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Hilbert functions and free resolutions are central concepts in the field of Com-

mutative Algebra. In chapter 3 we prove some cases of the well-known

Eisenbud-Green-Harris Conjecture. This conjecture characterizes the Hilbert

functions of graded ideals containing a regular sequence in the polynomial ring.

In chapter 4 we study the Hilbert functions of graded ideals in toric rings. We

prove that Macaulay’s Theorem holds for some projective monomial curves,

and show that Macaulay’s Theorem does not hold for all projective monomial

curves. In the last chapter we construct explicitly the minimal free resolutions

of linear edge ideals.
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CHAPTER 1

INTRODUCTION

In the late nineteenth century, David Hilbert [Hi] introduced the notions of

Hilbert functions and free resolutions. From then on, Hilbert functions and free

resolutions became central concepts in the study of commutative rings and their

modules.

Let S = k[x1, . . . , xn] be the polynomial ring over a field k with deg(xi) = 1

for 1 ≤ i ≤ n. We say that a polynomial f in S is homogeneous if every term of

f has the same degree. A homogeneous polynomial of degree d is also called a

d-form. An ideal I in S is called a graded ideal if I can be generated by a set of

homogeneous polynomials. With the graded structure, we can study the ideal

I degree by degree. More precisely, for any integer d ≥ 0 the set of all homoge-

neous polynomials of degree d in I forms a finite dimensional vector space over

k, which is denoted by Id.

For a graded ideal I in S , the Hilbert function of I is the sequence {dimk Id}d≥0,

which measures the degree-by-degree dimensions of I. For example, the Hilbert

function of S is the sequence {
(

n−1+d
d

)
}d≥0.

Which sequences of nonnegative integers can be the Hilbert functions of

graded ideals in S ? This question is answered by the celebrated Macaulay’s

Theorem [Ma], which says that given any graded ideal I in S there exists a lex

ideal L in S with the same Hilbert function. Lex ideals (see Definition 2.1.6) have

nice structures and their Hilbert functions are easy to describe.

My research about Hilbert functions is to study the generalizations of

Macaulay’s Theorem in two different directions. In one direction, I study the
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Hilbert functions of some special classes of graded ideals in the polynomial ring

S ; in the other direction, I study the Hilbert functions of graded ideals in graded

quotient rings S/J where J is a graded ideal in S ; see Chapter 3 and Chapter 4

for details.

Let I be a graded ideal in S minimally generated by homegeneous poly-

nomials f1, . . . , fr. The Hilbert function of I is closely related to the relations

that f1, . . . , fr have. That is, we are interested in homogeneous polynomials

g1, . . . , gr ∈ S such that

g1 f1 + · · · + gr fr = 0.

The solutions to the above equation are called syzygies. Similarly, we can look

at the relations on the syzygies, the relations on the relations on the syzygies,

etc. By Hilbert Syzygy Theorem (Theorem 2.2.2), this process stops in at most n

steps, and eventually we will get an exact sequence in the following form:

0→ ⊕
j
S (− j)βl, j

dl
−→ ⊕

j
S (− j)βl−1, j

dl−1
−→ · · ·

d2
−→ ⊕

j
S (− j)β1, j

d1
−→ ⊕

j
S (− j)β0, j

d0
−→ I → 0,

where l ≤ n, S (− j) is the ring S but with a shift in grading (i.e. S (− j)d = S − j+d,

for example, in S (−1), x1 has degree 2), and the differential maps d0, . . . , dl are

graded of degree 0 and are given by matrices whose entries are homogeneous

polynomials in S . This exact sequence is called a free resolution of the graded

ideal I over the polynomial ring S . A free resolution is called minimal if the

graded maps d0, . . . , dl are given by matrices whose entries are homogeneous

polynomials in the maximal ideal (x1, . . . , xn). In the minimal case, the numbers

βi, j are called the graded Betti numbers of I.

There is a formula (Theorem 2.2.3) for calculating the Hilbert function of I

in terms of the graded Betti numbers of I. So minimal free resolutions have

more information than Hilbert functions and are often harder to be obtained.
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My research on minimal free resolutions is mainly about monomial resolutions.

Namely, I study the minimal free resolutions of monomial ideals: such ideals

are generated by monomials. In Chapter 5 we will construct the minimal free

resolutions of a class of monomial ideals.
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CHAPTER 2

BACKGROUND

2.1 Hilbert functions and lex ideals

In Chapter 1, we have defined the Hilbert functions of graded ideals in the poly-

nomial ring S . In general, we can define the Hilbert functions of finitely gener-

ated graded S -modules.

Definition 2.1.1. A finitely generated S -module M is graded if

M = ⊕
d∈Z

Md and S iMd ⊆ Mi+d for all i and d,

where Md = {m ∈ M | deg m = d} is the k-vector space of degree-d elements of M.

If I is a graded ideal in S , then I and S/I are finitely generated graded S -

modules. Also, if J is a graded ideal in S/I, then J is a finitely generated graded

S -module. Actually, these are the only finitely generated graded S -modules we

will study in this thesis, and we will always assume Md = 0 for d < 0. Since S is

a finitely generated k-algebra and M is a finitely generated S -module, each Md

is a finite dimensional vector space over k.

Definition 2.1.2. Let M be a finitely generated graded S -module. The Hilbert

function of M is the sequence of non-negative integers {dimk Md}d≥0. The gener-

ating function of this sequence is called the Hilbert series of M, which is denoted

by

HilbM(t) :=
∑
d≥0

(dimk Md)td.
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Example 2.1.3. Let j ≥ 0, then the Hilbert series of S (− j) is

HilbS (− j)(t) =
∑
d≥0

(dimk S (− j)d)td

=
∑
d≥ j

(dimk S d− j)td

= t j
∑
d≥0

(dimk S d)td

= t j
∑
d≥0

(
n − 1 + d

d

)
td

=
t j

(1 − t)n .

The study of Hilbert functions is closely related to lex ideals because of the

celebrated Macaulay’s Theorem.

Definition 2.1.4. The lexicographic order on S is a total order >lex on the monomi-

als of S such that u = xa1
1 · · · x

an
n >lex v = xb1

1 · · · x
bn
n if and only if deg(u) > deg(v) or

deg(u) = deg(v) and ai > bi, where i = min{ j | a j , b j}.

Remark 2.1.5. Besides lexicographic order, there is another important monomial

order, called the reverse lexicographic order >rlex, which is defined on the monomi-

als of S such that u = xa1
1 · · · x

an
n >rlex v = xb1

1 · · · x
bn
n if and only if deg(u) > deg(v) or

deg(u) = deg(v) and ai < bi, where i = max{ j | a j , b j}.

Definition 2.1.6. Let L be an ideal in S minimally generated by monomials

m1, . . . ,mt. We say that L is a lex ideal if the following property is satisfied: if

m is a monomial that is greater lexicographically than mi and deg(m) = deg(mi)

for some 1 ≤ i ≤ t, then m ∈ L.

Example 2.1.7. (x2
1, x1x2, x1x3, x3

2) is a lex ideal in k[x1, x2, x3] with the Hilbert func-

tion (0, 0, 3, 7, 12, · · · ).
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Theorem 2.1.8. (Macaulay)[Ma] Let I be a graded ideal in S . Then there exists a lex

ideal L in S with the same Hilbert function.

Let J be a graded ideal in S . Can we generalize Macaulay’s Theorem to the

graded quotient ring S/J? To do this, we first need to generalize the definition

of lex ideals in this quotient ring. This is possible when J is a monomial ideal.

Definition 2.1.9. Let M be a monomial ideal in the polynomial ring S . Let I be

an ideal in S/M generated by some monomials. Then I is called a lex ideal in S/M

if there is a lex ieals L in S such that

I =
L + M

M
.

By Theorem 2.1.8 we see that if M is a lex ideal in S , then for any graded

ideal in S/M, there exists a lex ideal in S/M with the same Hilbert function.

Therefore, we say that Macaulay’s Theorem holds over S/M when M is a lex

ideal. However, if M is not a lex ideal, Macaulay’s Theorem may not hold over

S/M.

Example 2.1.10. Let S = k[x1, x2, x3, x4] and M = (x1x2, x3x4). Let I be the ideal

in S/M generated by x2x3. Then dimk I2 = 1 and dimk I3 = 2. Assume that there

is a lex ideal L in S/M with the same Hilbert function as I, then x2
1 must be a

generator of L, but then dimk L3 ≥ 3. Hence, L can not have the same Hilbert

function as I, which is a contradiction. So Macaulay’s Theorem does not hold

over S/M.

The first nontrivial generalization of Macaulay’s Theorem is the following

Clements-Lindström’s Theorem.
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Theorem 2.1.11. (Clements-Lindström)[CL] Let R = k[x1, . . . , xn]/(xa1
1 , · · · , x

an
n ) with

2 ≤ a1 ≤ · · · ≤ an ≤ ∞ (here we assume x∞i = 0). Then Macaulay’s Theorem holds

over R, that is, for any graded ideal in R there is a lex ideal in R with the same Hilbert

function; or equivalently, for any graded ideal I in S containing xa1
1 , · · · , x

an
n , there is a

lex ideal L in S such that L + (xa1
1 , · · · , x

an
n ) has the same Hilbert function as I.

Note that in the case a1 = · · · = an = 2, the result was obtained earlier by

Katona [Ka] and Kruskal [Kr].

If J is not a monomial ideal then in general, we can not define lex ideals in

S/J. However, if J is a toric ideal, there is a notion of lex ideals in the toric ring

S/J introduced by Gasharov, Horwitz and Peeva [GHP].

Definition 2.1.12. Let A =


a1

1

 , . . . ,
an

1


 be a subset of N2\{~0}. We set A =

a1 · · · an

1 · · · 1

 to be the matrix associated to A, and assume rankA = 2. The toric

ideal associated toA is the kernel IA of the homomorphism:

ϕ : k[x1, . . . , xn] −→ k[u, v]

xi 7−→ uaiv.

The ideal IA is graded and prime. Set R = S/IA � k[ua1v, . . . , uanv]. Then R is

a graded ring with deg(xi) = 1 for 1 ≤ i ≤ n. We call R = S/IA the toric ring

associated toA.

Theorem 2.1.13. The toric ideal IA is generated by the set of binomials

{xp1
1 · · · x

pn
n − xq1

1 · · · x
qn
n | (p1 − q1, . . . , pn − qn) ∈ Ker(A)}.

Definition 2.1.14. An element m in the toric ring R = S/IA is a monomial if there

exists a monomial preimage xα1
1 · · · x

αn
n of m in S . For simplicity, by writing m =

7



xα1
1 · · · x

αn
n in R, we mean m = xα1

1 · · · x
αn
n + IA in R. An ideal in R is a monomial ideal

if it can be generated by monomials in R. Let m ∈ R be a monomial, the set of all

monomial preimages of m in S is called the fiber of m. The lex-greatest monomial

in a fiber is called the top-representative of the fiber.

Let m,m′ ∈ Rd be two monomials of degree d in R. Let p, p′ be the top-

representatives of the fibers of m and m′ respectively. We say that m �lex m′ in Rd

if p >lex p′ in S .

A d-monomial space W is a vector subspace of Rd spanned by some monomials

of degree d. A d-monomial space W is lex if the following property holds: for

monomials m ∈ W and q ∈ Rd, if q �lex m then q ∈ W. A monomial ideal L in R is

lex if for every d ≥ 0, the d-monomial space Ld is lex.

Every projective monomial curve in Pn−1 can be defined by IA for some A.

For example, the rational normal curves are defined by the toric ideals associ-

ated to matrices of the form

A =

0 1 · · · n − 1

1 1 · · · 1

 .
We say that Macaulay’s Theorem holds for a projective monomial curve defined

by IA if Macaulay’s Theorem holds over the toric ring R = S/IA, that is, for any

graded ideal J in R there exists a lex ideal L in R with the same Hilbert function.

In Chapter 4 we will show that for some projective monomial curves Macaulay’s

Theorem holds and for some other projective monomial curves Macaulay’s The-

orem does not hold.
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2.2 Free resolutions and Betti numbers

In Chapter 1, we have defined free resolutions of graded ideals in the poly-

nomial ring S . In general, we can define free resolutions of finitely generated

graded S -modules.

Definition 2.2.1. Let M be a finitely generated graded S -module. A graded free

resolution of M over S is an exact complex

F : 0→ ⊕
j
S (− j)βl, j

dl
−→ ⊕

j
S (− j)βl−1, j

dl−1
−→ · · ·

d2
−→ ⊕

j
S (− j)β1, j

d1
−→ ⊕

j
S (− j)β0, j

d0
−→ M → 0,

where the differentials di are graded maps of degree 0. The resolution F is called

minimal if for i ≥ 1 the maps di are given by matrices whose entries are homo-

geneous polynomials in the maximal ideal (x1, . . . , xn) of S . F is called a linear

free resolution if for i ≥ 1 the maps di are given by matrices whose entries are

elements in the k-vector space (x1, . . . , xn)1. In the minimal case, the numbers βi, j

are called the graded Betti numbers of M, denoted by βi, j(M).

Note that in the above definition the direct sum over j is always finite be-

cause M is a finitely generated S -module. It is well-known that any two mini-

mal free resolutions of M are isomorphic; also, if G is a free resolution of M and

F is a minimal free resolution of M, then G is isomorphic to the direct sum of F

with a trivial complex.

For any finitely generated graded S -module, there exists a free resolution.

Furthermore, we have a bound for the length l of the free resolution.

Theorem 2.2.2. (Hilbert Syzygy Theorem) Every finitely generated graded S -module

has a graded free resolution of length ≤ n.

9



As mentioned in Chapter 1, the Hilbert funtion of M can be calculated from

a graded free resolution of M.

Theorem 2.2.3. Let M be a finitely generated graded S -module with a graded free

resolution F as in Definition 2.2.1. Then the Hilbert series of M is given by a rational

function:

HilbM(t) =
p(t)

(1 − t)n ,

where p(t) =
∑l

i=0(−1)i(
∑

j≥0 βi, jt j) ∈ Z[t].

Proof. The formula follows from Example 2.1.3 and the fact that if 0 → M1 →

M2 → M3 → 0 is a short exact sequence of finitely generated graded S -modules

and the maps are graded of degree 0, then

HilbM2(t) = HilbM1(t) + HilbM3(t).

�

There are two important classes of minimal free resolutions. One is the

Koszul complex of a regular sequence; another is the Eliahou-Kervaire reso-

lution of a Borel ideal.

Construction 2.2.4. (Koszul Complex) Let I be a graded ideal in S minimally

generated by homogeneous polynomials f1, . . . , fr of positive degrees a1, . . . , ar.

Let K0 = S and for 1 ≤ p ≤ r,

Kp = ⊕
1≤i1<···<ip≤r

S (−ai1 − · · · − aip).

Let ei1...ip be the basis element of S (−ai1 − · · · − aip), then Kp is a free S -module of

rand
(

r
p

)
with basis {ei1...ip | 1 ≤ i1 < · · · < ip ≤ r}. Note that 1 is the basis element of

10



K0 = S . We define the differential map dp : Kp → Kp−1 by setting d0(1) = 1 ∈ S/I,

d1(ei) = fi ∈ K0 for 1 ≤ i ≤ r, and

dp(ei1...ip) =

p∑
j=1

(−1) j−1 fi jei1...î j...ip
.

One checks easily that d2 = 0. So we get a complex

0→ Kr
dr
−→ Kr−1

dr−1
−→ · · ·

d2
−→ K1

d1
−→ K0

d0
−→ S/( f1, . . . , fr)→ 0.

This complex is called the Koszul Complex, and denoted by K( f1, . . . , fr).

Koszul complexes are closely related to regular sequences.

Theorem 2.2.5. The Koszul complex K( f1, . . . , fr) is exact if and only if f1, . . . , fr is a

regular sequence in S , that is, fi is a non-zero-divisor of S/( f1, . . . , fi−1) for 1 ≤ i ≤ r.

Note that if f1, . . . , fr is a regular sequence of positive degrees in S , then for

1 ≤ p ≤ r the maps dp are obviously given by matrices with entries in the maxi-

mal ideal (x1, . . . , xn) of S . So by the above theorem, K( f1, . . . , fr) is the minimal

free resolution of S/( f1, . . . , fr).

Example 2.2.6. Given positive integers a1, . . . , an, xa1
1 , . . . , x

an
n is a regular se-

quence of S , then by Theorem 2.2.5 K(xa1
1 , . . . , x

an
n ) is the minimal free resolution

of S/(xa1
1 , . . . , x

an
n ). By Theorem 2.2.3 we see that

HilbS/(xa1
1 ,...,xan

n )(t) =
1 − ta1 − · · · − tan + · · · + (−1)nta1+···+an

(1 − t)n =

∏n
i=1(1 − tai)
(1 − t)n .

Similarly, if f1, . . . , fn is a regular sequence of homogeneous polynomials in S

with degrees a1, . . . , an, then

HilbS/( f1,..., fn)(t) =

∏n
i=1(1 − tai)
(1 − t)n = HilbS/(xa1

1 ,...,xan
n )(t).

This equality is the starting point of the Eisenbud-Green-Harris Conjecture in

Chapter 3.
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Next, we will construct the minimal free resolutions of Borel ideals.

Definition 2.2.7. A monomial ideal M in S is a Borel ideal if the following condi-

tion is satisfied: if i < j and x jm ∈ M for some monomial m, then xim ∈ M.

For any monomial m ∈ S , we define max(m) = max{ i | xi divides m} and

min(m) = min{ i | xi divides m}

Lemma 2.2.8. Let M be a Borel ideal in S . If m is a monomial in M, then there exists

a minimal monomial generator u of M such that u divides m and max(u) ≤ min(m/u).

We call u the beginning of m, denoted by b(m).

Construction 2.2.9. (Eliahou-Kervaire)[EK] Let M be a Borel ideal in S mini-

mallly generated by monomials m1, . . . ,mr. We construct the Eliahou-Kervaire

resolution EM as follows.

For each sequence 1 ≤ j1 < · · · < jp < max(mi), let the symbol (mi; j1, . . . , jp)

denote the generator of the free S -module S (−mix j1 · · · x jp) in homological degree

p + 1 and multidegree mix j1 · · · x jp . Here in S (−mix j1 · · · x jp), the element 1 has

multidegree mix j1 · · · x jp .

The Eliahou-Kervaire resolution EM has basis

B = {1} ∪ {(mi; j1, . . . , jp) | 1 ≤ j1 < · · · < jp < max(mi), 1 ≤ i ≤ r},

where 1 is the basis in homological degree 0, and in homological degree 1, the

basis elements are (m1; ∅), . . . , (mr; ∅).

We define the map d on the setB by setting d(1) = 1, d(mi; ∅) = mi for 1 ≤ i ≤ r,

12



and for p ≥ 1,

d(mi; j1, . . . , jp) =

p∑
q=1

(−1)q+1x jq(mi; j1, . . . , ĵq, . . . , jp)

−

p∑
q=1

(−1)q+1 mix jq

b(mix jq)
(b(mix jq); j1, . . . , ĵq, . . . , jp),

where the symbols not in B are regarded as zeros.

Theorem 2.2.10. Let M be a Borel ideal in S , then the Eliahou-Kervaire resolution EM

is the minimal free resolution of M.

Note that lex ideals are Borel ideals. So Construction 2.2.9 also gives the

minimal free resolutions of lex ideals, and then it is easy to get the graded Betti

numbers of lex ideals.

Example 2.2.11. Let L = (x2
1, x1x2, x1x3, x3

2) be the lex ideal in k[x1, x2, x3] as in

Example 2.1.7. By Construction 2.2.9, the minimal free resolution EL of S/L has

basis

1; (x2
1; ∅), (x1x2; ∅), (x1x3; ∅), (x3

2; ∅); (x1x2; 1), (x1x3; 1), (x1x3; 2), (x3
2; 1); (x1x3; 1, 2).

And we have the map d such that

d(x1x2; 1) = x1(x1x2; ∅) − x2(x2
1; ∅), d(x1x3; 1) = x1(x1x3; ∅) − x3(x2

1; ∅),

d(x1x3; 2) = x2(x1x3; ∅) − x3(x1x2; ∅), d(x3
2; 1) = x1(x3

2; ∅) − x2
2(x1x2; ∅),

d(x1x3; 1, 2) = x1(x1x3; 2) − x2(x1x3; 1) + x3(x1x2; 1).

Therefore, the minimal free resolution of S/L is

0→ S (−x2
1x2x3)

d3
−→ S (−x2

1x2) ⊕ S (−x2
1x3) ⊕ S (−x1x2x3) ⊕ S (−x1x3

2)

d2
−→ S (−x2

1) ⊕ S (−x1x2) ⊕ S (−x1x3) ⊕ S (−x3
2)

d1
−→ S → S/L→ 0,

13



where

d3 =



x3

−x2

x1

0


, d2 =



−x2 −x3 0 0

x1 0 −x3 −x2
2

0 x1 x2 0

0 0 0 x1


, d1 =

(
x2

1 x1x2 x1x3 x3
2

)
.

So, β1,2(S/L) = 3, β1,3(S/L) = 1; β2,3(S/L) = 3, β2,4(S/L) = 1; β3,4(S/L) = 1.

Macaulay’s Theorem is a special case of the following theorem.

Theorem 2.2.12. (Bigatti-Hulett-Pardue) Let I be a graded ideal in S . Let L be the lex

ideal in S with the same Hilbert function as I. Then for all i, j,

βi, j(S/I) ≤ βi, j(S/L),

that is, every lex ideal has maximal graded Betti numbers among all graded ideals with

the same Hilbert function.

The following mapping cone construction is helpful when constructing new

resolutions from old ones.

Construction 2.2.13. (Mapping Cone) Let 0→ M1
φ
−→ M2

ψ
−→ M3 → 0 be a short

exact sequence of finitely generated graded S -modules. Let

F : 0→ Fn
dF

n
−→ · · ·

dF
2
−→ F1

dF
1
−→ F0

dF
0
−→ M1 → 0

be a graded free resolution of M1. Let

G : 0→ Gn
dG

n
−→ · · ·

dG
2
−→ G1

dG
1
−→ G0

dG
0
−→ M2 → 0

be a graded free resolution of M2. Let Φ : F→ G be be a morphism of complexes

of degree zero which is over the map φ : M1 → M2.
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Let C0 = G0 and Ci = Fi−1 ⊕ Gi for 1 ≤ i ≤ n + 1. Let dC
0 = ψdG

0 and for

1 ≤ i ≤ n + 1,

dC
i =

−dF
i−1 0

Φi−1 dG
i

 .
It is easy to check that dC

i−1dC
i = 0. We call the new complex

MC(Φ) : 0→ Cn+1
dC

n+1
−→ · · ·

dC
2
−→ C1

dC
1
−→ C0

dC
0
−→ M3 → 0

the mapping cone of Φ.

Theorem 2.2.14. In the above construction, the mapping cone MC(Φ) is a graded free

resolution of M3.

Note that in Construction 2.2.13, even if both F and G are minimal free reso-

lutions, MC(Φ) may not be minimal. In chapter 5, We will use the mapping cone

construction to get the minimal free resolutions of a class of monomial ideals in

the polynomial ring S .
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CHAPTER 3

SOME CASES OF THE EISENBUD-GREEN-HARRIS CONJECTURE

3.1 Known results about the conjecture

Given any homogeneous ideal I in S , Macaulay (Theorem 2.1.8) proved that

there exists a lex ideal L with the same Hilbert function. As a generalization of

Macaulay’s Theorem, Clements and Lindström (Theorem 2.1.11) proved that if

I ⊂ S is a homogeneous ideal containing xa1
1 , x

a2
2 , . . . , x

ar
r for some integers 2 ≤

a1 ≤ a2 ≤ · · · ≤ ar and 1 ≤ r ≤ n, then there exists a lex ideal L ⊂ S such that

L + (xa1
1 , x

a2
2 , . . . , x

ar
r ) has the same Hilbert function as I. Here, L + (xa1

1 , x
a2
2 , . . . , x

ar
r )

is called a lex-plus-powers ideal in S . Motivated by Example 2.2.6, we have the

following conjecture.

Conjecture 3.1.1. (Eisenbud-Green-Harris)[EGH]If I ⊂ S is a homogeneous ideal

containing a regular sequence of forms f1, f2, . . . , fr of degrees a1, a2, . . . , ar where

2 ≤ a1 ≤ a2 ≤ · · · ≤ ar and 1 ≤ r ≤ n, then there exists a homogeneous ideal in S

containing xa1
1 , x

a2
2 , . . . , x

ar
r with the same Hilbert function.

The above conjecture is called the EGH Conjecture. By the Clements-

Lindström Theorem, the EGH Conjecture can be stated in the following equiv-

alent form: If I ⊂ S is a homogeneous ideal containing a regular sequence of

forms f1, f2, . . . , fr of degrees a1, a2, . . . , ar, then there exists a lex-plus-powers

ideal L + (xa1
1 , x

a2
2 , . . . , x

ar
r ) in S with the same Hilbert function.

The following are some known cases of the EGH Conjecture.

Theorem 3.1.2. (Mermin)[Me] If I ⊂ S is a homogeneous ideal containing a regular
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sequence of monomials m1,m2, . . . ,mr of degrees a1, a2, . . . , ar, then there exists a lex-

plus-powers ideal L + (xa1
1 , x

a2
2 , . . . , x

ar
r ) in S with the same Hilbert function.

Note that the above theorem is trivial if r = n.

Theorem 3.1.3. (Cooper)[Co1] Let k be an algebraically closed field of characteristic

zero. The EGH Conjecture holds if I ⊂ S = k[x1, x2, x3] has minimal generators which

are all in the same degree and two of the minimal generators form a regular sequence in

k[x1, x2].

Cooper [Co2] also studied the conjecture for some cases with r = n = 3 in a

geometric setting.

In [CM, Propositions 9 and 10], Caviglia and Maclagan proved that if the

EGH conjecture holds for all regular sequences of length n, then it holds for all

regular sequences of length r ≤ n. So the rest of the paper will always assume

r = n.

Definition 3.1.4. (Caviglia-Maclagan)[CM] Fix integers 2 ≤ a1 ≤ a2 ≤ · · · ≤ an

and let d be a non-negative integer. We say that EGH(d) holds if for any homoge-

neous ideal I ⊂ S containing a regular sequence of forms of degrees a1, a2, . . . , an,

there exists an homogeneous ideal J ⊂ S containing xa1
1 , x

a2
2 , . . . , x

an
n such that

dimk Id = dimk Jd and dimk Id+1 = dimk Jd+1.

Note that given any non-negative integer d, there is a lex-plus-powers

ideal J = L + (xa1
1 , x

a2
2 , . . . , x

an
n ) such that dimk Id = dimk Jd. And the Clements-

Lindström Theorem implies that EGH(d) holds if and only if dimk Id+1 ≥

dimk{S 1Jd
⊕

(xa1
1 , x

a2
2 , . . . , x

an
n )d+1}. It follows that the EGH Conjecture holds if and

only if EGH(d) holds for all non-negative integers d. In addition, we only need

to check if EGH(d) holds for d <
∑n

i=1(ai − 1) because Id = S d for d >
∑n

i=1(ai − 1).
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Lemma 3.1.5. (Caviglia-Maclagan)[CM] Fix integers 2 ≤ a1 ≤ a2 ≤ · · · ≤ an and set

N =
∑n

i=1(ai−1). Then for any 0 ≤ d ≤ N−1, EGH(d) holds if and only if EGH(N−1−d)

holds.

Theorem 3.1.6. (Caviglia-Maclagan)[CM] Fix integers 2 ≤ a1 ≤ a2 ≤ · · · ≤ an. If

ai >
∑i−1

j=1(a j − 1) for all 2 ≤ i ≤ n then the EGH Conjecture holds.

An immediate consequence of the above theorem is that the EGH Conjecture

holds for n = 2. Indeed, if 2 ≤ a1 ≤ a2 then a2 > a1 − 1. The n = 2 case was also

obtained by Richert [Ri].

Francisco [Fra] proved the following almost complete intersection case.

Theorem 3.1.7. (Francisco)[Fra] Fix integers 2 ≤ a1 ≤ a2 ≤ · · · ≤ an and let d be an

integer such that d ≥ a1. Let I ⊂ S be a homogeneous ideal minimally generated by

forms f1, . . . , fn, g where f1, . . . , fn is a regular sequence, deg fi = ai and deg g = d. Let

J = (xa1
1 , x

a2
2 , . . . , x

an
n ,m), where m is the greatest monomial in lex order in degree d not

in (xa1
1 , x

a2
2 , . . . , x

an
n ). Then dimk Id+1 ≥ dimk Jd+1.

In section 3.2 and section 3.3, we will focus on the case a1 = a2 = · · · = an = 2.

The EGH Conjecture was originally stated in this case [EGH]. Richert [Ri] says

that he verified the EGH Conjecture for a1 = a2 = · · · = an = 2 and n ≤ 5, but this

result was not published. Herzog and Popescu [HP] proved that if k is a field

of characteristic zero and I is minimally generated by generic quadratic forms,

then the EGH Conjecture holds.

3.2 Some new cases of the conjecture

The following proposition implies that EGH(1) holds if a1 = · · · = an = 2.
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Proposition 3.2.1. Let I = ( f1, . . . , fn, g1, . . . , gm) be an ideal in S , where f1, . . . , fn is a

regular sequence of 2-forms and g1, . . . , gm are linearly independent 1-forms over k with

1 ≤ m ≤ n. Set J = (x2
1, x

2
2, . . . , x

2
n, x1, . . . , xm) ⊂ S . Then

dimk I2 ≥ dimk J2.

Proof. Since J2 = (x1, . . . , xm)2
⊕

span{x2
m+1, . . . , x

2
n}, it follows that

dimk J2 = dimk(x1, . . . , xm)2 + (n − m).

Without the loss of generality we can assume that g1 = x1, . . . , gm = xm and

then I = (x1, . . . , xm, f1, . . . , fn). Hence,

dimk I2 = dimk(x1, . . . , xm)2 + dimk(I/(x1, . . . , xm))2.

Set t = dimk(I/(x1, . . . , xm))2. Then there exists 1 ≤ i1 < · · · < it ≤ n such

that f̄i1 , . . . , f̄it form a basis of the k-vector space (I/(x1, . . . , xm))2. Thus we have

I = (x1, . . . , xm, fi1 , . . . , fit) which implies that ht(I) ≤ m + t. Since f1, . . . , fn is a

regular sequence it follows that ht( f1, . . . , fn) = n. But ( f1, . . . , fn) ⊂ I ⊂ (x1, . . . , xn)

and ht(x1, . . . , xn) = n, thus ht(I) = n which implies n ≤ m + t and then t ≥ n − m.

So dimk I2 ≥ dimk J2 and the theorem is proved. �

Theorem 3.2.2. If a1 = a2 = · · · = an = 2 and 2 ≤ n ≤ 4 then the EGH Conjecture

holds.

Proof. Let N =
∑n

i=1(ai − 1). Note that EGH(0) always holds trivially and EGH(1)

holds by Proposition 3.2.1, so we only need to show that EGH(2),. . . , EGH(N−1)

hold.

If n = 2 then N − 1 = 1 and there is nothing to prove, so that the EGH

Conjecture is true.
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If n = 3 then N − 1 = 2. By Lemma 3.1.5, EGH(2) holds if and only if EGH(0)

holds. So EGH(2) holds and the EGH Conjecture is true.

If n = 4 then N − 1 = 3. By Lemma 3.1.5, EGH(3) holds if and only if EGH(0)

holds; EGH(2) holds if and only if EGH(1)holds. Therefore, EGH(2) and EGH(3)

hold, and the EGH Conjecture is true. �

Note that if we want to show the cases n = 5 and n = 6 then EGH(2) needs

to be proved directly which is not as simple as Proposition 3.2.1. Richert [Ri]

claimed that he had a proof for n ≤ 5 but not for n = 6 because his proof is

different from mine.

The EGH Conjecture also holds in the following two simple cases where

regular sequences have nice structures.

Proposition 3.2.3. Let f1, . . . , fn be a regular sequence of 2-forms in S . Then the EGH

Conjecture holds in the following two cases:

(1) f1 = l2
1, . . . , fn = l2

n, where li =
∑n

j=1 ai jx j for 1 ≤ i ≤ n, ai j ∈ k and det(ai j) , 0.

(2) For 1 ≤ i ≤ n, fi =
∑

m∈S 2
ai,mm, where the sum is over all monomials m in S 2,

ai,m ∈ k and ai,m = 0 for m <lex x2
i . Here we assume x1 > x2 > · · · > xn and use the

lex order.

Proof. (1) Note that the k-algebra map F : S −→ S defined by F(xi) = li for

1 ≤ i ≤ n is an graded isomorphism. So the Hilbert function is preserved under

F−1. It follows that the EGH Conjecture holds.

(2) First we claim that ai,x2
i
, 0 for all 1 ≤ i ≤ n. Indeed, if not, then let j be the

smallest integer such that a j,x2
j

= 0. If j = 1 then f1 = 0 which is a contradiction.
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Hence j > 1. Since ai,m = 0 for m <lex x2
i , it follows that ( f1, . . . , f j) ⊆ (x1, . . . , x j−1),

so that

( f1, . . . , fn) ⊆ (x1, . . . , x j−1, f j+1, . . . , fn).

Since f1, . . . , fn is a regular sequence, we have that ht( f1, . . . , fn) = n which im-

plies ht(x1, . . . , x j−1, f j+1, . . . , fn) = n, but (x1, . . . , x j−1, f j+1, . . . , fn) is generated by

n − 1 elements and its height can not be n. So we get a contradiction and the

claim is proved.

Now we consider the initial ideal in<rlex( f1, . . . , fn) with respect to the reverse

lex order such that xn > · · · > x1. With this monomial order, by the above

claim it is easy to see that in<rlex fi = x2
i . Thus, in<rlex( f1, . . . , fn) = (x2

1, . . . , x
2
n).

Given any homogeneous ideal I containing f1, . . . , fn, since in<rlex(I) contains

in<rlex( f1, . . . , fn) = (x2
1, . . . , x

2
n) and in<rlex(I) has the same Hilbert function as I,

it follows that I has the same Hilbert function as a monomial ideal containing

x2
1, . . . , x

2
n. So the EGH Conjecture holds.

�

Remark 3.2.4. The above proposition is actually an easy consequence of the fact

that the Hilbert function is preserved under GL(n, k) actions on the variables or

by taking initial ideas. In part (2) of the above proposition, if we replace “lex”

by “reverse lex”, or replace “m <lex x2
i ” by “m >lex x2

i ”, then the result still holds.

In general, f1, . . . , fn do not satisfy the assumptions in the above proposition.

By part (2) of the above proposition, the EGH Conjecture in the case of

a1 = · · · = an = 2 can be stated in the following equivalent form: If I ⊂ S is a

homogeneous ideal containing a regular sequence of n 2-forms, then there exists

a homogeneous ideal in S containing f1, . . . , fn with the same Hilbert function,
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where f1, . . . , fn are some 2-forms satisfying part (2) of the above proposition.

3.3 Almost complete intersections

This section proves Theorem 3.1.7 for the case a1 = · · · = an = 2. The key in-

gredient of any proof of the EGH Conjecture should be about the use of the

assumption that f1, f2, . . . , fn is a regular sequence in S . In [Fra], Francisco made

use of the fact that if f1, f2, . . . , fn is a regular sequence in S then the minimal free

resolution of S/( f1, . . . , fn) over S is given by the Koszul complex. In this section

we will use the regular sequence assumption in different ways. Before proving

Theorem 3.3.4, we look at some lemmas about regular sequences. The following

lemma is a special case of Proposition 7 in [CM], which was originally proved

in [DGO].

Lemma 3.3.1. (Davis-Geramita-Orecchia)[DGO] Let f1, . . . , fn be a regular sequence

of 2-forms in S . Let I be a homogeneous ideal containing f1, . . . , fn. Then for all 0 ≤

d ≤ n, we have

dimk(S/( f1, . . . , fn))d = dimk(S/I)d + dimk(S/(( f1, . . . , fn) : I))n−d,

or equivalently,

dimk(I/( f1, . . . , fn))d = dimk(S/(( f1, . . . , fn) : I))n−d.

Lemma 3.3.2. Let I be an ideal in S minimally generated by some 2-forms. If the height

of I is r ≥ 1, that is, ht(I) = r, then I contains a regular sequence f1, . . . , fr of 2-forms.

Proof. Let s be the maximal integer such that I contains a regular sequence f1, . . .,

fs of 2-forms. Then it is easy to see that s ≥ 1 and we have

s = ht( f1, . . . , fs) ≤ ht(I) = r.
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Hence, it suffices to show that s = r.

To prove by contradiction, we assume s < r. Let f1, . . . , fs be a regular se-

quence of 2-forms contained in I, then ht( f1, . . . , fs) = s < r. Let P1, . . . , Pl be

the prime divisors of the ideal ( f1, . . . , fs). Since S is Cohen-Macaulay, we have

ht(Pi) = s for 1 ≤ i ≤ l. If I ⊆ P1∪· · ·∪Pl, then there exists i such that I ⊆ Pi, which

implies ht(I) ≤ ht(Pi) = s < r; but ht(I) = r, thus I is not contained in P1 ∪ · · · ∪ Pl.

Since I is generated by 2-forms, it follows that there exists a 2-form fs+1 in I such

that fs+1 < P1 ∪ · · · ∪ Pl. Thus, fs+1 is a non-zero-divisor of S/( f1, . . . , fs). There-

fore, I contains a regular sequence f1, . . . , fs, fs+1 of 2-forms, which contradicts

the definition of s. So s = r and the lemma is proved. �

Lemma 3.3.3. If f1, . . . , fn is a regular sequence of 2-forms in S and g1 f1 + g2 f2 +

· · · + gn fn = 0 for some q-forms g1, g2, . . . , gn, then g1, g2, . . . , gn ∈ ( f1, . . . , fn)q. More

precisely, we have q ≥ 2 and there exists a skew-symmetric n×n matrix A of (q−2)-forms

such that (
g1 g2 . . . gn

)
=

(
f1 f2 . . . fn

)
A.

Proof. Let K( f1, . . . , fn) be the Koszul complex with e1, . . . , en the basis in homo-

logical degree 1. Since f1, . . . , fn is a regular sequence, we have H1(K( f1, . . . , fn)) =

0. Thus, if g1 f1 + · · · + gn fn = 0 then there exists (q − 2)-forms hi j for 1 ≤ i < j ≤ n

such that

g1e1 + · · · + gnen =
∑

1≤i< j≤n

hi j( f jei − fie j).

Comparing the coefficients of e1, . . . , en, we get(
g1 g2 . . . gn

)
=

(
f1 f2 . . . fn

)
A,

where A is a skew-symmetric matrix with the (i, j)th entry given by −hi j for

i < j. �
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Theorem 3.3.4. Let I ⊂ S be a homogeneous ideal minimally generated by a regular

sequence of 2-forms f1, . . . , fn and a d-form g with d ≥ 2. Let J = (x2
1, x

2
2, . . . , x

2
n,m),

where m is the greatest monomial in lex order in degree d not in (x2
1, x

2
2, . . . , x

2
n). Then

dimk Id+1 ≥ dimk Jd+1.

We will prove this theorem by two different methods. The first method uses

Lemma 3.3.1 and Lemma 3.3.2.

Proof. Note that ( f1, . . . , fn)n+1 = (x2
1, . . . , x

2
n)n+1 = S n+1, hence d ≤ n. Since the

d = n case is also trivial, we will assume that 2 ≤ d ≤ n − 1. It is easy to see that

m = x1 · · · xd and then dimk Jd+1 = dimk(x2
1, . . . , x

2
n)d+1 + n − d. On the other hand,

dimk Id+1 = dimk( f1, . . . , fn)d+1 + n − dimk

(
( f1, . . . , fn)d+1 ∩ S 1span{g}

)
.

Let r = dimk

(
( f1, . . . , fn)d+1 ∩ S 1span{g}

)
≤ n. Since dimk(x2

1, . . . , x
2
n)d+1 =

dimk( f1, . . . , fn)d+1 we need only to show r ≤ d.

To prove by contradiction, we assume that r > d. Then without the loss

of generality, we can assume that x1g, . . . , xrg ∈ ( f1, . . . , fn)d+1. Then we have

x1, . . . , xr ∈ (( f1, . . . , fn) : I). Note that

S
(x1, . . . , xr, f1, . . . , fn)

�
k[xr+1, . . . , xn]

( f̄1, . . . , f̄n)
,

where f̄1, . . . , f̄n are the images of f1, . . . , fn in the quotient ring S/(x1, . . . , xr)

� k[xr+1, . . . , xn]. Since k[xr+1, . . . , xn]/( f̄1, . . . , f̄n) has dimension zero, we have

ht( f̄1, . . . , f̄n) = n − r. Hence, by Lemma 3.3.2, ( f̄1, . . . , f̄n) contains a regular se-

quence g1, . . . , gn−r of 2-forms in the polynomial ring k[xr+1, . . . , xn]. Thus, for all

i ≥ 0,

dimk(k[xr+1, . . . , xn]/( f̄1, . . . , f̄n))i ≤

(
n − r

i

)
.
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Therefore, by Lemma 3.3.1, we have

1 = dimk(I/( f1, . . . , fn))d

= dimk(S/(( f1, . . . , fn) : I))n−d

≤ dimk(S/(x1, . . . , xr, f1, . . . , fn))n−d

= dimk(k[xr+1, . . . , xn]/( f̄1, . . . , f̄n))n−d

≤

(
n − r
n − d

)
= 0, since r > d.

So we get a contradiction and r ≤ d. �

The following proof of Theorem 3.3.4 uses Lemma 3.3.3.

Proof. As in the previous proof, we can assume 2 ≤ d ≤ n − 1.

First we consider the case d = 2 and n ≥ 3. Now J = (x2
1, x

2
2, . . . , x

2
n, x1x2) and

dimk J3 = dimk(x2
1, . . . , x

2
n)3 + n − 2. On the other hand,

dimk I3 = dimk( f1, . . . , fn)3 + n − dimk

(
( f1, . . . , fn)3 ∩ S 1span{g}

)
.

Since dimk(x2
1, . . . , x

2
n)3 = dimk( f1, . . . , fn)3 we need only to show that

dimk(( f1, . . . , fn)3 ∩ S 1span{g}) ≤ 2.

We prove by contradiction, so assume dimk(( f1, . . . , fn)3 ∩ S 1span{g}) ≥ 3. Then

without the loss of generality we can assume that

x1g = ~f · ~p1,

x2g = ~f · ~p2,

x3g = ~f · ~p3,
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where ~f is the row vector
(

f1, f2, . . . , fn

)
and ~p1, ~p2, ~p3 are some column vectors

of 1-forms. Hence we have

g
(
x1 x2 x3

)
= ~f ·

(
~p1 ~p2 ~p3

)
.

Since

(
x1 x2 x3

)


x2 x3 0

−x1 0 x3

0 −x1 −x2

 = 0,

it follows that

~f ·
(
~p1 ~p2 ~p3

)


x2 x3 0

−x1 0 x3

0 −x1 −x2


= ~f ·

(
x2~p1 − x1~p2 x3~p1 − x1~p3 x3~p2 − x2~p3

)
= 0.

By Lemma 3.3.3 there are skew-symmetric n × n matices A12, A13, A23 of scalars

such that(
x2~p1 − x1~p2 x3~p1 − x1~p3 x3~p2 − x2~p3

)
=

(
A12 ~f T A13 ~f T A23 ~f T

)
.

Since 
x2 x3 0

−x1 0 x3

0 −x1 −x2




x3

−x2

x1

 = 0,

it follows that

(
A12 ~f T A13 ~f T A23 ~f T

)


x3

−x2

x1

 = 0,

so that (x3A12 − x2A13 + x1A23) ~f T = 0. Since x3A12 − x2A13 + x1A23 is an n× n matrix

of 1-forms, it follows from Lemma 3.3.3 that x3A12 − x2A13 + x1A23 = 0 and then
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A12 = A13 = A23 = 0. Thus, x2~p1−x1~p2 = 0 which implies that ~p1 can be divided by

x1. So g = ~f · (~p1/x1) and then g ∈ ( f1, . . . , fn)2 which contradicts the assumption

that I is minimally generated by f1, . . . , fn, g. So we have proved the case d = 2.

Then we consider the case d = 3 and n ≥ 4. Now J = (x2
1, . . . , x

2
n, x1x2x3) and

dimk J4 = dimk(x2
1, . . . , x

2
n)4 + n − 3. On the other hand,

dimk I4 = dimk( f1, . . . , fn)4 + n − dimk(( f1, . . . , fn)4 ∩ S 1span{g}).

Since dimk(x2
1, . . . , x

2
n)4 = dimk( f1, . . . , fn)4 we need only to show that

dimk(( f1, . . . , fn)4 ∩ S 1span{g}) ≤ 3.

We prove by contradiction, so assume dimk(( f1, . . . , fn)4 ∩ S 1span{g}) ≥ 4. Then

without the loss of generality we can assume that

x1g = ~f · ~p1,

x2g = ~f · ~p2,

x3g = ~f · ~p3,

x4g = ~f · ~p4,

where ~p1, ~p2, ~p3, ~p4 are some column vectors of 2-forms. Hence we have

g
(
x1 x2 x3 x4

)
= ~f ·

(
~p1 ~p2 ~p3 ~p4

)
.

Since

(
x1 x2 x3 x4

)


x2 x3 x4 0 0 0

−x1 0 0 x3 x4 0

0 −x1 0 −x2 0 x4

0 0 −x1 0 −x2 −x3


= 0,
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it follows that

~f ·
(
~p1 ~p2 ~p3 ~p4

)


x2 x3 x4 0 0 0

−x1 0 0 x3 x4 0

0 −x1 0 −x2 0 x4

0 0 −x1 0 −x2 −x3


= ~f ·

(
x2~p1 − x1~p2 · · · x4~p3 − x3~p4

)
= 0.

By Lemma 3.3.3 there are skew-symmetric n × n matices A12, A13, . . . , A34 of 1-

forms such that(
x2~p1 − x1~p2 · · · x4~p3 − x3~p4

)
=

(
A12 ~f T · · · A34 ~f T

)
.

Since



x2 x3 x4 0 0 0

−x1 0 0 x3 x4 0

0 −x1 0 −x2 0 x4

0 0 −x1 0 −x2 −x3





x3 x4 0 0

−x2 0 x4 0

0 −x2 −x3 0

x1 0 0 x4

0 x1 0 −x3

0 0 x1 x2



= 0,

it follows that

(
A12 ~f T · · · A34 ~f T

)



x3 x4 0 0

−x2 0 x4 0

0 −x2 −x3 0

x1 0 0 x4

0 x1 0 −x3

0 0 x1 x2



= 0,

that is, (
(x3A12 − x2A13 + x1A23) ~f T · · · (x4A23 − x3A24 + x2A34) ~f T

)
= 0.
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By Lemma 3.3.3 there are skew-symmetric n×n matices B123,1, . . . , B123,n, . . . , B234,n

of scalars such that

x3A12 − x2A13 + x1A23 =


~f B123,1

...

~f B123,n

 ,

x4A12 − x2A14 + x1A24 =


~f B124,1

...

~f B124,n

 ,

x4A13 − x3A14 + x1A34 =


~f B134,1

...

~f B134,n

 ,

x4A23 − x3A24 + x2A34 =


~f B234,1

...

~f B234,n

 .
Since 

x3 x4 0 0

−x2 0 x4 0

0 −x2 −x3 0

x1 0 0 x4

0 x1 0 −x3

0 0 x1 x2





x4

−x3

x2

−x1


= 0,

it follows that for any 1 ≤ i ≤ n,

~f (x4B123,i − x3B124,i + x2B134,i − x1B234,i) = 0.

Since x4B123,i − x3B124,i + x2B134,i − x1B234,i is an n × n matrix of 1-forms, it follows

from Lemma 3.3.3 that

x4B123,i − x3B124,i + x2B134,i − x1B234,i = 0,
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and then B123,1 = · · · = B234,n = 0. Thus, x3A12−x2A13+x1A23 = 0 which implies that

x2A13 − x1A23 can be divided by x3. Let A′13 and A′23 be the skew-symmetric matri-

ces of 1-forms obtained from A13 and A23 by keeping only the terms containing

x3, then we have

A12 =
1
x3

(x2A13 − x1A23)

=
1
x3

(x2A′13 − x1A′23)

= x2
A′13

x3
− x1

A′23

x3
. (3.1)

Thus,

x2~p1 − x1~p2 = A12 ~f T = (x2
A′13

x3
− x1

A′23

x3
) ~f T ,

and then,

x1(~p2 −
A′23

x3

~f T ) = x2(~p1 −
A′13

x3

~f T ),

so that ~p1 −
A′13
x3
~f T can be divided by x1. Note that A′13

x3
is an n× n skew-symmetric

matrix of scalars, which implies that ~f A′13
x3
~f T = 0. So we have x1g = ~f ·(~p1−

A′13
x3
~f T )

and then g = ~f · 1
x1

(~p1 −
A′13
x3
~f T ) ∈ ( f1, . . . , fn)3 which contradicts the assumption

that I is minimally generated by f1, . . . , fn, g. So we have proved the case d = 3.

Proceeding in the same way we can prove the theorem for all 2 ≤ d ≤ n − 1

and we are done. �

The second proof actually uses the minimal free resolution (Koszul complex)

of S/(x1, x2, . . . , xi). This is because we add only one polynomial g in degree d. If

we add two or more polynomials in degree d, things get very complicated and

the second proof does not work any more. The first proof also depends heavily

on adding just one polynomial g. If we add two or more polynomials in degree

d, then (( f1, . . . , fn) : I) will not always contain many variables as in our first

proof.
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After proving theorem 3.3.4, it is natural to consider the following problem,

which is a special case of the EGH Conjecture.

Problem 3.3.5. Let f1, . . . , fn be a regular sequence of 2-forms in S with n ≥ 3.

Let g, h ∈ S be 2-forms such that dimk( f1, . . . , fn, g, h)2 = n + 2. Is it true that

dimk( f1, . . . , fn, g, h)3 ≥ dimk(x2
1, . . . , x

2
n, x1x2, x1x3)3 = n2 + 2n − 5?

From section 2, we know that it is true if 3 ≤ n ≤ 4, or if f1, . . . , fn satisfy the

assumption of Proposition 3.2.3. From [HP], we know that it is true if g and h

are generic 2-forms and Char(k) = 0.

By theorem 3.3.4 we see that dimk(( f1, . . . , fn)3 ∩ S 1span{g}) can only be 0, 1

or 2. In the next proposition we study the case dimk(( f1, . . . , fn)3∩S 1span{g}) = 2

by using a combination of techniques used in the two proofs of Theorem 3.3.4.

Proposition 3.3.6. Let f1, . . . , fn be a regular sequence of 2-forms in S with n ≥ 3. Let

g, h be 2-forms such that dimk( f1, . . . , fn, g, h)2 = n+2. If dimk(( f1, . . . , fn)3∩S 1span{g})

= 2, then

dimk( f1, . . . , fn, g, h)3 ≥ n2 + 2n − 5.

Proof. Since dimk(( f1, . . . , fn)3∩S 1span{g}) = 2, there exists linearly independent

1-forms l1 and l2 such that

l1g = ~f · ~p1,

l2g = ~f · ~p2,

where ~f is the row vector
(

f1, f2, . . . , fn

)
and ~p1, ~p2 are some column vectors of

1-forms.

To prove by contradiction, we assume that dimk( f1, . . . , fn, g, h)3 < n2 + 2n − 5.
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Since

dimk( f1, . . . , fn, g, h)3

= dimk( f1, . . . , fn, g)3 + n − dimk(( f1, . . . , fn, g)3 ∩ S 1span{h})

= (dimk( f1, . . . , fn)3 + n − 2) + n − dimk(( f1, . . . , fn, g)3 ∩ S 1span{h})

= n2 + 2n − 2 − dimk(( f1, . . . , fn, g)3 ∩ S 1span{h}),

it follows that dimk(( f1, . . . , fn, g)3∩S 1span{h}) ≥ 4. Without the loss of generality,

we can assume that

x1h = l3g + ~f · ~p3,

x2h = l4g + ~f · ~p4,

x3h = l5g + ~f · ~p5,

x4h = l6g + ~f · ~p6,

where l3, l4, l5, l6 are some 1-forms and ~p3, ~p4, ~p5, ~p6 are some column vectors of

1-forms. Multiplying the above 4 equations by l1, because l1g = ~f · ~p1, we get

that

x1(l1h), x2(l1h), x3(l1h), x4(l1h) ∈ ( f1, . . . , fn)4.

By the second proof of Theorem 3.3.4, we conclude that l1h ∈ ( f1, . . . , fn)3. Simi-

larly, we have l2h ∈ ( f1, . . . , fn)3. Thus,

l1, l2 ∈ (( f1, . . . , fn) : ( f1, . . . , fn, g, h)).

Without the loss of generality we can assume that l1 = x1 and l2 = x2. Therefore,
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similar to the first proof of Theorem 3.3.4, we have

2 = dimk(( f1, . . . , fn, g, h)/( f1, . . . , fn))2

= dimk(S/(( f1, . . . , fn) : ( f1, . . . , fn, g, h)))n−2

≤ dimk(S/(x1, x2, f1, . . . , fn))n−2

= dimk(k[x3, . . . , xn]/( f̄1, . . . , f̄n))n−2

≤

(
n − 2
n − 2

)
= 1,

which is a contradiction. So dimk( f1, . . . , fn, g, h)3 ≥ n2+2n−5 and we are done. �

Remark 3.3.7. The key point of the above proof is that there exist two 1-forms l1

and l2 such that l1, l2 ∈ (( f1, . . . , fn) : ( f1, . . . , fn, g, h)), which is not the case if

dimk(( f1, . . . , fn)3 ∩ S 1span{g}) , 2 and dimk(( f1, . . . , fn)3 ∩ S 1span{h}) , 2.

It would be interesting to study the other two cases of Problem 3.3.5.

We end this section by looking at two criteria and one example about regular

sequences. Here we do not assume that f1, f2, . . . , fn are of degrees 2. One simple

criterion for f1, f2, . . . , fn being a regular sequence in S is the following:

f1, f2, . . . , fn is a regular sequence ⇐⇒ Rad( f1, . . . , fn) = (x1, . . . , xn).

The other criterion follows easily from [Mt, Corollary on Page 161], which says:

f1, . . . , fn is a regular sequence in S if and only if the following condition holds:

if g1 f1 + · · · + gn fn = 0 for some g1, . . . , gn ∈ S , then g1, . . . , gn ∈ ( f1, . . . , fn).

In general, given homogeneous polynomials f1, . . . , fn of degrees 2 in S , it

is hard to check by hand whether f1, . . . , fn form a regular sequence, although
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generically f1, . . . , fn form a regular sequence. The following example gives a

characterization of a special class of regular sequences.

Example 3.3.8. Let f1 = x1l1, . . . , fn = xnln be a sequence of homogeneous poly-

nomials in S , where li =
∑n

j=1 ai jx j with ai j ∈ k and i = 1, . . . , n. Let A be the

n × n matrix (ai j). For any 1 ≤ r ≤ n and 1 ≤ i1 < · · · < ir ≤ n, let A[i1, . . . , ir]

be the submatrix of A formed by rows i1, . . . , ir and columns i1, . . . , ir. By look-

ing at the primary decomposition of the ideal ( f1, . . . , fn), we see that f1, . . . , fn

is a regular sequence if and only if det(A[i1, . . . , ir]) , 0 for all 1 ≤ r ≤ n and

1 ≤ i1 < · · · < ir ≤ n. It would be interesting to know if the EGH Conjecture

holds in this special case.
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CHAPTER 4

MACAULAY’S THEOREM FOR SOME PROJECTIVE MONOMIAL

CURVES

4.1 Introduction

In 1927, Macaulay proved that for every graded ideal in S = k[x1, . . . , xn] there

exists a lex ideal with the same Hilbert function (see Theorem 2.1.8). Then it

is interesting to know if similar results hold for graded quotient rings of the

polynomial ring S . From 2.1.11 we see that Macaulay’s Theorem holds over the

quotient ring k[x1, . . . , xn]/(xa1
1 , · · · , x

an
n ), where 2 ≤ a1 ≤ · · · ≤ an ≤ ∞. Recently,

Mermin and Peeva [MP] raised the problem to find other graded quotient rings

over which Macaulay’s Theorem holds.

Toric varieties, cf. [Fu], have been extensively studied in Algebraic Ge-

ometry. They are very interesting because they can be studied with methods

and ideas from Algebraic Geometry, Combinatorics, Commutative Algebra and

Computational Algebra. In [GHP], Gasharov, Horwitz and Peeva introduced

the notion of a lex ideal in the toric ring (see Definition 2.1.12 and Definition

2.1.14) and raised the question [GHP, 4.1] to find projective toric rings over

which Macaulay’s Theorem holds. They proved in [GHP, Theorem 5.1] that

Macaulay’s Theorem holds for the rational normal curves.

The goal of this chapter is to study whether Macaulay’s Theorem holds for

other projective monomial curves.

In Theorem 4.3.1 we prove that Macaulay’s Theorem holds for projective
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monomial curves defined by the toric ideals associated to matrices of the form

A =

0 1 · · · n − 2 n − 1 + h

1 1 · · · 1 1

 , where n ≥ 3, h ∈ Z+.

In Theorem 4.4.1 we consider matrices of the form

A =

0 1 + h 2 + h · · · n − 1 + h

1 1 1 · · · 1

 , where n ≥ 3, h ∈ Z+,

and prove that if h = 1 or n = 3, Macaulay’s Theorem holds; otherwise,

Macaulay’s Thereom does not hold.

Finally, in Theorem 4.4.5 we prove that Macaulay’s Theorem does not hold

if

A =

0 1 · · · m − 1 m + h · · · n − 1 + h

1 1 · · · 1 1 · · · 1

 ,
where n ≥ 4, 2 ≤ m ≤ n − 2 and h ∈ Z+.

In section 2.1,We have defined toric rings and lex ideals in toric rings. Before

invesgating Macaulay’s Theorem over toric rings, we list some known results

and make some small but useful observations.

By [GHP, Theorem 2.5], we know that for any homogeneous ideal J in R,

there exists a monomial ideal M in R such that M has the same Hilbert func-

tion as J. So, to show that Macaulay’s Theorem holds over R, we only need to

prove that given any monomial ideal M in R, there exists a lex ideal L in R with

the same Hilbert function. Furthermore, we will use [GHP, Lemma 4.2], which

states:

Lemma 4.1.1 (Gasharov-Horwitz-Peeva). Macaulay’s Theorem holds over R if and

only if for every d ≥ 0 and for every d-monomial space W, we have the inequality:

dimk R1LW ≤ dimk R1W,
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where LW is the lex d-monomial space in Rd such that dimk LW = dimk W.

Remark 4.1.2. Let W be a d-monomial space spanned by monomials w1, . . . ,ws ∈

Rd, then we have that

dimk W = |{w1, . . . ,ws}| and dimk R1W = |{xiw j ∈ Rd+1 | 1 ≤ i ≤ n, 1 ≤ j ≤ s}|.

If W ′ is another d-monomial space spanned by monomials w′1, . . . ,w
′
t ∈ Rd, then

we have

dimk W ∩W ′ = |{w1, . . . ,ws} ∩ {w′1, . . . ,w
′
t}|.

Remark 4.1.3. Let m be a monomial in R. Pick a representative xα1
1 · · · x

αn
n from

the fiber of m. Then ϕ(xα1
1 · · · x

αn
n ) = uα1a1+···+αnanvα1+···+αn , where ϕ is defined in

Definition 2.1.12. This is independent of the choice of the representative. Define

u(m) = u(xα1
1 · · · x

αn
n ) := α1a1 + · · · + αnan.

Note that deg m = α1 + · · · + αn, then for monomials m, m′ ∈ R,

m = m′ ⇐⇒ u(m) = u(m′) and deg m = deg m′.

Hence, for any d ≥ 1, we have a natural order >u on the monomials in Rd: for

monomials m,m′ ∈ Rd, we say that m >u m′ if u(m) < u(m′). Note that the lex

order �lex may not concide with the natural order >u. This is illustrated in the

following example.

Example 4.1.4. Let A =

0 1 3

1 1 1

, then in R2, x1x3 �lex x2
2, but x2

2 >u x1x3.

We use lex order �lex instead of >u to define lex ideals in R because we want

to have the following crucial property: If Ld is a lex d-monomial space in Rd, then

R1Ld is a lex (d + 1)-monomial space in Rd+1. By [GHP, Theorem 3.4], we know that
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this property holds for the lex order �lex. However, by the above example, it is

easy to see that this property does not hold for the natural order >u. Indeed,

let L1 = span{x1} ⊆ R1, then L1 is lex with respect to the natural order >u and

R1L1 = span{x2
1, x1x2, x1x3} ⊆ R2; but in R2, since x2

1 >u x1x2 >u x2
2 >u x1x3, one sees

that R1L1 is not lex with respect to the natural order >u.

Remark 4.1.5. In the polynomial ring S we have the following property: if Ld is

a lex d-monomial space in S d and m is the first monomial in S d\Ld, then

dimk S 1(Ld + km) > dimk S 1Ld, (*)

and in particular, xnm < S 1Ld. However, this may not be true in R, and we have

the following example.

Example 4.1.6. Let A =

0 1 3 4

1 1 1 1

, L2 = span{x2
1, x1x2, x1x3, x1x4} and m = x2

2,

then L2 is lex in R2 and m is the first monomial after x1x4. Since

u(x1x2
2) = u(x2x1x2), u(x2x2

2) = u(x1x1x3),

u(x3x2
2) = u(x2x1x4), u(x4x2

2) = u(x3x1x3),

it follows that R1(L2 + km) = R1L2 and x4m ∈ R1L2. Thus, dimk R1(L2 + km) =

dimk R1L2 and (*) fails.

4.2 Lemmas for general projective monomial curves

In this section, we prove three lemmas which hold for projective monomial

curves. These lemmas will be used later in section 4.3 and section 4.4.

First we make the following observation. Let IA be the toric ideal associated
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to A =


a1

1

 , . . . ,
an

1


; then without the loss of generality, we can assume that

ai , a j for i , j. By changing the order of the variables in S , we can assume

a1 < · · · < an. Let B =

1 −a1

0 1

 and p = gcd(a2 − a1, · · · , an − a1), then we have

1
p

BA =

0 (a2 − a1)/p · · · (an − a1)/p

1 1 · · · 1

 .
Since A and 1

p BA have the same kernel, by Theorem 2.1.13 they define the same

toric ideal, so that we can always assume that 0 = a1 < a2 < · · · < an and

gcd(a2, · · · , an) = 1.

Given a d-monomial space W, in order to calculate dimk R1W efficiently, we

have the following lemma.

Lemma 4.2.1. Let W be a d-monomial space spanned by monomials w1, . . . ,ws ∈ Rd

with u(w1) < · · · < u(ws). Then

dimk R1W = sn −
∑

1≤i< j≤s

λ(wi,w j),

where

λ(wi,w j) =|{(p, q) | 1 ≤ p < q ≤ n, u(xq) − u(xp) = u(w j) − u(wi), and there exist

no p < r < q, i < k < j such that u(xr) − u(xp) = u(w j) − u(wk)}|.

Proof. By induction on s. If s = 1, then the assertion is clear. If s > 1, then setting

W ′ = span{w1, · · · ,ws−1}, we get

dimk R1W = dimk R1(W ′ + kws)

= dimk
(
R1W ′ + R1(kws)

)
= dimk R1W ′ + dimk R1(kws) − dimk R1W ′ ∩ R1(kws).
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By the induction hypothesis, we have that

dimk R1W ′ = (s − 1)n −
∑

1≤i< j≤s−1

λ(wi,w j), and dimk R1(kws) = n.

Note that

dimk R1W ′ ∩ R1(kws)

= |{1 ≤ p ≤ n | xpws = xqwi in Rd+1, for some 1 ≤ i ≤ s − 1, q > p}|

=
∑

1≤i≤s−1

|{1 ≤ p ≤ n | xpws = xqwi in Rd+1, for some q > p, and there exists

no i < k < s such that xpws = xrwk for some r > p}|

=
∑

1≤i≤s−1

λ(wi,ws).

So we have

dimk R1W = (s − 1)n −
∑

1≤i< j≤s−1

λ(wi,w j) + n −
∑

1≤i≤s−1

λ(wi,ws)

= sn −
∑

1≤i< j≤s

λ(wi,w j).

�

The following two lemmas will be helpful when we prove Theorem 4.4.1.

Lemma 4.2.2. Let A =

a1 a2 · · · an

1 1 · · · 1

 and A′ =

b1 b2 · · · bn

1 1 · · · 1

 be such that

0 = a1 < a2 < · · · < an, 0 = b1 < b2 < · · · < bn and ai + bn+1−i = an for i = 1, . . . , n. Set

S = k[x1, . . . , xn] and S ′ = k[y1, . . . , yn]. Then we have an isomorphism f̂ : S −→ S ′

with f̂ (xi) = yn+1−i. Let R = S/IA be the toric ring associated to A and R′ = S ′/IA′

the toric ring associted to A′; then f̂ induces an isomorphism f : R −→ R′ such that

f (xi + IA) = yn+1−i + IA′ .
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Proof. Given a monomial m = xα1
1 · · · x

αn
n in S , we have

u(m) + u( f̂ (m)) = u(xα1
1 · · · x

αn
n ) + u(yα1

n · · · y
αn
1 )

= α1a1 + · · · + αnan + α1bn + · · · + αnb1

= α1(a1 + bn) + · · · + αn(an + b1)

= (α1 + · · · + αn)an

= deg(m)an.

If m − m′ ∈ IA for some monomials m,m′ ∈ S , then by Remark 4.1.3 we have that

u(m) = u(m′) and deg(m) = deg(m′). Hence u( f̂ (m)) = u( f̂ (m′)) and deg( f̂ (m)) =

deg( f̂ (m′)), so that f̂ (m) − f̂ (m′) = f̂ (m − m′) ∈ IA′ . Similarly, if m − m′ ∈ IA′ , then

f̂ −1(m − m′) ∈ IA. Thus, f̂ (IA) = IA′ and therefore, f̂ induces an isomorphism f

from R to R′ such that f (xi + IA) = yn+1−i + IA′ . �

Lemma 4.2.3. Under the assumption of Lemma 4.2.2,we have the following two prop-

erties.

(1) If W ⊆ Rd is a d-monomial space spanned by monomials m1, . . . ,mr ∈ Rd

with u(w1) < · · · < u(wr), then f (W) ⊆ R′d is a d-monomial space spanned

by monomials f (w1), . . . , f (wr) ∈ R′d with u( f (w1)) > · · · > u( f (wr)), and

dimk R1W = dimk R′1 f (W).

(2) Note that we have defined a lex order �lex in Rd. Now setting yn > · · · > y1,

we have a lex order >lex′ in S ′ which induces a lex order �lex′ in R′d. Let m be a

monomial in Rd with top representative xα1
1 · · · x

αn
n , then f (m) is a monomial in

R′d with top representative f̂ (xα1
1 · · · x

αn
n ) = yα1

n · · · y
αn
1 . Furthermore, if monomials

m,m′ ∈ Rd are such that m �lex m′, then f (m) �lex′ f (m′) in R′d; if Ld is a lex d-

monomial space in Rd, then f (Ld) is a lex d-monomial space in R′d; if Macaulay’s

Theorem holds over R, then Macaulay’s Theorem holds over R′.
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Proof. (1)It is clear that f (W) is a d-monomial space in R′d. By the proof of Lemma

4.2.2, we see that u(wi) + u( f (wi)) = dan, which implies that u( f (wi)) > u( f (w j)) for

i < j. Note that ap−aq = bq−bp for any p , q and u(wi)−u(w j) = u( f (w j))−u( f (wi))

for any i , j, so that the last part of the assertion follows directly from Lemma

4.2.1.

(2)By contradiction, we assume that yβ1
n · · · y

βn
1 is in the fiber of f (m) and

yβ1
n · · · y

βn
1 >lex′ yα1

n · · · y
αn
1 in S ′, then f̂ −1(yβ1

n · · · y
βn
1 ) = xβ1

1 · · · x
βn
n is also in the fiber of

m and xβ1
1 · · · x

βn
n >lex xα1

1 · · · x
αn
n in S , which is a contradiction. So we have proved

the first part of the assertion, and the rest of the assertion follows easily. �

Remark 4.2.4. If we set y1 > · · · > yn in Lemma 4.2.3 (2), then the assertion may

not hold. Indeed, considering Example 4.1.6, we have that A = A′; let m = x1x2
3

in R, then x1x2
3 is the top-representative of the fiber of m, but f̂ (x1x2

3) = y4y2
2 is not

the top-represtative of the fiber of f (m). Also, by Theorems 4.3.1 and 4.4.1, we

will see that even if Macaulay’s Theorem holds over R, it may not hold over R′.

4.3 A class of projective monomial curves

Throughout this section,

A =

0 1 · · · n − 2 n − 1 + h

1 1 · · · 1 1

 , where n ≥ 3, h ∈ Z+,

and R is the toric ring associated to A. We prove:

Theorem 4.3.1. Macaulay’s Theorem holds over R.

For the proof of Theorem 4.3.1, we need the following lemmas 4.3.2, 4.3.3,

4.3.5, 4.3.7, 4.3.8, 4.3.9, 4.3.10, 4.3.11.
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Lemma 4.3.2. Let m be a monomial in R. Suppose that

u(m) = α(n − 1 + h) + β(n − 2) + γ,

where α,β and γ are non-negative integers such that β(n−2)+γ < n−1+h and γ < n−2.

If γ , 0, then xdeg(m)−α−β−1
1 xr+1xβn−1xαn is the top-representative of the fiber of m. If γ = 0,

then xdeg(m)−α−β
1 xβn−1xαn is the top-representative of the fiber of m.

Proof. Pick a monomial xα1
1 · · · x

αn
n from the fiber of m, and run the following

algorithm.

Input: xα1
1 · · · x

αn
n

Step 1: If
∑n−1

i=1 αi(i−1) < n−1+h, go to Step 2. Otherwise, choose β2, . . . , βn−1 ∈

Z such that 0 ≤ β2 ≤ α2, . . ., 0 ≤ βn−1 ≤ αn−1,
∑n−1

i=2 βi(i−1) ≥ n−1+h and
∑n−1

i=2 βi(i−1)

is minimial with respect to this property. Run the division algorithm, we get∑n−1
i=2 βi(i − 1) = βn(n − 1 + h) + δ, for some βn ≥ 1 and 0 ≤ δ < n − 1 + h. Let

j = min{i | βi , 0}. Then δ < j − 1, otherwise, it contradicts to the minimality of∑n−1
i=1 βi(i − 1). Setting

α j := α j − β j,

. . . . . . ,

αn−1 := αn−1 − βn−1,

αn := αn + βn,

αδ+1 := αδ+1 + 1,

α1 := α1 + (β j + · · · + βn−1) − βn − 1,

we get a new monomial xα1
1 · · · x

αn
n which is still in the fiber of m and is strictly

bigger with respect to >lex in S . Go back to step 1.
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Step 2: If
∑n−2

i=1 αi(i − 1) < n − 2, stop. Otherwise, choose β2, . . . , βn−2 ∈ Z such

that 0 ≤ β2 ≤ α2, · · · , 0 ≤ βn−2 ≤ αn−2,
∑n−2

i=2 βi(i − 1) ≥ n − 2 and
∑n−2

i=2 βi(i − 1)

is minimial with respect to this property. Run the division algorithm, we get∑n−2
i=2 βi(i − 1) = βn−1(n − 2) + δ, for some βn−1 ≥ 1 and 0 ≤ δ < n − 2. Let j = min{i |

βi , 0}. Then δ < j−1, otherwise, it contradicts to the minimality of
∑n−2

i=2 βi(i−1).

Setting

α j := α j − β j,

. . . . . . ,

αn−2 := αn−2 − βn−2,

αn−1 := αn−1 + βn−1,

αδ+1 := αδ+1 + 1,

α1 := α1 + (β j + · · · + βn−2) − βn−1 − 1,

we get a new monomial xα1
1 · · · x

αn
n which is still in the fiber of m and is strictly

bigger with respect to >lex in S . Go back to step 2.

The algorithm stops after finitely many steps and the output of the algorithm

is the monomial described in the lemma. If the top-representative of the fiber

of m is different from the monomial given in the lemma, then we can run the

algorithm on the top-representative to get a bigger monomial in the fiber, which

is a contradiction. So the monomial given in the lemma is the top-representative

of the fiber of m. �

Lemma 4.3.3. R has the following two properties.

(1) Let m be a monomial in Rd; if w ∈ S is the top-representative of the fiber of m, then

xnw ∈ S is the top-representative of the fiber of xnm ∈ Rd+1.
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(2) If Ld is a lex d-monomial space in Rd and m is the first monomial in Rd\Ld, then

dimk R1(Ld + km) > dimk R1Ld and xnm < R1Ld.

Proof. (1) Let m̂ ∈ S be the top-representative of the fiber of xnm. Since u(xnm) ≥

n−1+h, by Lemma 4.3.2 we have xn|m̂. Suppose that m̂ = xnw′ for some monomial

w′ ∈ S , then it is easy to see that w′ is the top-representative of the fiber of m, so

that w′ = w and m̂ = xnw. So xnw is the top-representative of the fiber of xnm.

(2) It suffices to prove that xnm < R1Ld. By contradiction, we assume xnm ∈

R1Ld, then there exist xi, 1 ≤ i < n and m′ ∈ Ld such that xnm = xim′ in Rd+1. Let w,

w′ be the top-representatives of the fibers of m and m′, respectively; then by (1),

xnw is the top-representative of the fiber of xnm. Since m′ �lex m in Rd, we have

w′ >lex w in S , and then xiw′ is in the fiber of xnm such that xiw′ >lex xnw, which is

a contradiction. So, xnm < R1Ld. �

Definition 4.3.4. Let W be a d-monomial space spanned by some monomials

w1, . . . ,ws ∈ Rd with 0 = u(w1) < · · · < u(ws). For i ≥ 0, set

W(i) = {w j| the top representative of w j can be divided by xi
n but not by xi+1

n }.

The set W(i) is called n-compressed if W(i) = ∅ or W(i) = {wki ,wki+1, . . . ,wki+t}, for

some t ≥ 0 and 1 ≤ ki ≤ s, such that

u(wki) = i(n − 1 + h), u(wki+1) = i(n − 1 + h) + 1, . . . , u(wki+t) = i(n − 1 + h) + t.

We say that a d-monomial space C is n-compressed if C(i) is n-compressed for

every i ≥ 0.

Lemma 4.3.5. Let m1,m2 be two monomials in Rd with u(m1) < u(m2). Suppose that

u(m1) = α1(n − 1 + h) + β1, and u(m2) = α2(n − 1 + h) + β2, where α1, α2, β1, β2 are

nonnegative integers and β1, β2 < n − 1 + h.
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(1) If α1 = α2, then m1 �lex m2.

(2) If α1 < α2 and β1 − β2 ≤ (α2 − α1)(n − 2), then m1 �lex m2.

(3) If α1 < α2 and β1 − β2 > (α2 − α1)(n − 2), then m2 �lex m1.

Proof. By Lemma 4.3.2, we can assume that α1 = 0.

(1) Now u(m1) = β1, u(m2) = β2, 0 ≤ β1 < β2 < n − 1 + h, and we only need

to prove the case β2 = β1 + 1. Suppose that β1 = β(n − 2) + γ, where β, γ are

nonnegative integers and γ < n − 2. If γ = 0, then β2 = β(n − 2) + 1, so that by

Lemma 4.3.2, xd−β
1 xβn−1 and xd−β−1

1 x2xβn−1 are the top-representatives of the fibers of

m1 and m2 respectively, thus m1 �lex m2. If γ > 0, then β2 = β(n − 2) + γ + 1, so

that by Lemma 4.3.2, xd−β−1
1 xγ+1xβn−1 and xd−β−1

1 xγ+2xβn−1 are the top-representatives

of the fibers of m1 and m2 respectively, thus m1 �lex m2.

(2) Suppose that β1 = β(n − 2) + γ, and β2 = β′(n − 2) + γ′, where β, β′, γ, γ′ are

nonnegative integers and γ, γ′ < n − 2. Then

β1 − β2 = (β − β′)(n − 2) + γ − γ′ ≤ α2(n − 2),

that is,

(β − (β′ + α2))(n − 2) ≤ γ′ − γ. (*)

If γ = γ′ = 0, then by (*), we have β ≤ β′ + α2; by Lemma 4.3.2, we see that

xd−β
1 xβn−1 and xd−(β′+α2)

1 xβ
′

n−1xα2
n are the top-representatives of the fibers of m1 and m2

respectively, so that m1 �lex m2. If γ = 0 and γ′ > 0, then γ′−γ < n−2, hence by (*)

we have β ≤ β′+α2; by Lemma 4.3.2, we see that xd−β
1 xβn−1 and xd−(β′+α2)−1

1 xγ′+1xβ
′

n−1xα2
n

are the top-representatives of the fibers of m1 and m2 respectively, so that m1 �lex

m2. If γ > 0 and γ′ = 0, then γ′−γ < 0, hence by (*) we have β < β′+α2; by Lemma

4.3.2, we see that xd−β−1
1 xγ+1xβn−1 and xd−(β′+α2)

1 xβ
′

n−1xα2
n are the top-representatives of
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the fibers of m1 and m2 respectively, so that m1 �lex m2. If γ > 0 and γ′ > 0, then

by Lemma 4.3.2, we see that xd−β−1
1 xγ+1xβn−1 and xd−(β′+α2)−1

1 xγ′+1xβ
′

n−1xα2
n are the top-

representatives of the fibers of m1 and m2 respectively; and by (*), we have either

γ′ ≥ γ, β ≤ β′ + α2 or γ′ < γ, β < β′ + α2, then it follows that m1 �lex m2.

(3) We use the notations in the proof of (2). Now (β− (β′ + α2))(n− 2) > γ′ − γ.

If γ′ ≥ γ, then β > β′ + α2, and similar to the proof of (2), it is easy to check that

m2 �lex m1; if γ′ < γ, then γ′ − γ > −(n − 2), hence β ≥ β′ + α2, so that similar to the

proof of (2), we get m2 �lex m1. �

Remark 4.3.6. By Lemma 4.3.5 we make the following remarks.

(1) By Lemma 4.3.5, we see that the lex order �lex induces a total oder on the

set of nonnegative integers.

(2) If Ld is a lex d-monomail spce, then by Lemma 4.3.5, it is easy to see that

Ld is n-compressed and |Ld(0)| ≥ |Ld(1)| ≥ |Ld(2)| ≥ · · · .

(3) If Ld is a lex d-monomail spce and |Ld(i)| < n − 1 + h for some i ≥ 0, then by

Lemma 4.3.5, one sees easily that |Ld(i + 1)| ≤ max{0, |Ld(i)| − (n − 2)}.

(4) If Ld is a lex d-monomail spce, then |Ld(i + j)| ≥ (|Ld(i)| − 1) − j(n − 2) for

i, j ≥ 0. Indeed, if |Ld(i)| − (|Ld(i + j)|+ 1) > j(n− 2), then by Lemma 4.3.5 (3),

it is easy to see that Ld is not lex, which is a contradiction.

(5) Let Ld be a lex d-monomail space spanned by monomials m1, · · · ,ms ∈ Rd

with 0 = u(m1) < · · · < u(ms), and L′d′ a lex d′-monomail space spaned by

monomials m′1, · · · ,m
′
s ∈ Rd′ with 0 = u(m′1) < · · · < u(m′s); then by Lemma

4.3.5, we have u(mi) = u(m′i) for 1 ≤ i ≤ s. In particular, by Lemma 4.2.1 we

have dimk R1Ld = dimk R1L′d′ .
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(6) Let W be a d-monomial space spanned by monomials w1, . . . ,ws ∈ Rd

with u(w1) < . . . < u(ws). If u(ws) > d, setting α = u(ws) − d and W ′ =

span{xα1 w1, . . . , xα1 ws} ⊆ Rd+α, we have that u(xα1 wi) = u(wi), u(xα1 ws) = d + α,

and Lemma 4.2.1 implies that dimk R1W = dimk R1W ′. So, by (5) and the

above observation, to prove Lemma 4.1.1, we can always assume that

u(ws) ≤ d, and then for any 0 ≤ j ≤ u(ws), there exists m = xd− j
1 x j

2

in Rd such that u(m) = j. Furthermore, there exists ŵi ∈ Rd such that

u(ŵi) = u(wi) − u(w1). Let Ŵ = span{ŵ1, . . . , ŵs} ⊆ Rd; then by Lemma 4.2.1,

we have dimk R1W = dimk R1Ŵ, so that to prove Lemma 4.1.1, we can also

assume that u(w1) = 0.

Lemma 4.3.7. Let Ld be a lex d-monomial space in Rd such that Ld , Rd, and m the

first monomial in Rd\Ld. Then

dimk R1(Ld + km) − dimk R1Ld =



n, if u(m) = 0

2, if 1 ≤ u(m) ≤ h

1, if u(m) > h.

Proof. Let am = dimk R1(Ld + km) − dimk R1Ld; by Lemma 4.2.1 and Remark 4.3.6

(5), we see that am depends only on u(m) and does not depend on d. If u(m) = 0,

then it is clear that am = n. If u(m) > h, then by Lemma 4.3.3 (2), we see that

am ≥ 1.

If 1 ≤ u(m) ≤ h, then am ≥ 2. Indeed, if xn−1m ∈ R1Ld, then xn−1m = x jm′ in

Rd for some j , n − 1 and m′ ∈ Ld. Since u(xn−1m) = u(xn−1) + u(m) ≤ n − 2 + h, it

follows that u(m′) ≤ n−2+h. Note that m′ �lex m, then by Lemma 4.3.5 (1), we see

that u(m′) < u(m), hence x j = xn, and then u(xn−1m) = u(xnm′) ≥ n − 1 + h, which is

a contradiction. Thus, xn−1m < R1Ld. By Lemma 4.3.3 (2), we see that xnm is also

not in R1Ld, so am ≥ 2.
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Next we set d = n + h and cosider Rn+h. By Lemma 4.3.2, it is easy to see that

for any monomial m ∈ Rn+h, u(m) ≥ n − 1 + h if and only if m = xnm′ for some

monomial m′ ∈ Rn−1+h, so that

Rn+h = xnRn−1+h

⊕n−2+h⊕
i=0

kmi

 ,
where mi = xn+h−i

1 xi
2 in Rn+h is such that u(mi) = i, thus we have

dimk Rn+h − dimk Rn−1+h = n − 1 + h.

On the other hand, since Rn−1+h is a lex (n − 1 + h)-monomial space and Rn+h =

R1Rn−1+h, it follows that

dimk Rn+h − dimk Rn−1+h = (n − 1) +
∑

1≤u(m)≤h

(am − 1) +
∑

u(m)>h

(am − 1)

≥ n − 1 + h.

Since the equality holds, we must have that am = 2 if 1 ≤ u(m) ≤ h and am = 1 if

u(m) > h. �

Lemma 4.3.8. Let C be an n-compressed d-monomial space.

(1) R1C is an n-compressed (d + 1)-monomial space.

(2) If C is spanned by monomials c1, . . . , cs ∈ Rd with u(ci) = i − 1 and s ≤ h + 1,

then |R1C(0)| = n − 2 + s, |R1C(1)| = s, |R1C( j)| = 0 for j ≥ 2, and dimk R1C =

n + 2(s − 1).

(3) If C is spanned by monomials c1, . . . , cs ∈ Rd with u(ci) = i − 1 and h + 2 ≤ s ≤

n − 1 + h, then |R1C(0)| = n − 1 + h, |R1C(1)| = s, |R1C( j)| = 0 for j ≥ 2, and

dimk R1C = n − 1 + h + s.

Proof. (1) Let m be a monomial in R1C such that u(m) = p(n − 1 + h) + q for some

p ≥ 0 and 1 ≤ q < n−1+h; then m = x jm′ for some j and m′ ∈ C. If n−1+h divides
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u(m′) then j , 1 or n, so that x j−1m′ ∈ R1C and u(x j−1m′) = u(x jm′)− 1 = u(m)− 1; if

n−1+h does not divide u(m′), then since C is n-compressed, we have a monomial

m′′ ∈ C such that u(m′′) = u(m′)−1, so that x jm′′ ∈ R1C and u(x jm′′) = u(x jm′)−1 =

u(m) − 1. So R1C is an n-compressed (d + 1)-monomial space.

(2) It is clear that |R1C( j)| = 0 for j ≥ 2. By Lemma 4.2.1, we have

dimk R1C = sn −
∑

1≤i≤s−1

λ(ci, ci+1)

= sn − (s − 1)(n − 2)

= n + 2(s − 1).

Thus, |R1C(0)|+ |R1C(1)| = n + 2(s− 1). By (1), we know that R1C is n-compressed,

so that u(xn−1cs) = n− 2 + s− 1 < n− 1 + h and u(xncs) = n− 1 + h + s− 1 imply that

|R1C(0)| ≥ n − 2 + s and |R1C(1)| ≥ s. Thus, |R1C(0)| = n − 2 + s and |R1C(1)| = s.

(3) It is clear that |R1C( j)| = 0 for j ≥ 2. By Lemma 4.2.1, we have

dimk R1C = sn −
∑

1≤i≤s−1

λ(ci, ci+1) −
∑

1≤i≤s−h−1

λ(ci, ci+h+1)

= sn − (s − 1)(n − 2) − (s − h − 1)

= n − 1 + h + s.

Thus, |R1C(0)|+ |R1C(1)| = n−1+h+ s. By (1), we know that R1C is n-compressed,

so that u(xn+h−scs) = n − 2 + h < n − 1 + h and u(xncs) = n − 1 + h + s − 1 imply that

|R1C(0)| ≥ n− 1 + h and |R1C(1)| ≥ s. Thus, |R1C(0)| = n− 1 + h and |R1C(1)| = s. �

Lemma 4.3.9. Let W be a d-monomial space spanned by monomials w1, . . . ,ws ∈ Rd

with u(w1) < · · · < u(ws) ≤ d, and u(ws) − u(w1) < n − 1 + h. Let C be the n-

compressed d-monomial space spanned by monomials c1, . . . , cs ∈ Rd with u(ci) = i − 1

for 1 ≤ i ≤ s, and set Ŵ = {monomial m ∈ R1W | u(w1) ≤ u(m) < u(w1) + n − 1 + h}.

Then |Ŵ | ≥ |R1C(0)| and dimk R1W ≥ dimk R1C.
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Proof. By Remark 4.3.6 (6), we can assume that u(w1) = 0, then u(ws) < n − 1 + h,

and Ŵ = R1W(0). By Lemma 4.3.8, we see that |R1C(1)| = s, hence |R1W(1)| ≥

s = |R1C(1)|. Note that dimk R1W = |R1W(0)| + |R1W(1)| and dimk R1C = |R1C(0)| +

|R1C(1)|, thus we only need to prove that |R1W(0)| ≥ |R1C(0)|.

First we suppose s ≤ h + 1, then by Lemma 4.3.8 we have |R1C(0)| = n − 2 + s.

If there exist wi,wi+1 such that u(wi+1) − u(wi) > n − 2, then 0 = u(x1w1) < u(x1w2) <

· · · < u(x1wi) < u(x2wi) < · · · < u(xn−1wi) < u(x1wi+1) < · · · < u(x1ws) < n − 1 + h,

which implies that |R1W(0)| ≥ s+n−2 = |R1C(0)|. So we can assume that u(wi+1)−

u(wi) ≤ n − 2 for 1 ≤ i ≤ s − 1. For any non-negtive integer l ≤ u(xn−1ws), there

exists wi such that u(wi) is maximal with respect to the property that u(wi) ≤ l,

then it is easy to see that 0 ≤ l − u(wi) ≤ n − 3 and u(xl−u(wi)+1wi) = l. Therefore, if

u(xn−1ws) ≥ n − 1 + h, then

|R1W(0)| = n − 1 + h ≥ n − 2 + s = |R1C(0)|;

if u(xn−1ws) < n − 1 + h, then

|R1W(0)| = u(xn−1ws) + 1 ≥ (n − 2) + (s − 1) + 1 = |R1C(0)|.

Next we suppose h+2 ≤ s ≤ n−1+h, then by Lemma 4.3.8 we have |R1C(0)| =

n − 1 + h, and it is easy to see that u(wi+1) − u(wi) ≤ n − 2 for 1 ≤ i ≤ s − 1,

and u(xn−1ws) ≥ n − 1 + h; therefore, similar to the above argument, we have

|R1W(0)| = n − 1 + h = |R1C(0)|. �

Lemma 4.3.10. Let W be a d-monomial space spanned by monomials w1, . . . ,ws ∈ Rd

with u(w1) < · · · < u(ws) ≤ d. If there exists 1 ≤ i < j ≤ s such that j − i ≥ h and

u(w j) − u(wi) < n − 1 + h, then

dimk R1LW ≤ dimk R1W,

where LW is the lex d-monomial space in Rd such that dimk LW = dimk W.
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Proof. By Lemma 4.3.7, we have that dimk R1LW ≤ dimk LW + (n − 1) + h =

dimk W + n − 1 + h = s + n − 1 + h. On the other hand, it is easy to check

that if 1 ≤ p < i, then x1wp < R1span{wp+1, . . . ,wi, . . . ,w j}; if j < q ≤ s, then

xnwq < R1span{w1, . . . ,w j, . . . ,wq−1}. Thus, we have

dimk R1W ≥ dimk R1span{wi, . . . ,w j} + (i − 1) + (s − j).

By Lemma 4.3.8 and 4.3.9, it is easy to see that

dimk R1span{wi, . . . ,w j} ≥ n − 1 + h + ( j − i + 1).

Therefore, we have

dimk R1W ≥ n − 1 + h + ( j − i + 1) + (i − 1) + (s − j)

= n − 1 + h + s

≥ dimk R1LW .

�

Lemma 4.3.11. Let C be an n-compressed d-monomial space in Rd, and suppose that

there exists t ≥ 0 such that 0 < |C(i)| ≤ h for i = 0, . . . , t and |C(i)| = 0 for i > t. Then

dimk R1LC ≤ dimk R1C,

where LC is the lex d-monomial space in Rd such that dimk LC = dimk C.

Proof. If |C( j)| < |C( j + 1)| + (n − 2) for some 0 ≤ j ≤ t − 1, then we consider the

n-compressed d-monomial space C′ such that

|C′( j)| = |C( j)| + 1,

|C′(t)| = |C(t)| − 1,

|C′(i)| = |C(i)| if i , j, t.
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By Lemma 4.3.8, one sees easily that

|R1C(0)| = |C(0)| + (n − 2),

|R1C(i)| = max{|C(i)| + (n − 2), |C(i − 1)|} for 1 ≤ i ≤ t,

|R1C(t + 1)| = |C(t)|,

|R1C(i)| = 0 for i > t + 1.

and we have similar formulas for C′. Then it is easy to check that

|R1C′( j)| ≤ |R1C( j)| + 1,

|R1C′(t)| ≤ |R1C(t)|,

|R1C′(t + 1)| = |R1C(t + 1)| − 1,

|R1C′(i)| = |R1C(i)| for i , j, t, t + 1.

Therefore, we have that dimk C′ = dimk C and dimk R1C′ ≤ dimk R1C. If |C′( j)| = h+

1, then by Lemma 4.3.10, dimk R1LC ≤ dimk R1C′, and then dimk R1LC ≤ dimk R1C.

So we can assume that |C′( j)| ≤ h, that is, C′ satisfies the assumption of the

Lemma.

By the above observation, we can assume that C is an n-compressed d-

monomial space in Rd and there exists t ≥ 0, such that 0 < |C(i)| ≤ h for 0 ≤ i ≤ t,

|C(i)| ≥ |C(i + 1)| + (n − 2) for 0 ≤ i ≤ t − 1, and |C(i)| = 0 for i > t. Then by Lemma

4.3.8, it is easy to see that

dimk R1C = |C(0)| + (n − 2) + |C(0)| + |C(1)| + · · · + |C(t)|

= |C(0)| + n − 2 + dimk C.

If |LC(0)| > |C(0)|, then by Remark 4.3.6 (4), we have that for 1 ≤ i ≤ t,

|LC(i)| ≥ |LC(0)| − 1 − i(n − 2) ≥ |C(0)| − i(n − 2) ≥ |C(i)|,
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and then

dimk LC ≥ |LC(0)| + |LC(1)| + · · · + |LC(t)|

> |C(0)| + |C(1)| + · · · + |C(t)|

= dimk C,

which is a contradiction. So we have |LC(0)| ≤ |C(0)| ≤ h. By Remark 4.3.6 (2), we

see that |LC(i)| ≤ h for i ≥ 0. Thus, by Remark 4.3.6 (3), one sees easily that there

exists t′ ≥ 0 such that |LC(i)| ≥ |LC(i + 1)| + (n − 2) for 0 ≤ i ≤ t′ − 1, and |LC(i)| = 0

for i > t′. Therefore, by Lemma 4.3.8, it is easy to see that

dimk R1LC = |LC(0)| + (n − 2) + |LC(0)| + |LC(1)| + · · · + |LC(t′)|

= |LC(0)| + (n − 2) + dimk LC

≤ |C(0)| + n − 2 + dimk C

= dimk R1C.

�

Proof of Theorem 4.3.1. Let W be a d-monomial space spanned by monomials w1,

. . ., ws in Rd with u(w1) < · · · < u(ws); by Lemma 4.1.1, we only need to prove that

dimk R1LW ≤ dimk R1W,

where LW is the lex d-monomial space in Rd such that dimk LW = dimk W.

By Remark 4.3.6 (6), we can assume that u(w1) = 0 and u(ws) ≤ d. Note that

there exist 1 = i0 < i1 < · · · < it ≤ s for some t ≥ 0 such that u(ws)−u(wit) < n−1+h,
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and for 1 ≤ j ≤ t, u(wi j−1) − u(wi j−1) < n − 1 + h and u(wi j) − u(wi j−1) ≥ n − 1 + h. Set

W[0] = {wi0 , . . . ,wi1−1},

W[1] = {wi1 , . . . ,wi2−1},

. . . . . . ,

W[t] = {wit , . . . ,ws},

then by Lemma 4.3.10, we can assume that |W[ j]| ≤ h for 0 ≤ j ≤ t.

Let C be the n-compressed d-monomial space such that |C( j)| = |W[ j]| for

0 ≤ j ≤ t and |C( j)| = 0 for j ≥ t + 1, then dimk C = dimk W and it is easy to see that

dimk R1C = |R1C(0)| + |R1C(1)| + · · · + |R1C(t)| + |R1C(t + 1)|,

dimk R1W = |(R1W)[0]| + |(R1W)[1]| + · · · + |(R1W)[t]| + |(R1W)[t + 1]|,

where (R1W)[0] = R1W(0), (R1W)[t + 1] is the set of monomails m ∈ R1W such

that u(m) ≥ u(wit) + n − 1 + h, and for 1 ≤ j ≤ t, (R1W)[ j] is the set of monomials

m ∈ R1W such that u(wi j−1) + n − 1 + h ≤ u(m) < u(wi j) + n − 1 + h. First it is easy to

see that

|(R1W)[t + 1]| ≥ |W[t]| = |C(t)| = |R1C(t + 1)|.

Then By Lemma 4.3.9, we get

|R1W(0)| ≥ |R1C(0)|.

Finally, by Lemma 4.3.8 it is easy to see that for 1 ≤ j ≤ t,

|R1C( j)| = max{|C( j − 1)|, |C( j)| + (n − 2)};

if |R1C( j)| = |C( j − 1)|, then we have

|(R1W)[ j]| ≥ |W[ j − 1]| = |C( j − 1)| = |R1C( j)|;
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if |R1C( j)| = |C( j)| + (n − 2), then by Lemma 4.3.9, we also have

|(R1W)[ j]| ≥ |R1C( j)|.

So, we get dimk R1W ≥ dimk R1C. By Lemma 4.3.11, we know that dimk R1C ≥

dimk R1LC, where LC is the lex d-monomail space such that dimk LC = dimk C.

Note that LC = LW , so dimk R1W ≥ dimk R1LW . �

4.4 Two other classes of projective monomial curves

The main results of this section are Theorem 4.4.1 and Theorem 4.4.5.

Theorem 4.4.1. Let

A =

0 1 + h 2 + h · · · n − 1 + h

1 1 1 · · · 1

 , where n ≥ 3, h ∈ Z+.

Let R be the toric ring associated to A.

(1) If h = 1, then Macaulay’s Theorem holds over R.

(2) If n = 3, then Macaulay’s Theorem holds over R.

(3) If h ≥ 2 and n ≥ 4, then Macaulay’s Theorem does not hold over R.

In order to prove Theorem 4.4.1, we need the following lemmas 4.4.2, 4.4.3, 4.4.4.

Lemma 4.4.2. Let R be the toric ring defined in Theorem 4.4.1 and R′ the toric ring

defined in section 4.3 such that R and R′ satisfy the assumptions of Lemma 4.2.2; then

we have an isomorphism f̂ : S = k[x1, . . . , xn] −→ S ′ = k[y1, . . . , yn] with f̂ (xi) = yn+1−i,

which induces an isomorphism f from R to R′. Setting x1 > · · · > xn and y1 > · · · > yn

as usual, by definition 2.1.14 we have the lex orders �lex, �lex′ in R and R′.
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(1) Let m be a monomial in Rd such that yα1
1 · · · y

αn
n is the top representative of the

fiber of the monomail f (m) ∈ R′d, then f̂ −1(yα1
1 · · · y

αn
n ) = xαn

1 · · · x
α1
n is the top-

representative of the fiber of m.

(2) Let m and m′ be two monomials in Rd such that u(m) < u(m′), then m �lex m′ in

Rd, so that the lex order �lex in Rd is the same as the natural order >u definde in

Remark 4.1.3.

Proof. (1)Suppose that xβn
1 · · · x

β1
n is the top representative of the fiber of m, then

βn ≥ αn and f̂ (xβn
1 · · · x

β1
n ) = yβ1

1 · · · y
βn
n is a monomial in the fiber of f (m). Since

yα1
1 · · · y

αn
n is the top representative of the fiber of f (m), by Lemma 4.3.2 we have

βn ≤ αn, so that βn = αn, and then βn−1 ≥ αn−1, but by Lemma 4.3.2 we have

βn−1 ≤ αn−1, so that βn−1 = αn−1. If there exits 2 ≤ i ≤ n − 2 such that βi > αi and

β j = α j for j > i, then the monomial yβ1
1 · · · y

βi
i yαi+1

i+1 · · · y
αn
n is in the fiber of f (m),

by Lemma 4.3.2 on sees easily that βi ≤ αi, which is a contradiction, so we have

βi = αi for i = 2, . . . , n−2. Since deg(m) = β1 + · · ·+βn = α1 + · · ·+αn, it follows that

β1 = α1, and then xαn
1 · · · x

α1
n = xβn

1 · · · x
β1
n is the top-representative of the fiber of m.

(2)Let yα1
1 · · · y

αn
n , yβ1

1 · · · y
βn
n be the top-representatives of the fibers of f (m) and

f (m′), then (1) implies that xαn
1 · · · x

α1
n , xβn

1 · · · x
β1
n are the top-representatives of the

fibers of m and m′. Since u(m) < u(m′), by Lemma 4.2.3 (1), we have u( f (m)) >

u( f (m′)), so that Lemma 4.3.2 implies αn ≥ βn. If αn > βn, then m �lex m′ and we

are done. So we may assume αn = βn. Then similarly, by Lemma 4.3.2 we have

αn−1 ≥ βn−1, and if αn−1 > βn−1, we are done. So we can also assume that αn−1 =

βn−1. Then applying Lemma 4.3.2 again, we see that there exist 2 ≤ r ≤ n − 2,

57



1 ≤ r′ ≤ r − 1 such that

yα1
1 · · · y

αn
n = yd−1−αn−1−αn

1 yry
αn−1
n−1 yαn

n ,

yβ1
1 · · · y

βn
n = yd−1−αn−1−αn

1 yr′y
αn−1
n−1 yαn

n ,

and then we have that

xαn
1 · · · x

α1
n = xαn

1 xαn−1
2 xn+1−r xd−1−αn−1−αn

n

>lex xαn
1 xαn−1

2 xn+1−r′ xd−1−αn−1−αn
n

= xβn
1 · · · x

β1
n ,

which implies m �lex m′. �

Lemma 4.4.3. Let R be the toric ring defined in Theorem 4.4.1 and suppose h = 1. Let

Ld be an r dimensional lex d-monomial space in Rd with 0 ≤ r < dimk Rd, and m the

first monomial in Rd\Ld. If we set

ar = dimk R1(Ld + km) − dimk R1Ld,

then a0 = n, a1 = 2 and ar = 1 for 1 < r < dimk Rd.

Proof. Without the loss of generality, we can assume d ≥ 1. It is clear that a0 = n.

If r = 1, then it is easy to see that Ld = span{xd
1} and m = xd−1

1 x2 in Rd, so that by

Lemma 4.2.1,

dimk R1(Ld + km) = 2n − λ(xd
1, x

d−1
1 x2) = 2n − (n − 2) = n + 2,

hence a0 + a1 = n + 2, and then a1 = 2. If 1 < r < dimk Rd, by Lemma 4.4.2, we

see that u(xnm) > u(x jm′) for any 1 ≤ j ≤ n and any monomail m′ ∈ Ld, hence

xnm < R1Ld, and then ar ≥ 1 for 1 < r < dimk Rd. Note that dimk R1Rd = dimk Rd+1,

and it is easy to see that

dimk Rd+1 − dimk Rd = dimk R′d+1 − dimk R′d = n − 1 + h = n,
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where R′ is the toric ring defined in Lemma 4.4.2. Thus,

(a0 − 1) + (a1 − 1) +
∑

1<r<dimk Rd

(ar − 1) = n,

so that
∑

1<r<dimk Rd
(ar − 1) = 0, which implies ar = 1 for 1 < r < dimk Rd. �

Lemma 4.4.4. Let R and R′ be the toric rings defined in Lemma 4.4.2 and suppose

n = 3. If Ld, L′d are lex d-monomial spaces in Rd and R′d such that dimk Ld = dimk L′d,

then dimk R1Ld = dimk R′1L′d.

Proof. Since the toric ring R is defined by the matrix A =

0 1 + h 2 + h

1 1 1

 and

KerA has dimension 1, one sees easily that the toric ideal IA is generated by

the binomial x2+h
2 − x1x1+h

3 , so that we have R = k[x1, x2, x3]/(x2+h
2 − x1x1+h

3 ), and

similarly, R′ = k[y1, y2, y3]/(y2+h
2 − y1+h

1 y3).

Let Td be the set of monomials in k[x1, x2, x3]d which can not be divided by

x2+h
2 and T ′d the set of monomials in k[y1, y2, y3]d which can not be divided by

y2+h
2 . It is easy to see that for any monomial m ∈ Rd there is one and only one

monomial in the fiber of m that can not be divided by x2+h
2 , then it follows that the

monomials in Rd are in one-to-one correspondence with the monomials in Td.

Furthermore, if dimk Ld = r and Ld is spanned by the monomials m1, . . . ,mr ∈ Rd

with u(m1) < · · · < u(mr), then m1, . . . ,mr have top-representatives w1, . . . ,wr ∈ Td

that are the first r monomials in Td. Similarly, if dimk L′d = r and L′d is spanned by

monomials m′1, . . . ,m
′
r ∈ R′d, then m′1, . . . ,m

′
r have top-representatives w′1, . . . ,w

′
r ∈

T ′d that are the first r monomials in T ′d.

Note that the natural isomorphism g : S = k[x1, x2, x3] −→ S ′ = k[y1, y2, y3]

with g(x j) = y j for j = 1, 2, 3 induces an order-preserving bijection between Td

and T ′d, then g(wi) = w′i for 1 ≤ i ≤ r. Setting W = span{w1, . . . ,wr} ⊆ S d and
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W ′ = span{w′1, . . . ,w
′
r} ⊆ S ′d, one sees easily that dimk S 1W = dimk S ′1W ′. Let p be

the number of monomials in S 1W that can be divided by x2+h
2 and p′ the number

of monomials in S ′1W ′ that can be divided by y2+h
2 ; then we have p = p′. Note

that if x2wi can be divided by x2+h
2 for some i, then x2wi = x3(x1xh

3wi/x1+h
2 ) in Rd+1

and x1xh
3wi/x1+h

2 = w j for some j < i. Therefore, the monomials in the lex (d+1)-

monomial space R1Ld are in one-to-one correspondence with the monomials in

S 1W that can not be divided by x2+h
2 , so that we have

dimk R1Ld = dimk S 1W − p.

Similarly, we have

dimk R′1L′d = dimk S ′1W − p′,

and so dimk R1Ld = dimk R′1L′d. �

Proof of Theorem 4.4.1. (1) Let W be a d-monomial space spanned by monomials

w1, . . . ,wr ∈ Rd with u(w1) < · · · < u(wr). By Lemma 4.1.1, it suffices to prove

that dimk R1LW ≤ dimk R1W, where LW is the lex d-monomial space in Rd such that

dimk LW = dimk W = r.

We prove by induction on r. If r = 1, then dimk R1LW = dimk R1W = n. If

r = 2, then by Lemma 4.4.3, dimk R1LW = a0 + a1 = n + 2, and by Lemma 4.2.1,

dimk R1W = 2n − λ(w1,w2). It is easy to see that λ(w1,w2) ≤ n − 2, thus we have

dimk R1W ≥ 2n − (n − 2) = n + 2 = dimk R1LW .

If r > 2,let Ŵ be the d-monomial space spanned by monomials w1, . . . ,wr−1 ∈ Rd

and LŴ the lex d-monomial space in Rd such that dimk LŴ = dimk Ŵ = r − 1,

then by induction we have dimk R1LŴ ≤ dimk R1Ŵ. By Lemma 4.4.3, we see that

dimk R1LW = dimk RlLŴ + 1. On the other hand, since u(xnwr) > u(x jwi) for any
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1 ≤ j ≤ n and any 1 ≤ i ≤ r − 1, we have xnwr < R1Ŵ, and then dimk R1W ≥

dimk R1Ŵ + 1. Therefore,

dimk R1W ≥ dimk R1Ŵ + 1 ≥ dimk R1LŴ + 1 = dimk R1LW ,

and we are done.

(2)Let W be an r-dimendsional d-monomial space in Rd. By Lemma 4.1.1,

it suffices to prove that dimk R1LW ≤ dimk R1W where LW is the lex d-monomial

space in Rd such that dimk LW = r.

Let f and R′ be as in Lemma 4.4.2, then by Lemma 4.2.3 (1), we see that

f (W) is an r-dimensional d-monomial space in R′d and dimk R1W = dimk R′1 f (W).

Let L′f (W) be the lex d-monomial space in R′d such that dimk L′f (W) = r, then by

Lemma 4.4.4, we have dimk R1LW = dimk R′1L′f (W). By Theorem 4.3.1, we see that R′

satisfies Macaulay’s Theorem, hence dimk R′1L′f (W) ≤ dimk R′1 f (W). So, dimk R1LW ≤

dimk R1W, and we are done.

(3)Considering the 1-monomial space W = span{x2, x3} and the lex 1-

monomial space LW = span{x1, x2} in R1, we have dimk W = dimk LW = 2. How-

ever, by lemma 4.2.1, it is easy to see that

dimk R1W = 2n − λ(x2, x3) = 2n − (n − 2) = n + 2,

and

dimk R1LW = 2n − λ(x1, x2) =


2n − 1, if n ≤ h + 2

2n − (1 + n − h − 2) = n + h + 1, if n ≥ h + 3.

Since h ≥ 2 and n ≥ 4, one can check easily that dimk R1LW > dimk R1W. So by

Lemma 4.1.1, Macaulay’s Theorem does not hold over R. �
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Theorem 4.4.5. Let

A =

0 1 · · · m − 1 m + h · · · n − 1 + h

1 1 · · · 1 1 · · · 1

 ,
where n ≥ 4, 2 ≤ m ≤ n − 2 and h ∈ Z+. Let R be the toric ring associated to A. Then

Macaulay’s Theorem does not hold over R.

Proof. We have three cases.

Case 1: h ≤ m − 1. Let W = span{x2
1, x1x2, . . . , x1xm, x2xm} ⊆ R2 and LW =

span{x2
1, x1x2, . . . , x1xm, x1xm+1} ⊆ R2, then W is a 2-monomail space in R2 and LW

is a lex 2-monomial space in R2 such that dimk W = dimk LW = m + 1. By Lemma

4.2.1, we have

dimk R1W = (m + 1)n −
∑

1≤i< j≤m

λ(x1xi, x1x j) −
∑

1≤i≤m

λ(x1xi, x2xm),

dimk R1LW = (m + 1)n −
∑

1≤i< j≤m

λ(x1xi, x1x j) −
∑

1≤i≤m

λ(x1xi, x1xm+1),

so that we get

dimk R1LW − dimk R1W =
∑

1≤i≤m

λ(x1xi, x2xm) −
∑

1≤i≤m

λ(x1xi, x1xm+1).

It is easy to see that

λ(x1xm, x2xm) = n − 2, λ(x1xm−h, x2xm) = 1,

and

λ(x1xi, x2xm) = 0 for 1 ≤ i ≤ m − 1 and i , m − h.

Thus, we have ∑
1≤i≤m

λ(x1xi, x2xm) = n − 2 + 1 = n − 1.
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On the other hand, one sees easily that

λ(x1xi, x1xm+1) =


1, if m − h ≤ i ≤ m − 1;

0, if i < m − h.

If n − m − 1 ≥ h + 1, then it is easy to check that

λ(x1xm, x1xm+1) = 1 + ((m − 1) − (h + 1) + 1) + ((n − m − 1) − (h + 1) + 1)

= n − 2h − 1,

so that we have ∑
1≤i≤m

λ(x1xi, x1xm+1) = h + n − 2h − 1 = n − h − 1,

and then

dimk R1LW − dimk R1W = n − 1 − (n − h − 1) = h ≥ 1 > 0,

therefore, by Lemma 4.1.1 we see that Macaulay’s Theorem does not hold over

R. If n − m − 1 < h + 1, then it is easy to check that

λ(x1xm, x1xm+1) = 1 + ((m − 1) − (h + 1) + 1) = m − h,

so that we have ∑
1≤i≤m

λ(x1xi, x1xm+1) = h + m − h = m,

and then

dimk R1LW − dimk R1W = n − 1 − m ≥ n − 1 − (n − 2) = 1 > 0,

so by Lemma 4.1.1 we see that Macaulay’s Theorem does not hold over R.

Case 2: h ≥ m and m < n − 2. Let W and LW be the same 2-monomial spaces

as in Case 1, then

dimk R1LW − dimk R1W =
∑

1≤i≤m

λ(x1xi, x2xm) −
∑

1≤i≤m

λ(x1xi, x1xm+1).
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It is easy to see that

λ(x1xm, x2xm) = n − 2, and λ(x1xi, x2xm) = 0 for 1 ≤ i ≤ m − 1.

Thus, we have ∑
1≤i≤m

λ(x1xi, x2xm) = n − 2.

On the other hand, one sees easily that

λ(x1xi, x1xm+1) = 1 for 1 ≤ i ≤ m − 1.

If n − m − 1 ≥ h + 1, then it is easy to check that

λ(x1xm, x1xm+1) = 1 + ((n − m − 1) − (h + 1) + 1) = n − m − h,

so that we have∑
1≤i≤m

λ(x1xi, x1xm+1) = m − 1 + n − m − h = n − h − 1,

and then

dimk R1LW − dimk R1W = n − 2 − (n − h − 1) = h − 1 ≥ m − 1 ≥ 1 > 0,

therefore, by Lemma 4.1.1 we see that Macaulay’s Theorem does not hold over

R. If n − m − 1 < h + 1, then it is easy to check that λ(x1xm, x1xm+1) = 1, so that we

have ∑
1≤i≤m

λ(x1xi, x1xm+1) = m − 1 + 1 = m,

and then

dimk R1LW − dimk R1W = n − 2 − m > n − 2 − (n − 2) = 0,

so by Lemma 4.1.1 we see that Macaulay’s Theorem does not hold over R.

Case 3: h ≥ m and m = n − 2. Let p be the maximal integer such that p ≤

(h − 1)/(m − 1), then p ≥ 1. Considering Rp+1, we see that for any monomial
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w ∈ Rp+1, 0 ≤ u(w) ≤ (p + 1)(n − 1 + h). More precisely, one can check easily that

there are (n − 1) + (p − i)(m − 1) + i monomials w ∈ Rp+1 such that i(n − 1 + h) ≤

u(w) < (i + 1)(n − 1 + h) for 0 ≤ i ≤ p, so that

dimk Rp+1 = 1 +

p∑
i=0

(n − 1) + (p − i)(m − 1) + i = 1 + (p + 1)(n +
pm
2
− 1).

Similarly, we have

dimk Rp+2 = (n − 1 + h) + 1 +

p∑
i=0

(n − 1) + (p − i)(m − 1) + (i + 1)

= n + h + p + 1 + (p + 1)(n +
pm
2
− 1).

Setting l = 1 + (p + 1)(n +
pm
2 − 1) we have that

dimk Rp+1 = l and dimk R1Rp+1 = dimk Rp+2 = n + h + p + l.

Let W be the l-monomial space spanned by the monomials w1, . . . ,wl ∈ Rl such

that u(wi) = i − 1 for 1 ≤ i ≤ l. Let monomials w′1, . . . ,w
′
l be a basis of Rp+1, and let

LW be the l-monomial space spanned by the monomials xl−p−1
1 w′1, . . . , x

l−p−1
1 w′l ∈

Rl, then it is easy to see that LW is a lex l-monomial space such that

dimk LW = dimk W = l and dimk R1LW = dimk R1Rp+1 = n + h + p + l.

However, by Lemma 4.2.1, one can check easily that

dimk R1W = ln − (l − 1)(n − 2) − ((l − 1) − (h + 1) + 1) = n + h − 1 + l,

so that

dimk RlLW − dimk R1W = (n + h + p + l) − (n + h − 1 + l) = p + 1 ≥ 2 > 0,

so by Lemma 4.1.1 we see that Macaulay’s Theorem does not hold over R. �
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CHAPTER 5

MINIMAL FREE RESOLUTIONS OF LINEAR EDGE IDEALS

5.1 Introduction

In this chapter we consider minimal free resolutions of quadratic monomial ide-

als in S = k[x1, . . . , xn]. By polarization, the study of such resolutions is equiva-

lent to the study of the resolutions of squarefree quadratic monomial ideals, that

is, edge ideals. Such an ideal can be easily encoded in a graph as follows: let G

be a simple graph with vertices x1, . . . , xn, then the edge ideal IG of the graph G

is the monomial ideal in S generated by {xix j | {xi, x j} is an edge of G}. The gen-

eral goal is to relate the properties of the minimal free resolution of IG and the

combinatorial properties of the graph G. In 1990, Fröberg [Fro] proved that IG

has a linear free resolution if and only if the complement graph G is chordal (see

Definition 5.2.1). Because of this, IG is called a linear edge ideal if G is chordal.

Minimal free resolutions were constructed for the following two classes of

linear edge ideals. In [CN], Corso and Nagel used cellular resolutions to get the

minimal free resolutions of the linear edge ideals IG where G is a Ferrers graph.

In [Ho], Horwitz constructed the minimal free resolutions of the linear edge

ideals IG provided that G does not contain an ordered subgraph as in Figure 5.1,

which is called the pattern Γ in [Ho]. However, from Example 3.18 in [Ho], we

see that if G is complicated, then it may be impossible to satisfy the Γ avoidance

condition. In Construction 5.3.4 and Theorem 5.3.7 we provide the minimal free

resolutions of all linear edge ideals. The construction is different than the one in

[Ho] and the following paragraph explains the difference.
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Figure 5.1: Patten Γ

In 1990, Eliahou and Kervaire (See Construction 2.2.9) constructed the min-

imal free resolutions of Borel ideals. In 1995, Charalambous and Evans [CE]

noted that the Eliahou-Kervaire resolution can be obtained by using iterated

mapping cones (See Construction 2.2.13). Then in 2002, Herzog and Takayama

[HT] used the iterated mapping cone construction to obtain the minimal free

resolutions of monomial ideals which have linear quotients and satisfy some

regularity condition. Following this idea, in 2007, Horwitz [Ho] constructed the

minimal free resolutions of a class of linear edge ideals. In [HT] and [Ho], the

constructions are based on induction on the number of generators of the mono-

mial ideal and the resolutions are similar to the Eliahou-Kervaire resolution. In

this chapter we will use the mapping cone construction in a new way: (1) we

use induction on the number of variables, that is the number of vertices of G;

(2) in each induction step, we use the mapping cone construction twice. Con-

sequently, the minimal free resolution in this chapter is very different from the

Eliahou-Kervaire resolution and is not a modification of the resolution obtained

in [Ho] (See Remark 5.3.12).

Another thing that plays an important role in our construction is the notion

of a perfect elimination order (See Definition 5.2.1) of a chordal graph. From

[Di] and [HHZ], we know that every chordal graph has a perfect elimination

order on the set of vertices; conversely, it is easy to see that if a simple graph

has a perfect elimination order then it is chordal. Therefore, a simple graph
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is chordal if and only if it has a perfect elimination order. In general, given a

chordal graph, there are many perfect elimination orders. In section 5.2 we give

an algorithm (Algorithm 5.2.2) to produce a special perfect elimination order on

the vertices of a chordal graph. This special perfect elimination order has a nice

property (Lemma 5.3.2) and will be used in the construction of the minimal free

resolutions of linear edge ideals.

In section 5.3 we construct the minimal free resolutions of linear edge ideals

and Theorem 5.3.7 is the main result of this paper.

In section 5.4 we prove d2 = 0 case by case, where d is the differential defined

in Construction 5.3.4. The proof is not difficult but very long.

Section 5.5 gives a nice formula (Corollary 5.5.2) for calculating the Betti

numbers of linear edge ideals and the formula works for any perfect elimination

order of G. Finally, in Corollary 5.5.4, we use our method to prove another Betti

number formula obtained by Roth and Van Tuyl in [RV] (see also [HV]).

5.2 Perfect elimination orders

In this section we use H to denote a chordal graph. In the other sections of this

paper, we have H = G.

Definition 5.2.1. Let H be a simple graph with vertices x1, . . . , xn. We write xix j ∈

H if {xi, x j} is an edge of H. We say that C = (x j1 x j2 . . . x jr ) is a cycle of H of length

r if x ji , x jl for all 1 ≤ i < l ≤ r and x ji x ji+1 ∈ H for all 1 ≤ i ≤ r(where x jr+1 = x j1).

A chord in the cycle C is an edge between two non-consecutive vertices in the

cycle. We say that H is a chordal graph if every cycle of length > 3 in H has a
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chord. The order x1, . . . , xn on the vertices of H is called a perfect elimination order

if the following condition is satisfied: for any 1 ≤ i < j < l ≤ n, if xix j ∈ H and

xixl ∈ H, then x jxl ∈ H.

The perfect elimination orders we will use in sections 5.3 and 5.4 are given

by the following algorithm.

Algorithm 5.2.2. Let H be a chordal graph with vertices x1, . . . , xn. Let Σ be a set

containing a sequence of sets.

Input: Σ = {{x1, . . . , xn}}, i = n + 1.

Step 1: Choose and remove a vertex v from the first set in Σ. Set i := i− 1 and vi := v. If

the first set in Σ is now empty, remove it from Σ. Go to setp 2.

Step 2: If Σ = ∅, stop. If Σ , ∅, suppose Σ = {S 1, S 2, . . . , S r}. For any 1 ≤ j ≤ r, replace

the set S j by two sets T j and T ′j such that S j = T j ∪ T ′j, T j ∩ T ′j = ∅, viw ∈ H for any

w ∈ T j and viw′ < H for any w′ ∈ T ′j. Now we set

Σ := {T1,T2, . . . ,Tr,T ′1,T
′
2, . . . ,T

′
r}.

Remove all the empty sets from Σ. Go back to step 1.

Output: v1, . . . , vn.

Remark 5.2.3. The above algorithm is a modification of an algorithm of Rose-

Tarjan-Lueker. In section 5.2 of [RTL], they set

Σ := {T1,T ′1,T2,T ′2, . . . ,Tr,T ′r}.

The reason we difine Σ differently in Algorithm 5.2.2 is illustrated in Example

5.2.6 and Lemma 5.3.2.
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Before proving Theorem 5.2.5, we make the following observation.

Lemma 5.2.4. Let v1, . . . , vn be an output of Algorithm 5.2.2. If vivl ∈ H, v jvl < H and

i < j < l, then there exists λ with j < λ < l such that vivλ < H and v jvλ ∈ H.

Proof. Since vivl ∈ H, v jvl < H and i < j < l, it follows from the algorithm that

after vl is taken from the first set of Σ, vi and v j will be in different sets of Σ

and the set containing vi is before the set containing v j. If there does not exist

j < λ < l such that vivλ < H and v jvλ ∈ H, then after v j+1 is taken from the first set

of Σ, the set containing vi is still before the set containing v j and in particular, v j

is not in the first set of the new Σ. So after removing v j+1 we need to remove a

vertex different from v j, which is a contradiction. So there must exist j < λ < l

such that vivλ < H and v jvλ ∈ H. �

Theorem 5.2.5. The output of Algorithm 5.2.2 is a perfect elimination order of the

chordal graph H.

Proof. First, we see that v1, . . . , vn is a reordering of the vertices x1, . . . , xn of H.

To show that v1, . . . , vn is a perfect elimination order, we need only show that for

any 1 ≤ i < j < l ≤ n, if viv j ∈ H and vivl ∈ H, then v jvl ∈ H. Assume to the

contrary that v jvl < H.

Since vivl ∈ H, v jvl < H and i < j < l, Lemma 5.2.4 implies that there exists

j < λ1 < l such that vivλ1 < H and v jvλ1 ∈ H. And we choose the largest λ1 which

satisfies this property. If vλ1vl ∈ H, then (viv jvλ1vl) is a cycle of length 4 with no

chord, which contradicts to the assumption that H is chordal. So vλ1vl < H.

Since vivl ∈ H, vλ1vl < H and i < λ1 < l, Lemma 5.2.4 implies that there exists

λ1 < λ2 < l such that vivλ2 < H and vλ1vλ2 ∈ H. And we choose the largest λ2 which
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satisfies this property. Note that by the choice of λ1, we have that v jvλ2 < H. If

vλ2vl ∈ H, then (viv jvλ1vλ2vl) is a cycle of length 5 with no chord, which contradicts

to the assumption that H is chordal. So vλ2vl < H.

Since vivl ∈ H, vλ2vl < H and i < λ2 < l, Lemma 5.2.4 implies that there exists

λ2 < λ3 < l such that vivλ3 < H and vλ2vλ3 ∈ H. And we choose the largest λ3

which satisfies this property. Note that by the choices of λ1 and λ2, we have that

v jvλ3 < H and vλ1vλ3 < H. If vλ3vl ∈ H, then (viv jvλ1vλ2vλ3vl) is a cycle of length 6 with

no chord, which contradicts to the assumption that H is chordal. So vλ3vl < H.

Proceeding in the same way, we get an infinite sequence of vertices vλ1 , vλ2 ,

vλ3 , . . . such that λ1 < λ2 < λ3 < · · · . This is a contradiction because there are only

finitely many vertices. So v jvl ∈ H and we are done. �

The following example illustrates the difference among different perfect

elimination orders.

Example 5.2.6. Let H be the following chordal graph. Then x7, x6, x5, x1, x4, x2, x3

•x1

•x2

•x3

•x5

•x4 •x6

•x7

rrr
rr

rrr
rr

LLL
LL

LLL
LL

Figure 5.2: Different perfect elimination orders

is a perfect elimination order of H, but it can not be produced by Algorithm

5.2.2 or the algorithm in [RTL]; x7, x5, x6, x4, x3, x2, x1 is a perfect elimination or-

der which can be produced by the algorithm in [RTL] ; x7, x6, x5, x4, x3, x2, x1 is a

perfect elimination order which is produced by Algorithm 5.2.2.
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If we compare these three perfect elimination orders, the third one looks

nicer in the sense that there is no unnecessary “jump” in the perfect elimination

order. Here, “jump” means going from one branch of the star-shaped graph H to

another branch. For example, in the first perfect elimination order, x5 is followed

by x1 instead of x4; in the second perfect elimination order, x7 is followed by

x5 instead of x6. However, in the third perfect elimination order, this kind of

“jump” does not happen unless it is necessary, say, x6 is followed by x5. This

nice property of the perfect elimination orders produced by Algorithm 5.2.2 is

reflected in Lemma 5.3.2 .

5.3 Construction of the resolution

Let G be a simple graph with vertices x1, . . . , xn. The complement graph G of G is

the simple graph with the same vertex set whose edges are the non-edges of G.

The subgraph of G induced by vertices xi1 , . . . , xir for some 1 ≤ i1 < · · · < ir ≤ n is the

simple graph with the vertices xi1 , . . . , xir and the edges that connect them in G.

We define the preneighborhood of a vertex x j in G to be the set

pnbhd(x j) = {xi | i < j, xix j ∈ G}.

The following two lemmas will be important in section 5.3 and section 5.4.

Lemma 5.3.1. Let G be a simple graph with vertices x1, . . . , xn such that G is chordal.

Let x1, . . . , xn be in the reverse order of a perfect elimination order of G. For any 1 ≤ i <

j < l ≤ n, if xix j ∈ G, then xixl ∈ G or x jxl ∈ G. In particular, if pnbhd(xi) * pnbhd(x j)

for some 1 ≤ i < j ≤ n then xix j ∈ G.
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Proof. Assume to the contrary that xixl < G and x jxl < G, then xixl ∈ G and

x jxl ∈ G. Since x1, . . . , xn is in the reverse order of a perfect elimination order of

G, we have xix j ∈ G, and hence xix j < G, which is a contradiction. �

Lemma 5.3.2. Let G be a simple graph with vertices x1, . . . , xn such that G is chordal.

Let x1, . . . , xn be in the reverse order of a perfect elimination order of G produced by

Algorithm 5.2.2.

(1) If xix j ∈ G for some i < j, then for any i < t ≤ j we have pnbhd(xi) ⊆ pnbhd(xt)

in G.

(2) If pnbhd(xi) * pnbhd(xt) in G for some i < t, then xix j ∈ G for all j ≥ t.

Proof. Note that part (1) and part (2) are equivalent, so we only need to prove

part (1). Assume to the contrary that there exists i < t ≤ j such that pnbhd(xi) *

pnbhd(xt) in G. We choose the minimal t which satisfies this property. Then

there exists l < i such that xlxi < G, xlxt ∈ G. Since x1, . . . , xn is in the reverse order

of a perfect elimination order of G, we must have that xixt < G and in particular

t , j. Now since xixt < G, xix j ∈ G and i < t < j, Lemma 5.2.4 implies that there

exists i < m < t such that xmxt ∈ G, xmx j < G. However, xmxt ∈ G, xlxt ∈ G and l <

m < t imply that xlxm ∈ G, so that pnbhd(xi) * pnbhd(xm) and i < m < t < j, which

contradicts to the minimality of t. So for all i < t ≤ j, pnbhd(xi) ⊆ pnbhd(xt) in

G. �

Let G be a simple graph with vertices x1, . . . , xn. The edge ideal IG of the graph

G is the monomial ideal in the polynomial ring S = k[x1, . . . , xn] with the mini-

mal generating set {xix j | xix j ∈ G}. An important result about edge ideals was

obtained by Fröberg in [Fro].

73



Theorem 5.3.3 (Fröberg). Let IG be the edge ideal of a simple graph G. Then IG has a

linear free resolution if and only if G is chordal.

By the above theorem, the edge ideal IG of a simple graph G is called a linear

edge ideal if G is chordal. The goal of this section is to construct the minimal free

resolution of S/IG where IG is a linear edge ideal.

Construction 5.3.4. Let G be a simple graph with vertices x1, . . . , xn such that G

is chordal. Let x1, . . . , xn be in the reverse order of a perfect elimination order of

G produced by Algorithm 5.2.2.

If p ≥ 1, q ≥ 1, 1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n and {xi1 , . . . , xip} ⊆

pnbhd(x j1), then the symbol (xi1 , . . . , xip |x j1 , . . . , x jq) will be used to denote the

generator of the free S -module S (−xi1 · · · xip x j1 · · · x jq) in homological degree p +

q − 1 and multidegree xi1 · · · xip x j1 · · · x jq . We set

B = {1} ∪
⋃

p≥1,q≥1

(xi1 , . . . , xip |x j1 , . . . , x jq) :
1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n

{xi1 , . . . , xip} ⊆ pnbhd(x j1)

 .
We define the map d on the set B by d(1) = 1, d(xi1 |x j1) = xi1 x j1 , and for

p + q ≥ 3,

d(xi1 , . . . , xip |x j1 , . . . , x jq)

=

p∑
s=1

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x jq)

+

q∑
t=1

(−1)t+px jt(xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+

p∑
s=1

(−1)s+1+βxis(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x jq)

+ (−1)px jβ(xi1 , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq),
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where β = min{t | 2 ≤ t ≤ q, {xi1 , . . . , xip} * pnbhd(x jt)}.

Note that if {xi1 , . . . , xip} ⊆ pnbhd(x jt) for all 1 ≤ t ≤ q, then β does not exist

and there are no β terms in the above formula. Also, if p+q ≥ 3, then the formula

of d may yield symbols which are not in B and we will regard them as zeros.

And Lemma 5.3.2 implies that for any 1 ≤ t ≤ β − 1 and β ≤ t′ ≤ q, we have

x jt x jt′ ∈ G.

Example 5.3.5. The following are some examples for the formula of d.

(1). If p ≥ 2 and q = 1, then just like the Koszul complex, we have that

d(xi1 , . . . , xip |x j1) =

p∑
s=1

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j1).

(2). If p ≥ 2, q = 3, {xi1 , . . . , xip}\pnbhd(x j2) = {xi1} and {xi1 , . . . , xip} ⊆

pnbhd(x j3), then β = 2 and a computation will reveal that

d(xi1 , . . . , xip |x j1 , x j2 , x j3)

= xi1[(xi2 , . . . , xip |x j1 , x j2 , x j3) + (xi2 , . . . , xip , x j1 |x j2 , x j3)]

+

p∑
s=2

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j1 , x j2 , x j3)

+ (−1)2+px j2[(xi1 , . . . , xip |x j1 , x j3) + (xi1 , . . . , xip , x j1 |x j3)]

+ (−1)3+px j3(xi1 , . . . , xip |x j1 , x j2).

(3). If p ≥ 2, q ≥ 4, β = 3, {xi1 , . . . , xip}\pnbhd(x j3) = {xi1 , xi2} and {xi1 , . . . , xip} *

pnbhd(x j4), then a computation will reveal that

d(xi1 , . . . , xip |x j1 , . . . , x jq) =

p∑
s=1

(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x jq)

+

q∑
t=1

(−1)t+px jt(xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq).
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Lemma 5.3.6. Let d be the map defined in Construction 5.3.4. Then d2 = 0.

The proof of the above lemma is very long and is given in section 5.4. The

next theorem is the main result of this chapter.

Theorem 5.3.7. Let F be the multigraded complex of free S -modules with basis B and

differential d as defined in Construction 5.3.4. Then F is the minimal free resolution of

S/IG.

Proof. We prove by induction on the number of vertices of the graph G. If G

has one or two vertices then it is clear. Now as in Construction 5.3.4, let G have

vertices x1, . . . , xn with n ≥ 3.

If pnbhd(xn) = ∅ in G, then xixn ∈ G for all 1 ≤ i ≤ n−1. Since x1, . . . , xn is in the

reverse order of a perfect elimination order of G, it follows that G is a complete

graph, so that G has no edges. Hence IG = (0) and there is nothing to prove. Next

we will assume that pnbhd(xn) = {xλ1 , . . . , xλr} for some 1 ≤ λ1 < · · · < λr ≤ n − 1.

Let G′ be the graph obtained from G by deleting the edges xλ1 xn, . . . , xλr xn.

Then IG and IG′ are both edge ideals in S . Note that G′ is chordal. Indeed, it is

easy to see that xn, x1, x2, . . . , xn−1 is in the reverse order of a perfect elimination

order of G′ produced by Algorithm 5.2.2. Setting J = (xλ1 , . . . , xλr ) ⊆ S , we have

IG = IG′ + xnJ and a natural short exat sequence

0 −→
IG′ + xnJ

IG′
−→

S
IG′
−→

S
IG

=
S

IG′ + xnJ
−→ 0.

Note that xnJ ∩ IG′ = xnIG′ : indeed, by Lemma 5.3.1 we see that IG′ ⊆ J and hence

xnIG′ ⊆ xnJ ∩ IG′ ; on the other hand, if xnm ∈ IG′ for some monomial m ∈ J, then

m ∈ IG′ , and hence xnJ ∩ IG′ ⊆ xnIG′ . Therefore,

IG′ + xnJ
IG′

�
xnJ

xnJ ∩ IG′
=

xnJ
xnIG′

.
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Let G′′ be the subgraph of G induced by the vertices x1, . . . , xn−1. Then G′′ is

chordal and x1, . . . , xn−1 is in the reverse order of a perfect elimination order of

G′′ produced by Algorithm 5.2.2. Let S ′ = k[x1, . . . , xn−1] ⊆ S . Then IG′′ is an edge

ideal in the polynomial ring S ′ and IG′′S = IG′ . Set

B′ = {1} ∪
⋃

p≥1,q≥1

(xi1 , . . . , xip |x j1 , . . . , x jq) :
(xi1 , . . . , xip |x j1 , . . . , x jq) ∈ B

jq ≤ n − 1

 .
Suppose that L is the multigraded complex of free S ′-modules with basis B′

and differential dL = d as defined in Construction 5.3.4, then by the induction

hypothesis, L is the minimal free resolution of S ′/IG′′ . Let F′ = L
⊗

S . Since

S = S ′[xn] is a flat S ′-module, it follows that F′ is the multigraded minimal free

resolution of the S -module S ′/IG′′
⊗

S = S/(IG′′S ) = S/IG′ , and F′ has basis B′

and differential d′ = dL = d as in Construction 5.3.4. Setting

A = {(xi1 , . . . , xip |x j1 , . . . , x jq , xn) : (xi1 , . . . , xip |x j1 , . . . , x jq) ∈ B
′},

T = {(xi1 , . . . , xip |xn) : p ≥ 1, {xi1 , . . . , xip} ⊆ pnbhd(xn)},

we have the disjoint union

B = B′ ∪A ∪ T .

Let E : · · · → E1 → E0 → xnIG′ be the multigraded minimal free resolution

of xnIG′ induced naturally by the minimal free resolution F′ of S/IG′ . Then E

has basis A and the basis element (xi1 , . . . , xip | x j1 , . . . , x jq , xn) is in homological

degree p + q − 2 in E. We denote the differential of E by dE. Note that dE(xi1 |

x j1 , xn) = xi1 x j1 xn. Let K be the multigraded complex of free S -modules with

basis T and differential −∂ = −d where d is as in Construction 5.3.4. Note that

the basis element (xi1 , . . . , xip | xn) is in homological degree p − 1 in K. And it is

easy to see that K is the minimal free resolution of xnJ.
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For any (xi1 , . . . , xip |x j1 , . . . , x jq , xn) ∈ A , we have that

d(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn)

+ µ2(xi1 , . . . , xip |x j1 , . . . , x jq , xn)

+ µ3(xi1 , . . . , xip |x j1 , . . . , x jq , xn),

where µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn) is the sum of the terms of d(xi1 , . . . , xip |

x j1 , . . . , x jq , xn) that contain basis elements in A, µ2(xi1 , . . . , xip |x j1 , . . . , x jq , xn) is

the sum of the terms that contain basis elements in T and µ3(xi1 , . . . , xip |

x j1 , . . . , x jq , xn) is the sum of the terms that contain basis elements in B′. Note

that µ3(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = (−1)q+1+pxn(xi1 , . . . , xip |x j1 , . . . , x jq). And by the

definition of d, we can check that if p + q ≥ 3, then

µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = dE(xi1 , . . . , xip |x j1 , . . . , x jq , xn).

We claim that −µ2 : E→ K is a multigraded complex map of degree 0 lifting

the inclusion map φ : xnIG′ → xnJ. Indeed, φdE(xi1 |x j1 , xn) = xi1 x j1 xn, and

(−∂)(−µ2)(xi1 |x j1 , xn) =


∂(x j1(xi1 |xn)), if xi1 xn ∈ G

∂(xi1(x j1 |xn)), if xi1 xn < G

= xi1 x j1 xn.

Hence, φdE(xi1 |x j1 , xn) = (−∂)(−µ2)(xi1 |x j1 , xn). Then we need to show that for p +

q ≥ 3,

(−µ2)dE(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = (−∂)(−µ2)(xi1 , . . . , xip |x j1 , . . . , x jq , xn).
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By Lemma 5.3.6, we have that

0 = d2(xi1 , . . . , xip |x j1 , . . . , x jq , xn) (5.1)

= µ1µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn) + µ2µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn)

+ µ3µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn) + ∂µ2(xi1 , . . . , xip |x j1 , . . . , x jq , xn)

+ dµ3(xi1 , . . . , xip |x j1 , . . . , x jq , xn).

In the above formula, collecting the terms which contain basis elements in T ,

we get

µ2µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn) + ∂µ2(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = 0.

Since µ1 = dE for p + q ≥ 3, it follows that

(−µ2)dE(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = (−∂)(−µ2)(xi1 , . . . , xip |x j1 , . . . , x jq , xn),

and the claim is proved.

Let F′′ be the mapping cone MC(−µ2). Then F′′ : · · · → F′′1 → F′′0 → xnJ/xnIG′

is a multigraded free resolution of xnJ/xnIG′ . Note that F′′0 = K0 and F′′i =

Ei−1
⊕

Ki for i ≥ 1. If we denote the differential of F′′ by d′′, then d′′0 (xi1 |xn) =

−∂(xi1 |xn) = −xi1 xn, d′′1 (xi1 |x j1 , xn) = −µ2(xi1 |x j1 , xn), d′′1 (xi1 , xi2 |xn) = −∂(xi1 , xi2 |xn),

that is, d′′1 = (−µ2,−∂), and for i ≥ 2,

d′′i =

−dE 0

−µ2 −∂

 =

−µ1 0

−µ2 −∂

 .
Since the differential matrices of F′′ have monomial entries, F′′ is the minimal

free resolution of xnJ/xnIG′ � (IG′ + xnJ)/IG′ .

Next we define a map µ : F′′ → F′ such that µ : F′′0 = K0 → F′0 = S is

given by µ(xi1 |xn) = xi1 xn and for i ≥ 1, µ : F′′i = Ei−1
⊕

Ki → F′i is given by
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µ = (µ3, 0). We claim that −µ is a multigraded complex map of degree 0 lifting the

inclusion map ψ : (IG′ + xnJ)/IG′ → S/IG′ . Indeed, if i = 0 then ψd′′0 (xi1 |xn) = −xi1 xn,

d′0(−µ)(xi1 |xn) = −xi1 xn, and hence ψd′′0 = d′0(−µ). If i = 1 then

(−µ)d′′1 (xi1 |x j1 , xn) = (−µ)(−µ2)(xi1 |x j1 , xn)

=


µ(x j1(xi1 |xn)), if xi1 xn ∈ G

µ(xi1(x j1 |xn)), if xi1 xn < G

= xi1 x j1 xn,

d′1(−µ)(xi1 |x j1 , xn) = d′1(xn(xi1 |x j1))

= xi1 x j1 xn,

(−µ)d′′1 (xi1 , xi2 |xn) = (−µ)(−∂)(xi1 , xi2 |xn)

= µ(xi1(xi2 |xn) − xi2(xi1 |xn))

= xi1 xi2 xn − xi2 xi1 xn = 0,

d′1(−µ)(xi1 , xi2 |xn) = d′1(0) = 0,

and hence (−µ)d′′1 = d′1(−µ). If i ≥ 2 then it is easy to see that for p ≥ 3,

(−µ)d′′i (xi1 , . . . , xip |xn) = d′i (−µ)(xi1 , . . . , xip |xn) = 0,

so we need only to prove that for p + q = i + 1 ≥ 3,

(−µ)d′′i (xi1 , . . . , xip |x j1 , . . . , x jq , xn) = d′i (−µ)(xi1 , . . . , xip |x j1 , . . . , x jq , xn),

that is,

µ(−µ1 − µ2)(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = dµ3(xi1 , . . . , xip |x j1 , . . . , x jq , xn).

Since µµ2(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = 0, it suffices to prove that

−µ3µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = dµ3(xi1 , . . . , xip |x j1 , . . . , x jq , xn).
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However, in formula (5.1), collecting the terms which contain basis elements in

B′, we see that

µ3µ1(xi1 , . . . , xip |x j1 , . . . , x jq , xn) + dµ3(xi1 , . . . , xip |x j1 , . . . , x jq , xn) = 0,

and the claim is proved. So µ : F′′ → F′ is a complex map lifting −ψ : (IG′ +

xnJ)/IG′ → S/IG′ , and it is eay to see that µ is multigraded of degree 0.

Let F∗ be the mapping cone MC(µ). Then F∗ : · · · → F∗1 → F∗0 → coker(−ψ)

gives a multigraded free resolution of coker(−ψ) = S/IG. Note that F∗0 = S ,

F∗1 = F′′0
⊕

F′1 = K0
⊕

F′1 and for i ≥ 2, F∗i = F′′i−1

⊕
F′i = Ei−2

⊕
Ki−1

⊕
F′i . If we

denote the differential of F∗ by d∗, then d∗0(1) = 1, d∗1 = (µ, d′1),

d∗2 =

−d′′1 0

µ d′2

 =

µ2 ∂ 0

µ3 0 d

 ,
and for i ≥ 3,

d∗i =

−d′′i−1 0

µ d′i

 =


µ1 0 0

µ2 ∂ 0

µ3 0 d

 .
Note that F∗ and F have the same basis and the same differential. So F∗ = F, and

then F is a multigraded free resolution of S/IG. Since di(Fi) ⊆ (x1, . . . , xn)Fi−1 for

all i ≥ 1, the resolution F is minimal, and we are done. �

Example 5.3.8. Let G be the following graph. Then G is chordal and x1, x2, x3, x4

•x1

•x2

•x3

•x4
��

��
�

??
??

?

Figure 5.3: A resolution of pattern Γ
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is in the reverse order of a perfect elimination order of G produced by Algorithm

5.2.2. Note that

S = k[x1, x2, x3, x4], IG = (x1x2, x1x3, x1x4, x2x4),

pnbhd(x1) = ∅, pnbhd(x2) = {x1}, pnbhd(x3) = {x1}, pnbhd(x4) = {x1, x2}.

By Construction 5.3.4, the minimal free resolution of S/IG has basis

1; (x1|x2, x3, x4), (x1|x2, x3), (x1|x2, x4), (x1|x2);

(x1|x3, x4), (x1|x3); (x1, x2|x4), (x1|x4), (x2|x4).

And we have the map d such that

d(x1|x2) = x1x2, d(x1|x3) = x1x3,

d(x1|x4) = x1x4, d(x2|x4) = x2x4,

d(x1|x2, x3) = x2(x1|x3) − x3(x1|x2),

d(x1|x2, x4) = x2(x1|x4) − x4(x1|x2),

d(x1|x3, x4) = x3(x1|x4) − x4(x1|x3),

d(x1, x2|x4) = x1(x2|x4) − x2(x1|x4),

d(x1|x2, x3, x4) = x2(x1|x3, x4) − x3(x1|x2, x4) + x4(x1|x2, x3).

Therefore, the minimal free resolution of S/IG is

0→ S (−x1x2x3x4)
d3
−→ S (−x1x2x3) ⊕ S (−x1x2x4) ⊕ S (−x1x3x4) ⊕ S (−x1x2x4)

d2
−→ S (−x1x2) ⊕ S (−x1x3) ⊕ S (−x1x4) ⊕ S (−x2x4)

d1
−→ S → S/IG,

where

d3 =



x4

−x3

x2

0


, d2 =



−x3 −x4 0 0

x2 0 −x4 0

0 x2 x3 −x2

0 0 0 x1


, d1 =

(
x1x2 x1x3 x1x4 x2x4

)
.
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Remark 5.3.9. In the above example, we have that pnbhd(x1) ⊆ pnbhd(x2) ⊆

pnbhd(x3) ⊆ pnbhd(x4). But in general, given a linear edge ideal IG, there may

not exist a perfect elimination order of G such that its reverse order x1, . . . , xn

satisfies pnbhd(xi) ⊆ pnbhd(xi+1) in G for i = 1, . . . , n − 1. For example, if G

is the star-shaped chordal graph in Example 5.2.6, then we can check that G

has no perfect elimination order satisfying the above property. However, the

following proposition says that if the above property is satisfied then the perfect

elimination order of G can be produced by Algorithm 5.2.2.

Proposition 5.3.10. Let G be a simple graph with vertices x1, . . . , xn such that G is

chordal. Let x1, . . . , xn be in the reverse order of a perfect elimination order of G such

that pnbhd(xi) ⊆ pnbhd(xi+1) in G for i = 1, . . . , n − 1. Then the perfect elimination

order xn, . . . , x1 of G can be produced by Algorithm 5.2.2.

Proof. First we choose vn = x1 in Algorithm 5.2.2. Since pnbhd(x2) ⊆ pnbhd(x j)

in G for any 2 < j ≤ n, it follows that if x1x2 < G then x1x j < G for all 2 < j ≤ n,

so that in Algorithm 5.2.2 we can choose vn−1 = x2. Now suppose that we have

chosen vn = x1, vn−1 = x2, . . . , vn−(i−2) = xi−1 for some 3 ≤ i ≤ n. Since pnbhd(xi) ⊆

pnbhd(x j) in G for any i < j ≤ n, it follows that for any 1 ≤ l ≤ i−1, if xlxi < G then

xlx j < G for all i < j ≤ n, so that in Algorithm 5.2.2 we can choose vn−(i−1) = xi.

So by using induction we see that xn, . . . , x1 can be the output of Algorithm 5.2.2

and we are done. �

Remark 5.3.11. If the conditions in the above proposition are satisfied, then

there will be no β terms in the differential formula. However, as we have seen

in Remark 5.3.9, the conditions in the above proposition can not always be sat-

isfied, especially when G is a complicated chordal graph. So in general, the β

terms in the differential formula can not be avoided.
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Remark 5.3.12. Let G = Kn be the complete graph with n vertices x1, . . . , xn.

Then we have the Eliahou-Kervaire resolution of S/IG. It is easy to see that

the basis element (xix j; i1, . . . , ip, j1, . . . , jq) with i1 < · · · < ip < i < j1 <

· · · < jq < j in the Eliahou-Kervaire resolution corresponds naturally to the

basis element (xi1 , . . . , xip , xi|x j1 , . . . , x jq , x j) in Construction 5.3.4. But the dif-

ferential maps defined on them are different. For example, if G = K3, then

d(x2x3; 1) = x1(x2x3; ∅) − x3(x1x2; ∅), but d(x1, x2|x3) = x1(x2|x3) − x2(x1|x3). So in

the case of complete graphs, the resolution defined in Construction 5.3.4 does

not recover the Eliahou-Kervaire resolution. By contrast, the resolution in [Ho]

recovers the Eliahou-Kervaire resolution in the case of complete graphs.

5.4 The proof of d2 = 0

Before proving Lemma 5.3.6, we look at the following example.

Example 5.4.1. Let G be the graph such that G is the chordal graph given in Ex-

ample 5.2.6. Then x1, x2, x3, x4, x5, x6, x7 is in the reverse order of a perfect elimi-

nation order of G produced by Algorithm 5.2.2. Note that in G,

pnbhd(x5) = {x1, x2, x3} * pnbhd(x6) = {x1, x2, x4, x5}.

Next we check that d2(x1, x2, x3|x5, x6) = 0. In fact, by the definition of d, we have
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that

d(x1, x2, x3|x5, x6) =x1(x2, x3|x5, x6) − x2(x1, x3|x5, x6)

+ x3[(x1, x2|x5, x6) + (x1, x2, x5|x6)] − x6(x1, x2, x3|x5),

d(x1(x2, x3|x5, x6)) =x1x2(x3|x5, x6) − x1x3[(x2|x5, x6) + (x2, x5|x6)]

+ x1x6(x2, x3|x5),

d(−x2(x1, x3|x5, x6)) = − x2x1(x3|x5, x6) + x2x3[(x1|x5, x6) + (x1, x5|x6)]

− x2x6(x1, x3|x5),

d(x3(x1, x2|x5, x6)) =x3x1(x2|x5, x6) − x3x2(x1|x5, x6)

− x3x5(x1, x2|x6) + x3x6(x1, x2|x5),

d(x3(x1, x2, x5|x6)) =x3x1(x2, x5|x6) − x3x2(x1, x5|x6) + x3x5(x1, x2|x6),

d(−x6(x1, x2, x3|x5)) = − x6x1(x2, x3|x5) + x6x2(x1, x3|x5) − x6x3(x1, x2|x5).

So the sum of the terms in d2(x1, x2, x3|x5, x6) containing x1x2 is

x1x2(x3|x5, x6) − x2x1(x3|x5, x6) = 0;

the sum of the terms in d2(x1, x2, x3|x5, x6) containing x1x3 is

−x1x3[(x2|x5, x6) + (x2, x5|x6)] + x3x1(x2|x5, x6) + x3x1(x2, x5|x6) = 0;

and similarly, we have

x2x3[(x1|x5, x6) + (x1, x5|x6)] − x3x2(x1|x5, x6) − x3x2(x1, x5|x6) = 0,

−x3x5(x1, x2|x6) + x3x5(x1, x2|x6) = 0,

x1x6(x2, x3|x5) − x6x1(x2, x3|x5) = 0,

−x2x6(x1, x3|x5) + x6x2(x1, x3|x5) = 0,

x3x6(x1, x2|x5) − x6x3(x1, x2|x5) = 0.

Therefore, d2(x1, x2, x3|x5, x6) = 0.
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Proof of Lemma 5.3.6. First we have that

d2(xi1 |x j1) = d(xi1 x j1) = xi1 x j1 = 0 in S/IG,

d2(xi1 , xi2 |x j1) = d(xi1(xi2 |x j1) − xi2(xi1 |x j1))

= xi1 xi2 x j1 − xi2 xi1 x j1 = 0,

d2(xi1 |x j1 , x j2) =


d(x j1(xi1 |x j2) − x j2(xi1 |x j1)), if xi1 x j2 ∈ G

d(xi1(x j1 |x j2) − x j2(xi1 |x j1)), if xi1 x j2 < G

=


x j1 xi1 x j2 − x j2 xi1 x j1 , if xi1 x j2 ∈ G

xi1 x j1 x j2 − x j2 xi1 x j1 , if xi1 x j2 < G

= 0.

Next we need only to prove that d2(xi1 , . . . , xip |x j1 , . . . , x jq) = 0 for p + q ≥ 4.

Just as in Example 5.4.1, it suffices to prove that if we write out all the terms

of d2(xi1 , . . . , xip |x j1 , . . . , x jq), then given any λ, λ′ ∈ {i1, . . . , ip, j1, . . . , jq}, the sum of

the terms containing xλxλ′ is zero, that is all the terms containing xλxλ′ cancel.

Hence, a computation will reveal that if β does not exist, that is {xi1 , . . . , xip} ⊆

pnbhd(x jt) for all 1 ≤ t ≤ q, then d2(xi1 , . . . , xip |x j1 , . . . , x jq) = 0. So we will assume

that q ≥ 2 and β exists. The proof is case by case and there are five main cases.

[Case A]: λ, λ′ ∈ {i1, . . . , ip}.

[Case A-a]: if 1 ≤ s < s′ ≤ p such that xis x jβ ∈ G and xis′ x jβ ∈ G, then the sum

of the terms containing xis xis′ is

(−1)s+1xis(−1)s′ xis′ (xi1 , . . . , x̂is , . . . , x̂is′ , . . . , xip |x j1 , . . . , x jq)

+ (−1)s′+1xis′ (−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂is′ , . . . , xip |x j1 , . . . , x jq) = 0.

[Case A-b]: suppose that there is a term containing xis xiα for some 1 ≤ s, α ≤ p
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such that xis x jβ ∈ G and xiα x jβ < G. Without the loss of generality, we assume

s < α.

Subcase (i): if {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ), then the sum of the terms

containing xis xiα is

(−1)s+1xis(−1)αxiα(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |x j1 , . . . , x jq)

+ (−1)α+1xiα(−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |x j1 , . . . , x jq) = 0.

Subcase (ii): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ), then we set

β′ = min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jt)}.

Lemma 5.3.2 implies that for any β ≤ t ≤ q, x j1 x jt , . . . , x jβ−1 x jt ∈ G, so we have

β′ = min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1} * pnbhd(x jt)}.

Subsubcase (ii)(a): if one of the following conditions is satisfied:

1) β′ does not exist,

2) xis x jβ′ ∈ G,

3) xis x jβ′ < G and {xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip} * pnbhd(x jβ′ ),

then the sum of the terms containing xis xiα is

(−1)s+1xis(−1)αxiα[(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |x j1 , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x jq)]

+ (−1)α+1xiα[(−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |x j1 , . . . , x jq)

+ (−1)β(−1)s+1xis(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x jq)] = 0.
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Subsubcase (ii)(b): if xis x jβ′ < G, {xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ′ ), then

the sum of the terms containing xis xiα is

(−1)s+1xis(−1)αxiα[(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |x j1 , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x jq)]

+ (−1)α+1xiα{(−1)s+1xis[(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |x j1 , . . . , x jq)

+ (−1)β
′

(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ′−1 |x jβ′ , . . . , x jq)]

+ (−1)β(−1)s+1xis[(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x jq)

+ (−1)β
′−β+1(xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ′−1 |x jβ′ , . . . , x jq)]} = 0.

Note that in the above two subsubcases, if s = 1 and α = p = 2 then the terms

containing (xi1 , . . . , x̂is , . . . , x̂iα , . . . , xip |x j1 , . . . , x jq) are zeros.

[Case A-c]: suppose that there is a term containing xiα xiα′ for some 1 ≤ α <

α′ ≤ p such that xiα x jβ < G and xiα′ x jβ < G.

Subcase (i): if {xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip} * pnbhd(x jβ), then the sum of the

terms containing xiα xiα′ is

(−1)α+1xiα(−1)α
′

xiα′ (xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |x j1 , . . . , x jq)

+ (−1)α
′+1xiα′ (−1)α+1xiα(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |x j1 , . . . , x jq) = 0.

Subcase (ii): if {xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip} ⊆ pnbhd(x jβ), then the sum of the

terms containing xiα xiα′ is

(−1)α+1xiα(−1)α
′

xiα′ [(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |x j1 , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x jq)]

+ (−1)α
′+1xiα′ (−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |x j1 , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x jq)] = 0.
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Note that if α = 1 and α′ = p = 2, then in the above formula, the two terms

containing (xi1 , . . . , x̂iα , . . . , x̂iα′ , . . . , xip |x j1 , . . . , x jq) are zeros.

[Case B]: λ ∈ {i1, . . . , ip} and λ′ = j1.

[Case B-a]: suppose that there is a term containing xis x j1 for some 1 ≤ s ≤ p

such that xis x jβ ∈ G, then it is easy to see that β , 2 and the sum of the terms

containing xis x j1 is

(−1)s+1xis(−1)1+(p−1)x j1(xi1 , . . . , x̂is , . . . , xip |x j2 , . . . , x jq)

+ (−1)p+1x j1(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j2 , . . . , x jq) = 0.

[Case B-b]: suppose that there is a term containing xiα x j1 for some 1 ≤ α ≤ p

such that xiα x jβ < G.

Subcase (i): β = 2. If we have {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ), then it

is easy to see that there is no term containing xiα x j1 , hence we must have

{xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ) and the sum of the terms containing xiα x j1 is

(−1)α+1xiα[(−1)px j1(xi1 , . . . , x̂iα , . . . , xip |x̂ j1 , x j2 , . . . , x jq)

+ (−1)β(−1)p+1x j1(xi1 , . . . , x̂iα , . . . , xip , x̂ j1 |x j2 , . . . , x jq)] = 0.

Subcase (ii): if β > 2 and {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ), then the sum of the

terms containing xiα x j1 is

(−1)α+1xiα(−1)px j1(xi1 , . . . , x̂iα , . . . , xip |x̂ j1 , x j2 , . . . , x jq)

+ (−1)p+1x j1(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |x̂ j1 , x j2 , . . . , x jq) = 0.

Subcase (iii): if β > 2 and {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ), then the sum of

89



the terms containing xiα x j1 is

(−1)α+1xiα[(−1)px j1(xi1 , . . . , x̂iα , . . . , xip |x̂ j1 , x j2 , . . . , x jq)

+ (−1)β(−1)p+1x j1(xi1 , . . . , x̂iα , . . . , xip , x̂ j1 , x j2 , . . . , x jβ−1 |x jβ , . . . , x jq)]

+ (−1)p+1x j1(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x̂ j1 , x j2 , . . . , x jq)

+ (−1)β−1(xi1 , . . . , x̂iα , . . . , xip , x̂ j1 , x j2 , . . . , x jβ−1 |x jβ , . . . , x jq)] = 0.

[Case C]: λ ∈ {i1, . . . , ip} and λ′ ∈ { j2, . . . , jq}.

[Case C-a]: if 1 ≤ s ≤ p, 2 ≤ t ≤ q such that xis x jβ ∈ G and t , β, then the sum

of the terms containing xis x jt is

(−1)s+1xis(−1)t+(p−1)x jt(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)t+px jt(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq) = 0.

[Case C-b]: suppose that there is a term containing xiα x jt for some 1 ≤ α ≤ p,

2 ≤ t ≤ q such that xiα x jβ < G and t , β.

Subcase (i): if {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ), then the sum of the terms

containing xiα x jt is

(−1)α+1xiα(−1)t+(p−1)x jt(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)t+px jt(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq) = 0.

Subcase (ii): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ), then as in subcase (ii) of

[Case A-b], we set

β′ = min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jt)}

= min{t | β < t ≤ q, {xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1} * pnbhd(x jt)}.
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Subsubcase (ii)(a): if t < β, then the sum of the terms containing xiα x jt is

(−1)α+1xiα[(−1)t+(p−1)x jt(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)β(−1)t+(p−1)+1x jt(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x̂ jt , . . . , x jβ−1 |x jβ , . . . , x jq)]

+ (−1)t+px jt(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)β−1(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x̂ jt , . . . , x jβ−1 |x jβ , . . . , x jq)] = 0.

Subsubcase (ii)(b): if one of the following conditions is satisfied:

1) t > β and β′ does not exist,

2) t > β and t , β′,

3) t = β′ = q,

4) t = β′ and {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ′+1),

then the sum of the terms containing xiα x jt is

(−1)α+1xiα[(−1)t+(p−1)x jt(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)β(−1)t+p−1x jt(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x̂ jt , . . . , x jq)]

+ (−1)t+px jt(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x̂ jt , . . . , x jq)] = 0.

Note that in the above two subsubcases, if α = p = 1 then the terms containing

(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq) are zeros and β′ does not exist.

Subsubcase (ii)(c): if t = β′ and {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ′+1), then the
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sum of the terms containing xiα x jt is

(−1)α+1xiα{(−1)t+(p−1)x jt[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)t(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jt−1 |x jt+1 , . . . , x jq)]

+ (−1)β(−1)t+p−1x jt[(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x̂ jt , . . . , x jq)

(−1)t−β+1(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jt−1 |x jt+1 , . . . , x jq)]}

+ (−1)t+px jt(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ , . . . , x̂ jt , . . . , x jq)] = 0.

[Case C-c]: suppose that there is a term containing xis x jβ for some 1 ≤ s ≤ p

such that xis x jβ ∈ G. We set

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip} * pnbhd(x jt)}.

Lemma 5.3.2 implies that for any β ≤ t ≤ q, x j1 x jt , . . . , x jβ−1 x jt ∈ G, so we have

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip , x j1 , . . . , x jβ−1} * pnbhd(x jt)}.

Subcase (i): if β = q or {xi1 , . . . , x̂is , . . . , xip} * pnbhd(x jβ+1), then the sum of the

terms containing xis x jβ is

(−1)s+1xis(−1)β+(p−1)x jβ(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β+px jβ(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq) = 0.

Subcase (ii): if {xi1 , . . . , x̂is , . . . , xip} ⊆ pnbhd(x jβ+1) and xis x jβ+1 < G, then β′′ =

β + 1 and the sum of the terms containing xis x jβ is

(−1)s+1xis(−1)β+(p−1)x jβ[(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ(−1)s+1xis[(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)] = 0.
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Subcase (iii): if one of the following conditions is satisfied:

1) β < q and β′′ does not exist,

2) β′′ > β + 1 and xis x jβ′′ ∈ G,

3) β′′ > β + 1, xis x jβ′′ < G and {xi1 , . . . , x̂is , . . . , xip} * pnbhd(x jβ′′ )

then the sum of the terms containing xis x jβ is

(−1)s+1xis(−1)β+(p−1)x jβ[(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ[(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)s+1xis(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)] = 0.

Subcase (iv): if β′′ > β + 1, xis x jβ′′ < G, {xi1 , . . . , x̂is , . . . , xip} ⊆ pnbhd(x jβ′′ ), then

the sum of the terms containing xis x jβ is

(−1)s+1xis(−1)β+(p−1)x jβ[(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ{(−1)s+1xis[(xi1 , . . . , x̂is , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β
′′−1(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jβ′′−1 |x jβ′′ , . . . , x jq)]

+ (−1)β(−1)s+1xis[(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)

+ (−1)β
′′−β(xi1 , . . . , x̂is , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jβ′′−1 |x jβ′′ , . . . , x jq)]} = 0.

[Case C-d]: suppose that there is a term containing xiα x jβ for some 1 ≤ α ≤ p

such that xiα x jβ < G. As in [Case C-c], we set

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip} * pnbhd(x jt)}

= min{t | β < t ≤ q, {xi1 , . . . , xip , x j1 , . . . , x jβ−1} * pnbhd(x jt)}.
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Subcase (i): if β = q or {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ+1), then the sum of the

terms containing xiα x jβ is

(−1)α+1xiα(−1)β+(p−1)x jβ(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β+px jβ(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq) = 0.

Subcase (ii): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ), then we have the following

three subsubcases.

Subsubcase (ii)(a): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ+1) and xiα x jβ+1 < G, then

β′′ = β + 1 and the sum of the terms containing xiα x jβ is

(−1)α+1xiα[(−1)β+(p−1)x jβ(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)β+p−1x jβ(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)] = 0.

Subsubcase (ii)(b): if {xi1 , . . . , xip} ⊆ pnbhd(x jβ+1) and one of the following

conditions is satisfied:

1) β′′ does not exist,

2) xiα x jβ′′ ∈ G,

3) xiα x jβ′′ < G and {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ′′ ),
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then the sum of the terms containing xiα x jβ is

(−1)α+1xiα[(−1)β+(p−1)x jβ(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)β+p−1x jβ(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ[(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)] = 0.

Subsubcase (ii)(c): if β′′ ≥ β + 2, xiα x jβ′′ < G and {xi1 , . . . , x̂iα , . . . , xip} ⊆

pnbhd(x jβ′′ ), then the sum of the terms containing xiα x jβ is

(−1)α+1xiα[(−1)β+(p−1)x jβ(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)β+p−1x jβ(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ{(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β
′′−1(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jβ′′−1 |x jβ′′ , . . . , x jq)]

+ (−1)β(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)

+ (−1)β
′′−β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jβ′′−1 |x jβ′′ , . . . , x jq)]} = 0.

Subcase (iii): if {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ), then just as in subcase (ii),

we have the following three subsubcases.

Subsubcase (iii)(a): if {xi1 , . . . , x̂iα , . . . , xip} ⊆ pnbhd(x jβ+1) and xiα x jβ+1 < G, then

β′′ = β + 1 and the sum of the terms containing xiα x jβ is

(−1)α+1xiα(−1)β+(p−1)x jβ[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)] = 0.
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Subsubcase (iii)(b): if {xi1 , . . . , xip} ⊆ pnbhd(x jβ+1) and one of the following

conditions is satisfied:

1) β′′ does not exist,

2) xiα x jβ′′ ∈ G,

3) xiα x jβ′′ < G and {xi1 , . . . , x̂iα , . . . , xip} * pnbhd(x jβ′′ ),

then the sum of the terms containing xiα x jβ is

(−1)α+1xiα(−1)β+(p−1)x jβ[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ[(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)α+1xiα(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)] = 0.

Subsubcase (iii)(c): if β′′ ≥ β + 2, xiα x jβ′′ < G and {xi1 , . . . , x̂iα , . . . , xip} ⊆

pnbhd(x jβ′′ ), then the sum of the terms containing xiα x jβ is

(−1)α+1xiα(−1)β+(p−1)x jβ[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ{(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β
′′−1(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jβ′′−1 |x jβ′′ , . . . , x jq)]

+ (−1)β(−1)α+1xiα[(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)

+ (−1)β
′′−β(xi1 , . . . , x̂iα , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jβ′′−1 |x jβ′′ , . . . , x jq)]} = 0.

[Case D]: λ = j1 and λ′ ∈ { j2, . . . , jq}.

[Case D-a]: suppose that there is a term containing x j1 x jt for some 2 ≤ t ≤ q

such that t , β, then β , 2 and if t = 2 then β , 3. Hence, the sum of the terms
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containing x j1 x jt is

(−1)1+px j1(−1)(t−1)+px jt(xi1 , . . . , xip |x̂ j1 , . . . , x̂ jt , . . . , x jq)

+ (−1)t+px jt(−1)1+px j1(xi1 , . . . , xip |x̂ j1 , . . . , x̂ jt , . . . , x jq) = 0.

[Case D-b]: suppose that there is a term containing x j1 x jβ .

Subcase (i): β = 2. Assume that {xi1 , . . . , xip} * pnbhd(x j3), then there is no

term containing x j1 x jβ , hence we must have {xi1 , . . . , xip} ⊆ pnbhd(x j3) and the

sum of the terms containing x j1 x jβ is

(−1)β+px jβ[(−1)1+px j1(xi1 , . . . , xip |x̂ j1 , x j3 , . . . , x jq)

+ (−1)β(−1)p+2x j1(xi1 , . . . , xip , x̂ j1 |x j3 , . . . , x jq)] = 0.

Subcase (ii): if β > 2 such that β = q or {xi1 , . . . , xip} * pnbhd(x jβ+1), then the

sum of the terms containing x j1 x jβ is

(−1)1+px j1(−1)(β−1)+px jβ(xi1 , . . . , xip |x j2 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β+px jβ(−1)1+px j1(xi1 , . . . , xip |x j2 , . . . , x̂ jβ , . . . , x jq) = 0.

Subcase (iii): if β > 2 and {xi1 , . . . , xip} ⊆ pnbhd(x jβ+1), then the sum of the

terms containing x j1 x jβ is

(−1)1+px j1(−1)(β−1)+px jβ[(xi1 , . . . , xip |x j2 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β−1(xi1 , . . . , xip , x j2 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ[(−1)1+px j1(xi1 , . . . , xip |x j2 , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)p+2x j1(xi1 , . . . , xip , x j2 , . . . , x jβ−1 |x jβ+1 , . . . , x jq)] = 0.

[Case E]: λ, λ′ ∈ { j2, . . . , jq}.
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[Case E-a]: if 2 ≤ t < t′ ≤ q such that t , β and t′ , β, then the sum of the

terms containing x jt x jt′ is

(−1)t+px jt(−1)(t′−1)+px jt′ (xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x̂ jt′ , . . . , x jq)

+ (−1)t′+px jt′ (−1)t+px jt(xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x̂ jt′ , . . . , x jq) = 0.

[Case E-b]: suppose that there is a term containing x jt x jβ for some 2 ≤ t ≤ q

with t , β. As in [Case C-c], we set

β′′ = min{t | β < t ≤ q, {xi1 , . . . , xip} * pnbhd(x jt)}

= min{t | β < t ≤ q, {xi1 , . . . , xip , x j1 , . . . , x jβ−1} * pnbhd(x jt)}.

Subcase (i): if one of the following conditions is satisfied:

1) β = q,

2) β = q − 1 and t = q,

3) β′′ = β + 1 and t , β′′,

4) β′′ = β + 1, t = β′′ and {xi1 , . . . , xip} * pnbhd(x jβ+2),

5) β′′ = β + 2 and t = β + 1,

then the sum of the terms containing x jt x jβ is

(−1)t+px jt(−1)(β−1)+px jβ(xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x̂ jβ , . . . , x jq)

+ (−1)β+px jβ(−1)t+px jt(xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x̂ jβ , . . . , x jq)

= 0, for t < β;

(−1)t+px jt(−1)β+px jβ(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x̂ jt , . . . , x jq)

+ (−1)β+px jβ(−1)(t−1)+px jt(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x̂ jt , . . . , x jq)

= 0, for t > β.

98



Subcase (ii): if β′′ = β + 1, t = β′′ and {xi1 , . . . , xip} ⊆ pnbhd(x jβ+2), then the sum

of the terms containing x jt x jβ is

(−1)t+px jt(−1)β+px jβ[(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , x̂ jt , . . . , x jq)

+ (−1)β(xi1 , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+2 , . . . , x jq)]

+ (−1)β+px jβ(−1)(t−1)+px jt[(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , x̂ jt , . . . , x jq)

+ (−1)β(xi1 , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+2 , . . . , x jq)] = 0.

Subcase (iii): if one of the following conditions is satisfied:

1) β = q − 1, t < β and {xi1 , . . . , xip} ⊆ pnbhd(x jq),

2) β ≤ q − 2 and β′′ does not exist,

3) β′′ > β + 1, t , β′′ such that t , β + 1 or β′′ , β + 2,

4) β′′ > β + 1 and t = β′′ = q,

5) β′′ > β + 1, t = β′′ and {xi1 , . . . , xip} * pnbhd(x jβ′′+1),

then the sum of the terms containing x jt x jβ is

(−1)t+px jt(−1)(β−1)+px jβ[(xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x̂ jβ , . . . , x jq)

+ (−1)β−1(xi1 , . . . , xip , x j1 , . . . , x̂ jt , . . . , x̂ jβ |x jβ+1 , . . . , x jq)]

+ (−1)β+px jβ[(−1)t+px jt(xi1 , . . . , xip |x j1 , . . . , x̂ jt , . . . , x̂ jβ , . . . , x jq)

+ (−1)β(−1)t+p+1x jt(xi1 , . . . , xip , x j1 , . . . , x̂ jt , . . . , x̂ jβ |x jβ+1 , . . . , x jq)]

= 0, for t < β;
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(−1)t+px jt(−1)β+px jβ[(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x̂ jt , . . . , x jq)

+ (−1)β(xi1 , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x̂ jt , . . . , x jq)]

+ (−1)β+px jβ[(−1)(t−1)+px jt(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x̂ jt , . . . , x jq)

+ (−1)β(−1)t−1+px jt(xi1 , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x̂ jt , . . . , x jq)]

= 0, for t > β.

Subcase (iv): if β′′ > β + 1, t = β′′ and {xi1 , . . . , xip} ⊆ pnbhd(x jβ′′+1), then the

sum of the terms containing x jt x jβ is

(−1)t+px jt(−1)β+px jβ[(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x̂ jt , . . . , x jq)

+ (−1)β(xi1 , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x̂ jt , . . . , x jq)]

+ (−1)β+px jβ{(−1)(t−1)+px jt[(xi1 , . . . , xip |x j1 , . . . , x̂ jβ , . . . , x̂ jt , . . . , x jq)

+ (−1)t−1(xi1 , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jt−1 |x jt+1 , . . . , x jq)]

+ (−1)β(−1)t−1+px jt[(xi1 , . . . , xip , x j1 , . . . , x jβ−1 |x jβ+1 , . . . , x̂ jt , . . . , x jq)

(−1)t−β(xi1 , . . . , xip , x j1 , . . . , x̂ jβ , . . . , x jt−1 |x jt+1 , . . . , x jq)]} = 0.

Since the above five main cases have included all the possible terms, it fol-

lows that d2(xi1 , . . . , xip |x j1 , . . . , x jq) = 0 and we are done. �

5.5 Betti numbers

In Section 5.3, to construct the differential maps of the minimal free resolution

of S/IG, we need to assume that xn, . . . , x1 is a perfect elimination order of G pro-

duced by Algorithm 5.2.2. However, to get a nice formula for Betti numbers

(Corollary 5.5.2), we only need to know a basis for the minimal free resolution.
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Therefore, we have the following theorem which does not require that the per-

fect elimination order xn, . . . , x1 of G is produced by Algorithm 5.2.2.

Theorem 5.5.1. Let G be a simple graph with vertices x1, . . . , xn such that G is chordal

and x1, . . . , xn is in the reverse order of a perfect elimination order of G. Then in the

polynomial ring S = k[x1, . . . , xn] we have the linear edge ideal IG of the graph G. Let

the symbol (xi1 , . . . , xip |x j1 , . . . , x jq) be as defined in Construction 5.3.4. And we set

B = {1} ∪
⋃

p≥1,q≥1

(xi1 , . . . , xip |x j1 , . . . , x jq) :
1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n

{xi1 , . . . , xip} ⊆ pnbhd(x j1)

 .
Then there exists a multigraded minimal free resolution F of S/IG such that F has basis

B.

We will not prove Theorem 5.5.1 because the proof is very similar to the

proof of Theorem 5.3.7. The only difference is that in the proof of Theorem 5.3.7

we know the complex maps −µ2 : E → K and µ : F′′ → F′ explicitly, while in

the proof of Theorem 5.5.1 we only know their existence. However, we can still

use the mapping cones to show the existence of the multigraded minimal free

resolution with the desired basis B.

Now Theorem 5.5.1 imply immediately the following corollary about Betti

numbers and the projective dimension of S/IG.

Corollary 5.5.2. Let IG be a linear edge ideal as defined in Theorem 5.5.1. For 2 ≤ i ≤ n,

we set λi = |pnbhd(xi)|. Then for i ≥ 1, the Betti numbers of S/IG are

βi, j(S/IG) =


n∑

l=2

 λl∑
p=1

(
λl

p

)(
n − l
i − p

) , if j = i + 1,

0, if j , i + 1,

and the projective dimension of S/IG is

projdim(S/IG) = n −min{i − λi : 2 ≤ i ≤ n and λi , 0} ≤ n − 1.
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Proof. The formula for Betti numbers follows from counting the number of basis

elements of homological degree i and degree i+1 inB. The projective dimension

formula also follows easily by looking at the basis elements in B. Since λi ≤ i− 1

for 2 ≤ i ≤ n, it follows that projdim(S/IG) ≤ n − 1. �

Example 5.5.3. Let G be the graph such that G is the chordal graph given in Ex-

ample 5.2.6. Then x1, x2, x3, x4, x5, x6, x7 is in the reverse order of a perfect elimi-

nation order of G and we have that

λ2 = 0, λ3 = 1, λ4 = 2, λ5 = 3, λ6 = 4, λ7 = 5.

Therefore, by Corollary 5.5.2, we have projdim(S/IG) = 5 and a computation

will reveal that the Betti numbers of S/IG are

β1,2 = 15, β2,3 = 40, β3,4 = 45, β4,5 = 24, β5,6 = 5.

In [RV] and [HV], the following formula for the Betti numbers is proved by

using Hochster’s formula. Now we prove the formula by using Theorem 5.5.1.

Corollary 5.5.4. Let IG be the linear edge ideal of a graph G with vertices x1, . . . , xn.

For any nonempty subset σ of {x1, . . . , xn}, let Gσ be the subgraph of G induced by σ

and let #(Gσ) be the number of connected components of Gσ. Then for i ≥ 1, we have

βi, j(S/IG) =


∑

σ⊆{x1,...,xn},|σ|=i+1

(
#(Gσ) − 1

)
, if j = i + 1,

0, if j , i + 1.

Proof. Without the loss of generality, we can assume that xn, . . . , x1 is a perfect

elimination order of the chordal graph G. Let B be as defined in Theorem 5.5.1.

We say that the vertex xs is smaller than the vertex xt if s < t. For any i ≥ 1,

let σ = {xα1 , . . . , xαi+1} be a subset of {x1, . . . , xn} for some 1 ≤ α1 < · · · < αi+1 ≤ n.
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We claim that (xα1 , . . . , xαp−1 |xαp , . . . , xαi+1) ∈ B if and only if p , 1 and xαp is the

smallest vertex in the connected component of Gσ containing xαp . Indeed, if

p ≥ 2 and xαp is the smallest vertex in the connected component of Gσ containing

xαp , then xαs xαp ∈ G for all 1 ≤ s ≤ p − 1, so that (xα1 , . . . , xαp−1 |xαp , . . . , xαi+1) ∈ B.

On the other hand, assume that p ≥ 2 and there exists 1 ≤ s ≤ p − 1 such that xαs

and xαp are in the same connected component of Gσ. Set σ′ = {xα1 , . . . , xαp} ⊆ σ.

Since xαi+1 , . . . , xα1 is a perfect elimination order of Gσ, it is easy to see that xαs

and xαp are still in the same connected component of Gσ′ . Therefore, there exists

1 ≤ s′ ≤ p − 1 such that xαs′ xαp ∈ Gσ′ , and hence xαs′ xαp < G, which implies

(xα1 , . . . , xαp−1 |xαp , . . . , xαi+1) < B. So the claim is proved. It follows that there are

#(Gσ) − 1 basis elements in Bwith multidegree xα1 · · · xαi+1 and we are done. �

103



BIBLIOGRAPHY

[Bi] A. Bigatti: Upper bounds for the Betti numbers of a given Hilbert func-
tion, Comm. in Algebra 21 (1993), 2317–2334.

[CM] G. Caviglia, D. Maclagan: Some cases of the Eisenbud-Green-Harris
conjecture, Math. Res. Lett., 15 (2008), no. 3, 427–433.

[CE] H. Charalambous, G. Evans: Resolutions obtained by iterated mapping
cones, J. Algebra 176, (1995), no. 3, 750–754.

[CL] G. F. Clements, B. Lindström: A generalization of a combinatorial theo-
rem of Macaulay, J. Combinatorial Theory, 7 1969 230–238.

[Co1] S. M. Cooper: Growth conditions for a family of ideals containing regu-
lar sequences, J. Pure Appl. Algebra, 212 (2008), no. 1, 122–131.

[Co2] S. M. Cooper: The Eisenbud-Green-Harris Conjecture for ideals of
points, Pre-print, (2008).

[CN] A. Corso, U. Nagel: Monomial and toric ideals associated to Ferrers
graphs, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1371–1395.

[DGO] E. D. Davis, A. V. Geramita, F. Orecchia: Gorenstein algebras and the
Cayley-Bacharach theorem, Proc. Amer. Math. Soc., 93 (1985), no. 4, 593–
597.

[Di] G. A. Dirac: On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25
(1961), 71–76.

[EGH] D. Eisenbud, M. Green, J. Harris: Higher Castelnuovo theory, Astérisque,
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