an increase in the natural 
mortality leads to an increased period of oscillation. The smallest value of J1 capable of 
controlling the rabbit population is a function of ·the virus grade, and it decreases as the 
age at first reproduction increases. Finally, in the absence of evolved host resistance, 
Dwyer et al.'s simulations show that when six grades (1, II, lilA, 1118, IV, V) are put into 
competition, grade IV is the most successful. The model of Dwyer et al. (1989) is given by 
a set of difference equations; the host population is divided into two classes (juveniles 
and adults); the juveniles are divided into 90-150 age classes (the length of an age class 
is one day); the adults (reproductive stage) are all clumped together; and reproduction is 
allowed to vary with season (the scarcity of susceptible rabbits between breeding 
seasons may have a significant effect upon virus availability and hence on virus survival, 
Fenner and Ratcliffe 1965). In addition, each class is divided into epidemiological 
subclasses: susceptibles, infected by grade (multiple-grade infections are not allowed), 
and recovered (total cross-immunity to other strains is assumed, see Marshall and Fenner 
1957). The average period of infectiousnes varies from 11 to 118 days depending on the 
grade, and infected rabbits do not participate in the reproduction process (kittens born to 
infected rabbits usually die, Parer 1977). Our simulations consisted of the iteration of the 
model equations with a time step of one day for a period of 40 years. It is clear from the 
model description that age-structured models are well suited to exploit the parallel and 
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vector capabilities of supercomputers, as age and age since infection provide natural 
settings for code vectorization. Furthermore, epidemiological subclassifications may allow 
for the efficient use of parallel processors, and the speed at which these simulations can 
be executed, allows for an extenisive sensitivity analysis to model parameters. For a 
detailed description, a throrough discussion of the model results, and its computer 
implementation and simulation, see Dwyer et al. (1989). 

2. Influenza 

There are several types of the influenza virus as well, and two major types, called A 
and B, are endemic in human populations. Our studies (Levin and Andreasen 1986, 
Castilla-Chavez et al. 1988, 1989, Andreasen 1988, 1989) have concentrated on the 
dynamics of influenza A The type-A virus is capable of rapid genetic change, and major 
shifts have produced three distinct subtypes: H1 N1, H2N2, and H3N2; minor genetic 
changes in surface antigens (or "drifts") continually generate a great variety of strains for 
these subtypes. Our research has concentrated on· understanding the reasons behind the 
observed periodic recurrences of different subtypes and the recently documented co­
circulation of viral strains (see Couch and Kasselll982, Thacker 1986). To study these 
questions, we have extended the classical epidemiological models to take into 
consideration the existence of multiple infective and resistance classes, age-specific 
contact rates, and seasonality in transmission (i.e. epidemics usually start in the fall, when 
there is an abrupt change in contact rates among school-age children). 

In order to describe our model briefly, we letx(a,t), Yi(a,t), Zi(a,t), Vi(a,t), and w(a,t), 
denote the age-specific densities of individuals in the susceptible, infected by strain or 
subtype i, recovered from strain or subtype i, infected by strain or subtype i (once 
recovered from strain or subtype j '¢ i), and recovered from both strains or subtypes, 
respectively. In addition, b(a) represents the age-specific contact rate, A.(t) denotes the 
instantaneous force of infection, f3i denotes the transmission scaling factor, J.L(a) is the 

age-specific mortality rate, and Yt denotes the (constant) recovery rate. The susceptibility 

coefficients cr1 and cr2 denote different degrees of cross-immunity associated with the 
interaction of two strains or two subtypes. Individuals are assumed to have gained 
permanent immunity once recovered from a specific strain and we further assume that 
individuals cannot be infected by two infections simultaneously (this is a reasonable 
simplification as the infectious period for influenza is of between 3-6 days). 

The "force" of infection is described by the use of the proportionate mixing 
assumption (see Barbour, 1978; Nold, 1980; Hethcote and Yorke, 1984; Dietz and 
Schenzle, 1985). Therefore, the contact rate between susceptible persons of age a and 
infected ones of age a' is assumed to be proportional to b(a)b(a'). If we now follow the 
Transfer Diagram 1 and assume a bilinear (Ross's) incidence rate, we arrive at the 
following initial boundary value problem: 



dx(a t) ax(a t) 
. aa' + at' = -(A.1(t) b(a) + ~(t) b(a) + JL(a)) x(a,t), 

ayi(a,t) ayi(a,t) 
aa + at = Ai(t) b(a) x(a,t) - (Yi + Jl(a)) Yi(a,t), i = 1, 2 

azi(a,t) azi(a,t) 
aa + at = 'YiYi (a,t) - ajAj(t) b(a) ~(a,t) - J.L(a) ~(a,t), i = 1, 2 

aw(a,t) aw(a,t) ( ( )) ( ) aa + dt = 'Yt + 'Y2 - J.1 a w a,t ' 

-
"-i (t) = J3i J b(a') [yi(a',t) + vi(a',t)] da', 

0 

x(O,t) = p, Yi(O,t) = 0, ~(O,t) = 0, vi(O,t) = 0, w(O,t) = 0, 

x(a,O) = Xo(a), Yi(a,O) = YOi(a), ~(a,O) = Zffi(a), vi(a,O) = vOi(a), w(O,t) = wo(a), 

a 

M(a) = J J.L(<X) d a. 
0 

Our analyses, both theoretical and on the CNSF show that weakly damped 
oscillations can result from the effects of age structure alone or due to shifts among co-

~ circulating strains that have been incorporated at the population level through the 
coefficient of cross-immunity. When both mechanisms are present, the two damped 
oscillations are capable of exciting each other to generate sustained periodic dynamics. 
The inclusion of seasonality in the transmission rates leads to aperiodic and possibly 
chaotic behavior. The study of the effects of seasonal transmission rates has been 
facilitated by the construction of portraits in which a particular variable is plotted against 
lagged representations of its own dynamics. Poincare sections through these 
representations (Fig. 2) reduce the dimensionality and allow for the construction of return 
maps that help us understand the effects of seasonality. 

An specific discretization of the above model was simulated in the following fashion: 
the population was divided into 80 one-year (360 day) age classes, births and deaths 
were balanced to hold population size constant. Since no disease induced mortality was 
incorporated, we started with a population that had already reached its stationary age 
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distribution and hence a fixed fraction of the population of each age class was assumed. 
The daily contact rate of an infective in age class I with an infective in age class k was 
assumed constant and proportionate to the product of the activity level of both age 
groups (proportionate mixing). We used a time step of three days, as dictated by the 
dynamics of influenza (i.e., the infectious period is of the order of 3-6 days); and since the 
transmission of influenza depends strongly on the age structure of the population, our 
population was aggregated into five activity levels: preschool (ages 1 to 5), elementary 
school (ages 6 to 12), secondary school age (ages 13 to 18), adults (ages 19 to 60) and 
senior citizens (ages 61 to 80). The 640 compartments were. updated after every iteration 
of the model, that is, at every time step for a period of 2000 years. Sensitivity analysis to . 
the coefficients of cross-immunity and to the transmission coefficients (including. 
seasonality) were performed (see Castilla-Chavez et al. 1988 and 1989). Furthermore, 
the extensive sensitivity analysis performed on this model lead Andreasen (1988, 1989a) 
to the analytical clarification of the role of cross-immunity in the period of the oscillation. 
Again, the age structure of the population and its epidemiological classification make 
these models well suited for supercomputers with vector and parallel processing 
capabilities. We hope that the description of our simple, although not optimal (for 
supercomputers) approaches to the numerical simulation of these models attract the 
interest of those experts on numerical algorithms also interested in biological 
applications. 

3. Acquired Immunodeficiency Syndrome (AIDS) 

The Human Immunodeficiency Virus (HIV) is the etiological agent for AIDS. In the 
United States, this retrovirus has killed over 50% of the 85,000 individuals that have 
developed "full-blown" AIDS. Study of the virus has been complicated for many reasons. · 
Most infected individuals are asymptomatic for several years, and infectiousness varies 
with time since infection. There are several known routes of transmission-;--ineltJding anal 
intercourse, blood transfusions, and the sharing of contaminated needles. It has now 
become evident -that an increased quantitative and qualitative understanding of the 
mixing structure of the host population is crucial both to achieve a reasonable scientific 
understanding of disease dynamics and to develop socially-sound intervention strategies 
(see Castilla-Chavez et al. 1987, Castilla-Chavez et al. 1989a, b, c). 

We (Castilla-Chavez, Cooke, Huang, and Levin) have developed a series of models 
that look at AIDS as an exclusively sexually-transmitted disease. In this note, we describe 
the simplest version of this model, which considers a homogeneously mixed population 
and assumes that all individuals are equally infectious. Further extensions and 
elaborations of these models can be found in Castilla-Chavez e t al. 1989a,b,c,d and 
Huang et al. 1989a,b. 

The population under consideration is divided into three classes: S (susceptible), I 
(HIV carriers), and A (full-blown AIDS). We assume that A-individuals are sexually 
inactive and, hence, do not contribute to the dynamics of AIDS. A denotes the 
"recruitment" rate into S; Jl, the natural mortality rate; d, the AIDS-induced mortality; and A., 
the transmission rate per infectious partner. C(T) denotes the mean number of sexual 
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partners an average individual has per unit time, given that the sexually active population 
is T (i.e. S + 1). In general, C(T) will increase linearly for small T and saturate for large T; 
we assume only that C(T) is a nondecreasing function ofT. The factor Iff denotes the 
probability that a randomly-selected individual will be infectious. The incidence rate (i.e. 
the number of new cases per unit time) is therefore given by A.C(T)Siff. We now let P(s) 
represent the conditional probability that an individual, if still alive, will be infectious s time 
units after infection. P(s) is non-negative and non-increasing; furthermore, P(O) =1, and 

-
we assume that J P(s) ds < oo • Note that -P' (x) denotes the rate of rf3moval of individuals 

0 

from group I into group A, x time units after infection. Finally, using the Transfer Diagram 2, 
we arrive at the following distributed delay model for the sexual spread of HIV/AIDS: 

dS(t) = A - A.C(T(t))S(t) l(t) - JLS(t) 
dt . T(t) ' 

t 

l(t) = 10(t) + J A.C(T(x))S(x) ~~~) e- Jl (t- x)P(t- x) dx , 
0 

- (Jl +d) t 
A(t) = A0(t) + A1 e + 

t 't 

J<JA.C(T(x))S(x)~~~) e -Jl('t-x)[-P1('t- x)e -(Jl+d)(t-'t)]dx}d't, 

0 0 

where the functions (with compact support) 10(t), A0(t), and the constant A1, take care of 
the initial conditions. 

This model generalizes and extends those of Anderson et al. (1986), Anderson and 
May (1987). Our analytical results for this model generalize and confirm the local results 
and numerical simulations done by Blythe and Anderson (1988) for specific forms of P(s) · 
and constant C(T(t)). This model has two attracting states, the infection-free state and the 

endemic state. For P(s) = e -as we (Castillo-Chavez et al. 1989b,c) have shown that: 

the disease-free state (A ,0) is a globally asymptotically stable equilibrium if and only if 
JL 

the reproductive number R = A.C(A) 1 ~ 1. If R > 1 , then there is a unique endemic 
Jl Jl+a 

state, which is a global attractor for all positive solutions. Hence we note that R plays a 
fundamental role in the dynamics of the disease, determining whether or not the disease 
can be maintained. 
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We can generalize for an arbitrary P(s) as follows: the infection-free state is a 

-
global attractor whenever the reproductive number R = A.C(A) J e- ~5P(s)ds ~ 1. If A> 1, 

Jl 0 

then the limiting system 

dS W(t) · 
dt = A -A. C(T(t)) S(t) T(t) - JL S(t) , 

t 

l(t) = J A.C(T(x}) ~(x) ~~/ e- 11 (t- x) P1 (t - x) dx , 

--
has a unique endemic state, which is locally asymptotically stable. 

Briefly, the. maintenance of the disease in the population at endemic levels can occur 
only if R>l, and hence one considers control strategies that can· reduce R below its critical 
value. (For an extension of these results using variable infectivity see Castille-Chavez .et 
al. 1989d). 

For AIDS, it is not sufficient to consider homogeneous populations, as the dynamics 
may be critically affected by the fact that different groups have different behavior patterns.· 
As we have shown that our single group models are robust, we have began using them to 
construct multiple group models. The simplest way to proceed is to divide our population 
into n groups and then assume that the mixing is homogeneous within each group while 
the mixing between groups is proportionate to their sexual activity (this is called 
proportionate mixing). We have shown that the simplest model of this type has multiple 
endemic equilibria (Castilla-Chavez et al. 1989e, Huang et al. 1989a,b). However, even in 
this simple situation, the ease of performing analytical computations dis·appears, and 
numerical studies become indispensable, if we wish to obtain· further understanding of the 
dynamics of this "simple" model. 

The situation becomes even more complex when we take into account the fact that 
proportionate mixing has been shown to be an iliadequate assumption for modelling 
AIDS, and that new social/sexual mixing structures need to be developed and 
incorporated into dynamic models of disease transmission. A preliminary theory of mixing 
has been initiated by Blythe and Castilla-Chavez (1989a, b). In addition, we (see Huang 
et al. 1989b) have developed a dynamic model for an arbitrary number of groups that can 
incorporate any mixing structure. We intend to perform sensitivity studies on this 
framework to these mixing structures to increase our understanding of their role in 
disease dynamics. We believe that this understanding is crucial in the development of any 
potential control measures. Supercomputers will play a key role in this process. 



Conclusions 

It is abundantly clear that the availability of supercomputers with vector and parallel 
processing capabilities will change fundamentally the way we study the population 
dynamics of infectious diseases. The increased availability of a data base for infectious 
diseases, the new theoretical advances in dynamical systems theory, the power of 
supercomputers, and the ethical considerations regarding experimentation with human 
subjects have made the use of numerical simulations-when guided by careful 
mathematical analyses--an essential component in the study of disease dynamics. 

9 

The level of uncertainty in the formulation of public policy in relation to the critical 
environmental and public health challenges posed by infectious diseases will be 
significantly reduced through the analysis of more realistic mathematical models. This 
analysis has been now greatly facilitated by the expanded capabilities of supercomper as 
well as by their increased availability to researchers in the biological sciences. 
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