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In federated distributed systems, such as the Internet and the public cloud, the

constituent systems can differ in their configuration and provisioning, resulting

in significant impacts on the performance, robustness, and security of appli-

cations. Yet these systems lack support for distinguishing such characteristics,

resulting in uninformed service selection and poor inter-operator coordination.

This thesis presents the design and implementation of a trustworthy knowl-

edge plane that can determine such characteristics about autonomous networks

on the Internet. A knowledge plane collects the state of network devices and par-

ticipants. Using this state, applications infer whether a network possesses some

characteristic of interest. The knowledge plane uses attestation to attribute state

descriptions to the principals that generated them, thereby making the results of

inference more trustworthy. Trustworthy knowledge planes enable applications

to establish stronger assumptions about their network operating environment,

resulting in improved robustness and reduced deployment barriers.

We have prototyped the knowledge plane and associated devices. Experience

with deploying analyses over production networks demonstrate that knowledge

planes impose low cost and can scale to support Internet-scale networks.
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CHAPTER 1

INTRODUCTION

This dissertation examines properties and claims. Properties are the known

facts associated with a system, such as a network or computational cloud, ranging

from ground truths about an individual device (e.g., router, switch, or end host),

to logically inferred conclusions about an interconnected collection of devices

(e.g., subnet, autonomous system, or data center). A claim is a special type of

property that embodies a promise that a system meets particular requirements,

such as performance, reliability, or integrity, of users and applications. Providing

a ubiquitous interface for querying a system’s properties and claims can simplify

applications and streamline coordination between different entities in a system.

However, due to complexity, cost, and confidentiality concerns, existing systems

provide few mechanisms for determining whether a certain claim holds or for

enforcing a claim.

This thesis examines new inter-domain coordination mechanisms for query-

ing properties and checking claims in federated distributed systems built from

many independently-operated participants. The overarching framework is that

of a knowledge plane [46], called NetQuery, which collects and disseminates prop-

erties to enable application reasoning about the system.

In NetQuery, applications use analysis to infer some high-level characteristics

of interest from ground properties of the system. An analysis is any program

that takes ground properties as inputs and outputs a statement affirming some

characteristic. For instance, to affirm that a network has reserved bandwidth

between two hosts, an analysis could continuously monitor the configuration of

intervening routers to verify that they provide a minimum bandwidth.
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Compared to existing techniques for extracting characteristics, analysis can

infer characteristics even when they are difficult or impossible to ascertain

through measurements from an application’s vantage point. For instance, failure

resilience properties of networks are a critical differentiator between service

providers. Yet it is difficult to verify the presence of backup paths through

application-level probing. By comparison, expected performance and fault-

tolerance under failure can be inferred from topology, link capacity, and failover

configuration.

Reasoning is only meaningful if there is a basis for trusting the information

contained in properties, since analysis driven by false information could lead

to incorrect operation. For instance, an unscrupulous operator that operates a

poorly-constructed network, yet exports properties matching those of a high-

reliability network might fool applications into choosing their network. The

operator thus collects an undeserved premium for service while degrading the

application.

Such concerns arise because federated systems are diverse: participants are

not always incentivized to be honest and hence do not always trust one another.

To enable application reasoning to manage such differences, NetQuery records

attributions that bind each property to the principal making that claim. By making

this attribution metadata available to reasoning, applications can decide whether

to use a property based on whether it comes from a trustworthy participant.

Attribution enables applications to make such decisions based on flexible,

application-specific policies. This thesis describes how to use secure hardware

coprocessors and software stacks for trustworthy computing to scalably and

inexpensively generate such credentials while maintaining high assurance. Hard-
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ware coprocessors, such as the trusted platform module (TPM) [56], are cheap

and becoming ubiquitous. TPMs are used to implement several important knowl-

edge plane abstractions: they can be used as (1) the root of trust for attribution

metadata, (2) to disseminate properties and make inferences in a manner that

conforms to the often restrictive information dissemination policies of each ad-

ministrative domain, and (3) to deploy system monitoring mechanisms that

verify the accuracy of exported properties. Together, these mechanisms can be

composed to show the validity of claims covering a whole system.

This thesis also introduces policy enforcement and resource scheduling mech-

anisms that provide guarantees about system behavior that are not supported

by current networks. These new mechanisms expand the set of characteristics

and claims that a network can support and can be implemented at low cost and

high performance with only a small trusted computing base, lowering the cost of

audit and strengthening the attack model to cover a wide range of adversaries.

1.1 Using analysis to support inter-domain coordination

Several applications of analysis to inter-domain coordination highlight the value

of knowledge planes. These applications use analysis to check mutual require-

ments in network-to-host, host-to-network, and network-to-network interactions

that are commonly found in federated networks such as the Internet.

• Network-to-host. Many networks employ access control policies to ex-

clude potentially disruptive entities. In doing so, such policies provide an

extra layer of defense against attack. For instance, a host running unpatched

software can serve as a foothold into a network for an attacker. Suppose
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each host exported its process list as a property. Then a network can check

the process list property of each host against a whitelist, admitting the host

only if every process corresponds to an approved binary.

• Host-to-network. Mobile users often connect only to wireless hotspots

that meet some expected level of integrity and performance. This policy

protects against man-in-the-middle attacks originating from within the

hotspot infrastructure and ensures good user experience. Suppose the

devices composing a hotspot exported properties describing their platform

(i.e., hardware and software) and topology. Then a mobile user can directly

establish that a network has integrity using a structural check, verifying

that every component used to implement the hotspot is a well-known

access point, bridge, or gateway device. With minor changes, structural

checks can establish the expected performance levels for all access points

within range, enabling users to pick the best access point to use. By contrast,

users today typically connect only to hotspots matching the identity of a

known operator, e.g., with key-based authentication [4], with the implicit

assumption that an authenticated network has the desired integrity or

performance.

• Network-to-network. Many network relationships, such as those between

providers and customers, are governed by contractual obligations. Such

contracts on the Internet include peering agreements, which typically im-

pose reliability requirements on the topology of each participant [18]; mu-

tual backup agreements, which impose restrictions on when backup paths

are allowed to be used; and service level agreements (SLAs), which promise

bounds on performance and reliability during nominal and degraded net-

work conditions. Compliance can be verified by checking whether the
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devices and interconnect are configured to deliver the promised perfor-

mance.

1.2 Thesis scope and methodology

This thesis describes the design and implementation of a knowledge plane for

federated distributed systems. This work targets the networking and cloud

computing domains and shows the benefits and implementation considerations

of adding a knowledge plane to the Internet and multi-tenant cloud datacenters.

We take advantage of several common architectural features of these fed-

erated systems in the design and implementation of the knowledge plane and

associated applications. The infrastructure interfaces for system management,

configuration, and data processing in such systems are particularly well-suited

for supporting analysis:

• The system management interfaces (e.g., SNMP and CIM [35, 3]) export

standardized, extensive descriptions of system state. The wealth of ground

properties that these interfaces already collect can contribute greatly to the

expressiveness of analysis since they provide detailed coverage of the vast

majority of system components.

• Analysis is more tractable to perform with the control and data process-

ing interfaces of these systems, since much of the control and data plane

behavior is expressed in domain-specific languages (e.g., switch ACLs, for-

warding tables, and configurations [61] for networks; bandwidth, memory,

CPU allocations and VM containers [8] for clouds).
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• Contractual stipulations concisely define the system requirements expected

by users and applications. Contracts can serve as the basis for identifying

and specifying characteristics of interest and in extracting information

sharing policies.

As a result of these architectural features, only a few control- and data-plane

modifications are needed to support remote verification of reported properties;

such changes can be incorporated into many existing network devices with little

extra cost. Thus, NetQuery can support analysis on a wide variety of networks

and cloud data center stacks.

This thesis derives its motivation and design from the shortcomings that

manifest in today’s federated systems due to their lack of knowledge plane

support. We illustrate these shortcomings using both theoretical and real-world

examples. We then describe the representation, policy, and analysis infrastructure

common to any such knowledge plane.

The work in this thesis carefully preserves existing operator practices and

trust relationships. This design constraint stems from a standard assumption in

the literature regarding the reluctance of operators to share information. Opera-

tors often treat technical details about a network or data center as proprietary

because such information can benefit competitors. Though revealing such infor-

mation may improve coordination and efficiency [105], the potential risks may

outweigh such gains. Thus, this poses an economically rational barrier to the

deployment of a knowledge plane.

To accommodate existing operator practices and trust relationships, NetQuery

limits the information disseminated between domains to sanitized summaries.
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Such summaries are expressive, automatically generated, and trustworthy by

construction. Sharing only summarized information provides defense in depth:

even if knowledge plane functionality fails, due to security breaches or analysis

bugs, the consequences are no worse than when an operator today makes an

incorrect manual decision based on ad hoc reasoning.

We apply the knowledge plane to solving the identified problems with appli-

cation analysis; these case studies rely largely on on just those ground properties

collected by existing system management infrastructure. These analyses are

sound since they rely on ground properties collected by system components that

use monitoring to provide high assurance about the accuracy of the properties.

1.3 Supporting reasoning in federated systems

Reasoning is challenging in federated systems because the producers and con-

sumers of knowledge plane information may not trust one another. Indeed,

applications that use the knowledge plane to facilitate inter-domain coordination

primarily rely on analyses that cross such trust boundaries. These applications

make decisions based on the inferred characteristics of systems operated by

other administrative domains, typically using information generated from those

foreign domains.

For this type of analysis to be meaningful and deployable, a knowledge plane

should satisfy two key constraints:

First, all properties and analysis results should be remotely verifiable, thus

protecting them from manipulation by an unscrupulous operator. By making
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claims remotely verifiable, contractual obligations and application requirements

can be checked without resorting to manual audit or cumbersome out-of-band

mechanisms. The resulting automatic, online procedure reduces economic trans-

action costs, is precisely defined, and improves assurance while simplifying

application design.

Second, the system should respect the information disclosure policies of

network operators. Since network operators carefully guard proprietary details

about configuration, topology, and traffic matrix, the system should provide

mechanisms for mutually untrusting operators to verify one another’s claims

without leaking confidential data.

1.3.1 Achieving remote verifiability

The central challenge in making properties remotely verifiable is that an un-

scrupulous operator is a powerful adversary with physical access to the devices

under its control. Using this access, such an operator might modify devices,

rewire the network, or forge messages so as to falsify some property.

Extending device software and hardware platforms with TPMs and

lightweight monitoring mechanisms can prevent such tampering, thereby in-

creasing assurance in the properties reported by devices. An analysis can protect

itself from inaccurate information by using only properties that are attributed to

trustworthy sources. Typically, attribution is based on TPM attestations: attesta-

tions are unforgeable certificates binding software-specified statements, such as

properties, to an originating hardware/software platform.
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A TPM-attested source can be deemed trustworthy by reasoning about the

properties of its platform. For instance, a trustworthy platform would protect its

control- and data-planes from operator tampering, say by excluding man-in-the-

middle attacks and proactively monitoring reported properties for agreement

with real-world performance and connectivity observations.

Using TPM attestations has two important benefits. First, it structures analy-

sis to only require trust in device manufacturers. The manufacturers have little

incentive to cheat since, unlike the operator, they have little vested interest in

the properties advertised from a given deployed network. Establishing trust in

manufacturers is also easier, since the effort to establish trust in manufacturer is

amortized across all operators using a given device platform. By comparison,

establishing trust in operators requires dedicated work to check each individual

operator. Second, it allows NetQuery to readily exploit the management infor-

mation that devices already export by linking each property to a trustworthy

platform.

1.3.2 Enforcing information disclosure policies

Providing access to a network’s properties to external applications can violate

the network’s information disclosure policy. Rather than provide direct access

to this restricted information, NetQuery mediates access with sanitizers, which

are analyses that convert restricted information into output properties that are

suitable for export. The choice of sanitizer function is straightforward for many

applications. For instance, when using NetQuery to check SLA claims, the

sanitizer is simply an analysis that examines the network to determine the
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expected performance, while the output is the computed performance level.

When using NetQuery to augment mutual backup agreements, the sanitizer is

an analysis that examines each network to determine whether a routing error

has occurred. In each case, the information revealed through the sanitizer is

equivalent to that revealed by the contract.

To prevent the confidential underlying properties from leaving an opera-

tor’s control, the analysis is executed on a machine controlled by the operator.

Attribution and attestation provide remote verifiability, just as in ground facts

from devices. To enable an external application to remotely verify the analysis

result, the analysis runs within a trusted execution environment that is isolated

from the operator and provides an attestation to the analysis binary. As with

an externally-run analysis, the sanitizer analysis relies only on properties that it

deems trustworthy, thus inductively extending assurances about the trustwor-

thiness of local properties into assurances about the trustworthiness of claims

spanning a whole network.

NetQuery can be extended to support analysis that uses information from

more than one administrative domain (multi-domain analysis) in several ways.

One approach is to generalize sanitizers: to compute multi-domain analyses that

can be decomposed into independent, per-domain sanitizers, an external client

can request sanitizer output from each domain, then use these to derive global

system properties.

Another approach that can be used to compute other classes of functions

is to combine trustworthy computing with secure multi-party computation

(MPC) [156]. Like sanitizers, MPC can perform analysis without revealing

confidential information to the participants or to a trusted third party. MPC
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protocols can potentially improve inter-domain coordination. For instance, using

MPC to optimize network configuration across multiple autonomous systems

(ASes) can improve network performance in the participating networks [105].

Yet concerns about leaking proprietary provider information poses a barrier to

deployment of such optimizations: since a MPC protocol alone is not enough

to guarantee all desired security properties, additional application-specific as-

sumptions (e.g., economic arguments) are needed to constrain the attacker [105].

NetQuery is complementary to MPC in that it substitutes these specialized, ad

hoc assumptions with standard ones regarding the security of sanitizers and the

trustworthiness of properties.

To achieve this substitution of assumptions, all instances of the optimization

protocol are executed within trusted execution environments; attestations con-

strain every participant to running a trusted implementation of the optimization

protocol. NetQuery also prevents malicious operators from manipulating the

inputs to the optimization: like sanitizers, the trusted implementation accepts

only trustworthy information as inputs.

1.4 NetQuery in multi-tenant cloud datacenters

Multi-tenant cloud data centers [15, 110] are emerging as important providers

of computational services. Cloud providers deliver network, processing cycles,

and storage to customers by hosting customer applications as tenants within

data centers. Such aggregation of workloads benefits from economies of scale,

economies of scope, and statistical multiplexing, allowing cloud providers to

profitably deliver scalable, highly available computation at low cost.
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Cloud abstractions such as virtualization enable application code and data

to readily migrate between different locations and providers. Compared to

traditional applications, whose choice of network providers is limited to those

that serve their fixed locations, cloud-hosted applications have more agility in

choosing cloud providers. Providing system services, such as a trustworthy

knowledge plane, for disseminating information about different providers can

help prevent decisions about provider suitability from limiting agility.

Because network services are a central component in delivering the cloud

service model, the ability to reason about network properties can provide benefits

to cloud-hosted applications. For cloud-hosted applications that deliver services

over the Internet, the quality of WAN access directly impacts end-to-end perfor-

mance; NetQuery presented thus far can support such reasoning. Yet in a data

center, the performance and availability of applications depends on the combina-

tion of network, processing, and storage components. For example, large tenant

applications often depend on scalable, multi-tier system architectures, which

heavily stress each of these components. To enable cloud-hosted applications to

reason about all of their infrastructure dependencies, a knowledge plane for the

cloud should disseminate properties about all such components.

NetQuery is well-suited to the architecture of typical virtualized cloud dat-

acenters. Such datacenters are logically split into pools of resources, such as

network, computational, and storage, along with a fabric controller [98, 114, 112]

that manages these resources. Computation and storage nodes are implemented

on commodity server hardware, for which TPM-bearing motherboards are a

standard option. They are also managed by the fabric through a narrow in-

terface (e.g., VM creation and deletion, virtual switch reconfiguration), with
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well-defined, standard schemas for describing their state (e.g., list of all active

VMs and active firewall rules). Thus, the computation and storage properties of

a datacenter can be exported as attestation-backed, attributed properties.

1.4.1 Datacenter analyses

Analysis over these datacenter schemas can be used to verify that a datacenter sat-

isfies many types of claims, such as those governing customer-to-datacenter and

datacenter-to-datacenter interactions. As in federated networks, many claims

that are challenging to measure from the tenant’s vantage point are straightfor-

ward to establish with analysis.

Datacenter tenants can use analysis to differentiate between multiple cloud

providers based on performance metrics. For instance, a tenant can analyze the

network topology and number of active VMs to determine maximum network

capacity, oversubscription level, and redundancy, the latter two of which require

information that cannot readily be found with probing. Using these results, a

tenant can pick the most appropriate provider for a given application.

Tenants can also use NetQuery to verify contractual obligations. For instance,

some industry security standards mandate segregation between nodes and net-

works that handle data with different classification levels [9], while regulations

can mandate that data be maintained within a specific legal jurisdiction. Some

cloud providers sell premium units of computation that are indistinguishable

in function and performance from regular computation yet have significantly

different isolation and provisioning properties. For instance, tenants may pay

extra for VMs that are physically segregated from other tenants, minimizing
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potential for information leakage [12]. Tenants may also pay to reserve physical

hardware for future use [14]. In both cases, analysis over hypervisor properties

can verify that these promises are kept.

Trading computational capacity on commodities exchanges can improve pric-

ing efficiency and streamline discovery and exploitation of idle resources [153].

NetQuery provides several important mechanisms for supporting such trades.

Commodities are typically categorized into equivalent quality bins to abstract

away unimportant details and to maximize fungibility and liquidity; the per-

formance metrics, such as those described earlier, can do this. NetQuery also

provides accountability to exchange-mediated transactions, reducing the likeli-

hood of fraud.

1.4.2 Extending the data center data plane with new guarantees

Performance predictability is an important concern when migrating applications

to cloud. While multiplexing a datacenter across many applications decreases

cost and increases provisioning flexibility, managing the resulting performance

interactions becomes challenging. TCP is the dominant mechanism used to

apportion network resources; TCP operates on a flow granularity, allocating

network capacity in proportion to the number of TCP flows opened by a given

application. However, a TCP-based allocation policy is prone to abuse: by

simply opening many TCP flows, selfish or malicious applications can hoard

network capacity or launch denial of service attacks. Thus, deriving claims about

performance is challenging given these inadequacies.
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This thesis proposes several new protocols for allocating resources in cloud

datacenters. These protocols run within trusted packet processors, which are

programmable packet processing elements that are isolated from applications

and operators and support attestation. The network infrastructure uses these

processing elements to augment the fixed function hardware forwarding path

with new functionality, such as the resource allocator algorithm. Trusted packet

processors provide assurances to the infrastructure and to external applications.

Strong isolation from malicious tenant code gives the network infrastructure

the assurance that new functionality is executing properly. With appropriate

attestations and configuration analysis, a data center can assure tenants and

external NetQuery applications that new functionality is in place. For instance,

by checking for the presence of a resource allocator with a particular set of

parameters, an application can verify performance claims.

This thesis examines two types of trusted packet processors that are deploy-

able in today’s datacenters with incremental software changes and little to no

change to switch hardware.

• End host virtualization stacks. Trusted execution environments at the

end host can readily inspect all traffic for a given node; when run on the

host CPU, they benefit from the flexibility of a general purpose computing

platform. For instance, filter modules attached to the virtual switch can

monitor and interpose on all traffic entering and leaving VMs and can be

implemented with few changes to the virtualization stack.

Using filter modules, we have implemented Seawall, a network bandwidth

allocator for cloud datacenters. Seawall allocates bandwidth using a dis-

tributed congestion control algorithm that avoids the problems of TCP by

15



using a link-oriented, rather than a classic flow-oriented, congestion con-

trol scheme. Seawall supports policies for specifying relative bandwidth

allocations between different VMs; these policies can be used to isolate

workloads, provide differentiated service models, and optimize network

scheduling in compute clusters.

• In-network sidecar processors. Whereas end host virtualization stacks

provide new control mechanisms and vantage points at the edge, trusted

execution environments located at switches provide new control mecha-

nisms and vantage points in the middle of the network, allowing direct

observation of events which might otherwise be invisible or need to be

inferred. This thesis proposes SideCar, a programming model that enables

programs to deploy custom processing code at any switch in the datacenter.

SideCar programs can specify special processing for a fraction (1-10%) of

traffic at any switch. The processing code is an arbitrary program that

executes within a sidecar control processor attached to each switch. Side-

Car programs are specified as set of predicate/action rules: the predicate

specifies a pattern match for packets traversing the switch and the action

rule specifies a monitoring or rewriting action to take on a matched packet.

SideCar’s constrained programming model can be retrofitted to commodity

switches with minimal cost increase, little disruption to regular forward-

ing, and no special modifications to the control software. By comparison,

systems that support a fully-programmable, general purpose network for-

warding path for all traffic [53, 81] require significantly costlier hardware

than the relatively fixed-function datapaths of switch ASICs [104]. Though

SideCar is limited to processing a fraction of the network capacity, it sup-

ports many applications, including providing more precise feedback for
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Seawall’s control loop and enforcing IP/Ethernet reachability isolation and

SAN bandwidth allocation. Such applications expand the set of security

and performance claims that a cloud datacenter can export to its tenants.

1.5 Summary

This thesis describes the design and implementation of a knowledge plane

suitable for disseminating and reasoning about federated systems, such as the

Internet and cloud computing infrastructure. Knowledge plane-enabled systems

can export remotely verifiable claims about their behavior to external applica-

tions, customers, and peers. Existing techniques for making claims about system

behavior rely heavily on manual, ad hoc checks; the knowledge plane replaces

these with automatic verification based on analysis of the system in question.

Such analysis can verify system properties that are difficult or infeasible to verify

with probing-based techniques.

Overall, this thesis shows how remotely verifiable claims are a powerful tool

for inter-domain coordination and describes how this abstraction can address

standing problems in enterprise networks, the Internet, and cloud services. We

have built NetQuery, a knowledge plane for the Internet, along with several

devices and applications. We have deployed NetQuery on a real departmental

network and evaluated it against real-world Internet traces and topologies. We

also present network mechanisms that provide novel guarantees over network

resource allocation. We have built Seawall, a bandwidth allocator that provides

cloud operators and applications with flexible control over apportioning of

network capacity, and evaluated Seawall on a representative data center testbed.
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1.6 Thesis outline

This thesis is structured as follows. Chapter 2 presents the motivation and design

of NetQuery and covers the data model and logic for generating and reasoning

about properties, the trustworthy computing techniques used to achieve remote

verifiability, and mechanisms for controlling information disclosure. Chapter 3

describes how NetQuery uses hardware and software stacks for trustworthy com-

puting to implement knowledge plane abstractions; the chapter also describes

the security model and its design implications. It also describes the applications

that NetQuery enables in federated networks such as the Internet. Chapter 4

presents an evaluation of the NetQuery prototype. Chapter 5 describes how to

extend NetQuery to virtualized cloud datacenters and outlines the benefits. It

then presents the system architecture and protocols underlying Seawall and Side-

Car. Chapter 6 presents the Seawall algorithms in detail along with an evaluation

of the prototype. Chapter 7 places NetQuery in the context of related work and

Chapter 8 concludes.
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CHAPTER 2

NETQUERY: A KNOWLEDGE PLANE FOR FEDERATED SYSTEMS

Knowledge planes enable new applications that depend on reasoning about

properties of the network. By providing mechanisms for determining the charac-

teristics of a network, such as the expected level of performance, redundancy, or

confidentiality, NetQuery enables network participants (e.g., peers, providers,

or customers) to make better informed decisions when establishing sessions,

entering into contracts with one another, or verifying compliance.

2.1 Motivation and overview

Sound network reasoning improves network transparency and accountability,

facilitating many types of commercial transactions. On the Internet, the price

that an operator can charge depends on the paths and performance that they

advertise; since routing traffic on a different path may result in lower cost,

operators are incentivized to deviate from their advertised behavior to maximize

profit [68]. Existing reputation-based mechanisms have not proven sufficient

to constrain selfish operators. Indeed, consumer advocates often accuse last

mile ISPs of misrepresenting the quality and capacity of their networks [30].

Community forums often advise users to verify independently whether their

datacenter provider is truly multi-homed [48]. Differences between networks

are advertised through manual, ad hoc channels such as interstitial web pages.

Absent automatic mechanisms for discovering and disseminating claims about

network capacity and redundancy, agreements are difficult and costly to enact

and competitors can engage in unscrupulous practices. With NetQuery, ISPs
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Figure 2.1: NetQuery architecture. A physical network and its knowledge
plane representation, stored on knowledge plane servers operated by
each AS.

with good networks can advertise the quality of their networks in an automatic,

remotely verifiable fashion.

Transparency and accountability for claims improve market efficiency by

reducing the economic transaction costs associated with establishing agreements.

In particular, NetQuery allows applications to discover network properties that

are otherwise difficult or impossible to determine by external data plane probing.

NetQuery enables applications to reason about properties that span multiple

ASes. Since NetQuery’s logic-based credential system supports many mecha-

nisms for establishing trust besides a priori relationships, such reasoning can

readily incorporate information from any principal. For instance, TPM-based cre-

dentials leverage trusted hardware to incorporate device-generated information,

and audit-based credentials incorporate network information added by trusted

third parties.
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2.1.1 System overview

Network information is disseminated in NetQuery using a knowledge plane that

maintains a representation of the network topology and configuration (Fig-

ure 2.1). The knowledge plane makes this information available to applications

for determining whether the network exhibits desired properties. The process of

inferring some high-level characteristic of the network (such as the loss rate on a

route between hosts) from low-level properties (such as routing tables) is called

analysis. Status information about network entities is typically self-reported by

these entities (e.g., routers export their forwarding tables), though a transition

mode is supported for proxies to transfer management information from legacy

entities to NetQuery.

Logically, a single, global knowledge plane incorporates all properties across

multiple administrative domains on the Internet. Physically, this knowledge

plane is federated — each administrative domain runs a cluster of servers that

locally stores all information describing its network. Federation facilitates incre-

mental deployment and protects confidentiality, since an operator can indepen-

dently run NetQuery servers without making information accessible to operators

of other administrative domains.

Applications can query the knowledge plane for information about any par-

ticipating network. Networks will typically restrict direct access from external

parties, but instead allow sanitizers to execute operator-authorized sets of analy-

ses on behalf of external applications. These analyses export only the network

characteristics that meet an operator’s information disclosure policies. The ex-

ported sanitizer results are accompanied by credentials certifying that the correct

analysis code was executed.
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Each NetQuery application independently defines the set of principals it

trusts. The knowledge plane can include conflicting information from different

sources; applications can filter such information based on the principals that they

trust. This trust can be predicated on any credential associated with a principal.

Often, such credentials are issued by a TPM, which binds statements issued by a

principal to a hardware/software platform. TPMs enable NetQuery to collect

a broad pool of attributed properties at low cost. The per-unit hardware cost

of TPMs is low, which permits wide deployment. With modest computational

cost, TPMs can automatically publish information to the knowledge plane at

short time intervals, with each statement bound in an unforgeable certificate; by

comparison, manual audit is costly and infrequent.

Attestation also enables trust establishment costs to be amortized. In par-

ticular, rather than establish trust with every counterparty, analyses need only

establish trust with platforms, with this cost amortized across all users of those

platforms. Engineering constraints help to limit the total number of software and

hardware platforms in use: reusing hardware and software components reduces

development costs for vendors, and deploying a small set of standard platforms

reduces testing, support, and maintenance costs for vendors and users.

Often, there are multiple ways to satisfy a desired network characteristic. For

instance, the fault resilience of a network may be derived through an analysis of

its topology or through independent vetting by an auditor. NetQuery employs a

logic for sound, flexible derivation of characteristics. Logical reasoning yields

a proof that is self-documenting in that it describes all the assumptions and

inference steps used to conclude that a characteristic holds. Such proofs are

useful in logging and auditing.
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Overall, NetQuery incorporates several key abstractions and implementa-

tion techniques that facilitate its deployment on existing federated networks.

Sanitizers simultaneously protect confidential operator information yet remain

expressive enough to discharge many existing contractual claims and stipulations.

The low-level system information that is already collected and exchanged in ex-

isting networks for monitoring and management provides a rich set of properties

with which to drive analysis. Enhancing such mechanisms with new trustwor-

thy computing abstractions, backed by TPMs, enables the knowledge plane to

accumulate a comprehensive view of the network at low cost and high assurance.

2.2 Data model

A key challenge in building a knowledge plane for federated systems is to handle

multiple trust domains. A knowledge plane that spans multiple organizations

must support access control policies to protect confidential properties. Because

the knowledge plane might contain inaccurate information, applications should

be able to express policies that specify what information is safe to use for analy-

sis. Since the system includes a diverse range of devices and implementations,

standardization of nomenclature is necessary for interoperability.

The knowledge plane in our NetQuery prototype is based on a tuplespace

representation. Every tuple is named by a globally unique tuple ID (TID) and

stores properties as typed attribute/value pairs; an attribute/value pair and

its associated metadata is called a factoid. NetQuery supports string, integer,

references to tuples, dictionary, and vector values for factoids.1

1A production version of NetQuery might well leverage the ongoing development of
semantic web technologies such as RDF and OWL [116] for building the knowledge plane.
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NetQuery principals are the basis for policy decisions. Every producer and

consumer of information from NetQuery is represented by a principal, which

has a unique public/private key pair. The key pair is generated independently.

NetQuery records two pieces of policy-associated metadata for every factoid it

stores: attribution, which captures the principal responsible for generating the

factoid; and export policy, which defines what principals can read the factoid.

In a federated environment, it is impractical to expect global consistency

or uniform interpretation of properties contributed by diverse sources. But by

retrieving attributions, applications have some basis to reason about whether a

property is suitable for use based on whether the provider of that property is

trustworthy.

To facilitate interoperability between devices and analyses, NetQuery infor-

mation conforms to voluntary schemas. Each schema defines the set of properties

that a given kind of network element must provide. NetQuery schemas prescribe

a data format but do not prescribe associated code or operations. NetQuery

provides standard schemas for representing devices (e.g., hosts, routers, and

switches) and network abstractions (e.g., TCP connections, TCP/UDP endpoints,

and IPsec security associations). NetQuery schemas are similar to those of net-

work management systems (e.g., SNMP) that are supported by many devices.

By adding to such devices a shim for outputting properties or by interfacing

through an SNMP proxy, we enable them to participate in NetQuery.

Research into a semantic web has produced considerable infrastructure and theory for the
federated knowledge stores, reasoning, and query processing that underpin any knowledge
plane. NetQuery can also help ongoing efforts to extend the semantic web to cover network
management information.
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Initializing factoids Tuples and factoids for a network device can be initialized

and maintained by different network participants, including the device itself, its

administrator, or a third party. Since routers and switches have limited processing

capacity, they offload their tuples to tuplespace servers, thereby insulating against

application-induced query load.

On start up, a device discovers its local tuplespace server from DHCP

and transfers local configuration and initial state to the tuplespace by issuing

create() operations to the discovered tuplespace server to instantiate tuples and

update() operations to write factoids. A newly activated router, for example,

creates tuples for all of its interfaces and exports its initial forwarding table

state. Hosts, routers, and switches also export local topology information to

the tuplespace, using a neighbor-discovery protocol such as LLDP to generate

ground facts. The device pushes any changes to its configuration and state to the

tuplespace server.

Information sources can also generate tuples and factoids on demand by

registering a callback function with a tuplespace server. This mode of operation

is well-suited for exporting large sets of properties, such as forwarding tables,

that are costly to precompute and export en masse to the knowledge plane.

Tuplespace servers and lookup protocol Each AS or third-party information

service operates tuplespace servers. The TID for a tuple embeds the IP of the

tuplespace server storing that tuple, along with an opaque identifier. Device

references are stored as TIDs, and therefore analysis can efficiently access the

relevant tuplespace servers. To prevent changes to facts and metadata while in

flight, tuplespace servers communicate over secure channels.
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To prevent DoS attacks by applications that issue costly tuplespace server

operations, all remote operations always terminate in bounded time. The tu-

plespace server only supports simple wildcard queries for attributes, which in

the worst case loops over all attributes for a given tuple. NetQuery provides no

mechanisms for invoking either recursive queries or stored procedures. Clients,

however, are free to perform processing locally, including data aggregation and

other expensive analyses.

Tuplespace servers make extensive use of soft-state to improve performance.

Since the tuplespace contents derive from device state, a tuplespace server can

always ask devices to re-export their state. This obviates the need for tuplespace

servers to support a costly transactional recovery mechanism. The tuplespace

uses lease-based storage management for factoids. Thus, once a device fails, the

stale factoids will be garbage collected automatically.

2.2.1 Dynamics: changes and triggers

Changes in the described federated system can invalidate properties in the

knowledge plane. Time of check/time of use bugs can occur because system

changes take place concurrently with analysis. Similar behavior can arise from

probe-based network measurements such as traceroute.

NetQuery provides a trigger interface to facilitate detection of changes to

underlying properties during analysis. In addition to this, the interface allows

applications that depend on long-running characteristics to be notified when

some conclusion no longer holds. Once a trigger is installed, a callback packet is

sent to an application-specified IP-port pair (trigger port) whenever a specified
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factoid has been modified. Triggers are stored by tuplespace servers as soft-state,

so applications must periodically send keep-alives to refresh their triggers.

Our NetQuery applications check for relatively stable characteristics; here,

triggers suffice to filter spurious analysis results that arise from observing tran-

sient states. Tools built using probing interfaces typically would be fooled by

such transients. To implement this filtering, applications install triggers for fac-

toids being used. For instance, consider an application that enumerates all hosts

in some given L2 Ethernet domain by issuing queries that traverse the network

graph. Were the topology to change during these queries, the application might

miss newly connected hosts. To guard against this, the application issues a

retrieve_and_ install_ trigger() operation to atomically retrieve link information

from a switch and thereafter to monitor it for changes. This atomic operation

eliminates the window of vulnerability between the time a factoid is read to

when monitoring for changes to that factoid starts.

Network delays in message delivery can cause updates from different de-

vices to be received at a tuplespace server interleaved in unpredictable ways;

eliminating such inconsistent views would simplify analysis. For systems that

have a built-in notion of state consistency, such as distributed network control

planes [97] and cloud fabric controllers [114, 98], knowledge plane consistency

can derive from this existing state consistency, for instance, by adding a consis-

tent cut guarantee. Other systems, such as the Internet, are built from protocols

and devices that support neither consistency nor causality. We could augment

devices with logical clocks, but that would be challenging to deploy incremen-

tally, since means would be needed to approximate causal dependencies when

exchanging messages with legacy devices. Fortunately, operator reasoning in the
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network domain is typically focused on steady-state network characteristics, and

causal consistency is less critical there.

2.3 Analysis

NetQuery provides mechanisms that parse factoids acquired from tuplespace

servers, determine whether a factoid is trustworthy, and check if a desired

network characteristic is supported by trusted factoids.

Nexus Authorization Logic (NAL) provides the logical foundation for making

inferences from factoids. A full discussion of NAL is beyond the scope of this

dissertation (see [133]). Below, we simply outline the main features of NAL,

describe how it is used in NetQuery, and discuss the implications of our choice.

NAL admits reasoning about factoids and attribution information, enabling

applications to reconcile conflicting statements uttered by different principals.

The says and speaksfor operators, along with a set of two dozen inference

rules, permit inferences based on an application’s trust assumptions.

NAL associates a worldview with each principal. This worldview contains

the beliefs a principal holds about the network. Reasoning in NAL is local to a

worldview: by default, inference takes into account only local beliefs, rather than

statements believed by other principals. Local reasoning prevents reasoning by

one principal from being corrupted by contradictory facts attributed to another

principal. Using speaksfor, a principal can import into its worldview beliefs from

other principals that it trusts. An optional scoping parameter restricts speaksfor

to import only statements concerning a specific matter of interest.2

2Since NAL does not encode a notion of degrees of trust, speaksfor is monolithic in that
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Applications use NAL to derive theorems about the underlying federated

system from information provided by the NetQuery knowledge plane. Specifi-

cally, factoids are converted to logical statements, which are then used to prove

some given goal statement. A goal statement is a NAL formula that characterizes

what a client application wants to establish. An application initially populates

its worldview with an import policy, specifying what factoids the client deems to

be trustworthy. Import policies often include speaksfor statements that specify

which hardware and software platforms are trusted sources for factoids.

Ground statements Factoids from tuplespace servers translate into NAL

ground statements. Tuplespace API operations, such as fetching factoids, translate

their return values to NAL formulas. For instance, a retrieve() operation issued

on router R0’s tuple returns factoids as NAL axioms of the form:

TuplespaceServer says

R0 says (R0.Type = “Router” ∧

R0.fwd_table = {ipA => nexthop, . . .})

where “ipA => nexthop” denotes a forwarding table entry specifying the next hop

for a given destination. The nesting of says formulas captures the full chain of

custody during the factoid’s traversal through the knowledge plane. Here, the

factoid was exported from R0 to a particular tuplespace server, TuplespaceServer.

The NAL proof for a goal statement is a derivation tree with the goal statement

as the root, NAL inference rule applications as internal nodes, and ground

statements and axioms as leaves. Analyses typically provide a proof generator

it incorporates all in-scope statements. NetQuery can switch to a logic that supports such
reasoning [40, 107] should the need arise.
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that embodies a programmer’s understanding of how to check whether a given

characteristic holds into a proof generation strategy.

Proofs can be consumed entirely within a single application or exported to

other parties as a self-documenting certificate. The certificate can be logged to

create an audit trail for accounting, documentation, and debugging. Such audit

trails are also useful in application domains governed by external compliance

requirements, such as Sarbanes-Oxley and HIPAA.

2.3.1 Generating proofs

Since general-purpose theorem provers are typically infeasible, analyses nor-

mally embed a custom proof generator for a specific set of claims. Such proof

generators are often straightforward to adapt from existing code by deriving

the proof generation strategy from the structure of existing analyses and control

plane code.

Proof generators can be built using several design patterns. One such de-

sign pattern is to certify the execution of a program on specific inputs, using

attestation in a manner similar to [135]. This program is trusted to check the

claim in question and can be written in an arbitrary programming language. For

instance, an industry-standard script for finding misconfiguration errors [61]

can be adapted using this design pattern to prove that a system is properly

configured.

Whereas the preceding design pattern wraps an external checker within a

few NAL statements, another design pattern is to fully describe the verification
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process with NAL statements. Where the characteristics being inferred closely

match the correctness assertions of existing system functionality, such assertions

could be translated to NAL derivation steps. For instance, consider the operation

of starting VM on a given node. The pre-condition of this operation is to verify

that the target node has sufficient CPU and memory; the post-condition is that

the VM is loaded and running on the node. Both of these checks can be converted

to a NAL proof showing that the VM was provisioned with sufficient resources.

2.3.2 Example: Checking network paths

This example shows how an application might use NAL to verify that a network

complies with a performance requirement. Suppose site A wants to establish that

the path to site B provides low loss rate (Figure 2.2).

The goal statement for a path P to satisfy a bound r on the loss rate is

∃P ∈ Routers2+ :

(P[1] = A) ∧ (P[|P|] = B) ∧

(∀i 1 ≤ i < |P| : P[i]→ fwd_table〈B〉 = P[i + 1]) ∧

(∃r′ ∈ Reals : (r′ < r) ∧ TrustedLossRate(P, r′))

(Goal)

We write “Routersk+” for the set of all finite router-tuple sequences of length k

or greater, “TID.name1→ name2 = v” as shorthand for dereferencing a reference

value factoid to access a second factoid, “|P|” for the length of a sequence, “P[k]”

for the kth element in a sequence, and “T 〈key〉” for a lookup from a factoid of

dictionary type. The first three lines constrain P to be a valid path given the

source, destination, and forwarding table state. The last line asserts an upper

bound on the expected one-way loss rate on P given information from trusted

principals, and that predicate is defined as
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TrustedLossRate(P, r) ,

(∃P′, P′′ ∈ Routers1+ ∃p ∈ Routers ∃r′, r′′ ∈ Reals :

(P = Concat(P′, p, P′′)) ∧ (r = r′ + r′′) ∧

TrustedLossRate(Concat(P′, p), r′) ∧

TrustedLossRate(Concat(p, P′′), r′′)) ∨

(Cjoin)

(∃R,Rnext ∈ Routers :

(P = Concat(R,Rnext)) ∧

(R says R.curr_loss_rate_to〈Rnext〉 = r) ∧

IsTrustedRouter(R)) ∨

(C0)

(∃I ∈ ISPs :

(∀i 1 ≤ i ≤ |P| : P[i].ISP = I) ∧

(I says I.sla_loss_rate〈P[1], P[|P|]〉 = r) ∧

IsTrustedISP(I)) ∨

(C1)

(∃A ∈ Auditors :

(A says A.measured_loss_rate〈P[1], P[|P|]〉 = r) ∧

IsTrustedAuditor(A))

(C2)

where “Concat()” denotes sequence concatenation. IsTrustedRouter(), IsTrust-

edISP(), and IsTrustedAuditor() are predicates derived from import policies, where

the policy for IsTrustedRouter() checks the attestation and platform while the

latter two check whether I and A are on a whitelist of trusted principals.

This analysis incorporates facts from multiple trustworthy sources, each

having different ways to determine the loss rate of a path: (C0) expresses trust in

certain routers to report their instantaneous link statistics, (C1) expresses trust

in certain ISPs to claim SLAs, and (C2) expresses trust in certain auditors and

measurement tools [106] to report measured performance. Each rule infers loss

rate using different data schemas.
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Figure 2.2: Topology and tuplespace contents for network analyzer exam-
ple. Attribution metadata (“says” information) has been omitted for
brevity.

2.3.3 Using TPM attestations

Every TPM is uniquely identified by a set of keys that is certified by a PKI

being operated by the device manufacturer. Attestations are remotely verifiable,

unforgeable, and tamper-proof certificates that use these device keys to bind a

software-generated bit string (typically, a message) to the particular hardware

and software platform that generated it [66]. By linking attestations to attribution

metadata, NetQuery allows applications to unequivocally link each factoid back

to some particular device.

Attestation is not a panacea against all misbehavior. Attestation merely estab-

lishes accountability; a NetQuery client using a factoid has to decide whether to

trust the platform that is attesting to that factoid. For instance, suppose a rout-

ing platform is designed to honestly report its observations of the control- and

data-plane as factoids. It is tempting to assume that attestation of this platform

implies that the factoids agree with the real-world. But malicious operators can

manipulate these observations and trick poorly-constructed devices into issuing

factoids that disagree. Section 3.2 discusses such attacks.
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TPM optimizations

NetQuery applications make their own determination about how factoids are

interpreted based on attribution information. In the baseline system, every

factoid and credential is signed, allowing clients to independently check that

factoids are attributed to the right principals and that credentials are issued by

the right parties. However, this checking is costly if clients use factoids and

credentials from many different principals. Hence, NetQuery incorporates two

optimizations.

Avoid TPM signatures Whenever possible, NetQuery avoids obtaining signa-

tures from the TPM, which is much slower than the CPU. Instead, NetQuery

constructs software principal keys using a TPM-rooted certificate chain that the

CPU uses for signing every factoid update. Thus, TPM attestations are used only

once per boot, to bind the software principal to the platform.

Attest to tuplespace servers Signatures provide end-to-end integrity and au-

thentication for factoids. This helps when tuplespace servers might manipulate

factoids, but it is unnecessary for tuplespace servers that are trusted to relay

factoids correctly. By distinguishing such servers with attestation, NetQuery

can replace per-factoid signatures with secure channels built from symmetric

keys. Clients using this optimization specify an import policy that accepts tuples

without signature-verification from attested tuplespace servers. These policies

leverage the says information within ground statements, which encodes the

tuplespace server’s position as a repository of utterances from other principals.
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2.3.4 Confidentiality and sanitizers

Agreements between participants in a federated system often stipulate the pres-

ence of certain network features. For instance, network peering agreements

mandate up-time and fault tolerance guarantees [18], SLAs mandate desired

latency and loss rate characteristics, and service agreements for cloud datacen-

ters reference the network bisection bandwidth and oversubscription levels.

Verifying the accuracy of such advertised claims is at best difficult and often

impossible. Trust establishment is typically performed manually, pairwise for

each agreement, using ad hoc means.

In contrast, knowledge plane analysis can verify such claims in a principled

fashion. However, many ASes and cloud operators have strict disclosure policies

about internal network information. A naïve use of NetQuery, where external

parties run analysis to verify properties of interest, can reveal detailed internal

information. To be practical, a knowledge plane needs some way to provide

assurances to external parties without revealing confidential data.

NetQuery provides sanitizers for this purpose. A sanitizer is a service that

converts factoids covering proprietary information into unforgeable summary

factoids suitable for release to other parties (Figure 2.3). Sanitizers execute

analysis code on behalf of the remote party. To provide assurance that a remote

analysis is performed correctly, each sanitizer executes in a trusted execution

environment and provides an attestation certificate that ties the output factoid

to the sanitizer binary and the execution time. This approach does require both

parties to agree on the sanitizer at the time of contract establishment, but once

that agreement is in place, a sanitizer that checks the contractual stipulations

reveals no more information than what is revealed in the contract itself.
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Figure 2.3: Preserving confidentiality. Sanitizers support external clients with-
out leaking information, since the exported certificates serve as trusted
proxies for the full proof.

NetQuery provides confidentiality guarantees through its careful use of the

trusted execution platform. A sanitizer executes on an AS’s own computers, so

factoids that it processes never leave the AS’s custody. The trusted execution

environment is used solely to provide an execution-integrity guarantee to a

remote party. The data confidentiality guarantees then come from the sanitization

embedded in the analysis itself—not from the underlying operating system.

Using sanitizers means that NetQuery does not require an execution environment

that can provide confidentiality guarantees against attackers with physical access

to the execution hardware—such systems are difficult to build, even with TPMs.

Further, since ASes have complete control over when, where and how often

sanitizers execute and how much data they reveal to external parties, an AS can

prevent outside applications from crafting query streams that consume excessive

system resources or that induce a sanitizer to leak information.

While the sanitizer abstraction introduced earlier is very flexible, it requires

a priori agreements on mutually trusted, monolithic sanitizers. This approach

can be brittle since it commits the local and remote parties to specific sanitizer

implementations; it also inflates TCB size, since monolithic analyzers can be

large. NetQuery further simplifies the process of securely performing analysis
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across trust boundaries by partitioning the sanitizer into a proof generator and

a proof checker that both run in the provider (Figure 2.3). The proof generator

constructs NAL derivations that are then verified by the proof checker. This

partitioning allows a remote party to only have to trust a proof checker—the

proof generators need not be trusted, and the local party (i.e., operator using the

sanitizer to support a claim) can use whatever sound means to prove that their

network possesses a critical property. TCB size is now reduced significantly, since

one well-audited proof checker suffices for all NAL analyses, while a custom

proof generator is chosen by operators as needed for specific tasks.

Since proof generators appear between proof checkers and factoid sources,

a proof generator can potentially inject stale or forged ground statements. To

protect against such attacks, ground statements include a nonce, uniquely gener-

ated by the client for each proof, and MAC, which are returned with factoids on

retrieve(). Proof checkers exchange private MAC keys with the tuplespace server

and pass nonces for every new proof to proof generators. The checker accepts

ground statements, and thus accepts the proof, only if all embedded nonces and

MACs are current.

2.3.5 Confidentiality-preserving applications

The following examples show how NetQuery supports different applications

while preserving the confidentiality of factoids. These applications, along with

the ones described in Section 3.5.1, can all be implemented with sanitizers.
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Verifying performance and reliability guarantees Configuration generators

that use global network optimization to achieve performance and reliability

goals are increasingly prevalent [134, 19]. These tools automatically configure a

network based on workload, topology, and performance constraints. Operators

that rely on configuration generators can use NetQuery to advertise the achieved

goals.

Configuration generators are typically complex and proprietary to an op-

erator; so they are not disclosable to network clients as a means of certifying

performance goals. But a sanitizer could run an industry standard configuration

checker (such as [44]) to verify that the output configuration from a configu-

ration generator meets the performance claim. Moreover, a network operator

can upgrade to a new configuration generator without updating the contract or

disclosing the new code.

As an example of this construction, suppose an operator offering MPLS-based

VPNs advertises guaranteed bandwidth in the presence of a single node or link

failure [88]. The operator could run a global optimizer to find an assignment of

MPLS primary and backup paths that satisfies all reservations and link capac-

ity constraints. A configuration checker can then validate this assignment by

walking through the MPLS-related factoids: for each failure scenario, the checker

would verify that backup paths do not overload any links.

Dynamic verification of contractual obligations Some contractual obligations

are easier to verify dynamically than statically. For instance, precomputed backup

paths in MPLS VPNs provide bandwidth guarantees only for the first failure. To

establish resilience against additional failures, the operator needs to compute a
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new set of primary and backup paths after each failure. A configuration checker

can detect this by using triggers and updating its output factoids accordingly.

But updating the output factoid every time the provider-topology changes

leaks information about outage and maintenance intervals. To prevent this dis-

closure, the operator can interpose another sanitizer certifying that the network

successfully recovers from failures within a reasonable time. As long as this

assertion is met, the sanitizer leaks no information beyond that found in the

customer contract.
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CHAPTER 3

USING HARDWARE AND SOFTWARE FOR TRUSTWORTHY

COMPUTING

Operators are not only well-positioned to launch attacks on NetQuery but

they have incentives to do so. In this chapter, we outline the NetQuery security

model and discuss the applicable results from trustworthy computing research in

building routers that can provide assurances. We also discuss the vulnerabilities

that can exist in analyses that improperly interpret knowledge plane information,

along with defenses to protect against such concerns.

3.1 Security model assumptions

NetQuery depends on the following security assumptions:

• Hardware and software security. Attackers cannot tamper with the exe-

cution semantics of a device. The only way to affect running code is to

use the explicit interfaces provided by the device (e.g., I/O ports, RPCs,

configuration console) rather than side channels (e.g., installing hardware

probes on its memory bus). Moreover, attackers cannot extract secrets

stored in secure coprocessors.

• Cryptographic algorithm security. This assumption, shared by most work

on security, implies that digital signatures used for attestation cannot be

forged. It also implies the confidentiality and integrity of messages con-

veyed by secure channels.

• PKI security. An attacker cannot cause the PKI that issues TPM certificates

to issue arbitrary credentials nor can it steal the PKI’s root keys.
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Together, these assumptions imply that TPM attestations are unforgeable,

since execution, encryption, and credentials cannot be compromised or spoofed.

Consequently, messages used to implement the knowledge plane can be bound

to the hardware/software platform responsible for generating them.

TPM-equipped commodity PC hardware approximates our hardware security

assumptions. Network devices are substantially similar to PC hardware — the

primary difference is an additional high-performance switching backplane not

found on most PCs, but this backplane is logically equivalent to sophisticated

I/O devices, which can be attested to [82].

Technology trends suggest that future trustworthy computing platforms

will be even better approximations of our hardware resilience assumptions.

This suggests that device manufacturers have incentives to further improve

commodity platforms. It is already possible to build highly tamper-resistant

platforms, ranging from high-performance encryption of buses to protect against

probing attacks [143, 85] to highly secure processors for protecting major financial

and PKI transactions [22]. Thus, even today, designers of trustworthy routers can

choose a level of hardware security that can support the needs of NetQuery. Even

without such improvements, TPMs are becoming more deeply integrated into

platforms, raising the bar for physical attacks. Should a TPM be compromised,

the damage is localized, since the extracted keys can only be used to generate

information attributed to that TPM.
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3.2 Incomplete and inaccurate world views

The knowledge plane encodes an incomplete view of the data plane, the control

plane, and the broader operating environment. Analyses must cope with the

potential incompleteness to avoid deriving unsound analysis results. Poor de-

vice implementations may generate inaccurate information. Below, we present

examples of potential incompleteness and inaccuracy, along with ways to ensure

that analysis and device implementations can prevent or accommodate these.

3.2.1 Exogenous information

Knowledge plane incompleteness can arise because relevant system information

is outside the purview of NetQuery devices. For instance, common mode failures

are not always visible to NetQuery devices. Consider a pair of routers connected

with multiple links. Though they appear failure independent to the devices, these

links could be physically separated, or they could reside in the same undersea

cable bundle and be subject to correlated failures. Similarly, independent hosts

and switches in a datacenter might share a power supply and cooling system,

and physical breaches or financial insolvency of the operator can disrupt many

devices at once.

A fault-tolerance analysis that equates multiple links, as reported by the

device, with failure independence would derive unsound conclusions. Only

by including more information in the knowledge plane, such as the physical

location of fibers as compiled in databases [140], can one hope to avoid such

errors. The NetQuery knowledge plane can incorporate such data.

42



3.2.2 Inaccurate information

Consider a network that has routers where the forwarding and control layers

behave as today, but run NetQuery and satisfy its security assumptions. This

strawman device design provides weak assurances; we will show how to im-

prove on this.

Router and data center implementations are complex. A malicious operator

could well gain control of the control plane, data plane, fabric controller, or

NetQuery processes, then induce them to export inaccurate facts. Trustworthy

computing platforms provide isolated monitoring mechanisms [139] that operate

independently of application code; using these to monitor the control plane and

data plane and to export the inferred properties to the knowledge plane results

in improved robustness compared with just generating properties from the full

implementation.

A malicious operator could introduce non-NetQuery nodes into the real

network such that the nodes are not reported to the knowledge plane, yet sub-

stantially change the behavior of the network. Any actions taken based on

analysis of this knowledge plane could be misguided and violate the intended

policy. This attack is inexpensive to launch, since the introduced nodes can be

implemented with commodity devices.

To illustrate these attacks, suppose a dishonest ISP installs additional nodes

to trick NetQuery analyses into inferring a high quality network even while the

actual physical network supports only a fraction of the claimed capacity, provides

no redundancy, and sends customer traffic over indirect routes (Figure 3.1).1

1Such attacks are inspired by the notion of Potemkin villages, in which an unscrupulous
organization constructs a façade to mislead observers. The term originates from the alleged
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Figure 3.1: Attestation is not sufficient. By using hidden nodes (denoted as
squares) to control the inputs to attested devices, an unscrupulous
operator can advertise false information.

In existing networks, operators have access to the keys used to secure control

protocols such as OSPF and BGP. Malicious operators can use these keys to spoof

routing advertisements, in a forged control message attack. Further, a malicious

operator can also use network virtualization to hide a slower physical network

or tunneling to redirect traffic along alternate paths. Such attacks embody forms

of data plane/control plane dissociation.

practice in Imperial Russia of constructing fake villages to present an illusion of prosperity to
visiting dignitaries.
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Figure 3.2: TPM-equipped NetQuery devices. TPM-equipped NetQuery
devices bootstrap trust from embedded TPMs. Mechanisms (gray)
implemented outside the TPM protect the knowledge plane against
malicious operators.

In each of these cases, the knowledge plane reports that the routers are di-

rectly connected at the control or data link layer, yet they are in fact connected

to an operator-controlled node. The solution is to add countermeasures to en-

sure that the knowledge plane and real network match. To protect against the

forged control message attack, NetQuery encrypts all control messages between

NetQuery-equipped devices with per-session keys known only to the devices.

To protect against the dissociation attack, NetQuery devices can adopt standard

solutions for monitoring the data plane for anomalies, such as trajectory sam-

pling [55] to probabilistically detect packet redirection, link-layer encryption [5]

to ensure that no control or data packets at all are redirected, and performance

monitoring [24] to establish capacity bounds on every link. To achieve flexibility,

extensibility, and line-rate performance, each of these mechanisms are imple-

mented outside the TPM, with the TPM used to establish that such mechanisms

are in place (Figure 3.2).
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3.3 Confidentiality-preserving analysis architectures

One of the design principles of NetQuery is to leverage existing trust relation-

ships rather than requiring new ones to be forged. This principle comes into

play if we consider the problem of protecting the confidentiality of operator

information, which is a central concern of operators.

3.3.1 Sanitizers

NetQuery sanitizers execute in a machine controlled by the network operator,

with the assurance that the right analysis was executed, as discharged by attesting

to the code that ran on the machine. This leverages a pre-existing trust relation:

in the absence of NetQuery, the external party has to trust the network operator

to issue a properly-derived result. Hence, a NetQuery sanitizer does not change

the extant trust relationship. Rather, it simply puts the original trust assumption

on a mechanically-backed basis.

An alternative would be to execute the sanitizer in a TPM-equipped machine

controlled by the external party. Here, the network operator would have to ship

confidential information to external machines and would have to trust those

machines to not reveal this information. The trust relationship required here is

substantially different from the original; operators might resist deploying this

type of sanitizer. Their concern is well-founded: this architecture provides less

defense-in-depth against the compromise of confidential information and there

are indeed low-cost attacks that can extract confidential information from the

memory of TPM-equipped machines [80].
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3.3.2 Analyses spanning multiple domains

Most applications presented in this dissertation rely on multi-domain analyses

that are decomposable into independent, per-domain sanitizers. Though such

applications and sanitizers have been presented for the case of two domains, this

structure generalizes to support any number of domains.

Not all analyses that require confidentiality have such decomposable struc-

ture; for instance, traffic engineering across multiple ASes has complex inter-

dependencies between confidential information from mutually untrusting do-

mains [105]. We offer here a design for an approach to such multi-domain analy-

sis that is based on combining NetQuery with secure multiparty computation

(MPC) [156].

By itself, MPC makes threat model assumptions that are difficult to satisfy

and can pose risks in real-world deployments. MPC protocols do not constrain

participants to be honest about their inputs and can leak information to partic-

ipants that do not follow the protocol. Thus, each MPC application typically

requires some application-specific security analysis of the implications of such

cheating.

A NetQuery-enabled MPC implementation uses attribution and attestation

to protect MPC inputs and protocol implementation. A NetQuery-enabled MPC

implementation will only accept inputs to factoids from trusted principals and

devices, increasing the complexity of launching attacks based on falsifying input.

By attesting to the execution of a trustworthy MPC protocol implementation,

NetQuery prevents participants from arbitrarily diverging from the protocol.
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3.4 TPM deployment

NetQuery’s flexible import policies enables applications to benefit whether or

not devices are equipped with TPMs.

Deployments without TPMs For example, TPMs are not necessary in scenar-

ios where pre-existing relationships are considered sufficient for trusting the

claims of another party. Operators currently invest significant effort in establish-

ing trust before entering peering agreements and may trust each other enough to

exchange information through network diagnostic tools. This trust relationship

can be represented by import policies that accept the remote operator as a root of

trust in lieu of a TPM key. In NetQuery, we have the remote ISP or data center

sign X.509 certificates with a self-generated key, and specify a corresponding

import policy. Although this TPM-less configuration does not help with trust

establishment, it still streamlines coordination and can be used to generate an

audit log documenting why a claim was accepted.

Legacy devices will lack a TPM with which to generate factoids. Here, an op-

erator can use its own self-signed key to issue statements on behalf of such legacy

devices. Modern ISPs and data centers run extensive management software that

collects information on the state of the network and devices within. Exporting

the data from such systems into NetQuery enables even operators predomi-

nantly running legacy devices to support NetQuery applications. This approach

supports a transparent transition as new TPM-equipped network devices are

introduced, and operator-signed statements are subsumed by device-issued

factoids.
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Finally, NetQuery sanitizers can enable external applications to participate

in NetQuery even when they are not equipped with TPMs. Because sensitive

factoids never leave an administrative domain, lack of a remote TPM can never

lead to information leakage.

External checkers Some trustworthy properties can be obtained by using TPM-

equipped devices to infer or monitor legacy devices. Past work has examined

how to obtain guarantees about the behavior of legacy BGP speakers by mon-

itoring their inputs and outputs [126, 79]. Since monitors only need to inspect

control traffic to infer details of BGP behavior, low cost monitoring hardware

suffices to provide assurance about the behavior of expensive legacy equipment,

such as high-performance routers.

3.5 Case study: NetQuery in federated networks

Depending on their configuration, administration, and provisioning, networks

provide drastically different features. For instance, some networks provide little

failure resilience, while others provision failover capacity and deploy middle-

boxes to protect against denial of service attacks [34, 23]. Agreements between

network operators often include requirements that are governed by such network

features. Peering and service agreements, for example, can mandate topology,

reliability, and forwarding policies, while terms-of-use agreements can mandate

end host deployment of up-to-date security mechanisms. Yet the standard IP

interface masks the differences between networks; each network appears to

provide the same, undifferentiated “dial-tone” service. Consequently, clients
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and networks must resort to ad hoc techniques for advertising the quality of a

network.

NetQuery can disseminate these underlying network features, thereby giving

providers a channel for advertising network capabilities and enabling applica-

tions to use reasoning to find suitable networks for their requirements. This

reasoning analyzes information, such as routing tables, neighbor lists, and con-

figurations, that describe network entities, such as routers, switches, and end

hosts.

3.5.1 Applications

NetQuery enables a wide range of applications based on reasoning about the

properties of a remote network. Such reasoning improves the expressiveness

and assurance level of inter-domain coordination.

Enforcing interconnection policies Although the level of direct interconnec-

tion between ASes on the Internet has grown substantially [154], lack of trust

limits the potential benefit of this dense graph. For instance, engaging in mutual

backup, wherein each AS allows the other to use its transit paths in emergencies,

increases overall fault tolerance. Yet unscrupulous ASes might misuse these

paths for non-emergency traffic. By checking a neighbor’s BGP policies and

forwarding table entries, a network can verify that backup paths are only used at

appropriate times. This information is not currently available to external parties.
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Verifying AS path length Since performance typically degrades as packets

traverse multiple ASes, ISPs are motivated to establish peering or transit rela-

tionships to shorten AS path lengths. A small content provider or access ISP that

seeks to reduce AS path length but lacks the resources to establish many direct

interconnections might instead purchase service from a provider that has low AS

path length connections to the desired destinations [59]. The purchaser benefits

from outsourcing the overhead of managing many peering relationships and can

use NetQuery to verify that traffic will be forwarded with minimal stretch. By

comparison, establishing this arrangement today by using BGP-reported path

information and traceroute would necessitate a large trusted computing base as

well as incur the cost of active probing.

Advertising network redundancy Some networks are constructed with redun-

dant devices and network links to increase availability. A provider with a highly

redundant network can use NetQuery to advertise this fact by using a reasoning

process that inspects the network topology. By comparison, it is difficult or

impossible to detect redundancy with probing, since the extra resources are only

visible during failure.

Avoiding rogue Wi-Fi hotspots In urban areas, mobile users are typically

within range of many wireless networks [118]. Users can employ NetQuery

to differentiate between these, using analysis to select networks with better

security and performance. By checking for a network built from trustworthy

devices and link-level encryption, a user can avoid connecting to rogue Wi-Fi

hotspots [96]; by checking the capacity of the backhaul path to the upstream

provider, a user can choose the best performing network in an area.
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Future opportunities Many proposals for improving service discovery, such

as those for bandwidth markets [146] and virtualized routing infrastructure [94],

have the potential to greatly expand the set of service providers and peers

available to a given ISP. NetQuery can maximize the benefits of such proposals

by providing new ways to check whether a newly discovered service provider

or peer is suitable.

3.5.2 Incremental deployment

NetQuery can facilitate inter-domain coordination even when only some devices

and operators are upgraded to support NetQuery. Here, we describe several

techniques for doing so, which are applicable to the preceding applications.

Bilateral benefits

Many claims in bilateral contracts can be computed almost entirely from factoids

exported by one of the counterparties, and thus require minimal support for

NetQuery outside of the participating networks. Since most Internet agreements

are bilateral [59], this is a common case.

Some claims are completely self-contained within an ISP’s network; these

include those providing VPN service between multiple customer sites or guar-

anteeing an intra-domain latency or redundancy SLA. Other analyses, such as

the Wi-Fi hotspot and AS path length analyzers, require a modicum of support

from ASes adjacent to the Wi-Fi or transit provider. These analyses verify that

the provider routes traffic to a specific destination domain as promised: for
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the former, to the public Internet (e.g., outside the hotspot’s domain), for the

latter, to the destination AS. The adjacent networks need only install NetQuery

devices at the edge and assert their ownership of these device, say by signing a

factoid using a AS-number certificate issued by a regional Internet registry [31].

Adjacent networks need only ensure that they deliver packets into their network

as claimed by the knowledge plane. To do so, they can simply deploy a low-cost

TPM-equipped host, rather than upgrade edge routers.

Islands of deployment

In other scenarios, there may be islands of NetQuery-enabled devices separated

by multiple legacy devices. Islands might arise within a single provider that

deploys starting at the edge of each POP or in a few POPs at a time. Islands may

also be isolated by legacy devices controlled by a third party. By establishing

tunnels between one another, backed by encryption and performance monitor-

ing [24], NetQuery devices can export properties describing the intervening

legacy network. Such tunnels are similar to the defenses against the dissociation

attack and the preceding deployment optimization for adjacent ASes.
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CHAPTER 4

PROTOTYPE AND FEASIBILITY STUDY

We have implemented a prototype of NetQuery. The core functionality is

supported by an embeddable tuplespace server for building NetQuery devices

and sanitizers; a C++ client library for writing NetQuery applications; NAL proof

generators and checkers; and a stand-alone tuplespace server. We used these

components to build the requisite devices for a federated network: a NetQuery

switch for Linux, a NetQuery router adapted from the open source Quagga

router [2], a NetQuery host that runs the Nexus trusted operating system, and

an SNMP to NetQuery proxy (Figure 4.1). We also built a network access control

(NAC) system and several network performance analyzers.

We describe, through our experience with building applications, the benefits

of NetQuery-enabled analysis. We also demonstrate, through microbenchmarks

of tuplespace operations and experiments and devices, that NetQuery achieves

high throughput and low latency and that extending network devices to support

NetQuery involves little code modification, low overhead, and low deployment

cost.

All experiments used a testbed built from Linux 2.6.23 hosts equipped with

8-core 2.5GHz Intel Xeon processors and connected over a Gigabit Ethernet

switch. Unless otherwise stated, all TPM and NAL optimizations from Section
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Libraries
Server & client 18,286
NAL 2,254
Data sources
Nexus host 543
Software switch 1,853
Quagga router +777
SNMP proxy 1,578

Applications
Network access control 787
L2/L3 traceroute 483
Oversubscription 356
Maximum capacity 316
Redundancy 333

Figure 4.1: Source line count for NetQuery libraries, devices, and analyses.
Router figure is the code size increase relative to Quagga. SNMP proxy
supports HP and Cisco devices and exports a superset of the data for
switch and router.

Completion time Network cost
(seconds) (sent/recv’d)

L2/L3 traceroute 0.16 s 247 KB
Oversubscription (pre-processing) 7.9 s 17 MB

(per switch) 0.1 s 0 KB
Maximum capacity 0.16 s 247 KB

Redundancy 12.65 s 24 MB

Figure 4.2: Performance of analyses on department network. The execution
time and network cost of each analysis suffices to support network
management and data center SLA queries. Oversubscription analysis
pre-processes the tuplespace to reduce query costs.

2.3.3 were enabled.

4.1 Applications and production deployment

Here, we outline the implementation of each application for federated networks

and describe the achieved performance and operational benefits.
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4.1.1 Network access control

The NAC system restricts network access only to machines that are unlikely to

harm the network, such as those running a firewall and virus checkers. Such

policies are widely embraced today, yet often rely solely on user cooperation.

This system installs triggers on local NetQuery switches to detect new hosts,

which are initially allowed only limited network access. In response to a trigger

notification, the application analyzes the new host. For each policy-compliant

new hosts, the application sends a configuration command to the switch to grant

network access. Such policy decisions are implemented in the switch enforcer

process, consisting of 787 lines of code (LOC). The NetQuery switch consists of

1,853 LOC, including a full control plane and software data plane with link-level

encryption to prevent dissociation attacks. The host runs the Nexus operating

system [139], which exports its full process list to a locally running tuplespace

server.

To prevent leakage of sensitive user information beyond the user’s computer,

NAC uses a sanitizer that releases the sanitized fact CompliantHost(H) if H’s

process list indicates that it is running the required software. NAC uses Nexus’s

process level attestation to verify execution of the sanitizer and tuplespace server,

which run in separate processes. The proof tree for this application consists of

eight ground statements: five tuplespace values, authenticated by tuplespace

server MACs, and three attestations, authenticated by digital signatures.

Together, the proof generation and proof checking processes took less than 67

seconds of wall clock time, which is low compared to the long duration of typical

Ethernet sessions. Digital signature verification at the enforcer dominated the

cost.
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4.1.2 Analysis of a production network

We deployed NetQuery on our department’s production network consisting of

73 HP and Cisco L2 and L3 switches and over 700 end hosts. Using standard

network management data exported by these switches, we built several analyses

for detecting properties of interest to customers of cloud providers and ISPs;

Figures 4.1 and 4.2 summarize the source code size and performance of each

analysis. NetQuery enables these analyses to discover information that is other-

wise difficult or impossible to obtain through the data plane. Our deployment

relies on an SNMP-to-NetQuery proxy that periodically exports the neighbor,

forwarding, routing, and ARP tables of every switch.

We implemented the following analyses, which can be used to generate

remotely verifiable advertisements of datacenter network quality. These adver-

tisements enable customer applications to pick the most appropriate network for

a given workload.

L2/L3 traceroute analysis. Traceroute is widely used for diagnostics. Since stan-

dard IP traceroute returns only L3 information, it provides little information in a

network composed primarily of L2 switches. We have built a NetQuery tracer-

oute that iteratively traverses the topology graph contained in the knowledge

plane, instead of using probe packets. At each switch, the analyzer performs

forwarding table and ARP table lookups as appropriate to determine the next

hop. To support traceroute on our network, the analysis understands many

commonly used features of L2/L3 switched Ethernet networks, including link

aggregation groups and VLANs. This analysis is often used as the basis for other

analyses.
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Over-subscription analysis computes internal network capacity and determines

the ratio between the capacity of a given network link and the maximum amount

of traffic that hosts downstream from the link can generate or consume. To

compute the aggregate capacity across all hosts, the analysis traces through the

L3 core and L2 tree, down to the leaf switches, recording every host access link.

Customers with network-intensive workloads such as MapReduce can benefit

from choosing datacenters that are less oversubscribed.

Maximum capacity analysis determines the available bandwidth through the

Internet gateway. This analysis determines the best-case throughput between a

given host and network egress point by running NetQuery traceroute to find the

host to egress path, then computing the minimum capacity across the links on

that path. Customers deploying public services benefit from choosing datacenters

with high available capacity through the gateway.

Redundancy analysis verifies that the network is robust against network fail-

ures. We implemented an analysis that decomposes the network graph into

biconnected components, which are by definition robust against the failure of a

single switch. Customers that require high availability should place their nodes

in the same component as critical services and the Internet gateway.

In addition to using these analyses to support external customers, the data-

center operator can use them to debug network problems. For instance, we have

used these tools to help us inventory and locate network equipment and to de-

termine the network failure modes for our research group’s externally-accessible

servers.
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Figure 4.3: Throughput of operations issued in bulk. The throughput of all
operations is independent of the tuplespace size.

4.2 Scalability

We evaluate the performance of a tuplespace server with throughput and la-

tency microbenchmarks that correspond to different usages and scenarios. High

throughput enables devices to initialize the knowledge plane quickly when they

boot or are reconfigured. Reduced latency enables analysis to complete more

quickly and limits exposure to concurrent changes to the network.

Throughput In this experiment, a traffic generator issues a sequence of requests,

without waiting for responses from a tuplespace server running on a separate

machine. To fully utilize processor cores available on the server, the tuplespace

is distributed across eight processes.
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Figure 4.4: Latency of operations issued sequentially. The latency of all oper-
ations remains the same at all tuplespace sizes.

The results show that NetQuery can support large tuplestores and high tu-

plespace access and modification rates (Figure 4.3); a single tuplespace server can

support more than 500,000 read and update operations per second. The through-

put of all tuplespace operations is decoupled from the size of the tuplespace, with

the exception of Delete_Factoid(). For smaller tuplespace sizes, Delete_Factoid()

experiments complete so quickly that initialization overheads dominate overall

execution time. The tuplespace server achieves this high performance because it

only holds soft-state, for which a simple in-memory implementation suffices.

Latency The latency of accessing the tuplespace (Figure 4.4) affects the com-

pletion time of NetQuery applications. In this experiment, a single client issues

sequential requests for the TID from Create_Tuple(); and for the factoid value

from Read_Factoid(). Latency remains constant as tuplespace size increases.
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NetQuery NetQuery
SNMPv3 (Unoptimized) (Optimized)

Bulkwalk Update Read Update Read
46,572 29 2,723 97,422 94,844
±300 ±0.06 ±30 ±2,000 ±8,000

Throughput in SNMP variables/s or
NetQuery factoids/s (± 95% conf. interval)

Figure 4.5: Comparison of SNMP and NetQuery. TPM- and NAL-based opti-
mizations enable NetQuery to achieve better throughput than SNMP
while providing stronger guarantees.

Cryptographic optimizations and SNMP To evaluate the overhead of account-

ability, we compared the performance of NetQuery to that of SNMPv3. To

evaluate the benefits of the optimizations from Section 2.3.3, we measured the

throughput of NetQuery with and without trusting the tuplespace server. Since

the Linux SNMP server is not multithreaded, we ran both NetQuery and SNMP

on a single core. We used multiple concurrent instances of snmpbulkwalk to

retrieve SNMP server MIBs. The NetQuery experiments retrieved compara-

ble amounts of data. SNMP and NetQuery were both configured to provide

confidentiality and integrity.

When the tuplespace server is not trusted, devices sign all factoids on export

and applications check signatures on all factoids on import, significantly increas-

ing CPU overhead. When the tuplespace server is trusted, NetQuery provides

better performance than SNMP (Figure 4.5). Thus, we expect that SNMP analyses

that are ported to NetQuery will perform comparably, yet provide accountability.

Since TPMs and trustworthy computing can be used to establish the trust-

worthiness of tuplespace servers, these results show that high performance

knowledge planes that support accountability can be deployed at little addi-

tional cost.

61



4.3 Building NetQuery devices

We built several NetQuery devices to determine the implementation and runtime

costs that NetQuery adds to devices. We also show that the knowledge plane

and devices can efficiently support realistic workloads.

Quagga router We modified a Quagga router to evaluate the cost of extending

an existing device to support NetQuery. Only localized changes to the router’s

control plane were necessary to export all interface and routing table changes

to the knowledge plane. NetQuery-Quagga interposes on Quagga’s calls to

rtnetlink, the low-level interface to the in-kernel dataplane, and translates all

relevant requests, such as changes to the forwarding table and NIC state, into

tuple updates. In total, only 777 lines of localized changes were needed, out of a

total code base of 190,538 LOC.

Initialization Quagga is a demanding macrobenchmark that exports signifi-

cant amounts of state during operation. To demonstrate that routers can effi-

ciently shed this data to a tuplespace server, we measured the initialization and

steady state performance of the router. We used a workload derived from a

RouteViews trace. The Quagga router, tuplespace server, and workload gener-

ator ran on separate machines. To demonstrate that NetQuery can efficiently

import bulk data, we measured the completion time to load a full BGP routing

table (268K prefixes) and the resulting tuplespace memory footprint.

Upon receiving routing updates, the BGP router downloads a full forwarding

table to the IP forwarding layer. Added latency could affect network availability.

Without NetQuery, an update of the full table took 5.70 s; with NetQuery, it
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took 13.5 s. Our prototype blocks all updates while waiting for NetQuery; a

production implementation can eliminate this dependency by updating the

knowledge plane in a background process.

Exporting the full forwarding table to the tuplespace server required 62.8 MB

of network transfer and 10.7 MB of server memory to store the table. Though full

updates are the most intense knowledge plane update workload, only a modest

amount of hardware is needed to support them.

Steady state To demonstrate that NetQuery routers perform well in steady

state, we evaluated the router against a workload derived from RouteViews

update traces. The workload generator batched updates into one second buckets,

and submitted them as bursts. The experiment recorded the time needed to

commit the resulting changes to the IP forwarding tables and to the knowledge

plane. NetQuery increased the median completion time to 63.4 ms, from 62.2 ms

in the baseline server. Thus, the NetQuery router reacts almost as quickly as a

standard router, minimizing the disruption to forwarding table updates. Net-

Query required only 3 KB, 92 KB, and 480 KB to transmit the median, mean, and

maximum update sizes; thus, any server configuration provisioned to support

initialization load can also support steady state load.

Convergence time NetQuery does not impact eBGP convergence time: in eBGP,

route propagation is governed by a thirty second Minimum Route Advertisement

Interval, which exceeds the latency of exporting a full forwarding table update

to NetQuery.
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To measure the impact on IGP route convergence, we simulated the update

traffic from large correlated link failures on the Sprint RocketFuel topology. This

topology consists of 17,163 Sprint and customer edge routers. We converted

the simulation trace into a POP-level NetQuery workload, which we fed to a

single-core tuplespace server.

We measured for each run the convergence time after failure. For the five

largest POPs, consisting of 51 to 66 routers, and link failure rates of up to 0.05,

the mean and median increase in update completion times were less than 0.24 s

and 0.14 s, respectively. Thus, networks can deploy NetQuery while achieving

sub-second IGP convergence time, which is the desired level of performance for

operators [64].
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CHAPTER 5

INFRASTRUCTURE SUPPORT FOR FEDERATED CLOUD COMPUTING

Cloud computing is becoming increasingly important for building many

types of applications and Internet-facing services [21]. Traditional computing

infrastructure poses significant costs to deploying scalable, wide area services,

with each service duplicating the effort of provisioning physical facilities to pro-

vide enough computational resources and designing the abstractions necessary

to scalably manage and exploit these resources.

By comparison, cloud computing enables substantially better application

agility in acquiring and coordinating computational resources. Cloud computing

providers take on the responsibility of designing and building scalable computa-

tional infrastructure. The cloud infrastructure provides standardized interfaces

for provisioning resources for applications: applications can request compu-

tational resources in an on-demand, pay-as-you-go fashion, and can readily

move across different cloud providers to exploit geographic diversity, maximize

availability, and reduce costs.

The fungibility and portability of computational tasks and resources enables

new types of market transactions. For instance, specialization generates effi-

ciency gains in cloud computing. By aggregating many customers and tasks

into the same data center, cloud services [15, 110] can drive down costs through

economies of scale and by optimizing the size and geographic placement of data

centers [70]. Given that cloud applications can move computation to lower-cost

sites, cloud computing can be simultaneously profitable for operators while

reducing costs for customers [21].
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Cloud computing can also transfer risk between different participants in the

global computing infrastructure [21]. Traditional computational infrastructure

require developers of new services to provision servers and network capacity

in anticipation of future demand levels. But making accurate demand predic-

tions for novel applications can be challenging, and over- and under-predicting

demand can both incur considerable cost. Given these trends, the on-demand,

pay-as-you-go cloud service model is favorable because it shifts responsibilities

and risks associated with capacity planning to the cloud provider. Since cloud

providers run many different applications on their infrastructure, they can statis-

tically multiplex a common pool of reserve capacity for servicing peaks to reduce

the costs and risks associated with misprediction.

While running VMs and tasks from multiple tenants in a common set of cloud

data centers contributes to the aforementioned benefits, such heterogeneous

workloads can also pose a resource scheduling challenge. Since the VMs and

tasks sharing a cloud data center come from unrelated customers, they are

largely uncoordinated and mutually untrusting. Thus, the potential for network

performance interference and denial of service attacks is high. As a result,

performance predictability is a key concern [47] for customers evaluating a

move to cloud datacenters. Though existing cloud data centers provide many

mechanisms to schedule local compute, memory, and disk resources [41, 75],

their mechanisms for apportioning network resources and isolating applications

from different tenants fall short, resulting in inefficient network utilization and

increased vulnerability to attack.

In principle, fungibility and portability could enable participants in a global

cloud computing infrastructure to offer, repackage, or trade computational ca-
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pacity, enabling more efficient infrastructure utilization. Tenants typically have

performance, reliability, and confidentiality requirements regarding the com-

putational environment in which their applications execute and can only run

applications within suitable data centers. But the existing cloud infrastructure

provides few mechanisms with which such requirements can be verified, with

existing mechanisms based largely on ad hoc reputation. Thus, the market is far

from flat: the overhead of establishing reputation and trust benefits incumbents

and new service providers cannot convince users that they can satisfy application

requirements without first incurring the cost of building sufficient reputation.

As a result, today’s cloud computing infrastructure is minimally federated and is

not well-suited for building an open market for cloud computing resources [98].

The remainder of this chapter highlights the problems of existing resource

allocation and security mechanisms and introduces novel data path techniques

for implementing better mechanisms. It also shows how NetQuery can be used to

facilitate coordination across a federated cloud computing infrastructure. Taken

together, these contributions greatly expand the kinds of guarantees that cloud

applications can rely on.

5.1 Establishing new types of guarantees

Compared with workloads found in the Internet and traditional data centers,

typical cloud computing workloads pose substantial challenges to building

cloud data center networking guarantees, such as granular network resource

allocation and security mechanisms. Individual malicious nodes on the Internet

can generally consume a much lower fraction of core network bandwidth than

individual malicious VMs can consume in the data center. Since traditional data
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centers generally execute fewer, less diverse tasks from a single administrative

domain, they can more readily mitigate misbehaving and interfering tasks.

Cloud data centers often rely on the network resource allocation and secu-

rity mechanisms inherited from preceding deployment scenarios such as the

Internet and traditional data center equipment. Since cloud data centers have

substantially different engineering parameters and workloads from these sce-

narios, such mechanisms are often ill-suited for use in cloud data centers. For

instance, end host mechanisms, such as TCP congestion control, are scalable and

widely deployed, yet are not robust against misbehaving tenants. Switch and

router mechanisms, such as reservations, can provide a measure of robustness,

but are not scalable to the number of VMs and tasks found in the typical data

center and may leave the network underutilized.

Cloud computing applications are deployed on cloud computing stacks, such

as those based on low-level hardware virtualization (Infrastructure-as-a-Service)

or high-level software platforms (Platform-as-a-Service) [147]. Cloud comput-

ing data centers often employ tight integration between all components in the

data center, including end hosts and the network. They are orchestrated by

a centralized fabric controller responsible for allocating host and network re-

sources for executing tenant applications [112, 114, 98]. This integration provides

opportunities for building new abstractions and algorithms for controlling re-

source allocation. Combined with the availability of open platforms [109] and

customized, high-performance switches based on merchant silicon [60], it is fea-

sible for data center operators to deploy custom, clean slate solutions spanning

the entire packet forwarding pipeline, from end host network stack to physical

network switches [11].
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5.1.1 Trusted packet processors

This degree of control over data centers can be used to implement trusted packet

processors, which provide programmable data plane processing that is isolated

from untrusted tenant-supplied code. Trusted packet processors can be used to

build many new data center networking guarantees; by attesting to the programs

executing on each trusted packet processor, a data center can convince remote

parties that a given data center networking guarantee is installed.

To support many applications, trusted packet processors should provide

general programming models and extensive coverage. Enabling applications to

apply custom processing to specific subsets of traffic allows targeted policies,

while enabling applications to apply custom processing at different locations

in the network provides better observations of network state. To have practical

benefit, any new cloud data center networking guarantees would need to scale to

support the large number of end points, high churn, and high data rates seen in

typical cloud workloads. Since cost and efficiency are important considerations

in cloud data centers, the implementation techniques should be compatible

with the technical limitations of typical data center networking hardware and

software.

5.1.2 Trusted packet processors at the network edge

End host virtual switches and network stacks can provide trusted packet pro-

cessing coverage for the network edge, with ample processing capacity for the

comparatively low bandwidth demands at such locations. Virtualization and

hardware privilege separation provide isolation from tenant code.
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Since such trusted packet processors execute on the end host’s primary CPU,

they can support a general programming model that can run user-specified

packet processing code on any traffic leaving a node. Trusted packet processors

based in end hosts can also be deployed with only software changes, which are

straightforward to integrate with the open, extensible architectures of typical

virtual switches and network stacks and can leverage the centralized software

provisioning mechanisms of a cloud data center.

When fully deployed, end host-based trusted packet processors can observe

and manipulate all traffic generated by internal end hosts; such traffic typically

dominates overall data center traffic since intra-datacenter links have substan-

tially higher bandwidth than Internet access links. Should coverage over the

remaining externally-generated traffic be needed, border routers can be aug-

mented with middleboxes that provide the same trusted packet processing.

Applications

The comprehensive coverage that trusted packet processors at the network

edge provide can be used to build applications that employ end-to-end con-

trol algorithms and policies for resource allocation, performance isolation, and

reachability isolation for gaining control of the heterogeneous, untrusted mix of

applications running in a typical cloud data center.

Seawall: Network capacity allocation and performance isolation To provide

performance guarantees for applications and protect against malicious or selfish

tenants, a cloud data center should be able to control how network bandwidth is

shared among multiple tenants, regardless of what traffic the tenants may send.

70



Existing adaptive edge-to-edge techniques, such as TCP congestion control

(or variants such as TFRC and DCCP), are scalable and achieve high utilization.

These are widely deployed, scale to existing traffic loads, and, to a large extent,

determine network sharing today via a notion of flow-based fairness. However,

TCP does little to isolate tenants from one another: poorly-designed or malicious

applications can consume network capacity, to the detriment of other applica-

tions, by opening more flows or using non-compliant protocol implementations

that ignore congestion control. A tenant can use the extra bandwidth selfishly or

use it to interfere with others on the shared links, switches or servers. Thus, while

capacity allocation using TCP is scalable and achieves high network utilization,

the achieved results are not robust against variations in tenant communications

patterns.

By comparison, existing switch and router mechanisms (e.g., CoS tags,

Weighted Fair Queuing, reservations, QCN [117]) are better decoupled from

tenant misbehavior. However, these features are of limited use when applied

to the demanding cloud data center environment, since they cannot keep up

with the scale and the churn (e.g., numbers of tenants, arrival rate of new VMs),

can only obtain isolation at the cost of network utilization, or might require new

hardware.

This thesis proposes a new end-to-end control mechanism for allocating

network capacity. Called Seawall, this mechanism is built from trusted packet

processors at the edge and enables administrators to prescribe how their network

is shared. It allocates network capacity and provides performance isolation

guarantees irrespective of tenant traffic characteristics such as the number of

flows, protocols or participating endpoints. Here, we outline the general prop-
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erties of Seawall and defer to Chapter 6 a full description of the design and

implementation of Seawall and associated performance evaluation.

Seawall provides a network weight abstraction for defining network allocation

policies. Given a network weight parameter for each local entity that serves

as a traffic source (VM, process, etc.), Seawall ensures that along all network

links, the share of bandwidth obtained by the entity is proportional to its weight.

To achieve efficiency, Seawall is work-conserving, proportionally redistributing

unused shares to currently active sources.

Beyond simply improving security by mitigating DoS attacks from malicious

tenants, per-entity weights extend existing differentiated provisioning models,

where tenants can pay more for VMs with larger share of local resources, to

cover bandwidth allocation. Per-entity weights can also enable better control

over infrastructure services. Data centers often mix latency- and throughput-

sensitive tasks with background infrastructure services. For instance, a search

cluster requires low latency for index queries from the users, which contends

with the massive bandwidth requirements of periodic index updates. Similarly,

customer-generated web traffic contends with the demands of VM deployment

and migration tasks. Per-entity weights serve as a mechanism for avoiding

disruption between these concurrent workloads.

Seawall achieves scalable capacity allocation by reducing the network sharing

problem to an instance of distributed congestion control. The ubiquity of TCP

shows that such algorithms can scale to large numbers of participants, adapt

quickly to change, and can be implemented strictly at the edge. Though Seawall

borrows from TCP, Seawall’s architecture and control loop ensure robustness

against tenant misbehavior. Seawall uses a shim layer at the sender that makes
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policy compliance mandatory by forcing all traffic into congestion-controlled

tunnels. To prevent tenants from bypassing Seawall, the shim runs in end

host-based trusted packet processors. Simply enforcing a separate TCP-like

tunnel to every destination would permit each source to achieve higher rate by

communicating with more destinations. Since this does not achieve the desired

policy based on per-entity weights, Seawall instead uses a novel control loop

that combines feedback from multiple destinations.

Reachability isolation In a cloud data center, a malicious tenant can send high

data rate traffic to the VMs of an unrelated victim tenant located in the same

data center. This unwanted traffic poses a threat to performance guarantees and

security, with the malicious tenant launching DDoS attacks or compromising the

VMs of other tenants that are sharing the network.

By supporting reachability isolation policies, a cloud data center can impose

restrictions on what VMs are permitted to communicate. For instance, a data cen-

ter can restrict tenant VMs to exchanging packets only with other VMs belonging

to the same tenant or with shared services provided by the infrastructure.

In a sense, we would like to to place each tenant on a private network.

However, achieving this by placing each tenant’s VMs in a dedicated Ethernet

VLAN does not scale due to limits on the number of VLANs in one L2 domain (no

more than 4096). Enforcing isolation by placing ACLs (e.g. VLAN or IP-based)

in switch hardware will quickly exhaust TCAM storage, as the number of ACLs

scales at least linearly with the number of VMs whose traffic can transit the switch.

Scaling up the supported policy sizes requires upgrading to more expensive

switches; such switches are prohibitively expensive at the top-of-rack (ToR) level.
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Figure 5.1: Extending a datacenter network with sidecars.

Likewise, supporting new types of policies, such as tenant- or user-based ones,

can require replacing all switches [43].

End host trusted packet processors can be used to enforce reachability policies

at a fine granularity. Such policies can precisely specify the set of VMs that can

communicate, regardless of policy size, network topology, or traffic matrix. The

specified policies cannot be bypassed, since trusted packet processors execute in

isolation from tenant-specified code. Moreover, by running packet filters at the

source rather than at the destination, the system prevents malicious tenants from

wasting network bandwidth on disallowed traffic.

5.1.3 SideCar: In-network trusted packet processors

With visibility and control beyond the network edge, applications can implement

a wider range of network guarantees. Adding trusted packet processors at the

ToR, core, and aggregation switches enables new functionality. With improved

visibility, applications can collect utilization and congestion information down

to the granularity of individual network links, which they can use to improve

congestion control. Applications can also customize forwarding abstractions by

running code in these in-network trusted packet processors.
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In-network trusted packet processors also improves security over networks

that rely exclusively on end host packet processing. Existing networks provide

defense-in-depth: even when end hosts are compromised, the fabric controller

can still use switches to observe and control the network, detecting and isolating

suspicious end hosts as needed. The attack surface for this extra layer of pro-

tection is small, since end hosts interact with switches only through the packet

forwarding interface.

By comparison, suppose a malicious tenant VM compromises its local hy-

pervisor and disables end host packet filtering; such VMs can launch attacks

on VMs from other tenants. By augmenting end host packet processors with

in-network packet processors, data centers can relax the trust dependency on

end host packet processors, thus providing defense-in-depth and reducing TCB

size.

In-network packet processors also enable safe use of common performance

optimization such as direct I/O, in which latency- and throughput-sensitive

tenants are permitted to send traffic directly to the network. Such hosts cannot

support trusted packet processing, since their data path bypasses the virtual

switch.

Challenges, programming model, and architecture

It is costly to build in-network trusted packet processors that can handle all

traffic traversing the aggregation and core layers. Although fully-programmable

routers with software forwarding paths that can perform at the necessary data

rates have been proposed [53, 81], they incur substantially higher hardware and
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power costs than traditional routers that employ fixed-function fast forwarding

paths. Thus, routers based on software forwarding paths are likely untenable in

cost-conscious, production cloud data centers.

Instead, this thesis proposes an alternative programming model that provides

full coverage of network topology from network edge to core, with small incre-

mental cost over existing switches. Called SideCar, this programming model

reduces hardware cost by limiting trusted packet processors to handling just a

fraction of traffic, rather than all traffic. Despite this limitation, the processing

model can support many new applications.

SideCar’s trusted packet processing executes in sidecar processors, which lie

off the fast path for packet forwarding (Figure 5.1). This execution model is an

extension of the slow-path packet processing used by all modern switches. To

achieve cost and performance requirements, the majority of traffic on a switch

is processed by a comparatively inflexible data-path. Only packets that require

more sophisticated processing, such as control traffic and packets that induce

forwarding state changes, are forwarded to a programmable control processor.

In typical data center switches, the redirection mechanisms provide limited

flexibility for redirecting traffic for special processing. Since switches use TCAMs

to match traffic, they can only support a small number of packet match rules

of limited complexity, and scaling up requires costly switch upgrades. Instead

of relying on switches to perform classification, SideCar delegates classification

to end hosts, which can use software-defined rule sets that are larger and more

expressive that can scale to the low data rates at the edge.
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This pre-classification at end hosts facilitates scalable packet redirection or

copying to sidecars that precisely intercept packets requiring special processing.

Called steering, this process has two variants; the underlying redirection primi-

tives are simple and widely supported at line rates by existing hardware (e.g.,

VLAN tagging [111], IP-IP encapsulation [71]). In marked steering, each switch

redirects all packets with a special mark to the sidecars. Packets can be direct

steered by sending packets to a specific sidecar. Marking and direct steering

can be used both at the datacenter edge, i.e., shim layer in the host network

stack or hypervisors, and between different sidecars to implement new types of

forwarding schemes.

By itself, pre-classification at the end host neither protects against compro-

mised end hosts nor supports direct I/O optimizations. Thus, SideCar augments

steering with sampling to enhance security and performance. Rather than fully

trusting the end host software stack to perform all critical packet processing,

which introduces potential vulnerabilities, or doing all such processing in side-

cars, which are trustworthy but may not have enough computational power to

do so, applications can use the available sidecar capacity to spot check the work

of the end host, providing a probabilistic bound on misbehavior.

The choice of what to use as sidecars ranges from commodity servers to

RouteBricks or PacketShader class servers. This choice depends on the the

volume of traffic transiting the switch that the sidecar is connected to and the

demands of the application, i.e., what fraction of packets to observe and what to

compute per packet.
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Sampling and Steering

To provide all aforementioned properties, packet sampling must not have depen-

dencies on any untrusted layers; sampling that is implemented by relying on

untrusted layers to mark a subset of packets improves only scalability. Sampling

primitives that are built into switches are free from such dependencies: such

primitives, like NetFlow, sFlow, and sampled port mirroring, are supported in

nearly all switches. Each of these redirect a sample of traffic to a pre-configured

monitoring node NetFlow [45] collects aggregate flow-level statistics for pack-

ets that it samples. Given a sample rate, sFlow [122] picks packets uniformly

at random and collects their headers for analysis; sFlow is available on even

entry-level ToR switches [83]. Sampled port mirroring uniformly captures traffic

matching a designated TCAM pattern.

Port mirroring can sample full packets on switch ports and forward them

to another port on that switch. Switches that implement packet mirroring in

fabric hardware are limited only by the bandwidth of the outgoing port and can

deliver packets with low latency. A high performance sidecar, say one connected

to a ToR switch with comparatively low aggregate bandwidth, may take in all

packets from the switch and itself implement more precise statistical sampling

techniques such as trajectory sampling.

Either a switch or an end host can determine which packets to steer to a

sidecar. There are a few ways to achieve steering. Analogous to mechanisms

such as MPLS or DOA [129, 151], packets can be directly steered by tacking on

an outermost routable header with the address of a target sidecar. Steering can

use MAC-in-MAC encapsulation or IP-in-IP encapsulation to specify the target

sidecar’s address. To implement marked steering, switches are configured to
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Type of sidecar Cost Appropriateness

Location Cost /
port †

Application

8-core Commodity Server,
1 or 10Gbps NIC $2800

@ ToR
switch $70

can process 1.25-4% of ToR’s
traffic

@ Agg
switch N/A

unsuitable, can only process
< .1% of traffic

RouteBrick / PacketShader
server, up to four 10Gbps
NICs

$9000
@ ToR
switch $14 can process 50% of ToR traffic

@ Agg
switch $8

can process ∼ 2.6% of Agg’s
traffic

n-port RouteBrick /
PacketShader router $9000*n

@ Agg
switch N/A

can process all Agg traffic, L3
replacement

† Cost per 1 GbE ToR port, to process at least 2.5% traffic at indicated location,
assuming 2:1 over-subscription.

Table 5.1: Comparison of implementation options for sidecars. The cost and
suitability of each option varies depending on network location and
application demands.

redirect to a sidecar traffic that has a specific VLAN tag (works in L2) or type-of-

service tag (works in L2 or L3) or a specific MAC or IP destination address. The

edge or downstream sidecars can mark packets for processing at the next sidecar

on the path.

Choosing an appropriate sidecar

Table 5.1 compares a few options for sidecars on their cost, as of July 2010, and

appropriateness for network locations and application demands.

Let us consider the cost of using commodity server hardware as sidecars.

An 8-core compute node with one 1 GbE link costs $2000. Swapping in an

optical 10Gbps NIC increases the price by about $800. A ToR switch may have

40 1 GbE downward-facing ports attached to nodes in the rack and four 10

GbE upward-facing ports attached to aggregation switches. ToR switches are
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typically low-end switches (limited ACL, VLAN, multicast capability, no L3

support) and cost $3000, for a per-node cost of $75. Note that, due to differences

in volume and market segment, switches and sidecars can have different levels of

markup; thus, comparing list prices only approximates a comparison of true costs.

RouteBricks and PacketShader-class hardware have higher end processors and

I/O interconnects costing $4000-7000; the cost of optics for each of four 10GbE

NICs brings up the cost to about $6000-9000. The performance of commodity

servers is set to improve since low end processors will soon ship with better I/O

interconnects and on-die GPUs.

A single commodity server is suitable as a sidecar at the ToR switch. It can

process sizable fractions of the traffic traversing the ToR switch and perform

moderate computations per processed packet. The per-node increase in cost due

to the sidecar is about $50 for a node with a 1 GbE link that can process 1.25%

of the packets through the ToR switch ($70 for a node with a 10 GbE link that

can process 4%1). The final cost is comparable to that of a high-end ToR switch;

SideCar’s programmability enables it to match or exceed some of the features of

such switches.

Note that a number of optimizations are possible. Applications that only

require lightweight packet processing or only monitor a low volume of traffic

allow sidecars to be shared between different switches, while more intensive

workloads can use higher end sidecars. Performance estimates from RouteBricks

and PacketShader suggest that one server can support up to 35-40Gb/s today. A

PacketShader blade split across 16 different ToRs can process 3.1% of the packets

at each of these ToR’s and costs $14 per port, while one split across 4 different

1A commodity server with lower bandwidth I/O interconnects cannot process more than
3-5Gbps [53]
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ToRs can process 12.5% of the packets for $56 per port. Both configurations are

more cost-effective than using commodity blades.

An important special case is that of a non over-subscribed datacenter net-

work. When one of the many recently proposed datacenter topologies (VL2,

fattree, bcube, dcell) eliminate over-subscription in the core of the network, many

applications such as monitoring, multicast support and controlling network

bandwidth allocation only require programmatic control outside the network

core, i.e., at the ToRs.

If necessary, however, RouteBricks or PacketShader class server can play

the role of a sidecar at aggregation and core switches. Assuming a 1:2 over-

subscription ratio, the cost increase is $8 per server to be able to process 2.6% of

the traffic entering the aggregation or core switch; this includes the $16,000 cost

of consuming four 10 GbE ports on a 160-port aggregation or core switch. The

cost falls linearly as over-subscription factor increases. In non-oversubscribed

topologies that use more switches, the per-port cost increases linearly with

the number of additional aggregation or core switches needed to support the

topology.

Applications

We show how SideCar facilitates novel solutions to four pressing problems in

large-scale cloud datacenters and in enterprise networks.

Enhanced Seawall control protocol In the baseline version of Seawall, the con-

gestion control loop relies solely on end-to-end congestion signals. Inferring
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congestion signals in an end-to-end fashion results in slower control loop re-

sponse and causes suboptimal performance when all traffic is bundled through a

small number of congestion controlled tunnels.

SideCar improves edge-based congestion control by using in-network trusted

packet processors to provide XCP [93]-like explicit feedback. By providing

explicit feedback, in-network trusted packet processors on the path enable the

send hypervisors to quickly yet stably converge to their appropriate shares.

Specifically, the trusted packet processors along the path sample uniformly from

all packets to estimate the amount of spare bandwidth available on the bottleneck

link and the identities of the hypervisors that are using the link. By passing these

values back to the send hypervisors, each hypervisor can make a judicious choice

of adapting its share. The increase and decrease rules, while analogous to XCP,

have to be modified since only a sample of all packets are observed and since

feedback is not issued per-packet.

Reducing TCB size for reachability isolation The edge-based reachability iso-

lation system trusts end hosts to implement packet filtering in accordance with

the network’s reachability policy. Should an end host be compromised, a mali-

cious VM may be able to bypass the policy. To prevent this using only edge-based

packet processing, virtual switches can implement packet filtering to reject any

received packets that violate the policy. While this approach prevents unwanted

traffic from reaching the VMs, an attacker can force the receive virtual switch

to waste CPU cycles processing these packets or burden the network with un-

wanted traffic. One might consider proactively blocking such traffic using the

receiver virtual switch to detect violations on behalf of the fabric controller; in

response, the fabric controller could quarantine the offending VM. However, this
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introduces another potential denial-of-service attack, wherein a compromised

node falsely accuses a well-behaved VM of launching an attack.

SideCar leverages sampling to achieve, for significantly lower cost, the flexi-

bility of hypervisor filtering while providing defense-in-depth and aggressive

containment of attacks. A probabilistic guarantee of detecting policy violations,

combined with an aggressive mechanism to contain attackers, suffices to limit

the damage due to an attacker. Though this probabilistic guarantee temporarily

permits some packets that switch-based filtering would reject outright, it can

implement finer-granularity policies and scale to larger numbers of VMs.

SideCar uses sample-based auditing to enforce reachability isolation, achiev-

ing, for significantly lower cost, the flexibility of hypervisor filtering while pro-

viding the same level of DoS protection as switch-based filters. SideCar switches

do not filter packets; rather, they expect end hosts to filter packets, but execute

trusted packet processors that check a uniform sample of packets against the

reachability policy. By itself, sampling provides only reachability isolation detec-

tion. To provide reachability isolation, we combine this with a strong response to

policy violations. When violations are detected, the fabric controller configures

the ToR to revoke the sender VM’s access to the network.

The detectors, on account of being physically separate sidecar processors, are

harder to compromise. Further, we use address spoofing prevention mechanisms

at the edge (i.e., in ToR switches and hypervisor virtual switches) to prevent an

attacker from spoofing unwanted packets as if they were coming from someone

else. Thus, an attacker cannot cause SideCar to revoke access of innocent nodes.

Sampling provides a probabilistic guarantee – with high probability, SideCar

detects violations within a small number of packets. Suppose p is the proba-
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bility of sampling a packet. Then the probability of detection after sending k

policy-violating packets is 1 − (1 − p)k. When multiple in-network trusted packet

processors lie on a path from the source to the destination, there are further

detection opportunities. Assuming independent sampling at m SideCar switches

along the path, the detection probability increases to 1 − (1 − p)m·k. Given a sam-

pling probability of 1% and two SideCar switches, the detection probability is

99% after 227 packets. 2

This packet limit applies to all destinations from a given VM; each VM can

incur only a limited number of violations. This bounds the total packet leakage

between colluding hosts on isolated networks and bounds the amount of host

CPU and network capacity consumed on filtering unwanted packets that violate

the policy.

VM migration and churn When VMs move or new VMs are created or

removed, the set of applicable policies changes. The fabric controller, which is

responsible for coordinating such actions, communicates the change to sidecars.

For a short time after a policy change, stale packets in the network may be mis-

taken for violations. To guard against such false positives due to race conditions,

SideCar accepts packets that conform to the old policy up to a timeout period

after the change.

Cost comparison with edge-only and switch-only approach By retaining

filters at the destination virtual switch, the probabilistic guarantee of the sample-

based approach can be converted to a deterministic one since any packet that

slips past will be dropped. This incurs the same end host filtering overhead on

2increasing from 99% after 458 packets with just one switch.
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conforming traffic as the edge-only approach yet provides substantially better

protection against denial of service attacks. Compared with using large switch

TCAMs, the sample-based approach supports more expressive policies and can

be retrofitted without replacing switches en masse.

More expressive policies SideCar allows for highly expressive policies and

scales to the size and churn in cloud datacenters. Similar to Berkeley Packet

Filters [108], SideCar’s policies in software can be specified over hosts, ports

and applications. Checking for policy violations is embarrassingly parallel.

PacketShader reports a rate of > 10 mpps with two GPUs on similar rules.

Further, much work to speed up filtering large rule sets in the context of Berkeley

packet filters [27] and IDS boxes can be leveraged in software.

Scalable, programmable multicast Multicast can improve the performance of

many abstractions for building large scale systems, such as consensus [36], data

replication [38, 67] and mass VM start up [99]. However, the use of native IP

multicast has been limited in enterprise datacenters due to concerns about its

congestion stability and security [148]. Likewise, cloud providers typically do

not expose multicast to their tenants.

End hosts steers packets needing multicast support to a SideCar switch on the

path. SideCar maintains multicast state in the sidecars. For each group whose traf-

fic transits through a SideCar switch, the sidecar of that switch maintains a list of

the switch ports having participants in the group. Upon receiving multicast pack-

ets, a sidecar replicates the packet as necessary and forwards it out the other ports.
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Multicast primitives can be built using SideCar that avoid the security and

congestion implications of native IP multicast [50]. Such out-of-band support for

multicast is similar to Application Layer Multicast [42] but is better performing

due to fewer needless copies of packets and shorter paths. Congestion control or

back pressure can be done in software to improve stability.

Supporting multicast is feasible with SideCar. Even commodity servers can

handle table lookup and packet replication for up to modest volumes of multicast

traffic. When the fan-out of a group is large, SideCar leverages support for local

multicast groups in switch hardware. By constructing a local multicast group

entry consisting of the outgoing ports that this traffic should leave on, the sidecar

needs to transmit just one copy of the packet and defer replication to the data

plane in the switch.

Preserving hypervisor policy control under direct I/O To improve network

performance in virtualized environments, direct I/O from guest VMs to the

NIC [54] has been recently standardized. Direct I/O avoids the overhead of

passing packets through the hypervisor. However, it comes at the cost of losing

the policy control (e.g., filters, rate limiters) that is currently done in the virtual

switch.

SideCar provides a way to restore the policy control of the virtual switch

without waiting for network usage policy enforcement in direct I/O to become

standardized, implemented, and available. Consider the example of rate limiting

a VMs traffic to the network. SideCar achieves this by asking the guest VM to

limit its traffic. However, there is no guarantee that the guest VM, which can be

arbitrarily modified by the tenant, will do so. Hence, a SideCar switch at the ToR
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upstream of the guest samples all traffic leaving the ToR. By sampling uniformly

at random, SideCar can project from the proportion of the guest’s traffic seen in

the sample to check that the VM is within limit.

Consider another example of controlling a VM’s resource utilization on a

storage area network (SAN) that provides many hosts and VMs with access to a

common set of disks. A VM’s seek load and bandwidth consumption can impact

the throughput of other VMs accessing disks on the same SAN [75]. SideCar

can enforce policies on SAN access without interposing on all traffic. Instead,

SideCar expects the guest to mark and steer disk command packets to a sidecar

that can track these metrics. To prevent a guest from deflate its request rate by

only steering some of its command packets, SideCar uses sample-based spot

checking to probabilistically bound the number of request packets were steered

incorrectly.

In this discussion, we assume use of a datagram-based SAN protocol, such as

FCoE [7], with a software-based initiator that sends requests over a direct I/O

NIC. SideCar expects the guest VM to limit its disk access rate. Controlling SAN

access requires a different verification algorithm from network bandwidth, since

both seek time and throughput are bottlenecks on mechanical drives. Since disk

schedulers commonly use the rate of I/O operations and latency to approximate

seek overhead, SideCar measures these as well as throughput. To do so, only

SCSI command packets (e.g., block read and write requests and their status codes,

but not their payloads) are steered to and inspected by SideCar. SideCar parses

the commands to measure the number, transfer size, and latency. Inspecting

only command packets and not data packets is more efficient since mechanical

drive arrays only support 100s-1000s of I/O operations per second, yet can easily
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saturate a SAN link with data. To avoid having to modify to the NIC or ToR

to recognize command packets, the guest VM is responsible for steering the

command packets. SideCar uses uniform random sampling to enforce proper

steering with spot checking. SideCar parses every sampled packet to verify that

FCoE SCSI control packet are properly steered. This check yields a probabilistic

guarantee: while some control packets may be improperly steered, long-term

cheating will be detected with high probability. For a sample rate of 1%, the

probability of evading detection drops to less than 0.1% after issuing 172 I/O

operations (each I/O operation generates four control packets). Since this detec-

tion generates no false positives, SideCar can terminate the VM or raise an alarm

after detecting any violations. Thus, a malicious or selfish VM is limited in the

amount of damage that it can do.

5.2 Building a knowledge plane for federated cloud computing

For reasons of service quality, reputation, and regulatory compliance, cloud

tenants can require performance, reliability, and confidentiality guarantees from

the resources delivered by cloud providers. For instance, the payment process-

ing and health care industries mandate specific security requirements on the

computing infrastructure of participants [9].

But the current cloud infrastructure is ill-suited for providing such assurances

and exports only limited interfaces for coordinating between (1) cloud providers

and tenants and between (2) cloud providers and other cloud providers. Today,

such guarantees are exchanged in an ad hoc fashion and are often based on a

provider’s reputation. Reputation can be difficult to acquire and poses a market
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barrier that is biased towards established providers3. Despite the theoretical fun-

gibility and portability of applications built using cloud computing abstractions,

the potential gains of diversifying to new providers or constructing new cloud

service offerings are sometimes dwarfed by the economic transaction costs of

determining compliance with requirements.

For instance, suppose a large, reputable company has excess computational

capacity in a private cloud used to support sensitive internal applications. Rather

than allowing this equipment to sit unused, wastefully depreciating in value, the

company could recoup costs by selling spare capacity to the public cloud [57].

But the cloud infrastructure lacks secure and cost-effective mechanisms for

discovering and exploiting idle computational capacity.

Thus, despite the potential opportunities, federated cloud computing in-

frastructure where computational resources are offered by many cooperating

participants [101] has seen limited use compared to monolithic offerings from

large providers. A knowledge plane can help facilitate federation by adding

transparency and accountability to economic transactions in the cloud. These

derive from NetQuery’s reasoning abstractions, which enable participants to

specify application requirements and determine that they hold. When applied

to cloud computing, NetQuery reasoning combines network properties, such as

those describing enhanced network guarantees from Section 5.1, with properties

describing the end host cloud software stacks, such as the allocation of mem-

ory, CPU, and I/O bandwidth between different VMs. By enabling buyers to

automatically determine whether a cloud provider delivers a necessary level of

service, NetQuery reduces the barrier to participation in the cloud marketplace.

3This market barrier is orthogonal to other potential sources of cloud inefficiency, such
as datacenter network over-subscription, which can strand capacity, and proprietary cloud
interfaces, which can cause vendor lock-in.
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Reasoning in a federated cloud computing infrastructure should satisfy the

following requirements:

• To enable buyers to make sound decisions about the suitability of adver-

tised cloud resources, reasoning should cover the trustworthiness of the

underlying information.

• In a federated cloud, intermediaries might buy and resell capacity to hedge

or speculate on price changes or to provide value-added services. By

making analysis results self-certifying and non-repudiable, the knowledge

plane should allow intermediaries to pass analysis results from their origi-

nal purchase to their customers as supporting evidence for claims about

the resold service. Self-certifying and non-repudiable analysis results also

serve as an audit trail, which can detect and discourage fraud.

• Commercial infrastructure operators often regard as confidential the in-

ternal details of their datacenters and networks. To accommodate such

practices, analysis should limit information leakage to acceptable levels.

These requirements closely parallel those of the federated Internet. NetQuery

analysis enables applications to check compliance with requirements by establish-

ing characteristics in a remotely verifiable fashion. For instance, when reasoning

about the network capacity available to a VM instance, an analysis might examine

the network topology, utilization level, and active VM instances, then use NAL

to synthesize a proof showing each VM’s share of the network. Implementing

analysis with sanitizers protects confidential operator information.
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5.2.1 Feasibility analysis

Here, we evaluate the feasibility in applying NetQuery to cloud computing by

examining the scalability requirements of the knowledge lane, as framed in the

context of a seller (cloud providers) offering computational resources from a

virtualized cloud data center and buyers (potential tenants or other providers)

seeking to lease computational resources.

The total required service capacity from the knowledge plane is proportional

to demand from the seller’s devices and abstractions that are represented in it,

demand from the buyers’ analysis code that retrieve properties from it, and the

churn rate (e.g., arrival and departure) of VM instances. As the total number of

components and system state update rate increase, the amount of storage and

processing power increases. Likewise, buyers induce load as they issue discovery

operations to find capacity. To scale to larger datacenter sizes or higher request

rates, the knowledge plane can be partitioned across multiple servers, with each

server responsible for a subset of tuples.

The following estimates indicate that knowledge planes in typical datacenters

can be realized with a small number of NetQuery servers:

Space Let us analyze the knowledge plane requirements for a 20,000 node,

non-oversubscribed datacenter. For a network with 1 Gb/s access links in each

48-node rack, 128-port 10 Gb/s aggregation and core switches, partitioned into

multiple L2 domains connected by an L3 core4, this topology requires approx-

imately 450 switches. The tuple representation for each switch consists of the

4Datacenter topologies such as [71] which seek to minimize table size and churn will have
significantly lower requirements.
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ACL filter rules, forwarding table entries, and neighbor list; of these, the ACL

rules (100-32,000 entries) and forwarding tables (16,000-32,000 entries) dominate.

Given conservative assumptions about the size of ACL and forwarding entries,

each switch fits in about 5 MB of space. The tuple representation of each node

consists of the hardware description (e.g., memory, CPU, disk) and a list of active

VM instances. When dumped in a verbose SNMP format, these host properties

fit in under 200 KB. Hence, the total space requirement is 2250 MB (for switches)

+ 4000 MB (for nodes), which easily fits in memory on a commodity server.

Update rate The state update rate is largely determined by the VM instance

churn rate. As VM instances are started and stopped, the node tuples and

forwarding tables of every switch in its L2 domain change. Assuming a L2

domain of 500 virtual machines [115] and an average of 4 VM instances per

physical node, installing a new VM instance will potentially trigger forwarding

table updates in three top-of-rack switches. Under the assumption of 100K VM

instance arrivals per day [123], on average 2.3 VM instances enter and exit per

second. Thus, the state update rate induced by new instances is minimal.

Query rate Every discovery operation to find capacity involves running an

analysis that fetch information from the knowledge plane. Since VMs from

a buyer are typically installed after examining bids discovered from several

potential sellers, the number of discovery operations is directly proportional to

the VM arrival rate. Each analysis in turn can examine tuples from multiple

components. Because our cloud resource trading applications only have a small

number of unique claims, which are issued and checked in proportion to the

number of new customers and VMs, we expect the query rate to be manageable.

92



5.2.2 Knowledge plane extensions to cloud infrastructure

We now describe how to extend cloud infrastructure to generate trustworthy

ground properties even against malicious sellers (e.g., intermediaries or primary

suppliers) that have ownership control over the data center infrastructure. We

assume the availability of TPMs on every end host in the data center, which is

reasonable given that TPMs are already available on commodity server hardware.

TPMs bootstrap trust in the end host cloud software stack and fabric controller,

thus ensuring that any property they export to the knowledge plane can be tied

back to a specific hardware/software platform. As a result, attackers cannot

directly spoof properties.

Cloud data centers can be extended to export trustworthy properties by

adding shims to intercept information and send it to the knowledge plane. Be-

cause cloud datacenters hold similar management state at multiple layers, these

shims can be added in several places. The fabric controller maintains a global

state store describing how each component is used [1, 149]. Each individual

component also export similar state. For example, the fabric controller tracks in

its global state store which VM instances are mapped to each compute node in

the datacenter, using this data for provisioning and load balancing. At the same

time, the hypervisors for each node knows which VM instances are running

locally.

Adding shims in the fabric controller’s global state store, rather than each

datacenter component, has the advantage of providing analyzers with a similar

programming model as the fabric controller code, enabling programmers familiar

with fabric controllers to apply such experience to writing analyses. Apart from

the potential benefits of API reuse, the programming model already defines
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consistency semantics between the global state and the datacenter components,

which DCQuery would inherit. By comparison, using shims at each component

to populate DCQuery would introduce another, potentially different, consistency

semantics for the knowledge plane’s global state.

5.2.3 Protecting the accuracy of network properties

Cloud data centers are potentially vulnerable to attacks that manipulate the

execution environment, thereby tricking attested, honest components into report-

ing false information; such attacks are similar to those in federated networks

(Section 3.2).

In virtualized datacenters, virtual switches are widely distributed and can be

readily extended with new monitoring mechanisms to prevent and detect such

tampering. The virtual switches constantly monitor the network using probes

that an attacker cannot distinguish from regular traffic. The statistics from all

virtual switches are periodically merged to look for anomalies relative to the

purported topology.

For instance, suppose a seller claims to have a non-oversubscribed network.

In a non-oversubscribed network, the only bottlenecks can be at the sender’s

or receiver’s access link. To verify this, each virtual switch can be configured

to use low priority flows to probe for residual capacity along the path to every

destination currently in use by the locally-running VMs. If total capacity (i.e.,

probe + application traffic) is ever less than the full link capacity, then the fabric

controller checks the destination virtual switch to verify that the sender is indeed

bottlenecked.
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Performing such monitoring in the virtual switch instead of VMs has several

advantages. Measurements at the virtual switch are less noisy, since it can

see traffic from every local VM. They are also less costly, since a single set of

measurements can be amortized across all VMs. Deploying monitoring in virtual

switches provides a transition model for legacy cloud data centers, providing

anomaly detection in lieu of upgrades to physical switches to perform such

detection.

Auditor-generated properties

Some properties that can impact the validity of a claim are not observable by the

cloud infrastructure. For instance, the physical security provided by a datacenter

depends on who is allowed into the physical facility, and the true redundancy

level of a logically-independent set of components is contingent on whether the

physical components upon which they depend (e.g., power, cooling, physical

fiber links, financial soundness of operator) also have independent failure modes.

Such ground statements come from audits of the business processes and

infrastructure. While audits are manual processes conducted by a trusted third

party, most datacenters and cloud providers already conduct these audits [73]

to support the legal compliance requirements of cloud customers. Thus, the

knowledge plane imposes only the small additional cost of publishing the audit

results in machine-readable form.
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5.2.4 Establishing new guarantees with reference monitors

By monitoring and rewriting control messages, reference monitors [58], im-

plemented in shims that interpose on the interactions between components,

provides a lightweight, yet flexible, mechanism for building new guarantees,

such as enabling resale of VMs.

Reference monitors can be implemented with few changes to the fabric con-

troller or components. To add a reference monitor, the control interface is modi-

fied such that all messages must cross the reference monitor. Reference monitors

run in an attested execution environment isolated from the rest of the system,

such as a small VM.

5.2.5 Applications

Reselling VMs

A VM owner that wants to enable reselling of that VM permanently gives its

access credentials to that VM to a reference monitor; after this, only the reference

monitor can directly manipulate the resource. The reference monitor then issues

a credential to the resource owner that allows it to access the resource through

the reference monitor. The reference monitor is well-known to potential buyers

and is trusted to implement delegation; its proper installation can be remotely

verified with attestation. When the resource owner resells the VM to a buyer, the

reference monitor revokes all access from the owner and issues a new credential

to the buyer. To protect the data confidentiality of the buyer, the reference

monitor scrubs all state from the VM before returning control to the owner.
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Transparent cloud

A knowledge plane brings transparency to cloud resource discovery and provi-

sioning, eliminating the need for costly trust establishment. By removing this

market barrier, transparency improves pricing efficiency and resource utilization.

Given an offer of computational resources from a seller, a buyer can use the

knowledge plane to verify the seller’s claims. For instance, a buyer can verify

a set of performance claims by analyzing the network topology and number of

active VMs to determine maximum network capacity, oversubscription level,

and redundancy.

Many types of claims are much easier for buyers to check with a knowledge

plane than with probing. Cloud sellers might offer premium units of computation

that are indistinguishable in function and performance from regular computa-

tion yet have significantly different isolation and provisioning properties. For

instance, tenants may pay extra for VMs that are physically segregated from

other tenants, minimizing potential for information leakage [12]. Tenants may

also pay to reserve physical hardware for future use [14]. In both cases, analysis

combined with triggers and reference monitors can verify that these promises

are kept.

Once buyers can readily verify seller claims, cloud participants have consider-

ably more flexibility in mitigating the risks of operating large-scale applications.

To hedge against long-term capacity planning risks, cloud providers can sell

prepaid allotments of capacity (e.g., reserved instances or long-term contracts);

these shift capacity planning risk to the customer. Transparency enables buyers

of these reserved allotments to resell entire contracts or sub-lease idle capacity.

Similarly, many corporations install large private clouds; they can recover part
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of the cost of these clouds by partitioning off idle parts of the cloud and offering

it for public use; this capacity can later be safely reclaimed with a TPM-attested

reboot. This approach provides better control over isolation and hardware reuse

than a hosted private cloud [12].

Federated cloud commodities exchange

Trading computational capacity on commodities exchanges can improve pricing

efficiency and streamline discovery and exploitation of idle resources [101].

Commodities are typically categorized into equivalent quality bins to abstract

away unimportant details and to maximize fungibility and liquidity. The bilateral

transparent cloud naturally generalizes into a cloud commodities exchange.

The exchange defines a commodities schema for buyer bids and seller offers of

computational resources. Because buyers and sellers can vary in how much they

know about their performance requirements and achievable SLA, these schemas

should cover different levels of precision. Because many cloud applications

consist of multiple closely-coupled instances, these schemas should extend to

cover multiple node bids and offers. For instance, a buyer that wants to deploy

a new service may not yet know how much network capacity is needed; such

buyers would specify an estimated set of instance types and request duration,

with network capacity left as best-effort. A buyer that needs a high performance

map-reduce cluster might issue a bid for a set of high-CPU instances connected

over a full bisection bandwidth network. 5

5A full bisection bandwidth network of size N is one where, for all bisections (i.e., partition
into two sets of size N/2 each), the aggregate bandwidth between the sets is N/2 times the
capacity of a single host uplink. That is, all nodes can simultaneously communicate at full
speed.
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Applications can benefit from still more expressive schemas. Schemas that

embed location and WAN capacity information enable applications such as

content distribution that are performance-sensitive. Claims in all preceding

schemas are straightforward to check with analyses.

Allowing both buyers and sellers to post price information yields a double

auction market, which generally leads to more efficient prices [65]. Posting buyer

requirements is often more straightforward to implement, since the buyer knows

what kind of datacenter would be appropriate. By comparison, a seller can offer

many possible VM instance types from a single pool of resources. There is likely

a tradeoff between pricing efficiency, the diversity of offers posted for this pool,

and overhead of failed buyer/seller matches caused by stale offers. For instance,

a seller may simultaneously offer many instances but not have enough resources

to accept bids for all offers at once. If multiple bids arrive at the same time, some

will not succeed and need to be routed to another seller.

Much as in existing financial exchanges, the cloud commodities exchange

enables intermediaries to compose multiple offers into yet more complex trans-

actions. For instance, intermediaries can engage in market making or arbitrage,

such as sub-dividing one instance type into another, or merge multiple commodi-

ties markets into one. Having a knowledge plane enables each of these while

preserving transparency.
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5.2.6 Open problems

Deployment incentives

Many cloud participants would benefit from a federated cloud. Transparency

benefits users by stimulating competition and gives users greater flexibility in

balancing costs and risk. It also facilitates innovation in cloud intermediaries.

Smaller cloud providers and private cloud operators are incentivized to

deploy a knowledge plane: with the baseline knowledge plane deployment, they

can increase their value relative to the incumbent public cloud providers. They

also benefit from installing other value-adding upgrades, such as adding support

for nested hypervisors to facilitate arbitrary repackaging and better control over

scheduling [28]. These benefits do not have critical mass of provider support as

a prerequisite, but rather could start paying off as soon as a knowledge plane is

supported in commodity cloud stacks and middleware.

By comparison, the deployment incentives are uncertain for the major incum-

bent cloud providers since they benefit from existing market barriers. Allowing

customers to resell capacity can change the load statistics, since harvesting ar-

bitrage opportunities and spare cycles would be a zero-sum game with the

customers. On the other hand, allowing customers to re-transfer risk may result

in more up-front sales of reserved capacity, and a more efficient market may

provide better demand prediction signals. The structure of the cloud market may

also have too many providers for the major incumbents to collude. Resolving

this tension is an open economics and business question.
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CHAPTER 6

SEAWALL DESIGN AND IMPLEMENTATION

Data centers that provide fine-grained control over network capacity alloca-

tion are mutually beneficial for data center operator and tenants. The diverse

mix of tasks and VMs in a typical cloud data center workload can lead to perfor-

mance interference and denial-of-service attacks; such uncertainty raises tenant

concerns about moving critical applications to the cloud. Operators can leverage

better control over network capacity allocation to offer tiers of service, allowing

tenants that have more stringent performance requirements to pay more for a

guaranteed level of service.

By satisfying the following requirements, Seawall can be applied across

diverse range of data center networks:

• Require no changes to network topology or hardware. Recently, many

data center network topologies have been proposed [71, 10, 77, 90]. Cost-

benefit trade-offs indicate that topologies should be matched to intended us-

age. For example, EC2 supports two network topologies targeting different

applications. Network-bottlenecked high performance computing (HPC)

applications can use VMs connected to a full bisection bandwidth network.

Applications without such stringent network performance requirements

can use less expensive VMs that are connected to a conventional over-

subscribed tree topology. To be widely applicable, mechanisms to share the

network should be agnostic to network topology.

• Scale to large numbers of tenants and high churn. Any network sharing

mechanism would need to scale to support the workloads seen in large

scale data centers, such as those used for cloud computing.
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• Enforce sharing without sacrificing efficiency. Statically apportioning

fractions of the bandwidth improves sharing at the cost of efficiency and can

result in bandwidth fragmentation that makes it harder to accommodate

new tenants. At the same time, a tenant with pent up demand can use

no more than its reservation even if the network is idle. Poor network

utilization degrades performance and can strand computational resources,

resulting in increased costs for the data center operator.

Seawall has few dependencies on the physical network, since it relies on

neither special switch functionality, such as per-flow state or rate limiting, nor

assumptions about network topology. Instead, Seawall relies on congestion-

controlled tunnels implemented in hosts. Seawall does benefit from measurements

at switches, if they are available. Seawall scales to large numbers of tenants and

handles high churn because physical switches do not need to be reconfigured

as tenants, VMs, or tasks come and go, reducing processing demands on switch

control processors.

Seawall’s congestion control architecture and algorithms differ from those

of existing end-to-end approaches. TCP is the de facto standard for sharing

network capacity. While it provides end-to-end congestion control, it does not

satisfy our requirements. In principle, TCP allocates bottleneck capacity in a

flow-oriented fashion, with concurrent flows equally sharing the bandwidth

capacity of bottleneck links. However, malicious or selfish tenants can easily

bypass TCP by changing their TCP implementation. Even if TCP were mandatory,

the flow-oriented policy provides neither flexible nor meaningful control over

capacity allocation. Many operators today deploy differentiated tiers of service

that allows customers to pay more for faster VMs. Service tiers are currently
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differentiated by allocating of local resources, such as CPU, memory, and storage,

in proportion to VM price [13]. But flow-oriented allocations do not support such

proportional allocation. For instance, when two tenants with the same aggregate

demand but differing number of flows share a data center, the tenant with more

flows will receive more network capacity. Indeed, hosts can arbitrarily increase

their share of the network simply by opening more flows.

Seawall’s packet processing architecture and control loop addresses these

concerns. Conformance with Seawall control is mandatory: processing occurs in

the cloud computing stack (e.g., virtual switch or platform network stack), where

it is isolated from tenant code and cannot be bypassed. Seawall’s control loop is

link-oriented, equally allocating the bandwidth of bottleneck links between the

nodes using those links

To illustrate the broad applicability of Seawall, this chapter describes a Sea-

wall architecture and implementation that depends only on functionality found

in existing virtual switches and network stacks. This design provides operators

and tenants with all of the benefits of improved control over network bandwidth

allocation.

When combined with trusted packet processors and NetQuery, Seawall’s

guarantees can be remotely verified by other participants in a federated cloud

computing infrastructure. Adding TPMs to end hosts helps to protect Seawall

from attack: since Seawall uses a distributed control loop, nodes that do not

conform to the protocol can skew the resulting bandwidth allocations. TPMs

can detect nodes with non-conformant software stacks, thereby preserving the

control loop guarantees.
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6.1 Empirical motivation

To understand the limitations of existing network allocation schemes, we ex-

amine two types of clusters that consist of several thousands of servers and are

used in production. The first type is that of public infrastructure cloud services

that rent virtual machines along with other shared services such as storage and

load balancers. In these datacenters, clients can submit arbitrary VM images

and choose which applications to run, who to talk to, how much traffic to send,

when to send that traffic, and what protocols to use to exchange that traffic (TCP,

UDP, # of flows). The second type is that of platform cloud services that support

map-reduce workloads. Consider a map-reduce cluster that supports a search

engine. It is used to analyze logs and improve query and advertisement rele-

vance. Though this cluster is shared across many users and business groups,

the execution platform (i.e., the job compiler and runtime) is proprietary code

controlled by the datacenter provider.

Through case studies on these datacenters we observe how the network is

shared today, the problems that arise from such sharing, and the scalability

requirements for an improved sharing mechanism.

In all examined data centers, the servers have multiple cores, multiple disks,

and tens of GBs of RAM. The network is a tree like topology [10] with 20–40

servers in a rack and a small over-subscription factor on the upstream links of

the racks.
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6.1.1 Performance interference in infrastructure cloud services

Recent measurements demonstrate considerable variation in network perfor-

mance metrics – medium instances in EC2 experience throughput that can vary

by 66% [102, 152]. We conjecture, based on anecdotal evidence, that a primary

reason for the variation is the inability to control the network traffic share of a

VM.

Unlike CPU and memory, network usage is harder to control because it is

a distributed resource. For example, consider a simple strawman where each

VM’s network share is statically limited to a portion of the host’s NIC rate (the

equivalent of assigning the VM a fixed number of cores or a static memory size).

A tenant with many VMs can cumulatively send enough traffic to overflow the

receiver, some network link en route to that host, or other network bottlenecks.

Some recent work [128] shows how to co-locate a malicious VM with a target VM.

Using this, a malicious tenant can degrade the network performance of targeted

victims. Finally, a selfish client, by using variable numbers of flows, or higher

rate UDP flows, can monopolize network bandwidth.

We note that out-of-band mechanisms to mitigate these problems exist. Com-

mercial cloud providers employ a combination of such mechanisms. First, the

provider can account for the network usage of tenants (and VMs) and quarantine

or ban the misbehavers. Second, cloud providers might hide details regarding

network topology and VM placement to make it harder for a malicious client

to co-locate with target VMs. However, neither approach is fool-proof. Selfish

or malicious traffic can mimic legitimate traffic, making it hard to distinguish.

Further, obfuscation schemes may not stop a determined adversary.
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6.1.2 Performance interference in data intensive workloads

Data intensive workloads, such as map-reduce, use the network to shuffle sub-

stantial volumes of data and intermediate results between nodes within a cluster.

Network overheads can have significant impact on end-to-end performance

metrics. To evaluate the impact of network performance interference for such

workloads, we obtained detailed logs over several days from Cosmos [37], a pro-

duction cluster with thousands of servers that supports the Bing search engine.

The logs document the begin and end times of jobs, tasks and flows.

This cluster exhibits many instances of high network load during which

performance interference is apparent. A few entities (jobs, background services)

contribute a substantial share of the traffic [91]. Tasks that move data over

congested links suffer collateral damage – they are more likely to experience

failures and become stragglers at the job level [16, 91].

Uniquely, however, we find that the de facto way of sharing the network leads

to poor schedules. This is because schedulers for map-reduce platforms [87, 157]

explicitly allocate local resources such as compute slots and memory. But, the

underlying network primitives prevent them from exerting control over how

tasks share the network. Map-reduce tasks naturally vary in the number of flows

and the volume of data moved – a map task may have to read from just one

location but a reduce task has to read data from all the map tasks in the preceding

stage. Figure 6.1 shows that of the tasks that read data across racks, 20% of the

tasks use just one flow, another 70% of the tasks vary between 30 and 100 flows,

and 2% of the tasks use more than 150 flows. Figure 6.2 shows that this variation

is due to the role of the task.
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Figure 6.1: Distribution of the number of flows per task in Cosmos.

Task type # flows
per task

% of net
tasks

Aggregate 56.1 94.9
Partition 1.2 3.7
Extract 8.8 .2
Combine 2.3 1.0
Other 1.0 .2

Figure 6.2: Variation in number of flows per task is due to the role of the task

Because reduce tasks use a large number of flows, they starve other tasks that

share the same paths. Even if the scheduler is tuned to assign a large number

of compute slots for map tasks, a small number of reduce tasks will cause these

map tasks to be bottlenecked on the network. Thus, the compute slots held by

the maps make little progress.
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Figure 6.3: Scale and churn seen in the observed datacenter.
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6.1.3 Magnitude of scale and churn

The suitability of a network allocation scheme is in part determined by the

workload that it manages; a suitable scheme should be able to express policies

with sufficient control and granularity while scaling to the number of entities

under management. In the Cosmos cluster, the number of traffic classes to

share bandwidth among is large and varies frequently. Figure 6.3(a) shows the

distribution of the number of concurrent entities that share the examined Cosmos

cluster. We see that at median, there are 500 stages (e.g., map, reduce, join), 104

tasks and 105 flows in the cluster. The number of traffic classes required is at

least two orders of magnitude larger than is feasible with current CoS tags or the

number of WFQ/DRR queues that switches can handle per port.

Figure 6.3(b) shows the distribution of the number of new arrivals in the

observed cluster. Note that the x-axis is again in log scale. At median, 10 new

stages, 104 new tasks and 5 ∗ 104 new flows arrive in the cluster every minute.

Anecdotal analysis of EC2, based on decoding the instance identifiers, concluded

that O(104) new VM instances are requested each day [130]. Updating VLANs or

re-configuring switches whenever a VM arrives is several orders of magnitude

more frequent than is achievable in today’s enterprise networks.

Each of the observed data centers is large, with up to tens of thousands of

servers, thousands of ToR switches, several tens of aggregation switches, load

balancers, etc. Predicting traffic is easier in platform datacenters, such as Cosmos,

wherein high level descriptions of the jobs are available. However, the scale and

churn numbers indicate that obtaining up-to-date information (for instance, at

minute granularity) may be a practical challenge. In cloud datacenters like EC2

traffic is even harder to predict because customer traffic is unconstrained.
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6.2 Design

Seawall exposes control over network allocation through the network weight

abstraction. A network weight is associated with each entity that is sharing

the network. The entity can be any traffic source that is confined to a single

node, such as a VM, process, or collection of port numbers, but not a tenant or

set of VMs. On each link in the network, Seawall provides the entity with a

bandwidth share that is proportional to its weight; i.e., an entity k with weight

wk sending traffic over link l obtains this share of the total capacity of that link

Share(k, l) = wk
Σi∈Active(l)wi

. Here, Active(l) is the set of entities actively sending traffic

across l. The allocation is end-to-end, i.e., traffic to a destination will be limited by

the smallest Share(k, l) over links on the path to that destination. The allocation is

also work-conserving: bandwidth that is unused because the entity needs less

than its share or because its traffic is bottlenecked elsewhere is re-apportioned

among other users of the link in proportion to their weights.

Assigning the same weight to all entities divides bandwidth in a max-min fair

fashion. By specifying equal weights to VMs, a public cloud provider can avoid

performance interference from misbehaving or selfish VMs (Section 6.1.1). The

control loop also accommodates dynamic adjustments to weights, reconverging

rapidly after such changes. We explore examples of configuring weights and

enforcing global allocations in Section 6.2.6.
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Figure 6.4: Seawall’s division of functionality. New components are shaded
gray.

6.2.1 Data path

To achieve the desired sharing of the network, Seawall sends traffic through

congestion-controlled tunnels. As shown in Figure 6.4, these tunnels are imple-

mented within a shim layer that intercepts all packets entering and leaving the

server. At the sender, each tunnel is associated with an allowed rate for traffic on

that tunnel, implemented as a rate limiter. The receive end of the tunnel monitors

traffic and sends congestion feedback back to the sender. A bandwidth allocator

corresponding to each entity uses feedback from all of the entity’s tunnels to

adapt the allowed rate on each tunnel. The bandwidth allocators take the net-

work weights as parameters, work independently of each other, and together

ensure that the network allocations converge to their desired values.

The Seawall shim layer is deployed to all servers in the data center by the

fabric controller that is responsible for provisioning and monitoring these servers.

To ensure that only traffic controlled by Seawall enters the network, a provider

can use attestation-based 802.1x authentication to disallow servers without the

shim from connecting to the network.

The feedback to the control loop is returned at regular intervals, spaced T

apart. It includes both explicit control signals from the receivers as well as

congestion feedback about the path. Using the former, a receiver can explicitly
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Figure 6.5: Content of Seawall’s feedback packet.

block or rate-limit unwanted traffic. Using the latter, the bandwidth allocators

adapt allowed rate on the tunnels. To help the receiver prepare congestion

feedback, the shim at the sender maintains a per-tunnel (i.e., per (sending entity,

destination) pair) byte sequence number. The sender shim stamps outgoing

packets with the corresponding tunnel’s current sequence number. The receiver

detects losses in the same way as TCP, by looking for gaps in the received

sequence number space. At the end of an interval, the receiver issues feedback

that reports the number of bytes received and the percentage of bytes deemed to

be lost (Figure 6.5). Optionally, if ECN is enabled along the network path, the

feedback also relays the fraction of packets received with congestion marks.

1: .Begin (weight W)
2: { rate r ← I, weight w← W } . Initialize
3: .TakeFeedback (feedback f , proportion p)
4: {
5: if feedback f indicates loss then
6: r ← r − r ∗ α ∗ p . Multiplicative Decrease
7: else
8: r ← r + w ∗ p . Weighted Additive Increase
9: end if

10: }

Figure 6.6: A strawman bandwidth allocator. An instance of this allocator is
associated with each (entity, tunnel) pair.
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6.2.2 Strawman

Consider the strawman bandwidth allocator in Figure 6.6. Recall that the goal of

the bandwidth allocator is to control the entity’s network allocation as per the

entity’s network weight. It works as follows: when feedback indicates loss, it

multiplicatively decreases the allowed rate by α. Otherwise, the rate increases by

an additive constant.

This simple strawman satisfies some of our requirements. By making the

additive increase step size a function of the entity’s weight, the equilibrium rate

achieved by an entity will be proportional to its weight. Unused shares are

allocated to tunnels that have unsatisfied demand, favoring efficiency over strict

reservations. The control loop is distributed, requiring no global coordination

since all nodes interact indirectly through congestion signals and the convergence

properties of the control loop. Further, when weights change, rates re-converge

quickly.

This allocator is a variant of weighted additive increase, multiplicative de-

crease (AIMD); any other flow-oriented distributed control loop [11, 6, 117, 127]

can be adapted similarly to achieve the same properties, so long as it can extend

to provide weighted allocations (e.g., see control loop transformations from

MulTCP or MPAT [49, 138]). Distributed control loops are sensitive to variation

in RTT. Seawall avoids this by using a constant feedback period T , chosen to

be larger than the largest RTT of the intra-datacenter paths controlled by Sea-

wall. Conservatively, Seawall considers no feedback within a period of T as if a

feedback indicating loss was received.
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Figure 6.7: Limitations of flow-oriented bandwidth allocation. When entities
talk to different numbers of destinations, flow-oriented allocation of
bandwidth is not sufficient. Reduce tasks behave like the orange entity
while maps resemble the green.

Simply applying AIMD, or related (i.e., TCP-friendly) control loops, on a per-

tunnel basis does not Seawall’s target level of control over bandwidth allocation.

Suppose a tenant has N VMs and opens flows between every pair of VMs. This

results in a tunnel between each VM; with one AIMD loop per tunnel, the tenant

can achieve an allocation of the bottleneck link that varies quadratically with its

size in VMs. Thus, larger tenants can overwhelm smaller tenants (Figure 6.7).

Seawall improves on the mechanism in Figure 6.6 in three ways. First, it

has a unique technique to combine feedback from multiple destinations. By

doing so, an entity’s share of the network is governed by its network weight and

is independent of the number of tunnels it uses (Section 6.2.3). The resulting

policy is consistent with how cloud providers allocate other resources, such

as compute and memory, to a tenant, yet is a significant departure from prior

approaches to network scheduling with distributed control protocols. Second,

the sawtooth behavior of AIMD leads to poor convergence on paths with high

bandwidth-delay product. To mitigate this, Seawall modifies the adaptation

logic to converge quickly and stay at equilibrium longer (Section 6.2.4). Third,

mixing traffic with different levels of responsiveness to congestion signals (e.g.,

TCP vs. UDP) within Seawall can alter the bandwidth allocations achieved by

Seawall; Seawall addresses this with network stack modifications (Section 6.2.5).
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6.2.3 Bandwidth Allocator

Each sending entity is associated with a separate instance of the bandwidth

allocator. The bandwidth allocator takes as input the network weight of that

entity and the congestion feedback from all the receivers that the entity is com-

municating with, then generates the allowed rate on each of the entity’s tunnels.

It has two parts: a distributed congestion control loop that computes the en-

tity’s cumulative share on each link and a local scheduler that divides that share

among the various tunnels.

Step 1: Use distributed control loops to determine per-link, per-entity share.

The ideal feedback for the Seawall control loop would be per-link. It would

include the cumulative usage of the entity across all the tunnels on this link,

the total load on the link, and the network weights of all the entities using that

link. Such feedback is possible if switches implement explicit feedback (e.g., XCP,

QCN) or from programmable switch sampling (Section 5.1.3). Lacking these, the

baseline Seawall relies only on existing congestion signals such as end-to-end

losses or ECN marks. These signals identify congested paths, rather than links.

To approximate link-level congestion information using path-level congestion

signals, Seawall uses a heuristic based on the observation that a congested

link causes losses in many tunnels using that link. The logic is described in

Figure 6.8. One instance of this allocator is associated with each entity and

maintains separate per-link instances of the distributed control loop (rcl). Assume

for now that rc is implemented as per the strawman from Figure 6.6, though

we will replace it with the mechanism in Figure 6.9. The sender shim stores the

feedback from each destination, and once every period T , applies all the feedback
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cumulatively (lines 8–10). The heuristic scales the impact of feedback from a

given destination in proportion to the volume of traffic sent to that destination

by the shim in the last period (line 7, 10).

To understand how this helps, consider the example in Figure 6.7. An in-

stance of Figure 6.8, corresponding to the orange entity, cumulatively applies the

feedback from all three destinations accessed via the bottleneck link to the single

distributed control loop object representing that link. Since the proportions sum

to one across all destinations, the share of the orange entity will increase by only

as much as that of the green entity.

Rather than invoking the distributed control loop once per destination, Fig-

ure 6.8 computes just three numbers per link – the proportions of total feedback

indicating loss, ECN marks, and loss-free delivery, and invokes the distributed

control loop once with each.

1: .Begin (weight W)
2: { rcl.Begin(W) ∀ links l used by sender } . Initialize
3: .TakeFeedback (feedback fdest)
4: { store feedback }
5: .Periodically ()
6: {
7: proportion of traffic to d, pd =

fd .bytesRcvd∑
fi.bytesRcvd

8: for all destinations d do
9: for all links l ∈ PathTo(d) do

10: rcl.TakeFeedback( fd, pd)
11: end for
12: end for
13: . rcl now contains per-link share for this entity
14: nl ← count of dest with paths through link l
15: . rd is allowed rate to d
16: rd ← minl∈PathTo(d)

((
βpd +

1−β
nl

)
rcl.rate

)
17: }

Figure 6.8: Seawall’s bandwidth allocator. A separate instance of this algo-
rithm is associated with each entity. It combines per-link distributed
control loops (invoked in lines 2, 10) with a local scheduler (line 16).
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Step 2: Convert per-link, per-entity shares to per-link, per-tunnel shares.

Next, Seawall runs a local allocator to assign rate limits to each tunnel that

respects the entity’s per-link rate constraints. Dividing each link’s allowed rate

evenly across all downstream destinations leads to wasted bandwidth if the

demands across destinations vary. For the example in Fig. 6.7, an even allocation

leads to a 1
3
′rd share of the bottleneck link to the three destinations of the orange

entity. If the orange entity has demands (2x, x, x) to the three destinations and the

bottleneck’s share for this entity is 4x, dividing evenly causes the first destination

to get no more than 4x
3 while bandwidth goes wasted. Hence, Seawall apportions

link bandwidth to destinations as shown in line 16, Figure 6.8. The intuition

is to adapt the allocations to match the demands. Seawall uses an exponential

moving average that allocates β fraction of the link bandwidth proportional to

current usage and the rest evenly across destinations. By default, we use β = .9.

Revisiting the (2x, x, x) example, note that while the first destination uses up all

of its allowed share, the other two destinations do not, causing the first to get a

larger share in the next period. In fact, the allowed share of the first destination

converges to within 20% of its demand in four iterations.

Finally, Seawall converts these per-link, per-destination rate limits to a tunnel

(i.e., per-path) rate limit by computing the minimum of the allowed rate on each

link on the path. Note that Figure 6.8 converges to a lower bound on the per-link

allowed rate. At bottleneck links, this bound is tight. At other links, such as those

used by the green flow in Figure 6.7 that are not the bottleneck, Figure 6.8 can

under-estimate their usable rate. This is harmless because all paths from green are

already bottlenecked elsewhere and cannot push more traffic through such links.

When the green entity begins using these links with under-estimated capacity

with new paths that are not bottlenecked, the estimated capacity will increase.
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1: .Begin (weight W)
2: { rate r ← I, weight w← W, c← 0, inc← 0 } . Init
3: .TakeFeedback (feedback f , proportion p)
4: {
5: c← c + γ ∗ p ∗ ( f .bytesMarked − c)
6: . maintain smoothed estimate of congestion
7: if f .bytesMarked > 0 then
8: rnew ← r − r ∗ α ∗ p ∗ c . Smoothed mult. decrease
9: inc← 0

10: tlastdrop ← now
11: rgoal ← (r > rgoal)?r : r+rnew

2
12: else . Increase rate
13: if r < rgoal then . Less than goal, concave increase
14: ∆t = min

( now−tlastdrop

Ts
, .9

)
15: ∆r = δ ∗ (rgoal − r) ∗ (1 − ∆t)3

16: r ← r + w ∗ p ∗ ∆r
17: else . Above goal, convex increase
18: r ← r + p ∗ inc
19: inc← inc + w ∗ p
20: end if
21: end if
22: }

Figure 6.9: Seawall’s distributed control loop. An instance of this allocator is
associated with each (link, entity) pair. Note that Figure 6.8 invokes
this loop (lines 3, 10).

6.2.4 Improving the Rate Adaptation Logic

Weighted AIMD suffers from inefficiencies as adaptation periods increase, espe-

cially for paths with high bandwidth-delay product [93], such as those found

in datacenters. Seawall uses control laws from CUBIC [127] to achieve faster

convergence, longer dwell time at the equilibrium point, and higher utilization

than AIMD. As with weighted AIMD, Seawall modifies the control laws to sup-

port weights and to incorporate feedback from multiple destinations. If switches

support ECN, Seawall also incorporates the control laws from DCTCP [11] to

further smooth out the sawtooth and reduce queue utilization at the bottleneck,
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resulting in reduced latency, less packet loss, and improved resistance against

incast collapse.

The resulting control loop is shown in Figure 6.9; the stability follows from

that of CUBIC and DCTCP. Though we describe a rate-based variant, the equiv-

alent window based versions are feasible and we defer those to future work.

We elaborate on parameter choices in Section 6.2.6. Lines 14-17 cause the rate

to increase along a concave curve, i.e., quickly initially and then slower as rate

nears rgoal. After that, lines 18-19 implement convex increase to rapidly probe

for a new rate. Line 5 maintains a smoothed estimate of congestion, allowing

multiplicative decreases to be modulated accordingly (line 8) so that the average

queue size at the bottleneck stays small.

6.2.5 Nesting Traffic Within Seawall

Nesting traffic of different types within Seawall’s congestion-controlled tunnels

can result in corner-case interactions between Seawall’s control loop. If a sender

always sends less than the rate allowed by Seawall, it may never see any loss

causing its Seawall-allowed rate to increase to infinity. This can happen if the

sender’s flows are low rate (e.g., web traffic) or are limited by send or receive

windows (flow control). Such a sender can launch a short overwhelming burst

of traffic. Hence, Seawall clamps the rate allowed to a sender to a multiple of the

largest rate the sender has used in the recent past. Clamping rates is common

in many control loops, such as XCP [93], for similar reasons. The specific choice

of clamp value does not matter as long as it is larger than the largest possible

bandwidth increase during a Seawall change period.

119



UDP and TCP flows behave differently under Seawall. While a full burst

UDP flow immediately uses all the rate that a Seawall tunnel allows, a set of TCP

flows can take several RTTs to ramp up; the more flows, the faster the ramp-up.

Since slower ramp up usually results in lower shares, UDP will generally receive

larger allocations. Hence, Seawall modifies the network stack to defer congestion

control to Seawall’s shim layer. All other TCP functionality, such as flow control,

loss recovery, and in order delivery remain as before.

The mechanics of re-factoring are similar to Congestion Manager (CM) [26].

Each TCP flow queries the appropriate rate limiter in the shim (e.g., using shared

memory) to see whether a send is allowed. Flows that have a backlog of packets

register callbacks with the shim to be notified when they can next send a packet.

In virtualized settings, the TCP stack defers congestion control to the shim by

expanding the paravirtualized NIC interface. Even for tenants that bring their

own OSes, the performance gain from refactoring the stack incentivizes adoption.

6.2.6 Discussion

This section discusses details deferred from the preceding description of Seawall.

Handling WAN traffic Traffic entering and leaving the datacenter is subject to

more stringent DoS scrubbing at pre-defined chokepoints and, because WAN

bandwidth is a scarce resource, is carefully rate-limited and metered. We do not

expect Seawall to be used for such traffic. However, if required, edge elements in

the datacenter, such as load balancers or gateways, can funnel all incoming and

outgoing traffic into Seawall tunnels implemented in those edge elements.
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Mapping paths to links To run Seawall, each sender requires path-to-link

mapping for the paths that it is sending traffic on (line 10, Figure 6.8). A sender

can acquire this information independently, for example via a few traceroutes.

In practice, however, this is much easier. Since the fabric controller manages

the data center network, it is aware of the topology and already has a signalling

path to end hosts for configuration updates. Topology changes (e.g., due to

failures and reconfiguration) are rare and can be disseminated automatically by

these systems. Indeed, many pieces of today’s datacenter ecosystem already

use topology information (e.g., Map-Reduce schedulers [87] and VM placement

algorithms) to optimize workload placement.

Choosing network weights Seawall provides several ways to define the send-

ing entity and the corresponding network weight. The precise choices depend

on the datacenter type and application. When VMs are spun up in a cloud

datacenter, the fabric sets the network weight of that VM alongside weights for

CPU and memory. The fabric can change the VMs weight, if necessary, and

Seawall re-converges rapidly. However, a VM cannot change its own weight.

The administrator of a cloud datacenter can assign equal weights to all VMs,

thereby avoiding performance interference, or assign weights in proportion to

the size or price of the VM.

In contrast, the administrator of a platform datacenter can empower trusted

applications to adjust their weights at run-time (e.g., with socket options). Here,

Seawall can also be used to specify weights at other granularities, such as per

executable (e.g., background block replicator), per process, or per port range.

The choice of weights could be based on information maintained by cluster

schedulers. For example, a map-reduce scheduler can assign the weight of each
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sender feeding a task in inverse proportion to the aggregation fan-in of that task,

which the scheduler knows at all execution stages. This ensures that each task

obtains the same bandwidth (Section 6.1.2). Similarly, the scheduler can boost

the weight of outlier tasks that are starved or are blocking many other tasks [16],

thereby improving job completion times.

Enforcing global allocations Seawall has so far focused on enforcing the net-

work share of a local entity (VM, task etc.). This is complementary to prior

work on Distributed Rate Limiters (DRL) [124] which controls the aggregate rate

achieved by a collection of entities. Controlling just the aggregate rate is vulnera-

ble to DoS attacks: a tenant might focus the traffic of all of its VMs on a shared

service (such as storage) or link (e.g., ToR containing victim tenant’s servers),

thereby interfering with the performance of other tenants while remaining under

its global bandwidth cap. Running Seawall alongside DRL, with the end host

shim rate limiting entities to the minimum of the rate allowed by Seawall and

the rate allowed by DRL will protect the network against such attacks.

Choosing parameters Whenever we adapt past work, we follow their guid-

ance for parameters. Of the parameters unique to Seawall, their specific values

have the following impact. Reducing the feedback period T makes Seawall’s

adaptation logic more responsive at the cost of more overhead. We recommend

choosing T ∈ [10, 50] ms. The multiplicative factor α controls the decrease rate.

With the CUBIC/DCTCP control loop (see Figure 6.9), Seawall is less sensitive

to α than the AIMD control loop, since the former ramps back up more aggres-

sively. In Figure 6.8, β controls how much link rate is apportioned evenly versus

based on current usage. With a larger β, the control loop reacts more quickly
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Figure 6.10: The Seawall prototype is split into an in-kernel NDIS filter
shim (shaded gray), which implements the rate limiting datapath,
and a userspace rate adapter, which implements the control loop. Con-
figuration shown is for infrastructure data centers.

to changing demands but delays apportioning unused rate to destinations that

need it. We recommend β > .8.

6.3 Prototype

The shim layer of our prototype is built as an NDIS packet filter (Figure 6.10). It

interposes new code between the TCP/IP stack and the NIC driver. In virtualized

settings, the shim augments the vswitch in the root partition. Our prototype is

compatible with deployments that use the Windows 7 kernel as the server OS

or as the root partition of Hyper-V. The shim can be adapted to other OSes and

virtualization technologies, e.g., to support Linux and Xen, one can reimplement

it as a Linux network queuing discipline module. For ease of experimentation,

the logic to adapt rates is built in user space whereas the filters on the send side

and the packet processing on the receive side are implemented in kernel space.
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Clocking rate limiters The prototype uses software-based token bucket filters

to limit the rate of each tunnel. Implementing software rate limiters that work

correctly and efficiently at high rates (e.g., 100s of Mbps) requires high precision

interrupts, which are not yet available to drivers in all OS/hardware combi-

nations. Instead, we built a high precision clock driven by periodic network

events. One core, per rack of servers, stays in a busy loop, and broadcasts a

UDP heartbeat packet with the current time to all the servers within that rack

once every 0.1ms; the shim layers use these packets to clock their rate limiters.

We built a roughly equivalent window-based version of the Seawall shim as

proof-of-concept. Windowing is easier to engineer, since it is self-clocking and

does not require high precision timers, but incurs the expense of more frequent

feedback packets (e.g., once every 10 packets).

Bit-stealing and stateless offload compatibility A practical concern is the

need to be compatible with NIC offloads. In particular, adding an extra packet

header to support Seawall prevents the use of widely-used NIC offloads, such

as large send offload (LSO) and receive side coalescing (RSC) which only work

for known packet formats such as UDP or TCP. This leads to increased CPU

overhead and decreased throughput. On a quad core 2.66 Intel Core2 Duo with

an Intel 82567LM NIC, sending at the line rate of 1Gbps requires 20% more CPU

without LSO (net: 30% without vs 10% with LSO) [136].

Though NIC vendors have plans to improve offload support for generic

headers, our prototype seeks to maintain performance without depending on

such functionality. Seawall maintains the same TCP/IP header format that NIC

offload engines expect, without adding any encapsulation headers to store its

information. Instead, Seawall steals bits from existing packet headers, that is, it
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encodes information in parts of the packet that are unused or predictable and

hence can be restored by the shim at the receiver. For both UDP and TCP, Seawall

uses up to 16 bits from the IP ID field, reserving the lower order bits for the

segmentation hardware if needed. For TCP packets, Seawall repurposes the

timestamp option: it compresses the option Kind and Length fields from 16 bits

down to 1 bit, leaving the rest for Seawall data. In virtualized environments,

guest OSes are para-virtualized to always include timestamp options. Feedback

packets are sent out-of-band in separate packets to reduce encoding demands on

bit-stealing. We found bit-stealing easier to engineer than adding extra headers,

which could easily lead to performance degradation unless buffers were managed

carefully.

Offloading rate limiters and direct I/O Emerging standards to improve net-

work I/O performance, such as direct I/O and SR-IOV, permit guest VMs to

bypass the virtual switch and exchange packets directly with the NIC. But, this

also bypasses the Seawall shim. Below, we propose a few ways to restore compat-

ibility. However, we note that the loss of the security and manageability features

provided by the software virtual switch has limited the deployment of direct I/O

NICs in public clouds. To encourage deployment, vendors of such NICs plan to

support new features specific to datacenters.

By offloading token bucket- and window-based limiters from the virtual

switch to NIC or switch hardware, tenant traffic can be controlled even if guest

VMs directly send packets to the hardware. To support Seawall, such offloaded

rate limiters need to provide the same granularity of flow classification (entity to

entity tunnels) as the shim and report usage and congestion statistics. High end

NICs that support stateful TCP, iSCSI, and RDMA offloads already support tens
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of thousands to millions of window-control engines in hardware. Since most

such NICs are programmable, they can likely support the changes needed to

return statistics to Seawall. Switch policers have similar scale and expressiveness

properties. In addition, sidecars can be used to monitor the network for violations

(Section 5.1.3). Given the diversity of implementation options, we believe that

the design point occupied by Seawall, i.e., using rate- or window-controllers at

the network edge, is feasible now and as data rates scale up.

6.4 Evaluation

We ran a series of experiments using our prototype to show that Seawall achieves

line rate with minimal CPU overhead, scales to typical data centers, converges to

network allocations that are agnostic to communications pattern (i.e., number

of flows and destinations) and protocol mix (i.e., UDP and TCP), and provides

performance isolation. Through experiments with web workloads, we also

demonstrate how Seawall can protect cloud-hosted services against DoS attacks,

even those using UDP floods.

All experiments used the token bucket filter-based shim (i.e., rate limiter),

which is our best-performing prototype and matches commonly-available hard-

ware rate limiters. The following hold unless otherwise stated: (1) Seawall was

configured with the default parameters specified in Section 6.2.6, (2) all results

were aggregated from 10 two minute runs, with each datapoint a 15 second

average and error bars indicating the 95% confidence interval.
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Throughput CPU @ Sender CPU @ Receiver
(Mb/s) (%) (%)

Seawall 947 ± 9 20.7 ± 0.6 14.2 ± 0.4
NDIS 977 ± 4 18.7 ± 0.4 13.5 ± 1.1
Baseline 979 ± 6 16.9 ± 1.9 10.8 ± 0.8

Table 6.1: CPU overhead comparison of Seawall, a null NDIS driver, and an
unmodified network stack. Seawall achieved line rate with low over-
head.

Testbed For our experiments, we used a 60 server cluster spread over three

racks with 20 servers per rack. The physical machines were equipped with

Xeon L5520 2.27 GHz CPUs (quad core, two hyperthreads per core), Intel 82576

NICs, and 4GB of RAM. The NIC access links were 1Gb/s and the links from

the ToR switches up to the aggregation switch were 10Gb/s. There was no

over-subscription within each rack. The ToR uplinks were 1:4 over-subscribed.

We chose this topology because it is representative of typical data centers.

For virtualization, we use Windows Server 2008R2 Hyper-V with Server

2008R2 VMs. This version of Hyper-V exploits the Nehalem virtualization

optimizations, but does not use the direct I/O functionality on the NICs. Each

guest VM was provisioned with 1.5 GB of RAM and 4 virtual CPUs.

6.4.1 Microbenchmarks

Throughput and overhead

To evaluate the performance and overhead of Seawall, we measured the through-

put and CPU overhead of tunneling a TCP connection between two machines

through the shim. To minimize extraneous sources of noise, no other traffic
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was present in the testbed during each experiment and the sender and receiver

transferred data from and to memory.

Seawall achieved nearly line rate at steady state, with negligible increase in

CPU utilization, adding 3.8% at the sender and 3.4% at the receiver (Table 6.1).

Much of this overhead was due to the overhead from installing a NDIS filter

driver: the null NDIS filter by itself added 1.8% and 2.7% overhead, respectively.

The NDIS framework is fairly light weight since it runs in the kernel and requires

no protection domain transfers.

Subtracting out the contributions from the NDIS filter driver reveals the

overhead due to Seawall, which incurred slightly more overhead on the sender

than the receiver. This is expected since the sender does more work: on receiving

packets, a Seawall receiver need only buffer congestion information and bounce

it back to the sender, while the sender incurs the overhead of rate limiting and

may have to merge congestion information from many destinations.

Seawall readily scales to today’s data centers. The shim at each node main-

tains a rate limiter, with a few KBs of state each, for every pair of communicating

entities terminating at that node. The per-packet cost on the data path is fixed

regardless of data center size. A naive implementation of the rate controller

incurs O(DL) complexity per sending entity (VM or task) where D is the number

of destinations the VM communicates with and L is the number of links on paths

to those destinations. In typical data center topologies, the diameter is small,

and serves as an upper bound for L. All network stacks on a given node have

collective state and processing overheads that grow at least linearly with D; these

dominate the corresponding contributions from the rate controller and shim.
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Traffic-agnostic network allocation

Seawall seeks to control the network share obtained by a sender, regardless of

traffic. In particular, a sender should not be able to attain bandwidth beyond

that allowed by the configured weight, no matter how it varies protocol type,

number of flows, and number of destinations.

To evaluate the effectiveness of Seawall in achieving this goal, we set up the

following experiment. Two physical nodes, hosting one VM each, served as the

sources, with one VM dedicated to selfish traffic and the other to well-behaved

traffic. One physical node served as the sink for all traffic; it was configured with

two VMs, with one VM serving as the sink for well-behaved traffic and the other

serving as the sink for selfish traffic.

Both well-behaved and selfish traffic used the same number of source VMs,

with all Seawall senders assigned the same network weight. The well-behaved

traffic consisted of a single long-lived TCP flow from each source, while the

selfish traffic used one of three strategies to achieve a higher bandwidth share:

(1) using a full-rate UDP flow, (2) using large numbers of TCP flows, and (3)

using many destinations.

Selfish traffic = Full-burst UDP Figure 6.11(a) shows the aggregate bandwidth

achieved by the well-behaved traffic (long-lived TCP) when the selfish traffic

consisted of full-rate UDP flows. The sinks for well-behaved and selfish traffic

were colocated on a node with a single 1Gbps NIC. Because each sender had equal

weight, Seawall assigned half of this capacity to each sender. Without Seawall,

selfish traffic overwhelms well-behaved traffic, leading to negligible throughput
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Figure 6.11: Seawall ensures that despite using full-rate UDP flows or many
TCP flows, the share of a selfish user is held proportional to its weight.
(In (b), the bars show total throughput, with the fraction below the
divider corresponding to selfish traffic and the fraction above corre-
sponding to well-behaved traffic.)

for well-behaved traffic. By bundling the UDP traffic inside a tunnel that imposed

congestion control, Seawall ensured that well-behaved traffic retained reasonable

performance.

Selfish traffic = Many TCP flows Figure 6.11(b) shows the bandwidth shares

achieved by selfish and well-behaved traffic when selfish senders used many

TCP flows. As before, well-behaved traffic ideally should have achieved 1
2

of the bandwidth. When selfish senders used the same number of flows as

well-behaved traffic, bandwidth was divided evenly (left pair of bars). In runs

without Seawall, selfish senders that used twice as many flows obtained 2
3 ’rds of
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Figure 6.12: By combining feedback from multiple destinations, Seawall en-
sures that the share of a sender remains independent of the number of
destinations it communicates with. (The fraction of the bar below the
divider corresponds to the fraction of bottleneck throughput achieved
by selfish traffic.)

the bandwidth because TCP congestion control divided bandwidth evenly across

flows (middle pair of bars). Runs with Seawall resulted in approximately even

bandwidth allocation. Note that Seawall achieved slightly lower throughput

in aggregate. This was due to slower recovery after loss– the normal traffic

had one sawtooth per TCP flow whereas Seawall had one per source VM; we

believe this can be improved using techniques from Section 6.2. When the selfish

traffic used 66 times more flows, it achieved a dominant share of bandwidth;

the well-behaved traffic was allocated almost no bandwidth (rightmost pair of

bars). We see that despite the wide disparity in number of flows, Seawall divided

bandwidth approximately evenly. Again, Seawall improved the throughput

of well-behaved traffic (the portion above the divider) by several orders of

magnitude.
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Throughput (Mb/s) Latency (s)
Seawall 181 0.61
No protection 157 0.91

Figure 6.13: Despite bandwidth pressure, Seawall ensures that the average
HTTP request latency remains small without losing throughput.

Selfish traffic = Arbitrarily many destinations This experiment evaluated Sea-

wall’s effectiveness against selfish tenants that opened connections to many

destinations. The experiment used a topology similar to that in Figure 6.7. A

well-behaved sender VM and a selfish sender VM were located on the same

server. Each sink was a VM and ran on a separate, dedicated machine. The

well-behaved traffic was assigned one sink machine and the selfish traffic was

assigned a variable number of sink machines. Both well-behaved and selfish

traffic consisted of one TCP flow per sink. As before, the sending VMs were

configured with the same weight, so that well-behaved traffic would achieve an

even share of the bottleneck.

Figure 6.12 plots the fraction of bottleneck bandwidth achieved by well-

behaved traffic with and without Seawall. We see that without Seawall, the share

of the selfish traffic was proportional to the number of destinations. With Seawall,

the share of the well-behaved traffic remained constant at approximately half,

independent of the number of destinations.

6.4.2 Performance isolation for web servers

To show that Seawall protects against performance interference, we evaluated the

achieved level of protection against a DoS attack on a web server. Since cloud dat-

acenters are often used to host web-accessible services, this is a common use case.
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In this experiment, an attacker targeted the HTTP responses sent from the

web server to its clients. To launch such attacks, an adversary places a source VM

and a sink VM such that traffic between these VMs crosses the same bottleneck

links as the web server. The source VM is close to the server, say on the same

rack or machine, while the sink VM is typically on another rack. Depending on

where the sink is placed, the attack can target the ToR uplink or another link

several hops away.

All machines were colocated on the same rack. The web server VM, running

Microsoft IIS 7, and attacker source VM, generating UDP floods, resided in

separate, dedicated physical machines. A single web client VM requested data

from the server and shared a physical machine with an attacker sink VM. The

web clients used WcAsync to generate well-formed web sessions. Session arrivals

followed a Poisson process and were exponentially sized with a mean of 10

requests. Requests followed a WebStone distribution, varying in size from 500B

responses to 5MB responses with smaller files being much more popular.

As expected, a full-rate UDP attack flood caused congestion on the access

link of the web client, reducing throughput to close to zero and substantially

increasing latency. With Seawall, the web server behaved as if there were no

attack. To explore data points where the access link was not overwhelmed,

we dialed down the UDP attack rate to 700Mbps, enough to congest the link

but not to stomp out the web server’s traffic. While achieving roughly the

same throughput as in the case of no protection, Seawall improved the latency

observed by web traffic by almost 50% (Figure 6.13). This is because sending the

attack traffic through a congestion controlled tunnel ensured that the average

queue size at the bottleneck stays small, thereby reducing queuing delays.
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6.5 Discussion

Here, we discuss how Seawall can be used to implement rich cloud service

models that provide bandwidth guarantees to tenants, the implications of our ar-

chitectural decisions given trends in data centers and hardware, and the benefits

of jointly modifying senders and receivers to achieve new functionality in data

center networks.

6.5.1 Sharing policies

Virtual Data Centers (VDCs) have been proposed [89, 78, 141] as a way to specify

tenant networking requirements in cloud data centers. VDCs seek to approxi-

mate, in terms of security isolation and performance, a dedicated data center for

each tenant and allows tenants to specify SLA constraints on network bandwidth

at per-port and per-source/dest-pair granularities. When allocating tenant VMs

to physical hardware, the data center fabric simultaneously satisfies the specified

constraints while optimizing node and network utilization.

Though Seawall policies could be seen as a simpler-to-specify alternative to

VDCs that closely matches the provisioning knobs (e.g., disk, CPU, and mem-

ory size) of current infrastructure clouds, Seawall’s weight-based policies can

enhance VDCs in several ways. Some customers, through analysis or operational

experience, understand the traffic requirements of their VMs; VDCs are attractive

since they can exploit such detailed knowledge to achieve predictable perfor-

mance. To improve VDCs with Seawall, the fabric uses weights to implement

the hard bandwidth guarantees specified in the SLA: with appropriate weights,
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statically chosen during node- and path-placement, Seawall will converge to the

desired allocation. Unlike implementations based on static reservations [78], the

Seawall implementation is work-conserving, max-min fair, and achieves higher

utilization through statistical multiplexing.

Seawall also improves a tenant’s control of its own VDC. Since Seawall readily

accepts dynamic weight changes, each tenant can adjust its allocation policy at a

fine granularity in response to changing application needs. The fabric permits

tenants to reallocate weights between different tunnels so long as the resulting

weight does not exceed the SLA; this prevents tenants from stealing service and

avoids having to rerun the VM placement optimizer.

6.5.2 System architecture

Topology assumptions The type of topology and available bandwidth affects

the complexity requirements of network sharing systems. In full bisection band-

width topologies, congestion can only occur at the core. System design is simpli-

fied [155, 141, 123], since fair shares can be computed solely from information

about edge congestion, without any topology information or congestion feedback

from the core.

Seawall supports general topologies, allowing it to provide benefits even in

legacy or cost-constrained data centers networks. Such topologies are typically

bandwidth-constrained in the core; all nodes using a given core link need to be

accounted for to achieve fair sharing, bandwidth reservations, and congestion

control. Seawall explicitly uses topology information in its control layer to

prevent link over-utilization.
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Rate limiters and control loops Using more rate limiters enables a network

allocation system to support richer, more granular policies. Not having enough

rate limiters can result in aliasing. For instance, VM misbehavior can cause

Gatekeeper [141] to penalize unrelated VMs sending to the same destination.

Using more complex rate limiters can improve system performance. Rate limiters

based on multi-queue schedulers such as DWRR or Linux’s hierarchical queuing

classes can utilize the network more efficiently when rate limiter parameters and

demand do not match, and the self-clocking nature of window-based limiters can

reduce switch buffering requirements as compared to rate-based limiters. How-

ever, having a large number of complex limiters can constrain how a network

sharing architecture can be realized, since NICs and switches do not currently

support such rate limiters at scale.

To maximize performance and policy expressiveness, a network allocation

system should support a large number of limiters of varying capability. The cur-

rent Seawall architecture can support rate- and window-based limiters based in

hardware and software. As future work, we are investigating ways to map topol-

ogy information onto hierarchical limiters; to compile policies given a limited

number of available hardware limiters; and to tradeoff rate limiter complexity

with controller complexity, using longer adaptation intervals when more capable

rate limiters are available.

6.5.3 Partitioning sender/receiver functionality

Control loops can benefit from receiver-side information and coordination, since

the receiver is aware of the current traffic demand from all sources and can send
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feedback to each with lower overhead. Seawall currently uses a receiver-driven

approach customized for map-reduce to achieve better network scheduling; as

future work we are building a general solution at the shim layer.

In principal, a purely receiver-directed approach to implementing a new

network allocation policy, such as that used in [155, 141], might reduce system

complexity since the sender TCP stack does not need to be modified. However,

virtualization stack complexity does not decrease substantially, since the rate

controller simply moves from the sender to the receiver. Moreover, limiting

changes to one endpoint in data centers provides little of the adoption cost ad-

vantages found in the heterogeneous Internet environment. Modifying the VMs

to defer congestion control to other layers can help researchers and practitioners

to identify and deploy new network sharing policies and transport protocols for

the data center.

A receiver-only approach can also add complexity. While some allocation

policies are easy to attain by treating the sender as a black box, others are not.

For instance, eliminating fatesharing from Gatekeeper and adding weighted, fair

work-conserving scheduling appears non-trivial. Moreover, protecting a receiver-

only approach from attack requires adding a detector for non-conformant senders.

While such detectors have been studied for WAN traffic [63], it is unclear whether

they are feasible in the data center. Such detectors might also permit harmful

traffic that running new, trusted sender-side code can trivially exclude.
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CHAPTER 7

RELATED WORK

This chapter discusses the contributions of this dissertation within the context of

prior work.

7.1 Network architecture

Recent work has re-examined the traditional architecture of the network layer.

Where the basic functionality of switches and routers was traditionally divided

into the data- and control-planes, recent work has proposed adding a knowl-

edge plane [46] to facilitate coordination between network participants. To our

knowledge, NetQuery is the first realization of a knowledge plane for federated

networks comprising mutually-untrusting administrative domains.

Other recent work has proposed new programming platforms for building

the control plane. Traditionally, new control plane functionality has been built

by extending or defining new network control protocols to coordinate control

processes running independently on every switch and router. That approach

requires invasive upgrades to each device to add new functionality; design is also

challenging since each new protocol solves the distributed control problem anew.

Recent work on software-defined networks (SDN) addresses the design and

deployment of new functionality by (1) exposing a programming model based

on a centralized view of the network state and (2) providing reusable abstrac-

tions [32, 72, 74, 97]. The centralized model is conceptually simpler and requires

only changing a few controllers, as opposed to every element in the network.
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Although some of the network guarantees provided by NetQuery appli-

cations had been proposed in prior work, much of that prior work has been

implemented with one-off extensions to the control and data plane. In contrast,

NetQuery’s knowledge plane is a common abstraction from which one can build

such guarantees; this abstraction could be integrated into SDN platforms. The

knowledge plane is a representation of global system state, which some SDN

platforms already maintain and expose to programmers. On such platforms,

the incremental cost of adding a knowledge plane is reduced since the costs of

maintaining this global system state and training systems builders to use it are

amortized between the control plane and knowledge plane.

NetQuery complements the data plane work on establishing network guaran-

tees by providing standard abstractions for disseminating and reasoning about

such guarantees. The remainder of this section describes in more detail these

categories of prior work.

7.1.1 Control platforms with logically-centralized system state

The global view of network state that is maintained by a knowledge plane

closely resembles the global view maintained by logically-centralized control

platforms for networks. These network control platforms include network excep-

tion handlers (NEH) [92], ident++ [113], Maestro [33], NOX [74], Onix [97], and

DECOR [39]. All are logically centralized systems for single-operator networks

that disseminate network information to administrative applications. Similar

techniques are also found in control platforms for cloud data centers [114, 98].
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NEH collects dynamic topology, load statistics, and link costs from the net-

work infrastructure, and exposes these properties so that end hosts can detect

and react to exceptional network conditions. ident++ collects metadata about

flows from end hosts to enable richer access control policies. Maestro, NOX,

and DECOR are control platforms for running network control plane or man-

agement applications on a central controller. Onix leverages distributed systems

techniques to build a central controller in a scalable, reliable fashion.

NetQuery collects similar information (e.g., adjacency and forwarding tables)

about network devices and makes this information available in a similar fashion;

indeed, its tuple-based representation and schemas, while independently devel-

oped, is similar to that of the Onix NIB [97] and CMIS objects [86]. NetQuery

supports such network management applications for enterprise networks, while

also supporting applications that issue queries spanning multiple ASes. The Net-

Query knowledge plane provides a richer data representation that can support

heterogeneous information sources by tracking the source of every statement

and by leveraging trusted hardware.

Declarative programming [159] has been proposed as an alternative for build-

ing applications and for managing networks. In such systems, application logic

is written as high-level rules that manipulate a database representation of the

network. DECOR [39] uses declarative programming to autoconfigure network

devices to meet high level operational goals. DECOR uses logical specifications

for device semantics and state that can be helpful in writing NetQuery analyses

and sanitizers. Both NetQuery and DECOR provide frameworks for extending

existing devices to support policy analysis and management applications. Net-

Query applications can span mutually distrusting administrative domains, for
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which we provide trust establishment and sanitization techniques not needed in

the problem domain of DECOR.

7.1.2 Establishing network guarantees

Leveraging the TPM

Trusted Network Connect [145] and attestation-based policy enforcement [131]

are network access control systems with similar client authorization to NetQuery.

Before an end host is allowed to join the network, these systems use attestation

to verify that the end host’s software and hardware configuration satisfies the

access policy. Unlike NetQuery, these systems do not provide a channel by which

end hosts can discover the properties of a network before deciding to connect.

The ubiquity of TPMs has inspired many systems that rely on trusted end

host functionality to improve network security and performance. Such work uses

trusted end host functionality to provide local guarantees. For instance, ETTM

moves middlebox and filtering to end hosts [52], while other work relies on end

hosts to perform packet classification [25, 125, 76]. NetQuery provides a standard

interface for describing these local guarantees, enabling other applications to

use them. Several of these systems rely on network-wide reasoning to provide

guarantees to a single administrative domain; NetQuery can be used to perform

such reasoning and generalizes it to provide guarantees to multiple domains.
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Data-plane and monitoring techniques

Several extensions to IP to provide guarantees about the sender of each packet

have been proposed. Accountable IP (AIP) [17], [29], and packet passports [103]

provide accountability for network packets. These systems use optimizations

whose safety rely on global network configuration invariants spanning multiple

ASes. They can use NetQuery to verify these trust assumptions. Assayer [119]

attaches trustworthy sender information to packets as unforgeable annotations,

obviating the need to reconstruct this information at middleboxes [120]. Network

witness [62] uses attestation to enable TPM-equipped end hosts to serve as

trusted network monitoring points. NetQuery, Assayer, and Network witness

make similar use of the TPM. Network Confessional [20] provides verifiable

performance measurements at the granularity of network paths and peering

points.

Overall, such data plane approaches are complementary to a knowledge

plane; factoids extracted through these techniques can be extracted and dissemi-

nated through NetQuery.

Control plane techniques

sBGP [95], BIND [135], and Whisper [142] extend BGP, a control plane protocol,

with additional cryptographic protections. BIND and Whisper use cryptography

to chain messages together to allow participants to detect route manipulation.

BIND leverages the TPM to inductively attest to the validity of route advertise-

ments; the inter-message chaining is bootstrapped from attestation certificates.

A route advertisement is valid if it comes from the owner of a prefix or if it is
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created by a TPM-attested transformation on route advertisements. Attestation

relies on a PKI; Whisper avoids PKI dependencies by relaxing the provided guar-

antees and exploiting network structure. Whisper enables a recipient to check

whether the set of routes to a destination, as received from different next-hop

routers, is consistent; an attacker can only subvert this check if it compromises a

cut of the network.

By comparison, NetQuery analysis and information dissemination is sep-

arated from the control protocol; the few control plane changes to support

NetQuery abstractions can be exposed as a knowledge plane and amortized

across many applications. Several systems for establishing new guarantees share

this separation from control plane protocols.

NetReview [79] enforces fault detection for BGP behavior using a tamper-

evident log. Since NetQuery supports analysis over router RIBs, it can check

similar BGP policies as NetReview. NetReview relies on an AS’s neighbors to

achieve tamper-evidence and trustworthy detection on publicly-disclosable in-

formation. In contrast, NetQuery can bootstrap trust from TPMs where available,

and it can also use sanitizers to perform trustworthy analysis on confidential net-

work information. Like Whisper, NetReview avoids PKI by relying on network

structure assumptions about how logs are collected and disseminated within the

network.

The verification primitives that a knowledge plane provides can impact its

compatibility with applications and its deployment assumptions. If NetRe-

view’s primitives were used to build a knowledge plane, that knowledge plane

will not require a PKI or TPMs, but can only support applications that rely

on locally-checkable guarantees. NetQuery’s attribution and attestation-based
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dissemination structure can impose fewer restrictions on application structure,

since, confidentiality constraints aside, it can propagate information anywhere

in the network. Likewise, one could construct knowledge planes based on the

dissemination primitive of protocols like Whisper or Byzantine-robust rout-

ing [121]; these would give rise to yet another class of supported applications

and underlying networks.

Keller et al [94] applies trustworthy computing techniques to an ISP operating

model where service providers build wide area services using virtual router slices

leased from infrastructure providers. This system uses trusted hardware, keys

hidden from infrastructure providers, and sample-based tracing to verify that

the infrastructure provider has properly installed the slices. While NetQuery

applies similar techniques, NetQuery targets the existing ISP operating model

and uses a logical framework for analysis.

Comparing providers

Since many applications are sensitive to network performance, verifying claims

about the network is a key concern. Many data-plane techniques for monitor-

ing network performance in the Internet have been proposed [158, 20]; such

techniques could be applied to cloud data center networks

Several industry efforts have focused on promoting a transparent, competitive

market for cloud computing. These include work on improving standardization,

portability, and schemas for specifying computation [98]; creating markets for

spare cloud capacity [57]; defining schemas for describing and assisting in au-

dit [84]; and comparing the performance characteristics of cloud services to aid
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in provider selection [102]. Our knowledge plane work for cloud data centers

was motivated by and complements such efforts.

In general, such measurements could be collected by the knowledge plane

in a remotely verifiable fashion and disseminated as a public service, with the

control and decision functionality implemented as NetQuery applications.

7.2 Establishing resource allocation and performance isolation

Like Seawall, Congestion Manager aggregates congestion feedback from multiple

flows to drive shared control loops and provides similar application interfaces

for querying congestion control state [26]. But because its feedback aggregation

operates on a per-destination basis, it has similar shortcomings to the rejected

approach from Section 6.2.2. The deployment and trust model also differ; while

Congestion Manager enables Internet end hosts and applications to voluntarily

improve performance while preserving TCP-friendly behavior, Seawall leverages

the homogeneity and code isolation properties of data center networking stacks

to transparently enforce global allocation policies on network capacity.

Proportional allocation of shared resources has been a recurring research topic

in operating systems and virtualization [150, 75]. To the best of our knowledge,

Seawall is the first to extend this to the data center network and support generic

sending entities (VMs, applications, tasks, processes, etc.). Multicast congestion

control [69], while similar at first blush, targets a very different problem since

they have to allow for any participant to send traffic to the group while ensuring

TCP-friendliness. It is unclear how to adapt these schemes to proportionally

divide the network.
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Recent work in hypervisor, network stack, and software routers have shown

that software-based network processing, like that used in Seawall for monitoring

and rate limiting, can be more flexible than hardware-based approaches yet

achieve high performance. [132] presents an optimized virtualization stack that

achieves comparable performance to direct I/O. The Sun Crossbow network

stack provides an arbitrary number of bandwidth-limited virtual NICs [144].

Crossbow provides identical semantics regardless of underlying physical NIC

and transparently leverages offloads to improve performance. Seawall’s usage

of rate limiters can benefit from these ideas.

QCN is an emerging Ethernet standard for congestion control in datacenter

networks [117]. In QCN, upon detecting a congested link, the switch sends

feedback to the heavy senders. The feedback packet uniquely identifies the flow

and congestion location, enabling senders that receive feedback to rate limit

specific flows. QCN uses explicit feedback to drive a more aggressive control

loop than TCP. While QCN can throttle the heavy senders, it is not designed

to provide fairness guarantees, tunable or otherwise. Further, QCN requires

changes to switch hardware and can only cover purely Layer 2 topologies.

Fair queuing mechanisms in switches has long been studied [51]. Link local

sharing mechanisms, such as Weighted Fair Queuing and Deficit Round Robin,

separate traffic into multiple queues at each switch port and arbitrate service

between the queues in some priority or proportion. NetShare [100] builds on

top of WFQ support in switches. This approach is useful to share the network

between a small number of large sending entities (e.g., a whole service type, such

as “Search” or “Distributed storage” in a platform data center). The number of

queues available in today’s switches, however, is several orders of magnitude
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smaller than the numbers of VMs and tasks in today’s datacenters. More fun-

damentally, since link local mechanisms lack end-to-end information they can

let significant traffic through only to be dropped at some later bottleneck on

the path. Seawall can achieve better scalability by mapping many VMs onto a

small, fixed number of queues and achieves better efficiency by using end-to-end

congestion control.

The suitability of a resource allocation scheme for a given application and

system architecture varies depending on the resource allocation scheme’s un-

derlying trust assumptions. In multi-tenant settings, neither traffic sources nor

destinations can be trusted to implement the allocation scheme; hence other

components must be trusted to provide resource allocation guarantees. Sea-

wall, along with the preceding schemes, rely on extending trusted data plane

elements, such as the hypervisor, routers, or switches, with new, stateful queues

and rate limiters. SideCar provides a less disruptive, lower overhead transition

path: while the data plane elements must still be trusted, they only need to

export a sampling or redirection primitive to support new resource allocation

schemes. Trickles [137] is a stateless bandwidth allocation scheme that, unlike

other schemes, can enforce TCP-friendly, congestion controlled bandwidth allo-

cation while requiring substantially less state in the trusted data plane elements.

By using parallelizable, lightweight cryptographic and state compression tech-

niques, Trickles can enforce such allocations across many simultaneous flows at

line rate.
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CHAPTER 8

CONCLUSION

Federation is an important technique for building large scale, geographically-

distributed computing infrastructure. In deployed systems, such as the Internet,

and in proposal systems, such as new cloud computing infrastructure, federation

arises due to competitive pressures between service providers and can improve

the economic feasibility of the system. But different providers in a federated

infrastructure can vary widely in performance, robustness, and security, poten-

tially affecting the correctness of an application that relies on a disparate set of

infrastructure providers.

8.1 Challenges and contributions

This thesis investigated techniques to improve coordination in federated systems

and to expand the guarantees that they can provide to applications. Doing so

ensures that applications can determine how to best accommodate and exploit the

inherent diversity among infrastructure providers. Once applications can make

better-informed decisions on how to use the infrastructure, they can benefit from

assurances about correctness, improved performance, and reduced deployment

costs.
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8.1.1 Knowledge planes for federated distributed systems

In general, the infrastructure dependencies of an application will span several

administrative domains. This dissertation presented NetQuery, a system that

streamlines coordination between applications and administrative domains by

providing reasoning abstractions that not only enable applications to infer char-

acteristics of interest about a single administrative domain but also to make

inferences that span a federated system. By running NetQuery analysis over a

logical representation of a system, applications can verify that the system satisfies

requirements, improving the assurance provided by existing applications and

enabling new kinds of applications that are difficult to build with only the ad

hoc reasoning mechanisms provided by current infrastructure.

NetQuery disseminates information about participating networks through

a knowledge plane that stores a logical representation of a federated system.

Applications can query the knowledge plane to fetch system information for

analysis. All administrative domains cooperate in building the knowledge plane.

Each administrative domain deploys infrastructure to describe their own local

portion of the federated system; the combined logical representation spans

the entire federated system. The logical representation includes information

about the current topology, configuration, and state; NetQuery analyses use this

knowledge plane information to logically infer characteristics that hold in the

network.

The key challenges in building NetQuery are (1) ensuring that applications

reason using trustworthy, meaningful information and (2) preserving the confi-

dentiality of proprietary operator information. Addressing the former assures

that the characteristics inferred by applications are sound and actually hold in the
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real world while the latter facilitates deployment by ensuring that the knowledge

plane respects the existing policies and trust relationships of network operators.

Contributions

NetQuery directly addresses these challenges as follows.

Establishing the trustworthiness of knowledge plane information To aid in

establishing trust, NetQuery tracks attribution information for all information

in the knowledge plane. For every piece of information, NetQuery records the

principal (e.g., device, process, or network operator) that was responsible for

inserting it. Each application can reason using only information from trustworthy

sources. NetQuery does not impose a global trust policy; rather, applications are

free to independently choose an appropriate trust policy.

Information is trustworthy if there is sufficient reason to expect that the logical

view correlates to the real-world system. Attribution information implicitly

discourages lying: should an application discover a lie, it can filter subsequent

information from that source, and the network is strictly more trustworthy than

it would have been without the techniques proposed in this thesis. NetQuery

also provides two explicit, interrelated mechanisms for providing this assurance.

First, attestation serves as an authentication mechanism to verify that information

comes from known-good hardware and software platforms. Second, operators

might try to fool attested platforms into exporting information that diverges

from the real world; to prevent this, known-good platforms can be equipped

with protection and monitoring mechanisms to guard their inputs and outputs.
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Preserving confidentiality of operator information To address confidentiality

concerns, each operator participating in NetQuery can specify an access policy

for the information that it exports to the knowledge plane. Since operators will

likely specify knowledge plane access policies that match their existing policies,

which tightly restrict what can be revealed to outside parties, NetQuery provides

a sanitizer abstraction that enables analyses to execute without disclosing such

information. Rather than exporting this information directly to external applica-

tions, which increases the TCB size for maintaining confidentiality, information

is disclosed only to sanitizer nodes that are trusted by both the operator and

external party.

Integration with existing systems The design of NetQuery employs several

architectural choices and incremental deployment strategies to facilitate its intro-

duction to existing federated systems.

To support an expressive, widely-applicable reasoning engine that can infer

a wide range of system characteristics, NetQuery can incorporate information

from a broad population of devices and provides in-depth information about

each class of devices.

NetQuery can bootstrap trust in a broad population of devices in a scalable,

low cost manner using the attestation primitives of trusted hardware, such as

the TPM. This bootstrap process involves identifying a hardware and software

platform then using attestation to bind NetQuery attribution information to this

platform. The costs of this process are favorable: (1) validating the platform is

a fixed engineering cost that is amortized across the many individual units of

a particular type of device and (2) embedding TPMs adds minimal cost to each
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unit. The per-operation overhead from attestations is low since each attestation

can be used across many NetQuery operations.

NetQuery’s in-depth information comes from leveraging the information that

is already available from existing interfaces for system management, such as

SNMP. Such interfaces are widely deployed on devices and export considerable

information about those devices. NetQuery can make such information suitable

for analysis by adding attribution and monitoring mechanisms to verify that the

reported information matches with the real network.

8.1.2 Establishing guarantees in data center networks

As the computational demands of Internet services increases, data center net-

works are increasingly becoming a potential source of bottlenecks and increases

to system cost. At the same time, the largely homogeneous environment within

each data center presents unique opportunities and challenges not present in

heterogeneous networks such as the Internet.

So that management and provisioning can scale efficiently, many large-scale

data centers use centralized, unified control over the entire infrastructure, includ-

ing network devices, compute nodes, and end host software stacks. This close

integration between networking and compute nodes provides opportunities for

building new networking abstractions.

Adding a general-purpose programming model for the network can facilitate

the deployment of such functionality. But many programming models, such as

those that support per-packet processing, substantially increase network cost;
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packet processing architectures with high costs would be difficult to deploy

in cost-sensitive cloud data centers. More programmability could also lead to

greater variation in network capabilities across different data center providers;

applications would benefit from improved signaling of these differences.

Many data center networks, such as those for large-scale data centers for

public cloud computing providers, have heterogeneous, sometimes malicious,

workloads. Such workloads are inherent to public cloud data centers due to

their use of statistical multiplexing to improve efficiency and high bandwidth

links to applications. In addition to these benefits, such mixing of workloads

also raises potential DoS attacks and performance interference. Thus, the cloud

environment poses challenges to porting legacy applications from dedicated in-

frastructure with fewer, better controlled concurrent workloads, and to deploying

new applications with critical performance and security requirements.

Contributions

This dissertation addressed these challenges with the following contributions:

Trusted packet processors We proposed a programming model based on

trusted packet processors. Trusted packet processors achieve generality by allow-

ing applications to write programs that distribute custom processing anywhere

in the network. Trusted packet processors are placed ubiquitously throughout

the network topology: by using trusted packet processors embedded in end

host network stacks and switches, new applications can leverage custom packet

processing and monitoring from the network edge to core.
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Trusted packet processors leverage trustworthy computing techniques to

address the increased complexity of reasoning about the properties of pro-

grammable networks. Trusted packet processors execute packet processing

and monitoring code in an attested environment that is isolated from user appli-

cations. Attestations provide users and developers of new network programs

with the assurance that packet processing code implementing a global network

program has been properly installed onto network devices. Combined with isola-

tion, which protects the installed programs from malicious applications, trusted

packet processors provide the assurance that the programs and their associated

guarantees and capabilities are in effect. Data centers can use NetQuery to signal

such assurances to other network participants.

To scale to the data rates found in typical data centers at a competitive

hardware cost to existing networks, in-network trusted packet processors restrict

the volume of traffic that network programs can process. This design decision

reduces the processing demands on switches and sends the majority of traffic

over hardware-efficient dedicated processing paths. The resulting processing

model is well-suited for implementing sampling-based techniques; we proposed

several design patterns for building new network guarantees using this approach.

Seawall bandwidth allocator This dissertation presented the design and im-

plementation of the Seawall bandwidth allocator, which provides data center op-

erators with better control over network bandwidth allocation in their networks.

Seawall is designed for the link speeds, high churn, and diverse workloads of

cloud data centers.
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To achieve scalability and efficient handling of churn, Seawall computes allo-

cations using distributed, end-to-end congestion control. Since this algorithm is

implemented in compute nodes, it can scale to larger numbers of communicating

nodes and larger policies than techniques based on network hardware. Standard

congestion control loops, like that of TCP, are highly sensitive to the specific com-

munications patterns; by opening up many flows, a malicious or selfish tenant

can consume a large fraction of network capacity. By combining the feedback

from multiple flows and charging the indicated losses to links, rather than flows,

Seawall achieves bandwidth allocations that are agnostic to variations in the

pattern of flows.

8.2 Final remarks

This dissertation proposes new interfaces and mechanisms for satisfying and

establishing application guarantees in federated systems. The knowledge plane

interface enables participants in federated systems to convince one another that

a given system satisfies some guarantee of interest to application, given the

configuration and construction of a system. Experiments show that NetQuery

performs well on real routers and can support the volume of network events

found in large enterprise and ISP networks. Overall, NetQuery’s extensible data

model and flexible logic supports a diverse range of applications and can help

ISPs and cloud operators differentiate their services. We believe that NetQuery’s

design principles and abstractions address significant obstacles to building a

practical knowledge plane for federated systems and enable novel applications

based on global system reasoning. In particular, NetQuery addresses long-

standing obstacles to inter-domain coordination on the Internet. NetQuery also
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represents a critical first step to commoditizing digital resources in the cloud

beyond a single provider and enabling multiple providers to create dynamic

federations of cloud resources.

The trusted packet processor and Seawall mechanisms allow data center

network operators to establish new kinds of guarantees about their systems.

Through a design and feasibility study, we showed that trusted packet processors

can enable network programs to control and observe traffic at all points in a

network while maintaining compatibility with existing switches and incurring

similar costs. Experiments on a full implementation demonstrated that Seawall

protects against DoS attacks and improves control over bandwidth allocation

and does so while achieving line rates with minimal overhead. Together, these

techniques facilitate efficient resource utilization and enable the construction of

new control- and data-plane abstractions.
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