HILBERT FUNCTIONS AND FREE RESOLUTIONS

A Dissertation
Presented to the Faculty of the Graduate School of Cornell University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

by
Ri-Xiang Chen
August 2011
(C) 2011 Ri-Xiang Chen

ALL RIGHTS RESERVED

HILBERT FUNCTIONS AND FREE RESOLUTIONS
 Ri-Xiang Chen, Ph.D.

Cornell University 2011

Hilbert functions and free resolutions are central concepts in the field of Commutative Algebra. In chapter 3 we prove some cases of the well-known Eisenbud-Green-Harris Conjecture. This conjecture characterizes the Hilbert functions of graded ideals containing a regular sequence in the polynomial ring. In chapter 4 we study the Hilbert functions of graded ideals in toric rings. We prove that Macaulay's Theorem holds for some projective monomial curves, and show that Macaulay's Theorem does not hold for all projective monomial curves. In the last chapter we construct explicitly the minimal free resolutions of linear edge ideals.

BIOGRAPHICAL SKETCH

Ri-Xiang Chen was born on May 9, 1981, in Jiangyan City, Jiangsu Province, P.R.China. When he was about 10, Chen found himself good at doing word problems. And gradually, math became his favorite subject.

Chen's interest in math increased during his 3-year study at Shengao Middle School, where he was lucky to have several good math teachers. Then in 1995 Chen went to Jiangyan high school, where he was fascinated by the process of solving math problems. During his last year in high school, he decided to pursue a career in mathematics.

In 1998 Chen began his math journey at University of Science and Technology of China, where he spent 5 years on studying classical materials in mathematics. After getting a bachelor's degree in 2003, Chen came to the US and became a graduate student at University of California, Santa Barbara, studying differential geometry. After realizing that he liked algebra better, Chen transferred to Cornell University, where he has studied commutative algebra ever since.

Dedicated to my mother, Guilan Zhu.

ACKNOWLEDGEMENTS

First I need to thank the Department of Mathematics for having given me this opportunity to study here at Cornell.

Then I am extremely grateful to my thesis advisor, Irena Peeva, who has helped me a lot during my 4-year graduate study at Cornell. I learned Hilbert functions and free resolutions from her classes. The research in chapter 4 and chapter 5 was suggested by Professor Peeva and was closely related to her classes. Besides her guidence on my research, Professor Peeva spent a considerable amount of time on helping me improve my mathematical writing.

Also, I am thankful to Professor Stillman who has taught four inspiring courses on homological algebra and algebraic geometry. In addition, I need to thank Frank Moore who taught me infinite free resolutions.

I would also like to acknowledge some professors at University of California, Santa Barbara. I learned differential geometry from Professors Xianzhe Dai, Guofang Wei and Rugang Ye, who were very kind to me. Professor Denis Labutin taught me analysis and PDE. Professors Birge Huisgen-Zimmermann and Milen Yakimov helped me transfer to Cornell.

Finally, I need to thank my big sister, Xiumei Chen, who took good care of our mother and was always there for me whenever I needed to talk to someone.

TABLE OF CONTENTS

Biographical Sketch iii
Dedication iv
Acknowledgements v
Table of Contents vi
List of Figures vii
1 Introduction 1
2 Background 4
2.1 Hilbert functions and lex ideals 4
2.2 Free resolutions and Betti numbers 9
3 Some Cases of the Eisenbud-Green-Harris Conjecture 16
3.1 Known results about the conjecture 16
3.2 Some new cases of the conjecture 18
3.3 Almost complete intersections 22
4 Macaulay's Theorem for Some Projective Monomial Curves 35
4.1 Introduction 35
4.2 Lemmas for general projective monomial curves 38
4.3 A class of projective monomial curves 42
4.4 Two other classes of projective monomial curves 56
5 Minimal Free Resolutions of Linear Edge Ideals 66
5.1 Introduction 66
5.2 Perfect elimination orders 68
5.3 Construction of the resolution 72
5.4 The proof of $d^{2}=0$ 84
5.5 Betti numbers 100
Bibliography 104

LIST OF FIGURES

5.1 Patten Г . 67
5.2 Different perfect elimination orders 71
5.3 A resolution of pattern Г . 81

CHAPTER 1

INTRODUCTION

In the late nineteenth century, David Hilbert [Hi] introduced the notions of Hilbert functions and free resolutions. From then on, Hilbert functions and free resolutions became central concepts in the study of commutative rings and their modules.

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over a field k with $\operatorname{deg}\left(x_{i}\right)=1$ for $1 \leq i \leq n$. We say that a polynomial f in S is homogeneous if every term of f has the same degree. A homogeneous polynomial of degree d is also called a d-form. An ideal I in S is called a graded ideal if I can be generated by a set of homogeneous polynomials. With the graded structure, we can study the ideal I degree by degree. More precisely, for any integer $d \geq 0$ the set of all homogeneous polynomials of degree d in I forms a finite dimensional vector space over k, which is denoted by I_{d}.

For a graded ideal I in S, the Hilbert function of I is the sequence $\left\{\operatorname{dim}_{k} I_{d}\right\}_{d \geq 0,}$ which measures the degree-by-degree dimensions of I. For example, the Hilbert function of S is the sequence $\left\{\binom{n-1+d}{d}\right\}_{d \geq 0}$.

Which sequences of nonnegative integers can be the Hilbert functions of graded ideals in S ? This question is answered by the celebrated Macaulay's Theorem [Ma], which says that given any graded ideal I in S there exists a lex ideal L in S with the same Hilbert function. Lex ideals (see Definition 2.1.6) have nice structures and their Hilbert functions are easy to describe.

My research about Hilbert functions is to study the generalizations of Macaulay's Theorem in two different directions. In one direction, I study the

Hilbert functions of some special classes of graded ideals in the polynomial ring S; in the other direction, I study the Hilbert functions of graded ideals in graded quotient rings S / J where J is a graded ideal in S; see Chapter 3 and Chapter 4 for details.

Let I be a graded ideal in S minimally generated by homegeneous polynomials f_{1}, \ldots, f_{r}. The Hilbert function of I is closely related to the relations that f_{1}, \ldots, f_{r} have. That is, we are interested in homogeneous polynomials $g_{1}, \ldots, g_{r} \in S$ such that

$$
g_{1} f_{1}+\cdots+g_{r} f_{r}=0 .
$$

The solutions to the above equation are called syzygies. Similarly, we can look at the relations on the syzygies, the relations on the relations on the syzygies, etc. By Hilbert Syzygy Theorem (Theorem 2.2.2), this process stops in at most n steps, and eventually we will get an exact sequence in the following form:

$$
0 \rightarrow \underset{j}{\oplus} S(-j)^{\beta_{1, j}} \xrightarrow{d_{l}} \underset{j}{\oplus} S(-j)^{\beta_{l-1, j}} \xrightarrow{d_{l-1}} \cdots \xrightarrow{d_{2}} \underset{j}{\oplus} S(-j)^{\beta_{1, j}} \xrightarrow{d_{1}} \underset{j}{\oplus} S(-j)^{\beta_{0, j}} \xrightarrow{d_{0}} I \rightarrow 0,
$$

where $l \leq n, S(-j)$ is the ring S but with a shift in grading (i.e. $S(-j)_{d}=S_{-j+d}$, for example, in $S(-1), x_{1}$ has degree 2$)$, and the differential maps d_{0}, \ldots, d_{l} are graded of degree 0 and are given by matrices whose entries are homogeneous polynomials in S. This exact sequence is called a free resolution of the graded ideal I over the polynomial ring S. A free resolution is called minimal if the graded maps d_{0}, \ldots, d_{l} are given by matrices whose entries are homogeneous polynomials in the maximal ideal $\left(x_{1}, \ldots, x_{n}\right)$. In the minimal case, the numbers $\beta_{i, j}$ are called the graded Betti numbers of I.

There is a formula (Theorem 2.2.3) for calculating the Hilbert function of I in terms of the graded Betti numbers of I. So minimal free resolutions have more information than Hilbert functions and are often harder to be obtained.

My research on minimal free resolutions is mainly about monomial resolutions. Namely, I study the minimal free resolutions of monomial ideals: such ideals are generated by monomials. In Chapter 5 we will construct the minimal free resolutions of a class of monomial ideals.

CHAPTER 2

BACKGROUND

2.1 Hilbert functions and lex ideals

In Chapter 1, we have defined the Hilbert functions of graded ideals in the polynomial ring S. In general, we can define the Hilbert functions of finitely generated graded S-modules.

Definition 2.1.1. A finitely generated S-module M is graded if

$$
M=\underset{d \in \mathbb{Z}}{\oplus} M_{d} \quad \text { and } \quad S_{i} M_{d} \subseteq M_{i+d} \text { for all } i \text { and } d,
$$

where $M_{d}=\{m \in M \mid \operatorname{deg} m=d\}$ is the k-vector space of degree- d elements of M.

If I is a graded ideal in S, then I and S / I are finitely generated graded S modules. Also, if J is a graded ideal in S / I, then J is a finitely generated graded S-module. Actually, these are the only finitely generated graded S-modules we will study in this thesis, and we will always assume $M_{d}=0$ for $d<0$. Since S is a finitely generated k-algebra and M is a finitely generated S-module, each M_{d} is a finite dimensional vector space over k.

Definition 2.1.2. Let M be a finitely generated graded S-module. The Hilbert function of M is the sequence of non-negative integers $\left\{\operatorname{dim}_{k} M_{d}\right\}_{d \geq 0}$. The generating function of this sequence is called the Hilbert series of M, which is denoted by

$$
\operatorname{Hilb}_{M}(t):=\sum_{d \geq 0}\left(\operatorname{dim}_{k} M_{d}\right) t^{d}
$$

Example 2.1.3. Let $j \geq 0$, then the Hilbert series of $S(-j)$ is

$$
\begin{aligned}
\operatorname{Hilb}_{S(-j)}(t) & =\sum_{d \geq 0}\left(\operatorname{dim}_{k} S(-j)_{d}\right) t^{d} \\
& =\sum_{d \geq j}\left(\operatorname{dim}_{k} S_{d-j}\right) t^{d} \\
& =t^{j} \sum_{d \geq 0}\left(\operatorname{dim}_{k} S_{d}\right) t^{d} \\
& =t^{j} \sum_{d \geq 0}\binom{n-1+d}{d} t^{d} \\
& =\frac{t^{j}}{(1-t)^{n}} .
\end{aligned}
$$

The study of Hilbert functions is closely related to lex ideals because of the celebrated Macaulay's Theorem.

Definition 2.1.4. The lexicographic order on S is a total order $>_{l e x}$ on the monomials of S such that $u=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}>_{\text {lex }} v=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ if and only if $\operatorname{deg}(u)>\operatorname{deg}(v)$ or $\operatorname{deg}(u)=\operatorname{deg}(v)$ and $a_{i}>b_{i}$, where $i=\min \left\{j \mid a_{j} \neq b_{j}\right\}$.

Remark 2.1.5. Besides lexicographic order, there is another important monomial order, called the reverse lexicographic order $>_{\text {rlex }}$, which is defined on the monomials of S such that $u=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}>_{\text {rlex }} v=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ if and only if $\operatorname{deg}(u)>\operatorname{deg}(v)$ or $\operatorname{deg}(u)=\operatorname{deg}(v)$ and $a_{i}<b_{i}$, where $i=\max \left\{j \mid a_{j} \neq b_{j}\right\}$.

Definition 2.1.6. Let L be an ideal in S minimally generated by monomials m_{1}, \ldots, m_{t}. We say that L is a lex ideal if the following property is satisfied: if m is a monomial that is greater lexicographically than m_{i} and $\operatorname{deg}(m)=\operatorname{deg}\left(m_{i}\right)$ for some $1 \leq i \leq t$, then $m \in L$.

Example 2.1.7. $\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{3}\right)$ is a lex ideal in $k\left[x_{1}, x_{2}, x_{3}\right]$ with the Hilbert function $(0,0,3,7,12, \cdots)$.

Theorem 2.1.8. (Macaulay)[Ma] Let I be a graded ideal in S. Then there exists a lex ideal L in S with the same Hilbert function.

Let J be a graded ideal in S. Can we generalize Macaulay's Theorem to the graded quotient ring S / J ? To do this, we first need to generalize the definition of lex ideals in this quotient ring. This is possible when J is a monomial ideal.

Definition 2.1.9. Let M be a monomial ideal in the polynomial ring S. Let I be an ideal in S / M generated by some monomials. Then I is called a lex ideal in S / M if there is a lex ieals L in S such that

$$
I=\frac{L+M}{M} .
$$

By Theorem 2.1.8 we see that if M is a lex ideal in S, then for any graded ideal in S / M, there exists a lex ideal in S / M with the same Hilbert function. Therefore, we say that Macaulay's Theorem holds over S / M when M is a lex ideal. However, if M is not a lex ideal, Macaulay's Theorem may not hold over S/M.

Example 2.1.10. Let $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ and $M=\left(x_{1} x_{2}, x_{3} x_{4}\right)$. Let I be the ideal in S / M generated by $x_{2} x_{3}$. Then $\operatorname{dim}_{k} I_{2}=1$ and $\operatorname{dim}_{k} I_{3}=2$. Assume that there is a lex ideal L in S / M with the same Hilbert function as I, then x_{1}^{2} must be a generator of L, but then $\operatorname{dim}_{k} L_{3} \geq 3$. Hence, L can not have the same Hilbert function as I, which is a contradiction. So Macaulay's Theorem does not hold over S / M.

The first nontrivial generalization of Macaulay's Theorem is the following Clements-Lindström's Theorem.

Theorem 2.1.11. (Clements-Lindström) [CL] Let $R=k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{a_{1}}, \cdots, x_{n}^{a_{n}}\right)$ with $2 \leq a_{1} \leq \cdots \leq a_{n} \leq \infty$ (here we assume $x_{i}^{\infty}=0$). Then Macaulay's Theorem holds over R, that is, for any graded ideal in R there is a lex ideal in R with the same Hilbert function; or equivalently, for any graded ideal I in S containing $x_{1}^{a_{1}}, \cdots, x_{n}^{a_{n}}$, there is a lex ideal L in S such that $L+\left(x_{1}^{a_{1}}, \cdots, x_{n}^{a_{n}}\right)$ has the same Hilbert function as I.

Note that in the case $a_{1}=\cdots=a_{n}=2$, the result was obtained earlier by Katona [Ka] and Kruskal [Kr].

If J is not a monomial ideal then in general, we can not define lex ideals in S / J. However, if J is a toric ideal, there is a notion of lex ideals in the toric ring S / J introduced by Gasharov, Horwitz and Peeva [GHP].
Definition 2.1.12. Let $\mathcal{A}=\left\{\binom{a_{1}}{1}, \ldots,\binom{a_{n}}{1}\right\}$ be a subset of $\mathbb{N}^{2} \backslash\{\overrightarrow{0}\}$. We set $A=$ $\left(\begin{array}{ccc}a_{1} & \cdots & a_{n} \\ 1 & \cdots & 1\end{array}\right)$ to be the matrix associated to \mathcal{A}, and assume rank $A=2$. The toric ideal associated to \mathcal{A} is the kernel $I_{\mathcal{A}}$ of the homomorphism:

$$
\begin{aligned}
\varphi: \quad k\left[x_{1}, \ldots, x_{n}\right] & \longrightarrow k[u, v] \\
x_{i} & \longmapsto u^{a_{i}} v .
\end{aligned}
$$

The ideal $I_{\mathcal{A}}$ is graded and prime. Set $R=S / I_{\mathcal{A}} \cong k\left[u^{a_{1}} v, \ldots, u^{a_{n}} v\right]$. Then R is a graded ring with $\operatorname{deg}\left(x_{i}\right)=1$ for $1 \leq i \leq n$. We call $R=S / I_{\mathcal{A}}$ the toric ring associated to \mathcal{A}.

Theorem 2.1.13. The toric ideal $I_{\mathcal{A}}$ is generated by the set of binomials

$$
\left\{x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}-x_{1}^{q_{1}} \cdots x_{n}^{q_{n}} \mid\left(p_{1}-q_{1}, \ldots, p_{n}-q_{n}\right) \in \operatorname{Ker}(A)\right\} .
$$

Definition 2.1.14. An element m in the toric ring $R=S / I_{\mathcal{A}}$ is a monomial if there exists a monomial preimage $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ of m in S. For simplicity, by writing $m=$
$x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ in R, we mean $m=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}+I_{\mathcal{A}}$ in R. An ideal in R is a monomial ideal if it can be generated by monomials in R. Let $m \in R$ be a monomial, the set of all monomial preimages of m in S is called the fiber of m. The lex-greatest monomial in a fiber is called the top-representative of the fiber.

Let $m, m^{\prime} \in R_{d}$ be two monomials of degree d in R . Let p, p^{\prime} be the toprepresentatives of the fibers of m and m^{\prime} respectively. We say that $m>_{\text {lex }} m^{\prime}$ in R_{d} if $p>_{\text {lex }} p^{\prime}$ in S.

A d-monomial space W is a vector subspace of R_{d} spanned by some monomials of degree d. A d-monomial space W is lex if the following property holds: for monomials $m \in W$ and $q \in R_{d}$, if $q>_{\text {lex }} m$ then $q \in W$. A monomial ideal L in R is lex if for every $d \geq 0$, the d-monomial space L_{d} is lex.

Every projective monomial curve in \mathbb{P}^{n-1} can be defined by $I_{\mathcal{A}}$ for some \mathcal{A}. For example, the rational normal curves are defined by the toric ideals associated to matrices of the form

$$
A=\left(\begin{array}{cccc}
0 & 1 & \cdots & n-1 \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

We say that Macaulay's Theorem holds for a projective monomial curve defined by $I_{\mathcal{A}}$ if Macaulay's Theorem holds over the toric ring $R=S / I_{\mathcal{A}}$, that is, for any graded ideal J in R there exists a lex ideal L in R with the same Hilbert function. In Chapter 4 we will show that for some projective monomial curves Macaulay's Theorem holds and for some other projective monomial curves Macaulay's Theorem does not hold.

2.2 Free resolutions and Betti numbers

In Chapter 1, we have defined free resolutions of graded ideals in the polynomial ring S. In general, we can define free resolutions of finitely generated graded S-modules.

Definition 2.2.1. Let M be a finitely generated graded S-module. A graded free resolution of M over S is an exact complex

$$
\mathbf{F}: 0 \rightarrow \underset{j}{\oplus} S(-j)^{\beta_{l, j}} \xrightarrow{d_{l}} \underset{j}{\oplus} S(-j)^{\beta_{l-1, j}} \xrightarrow{d_{l-1}} \cdots \xrightarrow{d_{2}} \underset{j}{\oplus} S(-j)^{\beta_{1, j}} \xrightarrow{d_{1}} \underset{j}{\oplus} S(-j)^{\beta_{0, j}} \xrightarrow{d_{0}} M \rightarrow 0,
$$

where the differentials d_{i} are graded maps of degree 0 . The resolution \mathbf{F} is called minimal if for $i \geq 1$ the maps d_{i} are given by matrices whose entries are homogeneous polynomials in the maximal ideal $\left(x_{1}, \ldots, x_{n}\right)$ of $S . \mathbf{F}$ is called a linear free resolution if for $i \geq 1$ the maps d_{i} are given by matrices whose entries are elements in the k-vector space $\left(x_{1}, \ldots, x_{n}\right)_{1}$. In the minimal case, the numbers $\beta_{i, j}$ are called the graded Betti numbers of M, denoted by $\beta_{i, j}(M)$.

Note that in the above definition the direct sum over j is always finite because M is a finitely generated S-module. It is well-known that any two minimal free resolutions of M are isomorphic; also, if \mathbf{G} is a free resolution of M and \mathbf{F} is a minimal free resolution of M, then \mathbf{G} is isomorphic to the direct sum of \mathbf{F} with a trivial complex.

For any finitely generated graded S-module, there exists a free resolution. Furthermore, we have a bound for the length l of the free resolution.

Theorem 2.2.2. (Hilbert Syzygy Theorem) Every finitely generated graded S-module has a graded free resolution of length $\leq n$.

As mentioned in Chapter 1, the Hilbert funtion of M can be calculated from a graded free resolution of M.

Theorem 2.2.3. Let M be a finitely generated graded S-module with a graded free resolution \mathbf{F} as in Definition 2.2.1. Then the Hilbert series of M is given by a rational function:

$$
\operatorname{Hilb}_{M}(t)=\frac{p(t)}{(1-t)^{n}},
$$

where $p(t)=\sum_{i=0}^{l}(-1)^{i}\left(\sum_{j \geq 0} \beta_{i, j} t^{j}\right) \in \mathbb{Z}[t]$.

Proof. The formula follows from Example 2.1.3 and the fact that if $0 \rightarrow M_{1} \rightarrow$ $M_{2} \rightarrow M_{3} \rightarrow 0$ is a short exact sequence of finitely generated graded S-modules and the maps are graded of degree 0 , then

$$
\operatorname{Hilb}_{M_{2}}(t)=\operatorname{Hilb}_{M_{1}}(t)+\operatorname{Hilb}_{M_{3}}(t) .
$$

There are two important classes of minimal free resolutions. One is the Koszul complex of a regular sequence; another is the Eliahou-Kervaire resolution of a Borel ideal.

Construction 2.2.4. (Koszul Complex) Let I be a graded ideal in S minimally generated by homogeneous polynomials f_{1}, \ldots, f_{r} of positive degrees a_{1}, \ldots, a_{r}. Let $K_{0}=S$ and for $1 \leq p \leq r$,

$$
K_{p}=\underset{1 \leq i_{1}<\cdots<i_{p} \leq r}{\oplus} S\left(-a_{i_{1}}-\cdots-a_{i_{p}}\right) .
$$

Let $e_{i_{1} \ldots i_{p}}$ be the basis element of $S\left(-a_{i_{1}}-\cdots-a_{i_{p}}\right)$, then K_{p} is a free S-module of rand $\binom{r}{p}$ with basis $\left\{e_{i_{1} \ldots i_{p}} \mid 1 \leq i_{1}<\cdots<i_{p} \leq r\right\}$. Note that 1 is the basis element of
$K_{0}=S$. We define the differential map $d_{p}: K_{p} \rightarrow K_{p-1}$ by setting $d_{0}(1)=1 \in S / I$, $d_{1}\left(e_{i}\right)=f_{i} \in K_{0}$ for $1 \leq i \leq r$, and

$$
d_{p}\left(e_{i_{1} \ldots i_{p}}\right)=\sum_{j=1}^{p}(-1)^{j-1} f_{i_{j}} e_{i_{1} \ldots \hat{i}_{j} \ldots i_{p}} .
$$

One checks easily that $d^{2}=0$. So we get a complex

$$
0 \rightarrow K_{r} \xrightarrow{d_{r}} K_{r-1} \xrightarrow{d_{r-1}} \cdots \xrightarrow{d_{2}} K_{1} \xrightarrow{d_{1}} K_{0} \xrightarrow{d_{0}} S /\left(f_{1}, \ldots, f_{r}\right) \rightarrow 0 .
$$

This complex is called the Koszul Complex, and denoted by $\mathbf{K}\left(f_{1}, \ldots, f_{r}\right)$.

Koszul complexes are closely related to regular sequences.
Theorem 2.2.5. The Koszul complex $\mathbf{K}\left(f_{1}, \ldots, f_{r}\right)$ is exact if and only if f_{1}, \ldots, f_{r} is a regular sequence in S, that is, f_{i} is a non-zero-divisor of $S /\left(f_{1}, \ldots, f_{i-1}\right)$ for $1 \leq i \leq r$.

Note that if f_{1}, \ldots, f_{r} is a regular sequence of positive degrees in S, then for $1 \leq p \leq r$ the maps d_{p} are obviously given by matrices with entries in the maximal ideal $\left(x_{1}, \ldots, x_{n}\right)$ of S. So by the above theorem, $\mathbf{K}\left(f_{1}, \ldots, f_{r}\right)$ is the minimal free resolution of $S /\left(f_{1}, \ldots, f_{r}\right)$.

Example 2.2.6. Given positive integers $a_{1}, \ldots, a_{n}, x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}$ is a regular sequence of S, then by Theorem 2.2.5 $\mathbf{K}\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)$ is the minimal free resolution of $S /\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)$. By Theorem 2.2 .3 we see that

$$
\operatorname{Hilb}_{S /\left(x_{1}^{\left.a_{1}, \ldots, x_{n}^{a_{n}}\right)}\right.}(t)=\frac{1-t^{a_{1}}-\cdots-t^{a_{n}}+\cdots+(-1)^{n} t^{a_{1}+\cdots+a_{n}}}{(1-t)^{n}}=\frac{\prod_{i=1}^{n}\left(1-t^{a_{i}}\right)}{(1-t)^{n}} .
$$

Similarly, if f_{1}, \ldots, f_{n} is a regular sequence of homogeneous polynomials in S with degrees a_{1}, \ldots, a_{n}, then

$$
\operatorname{Hilb}_{S /\left(f_{1}, \ldots, f_{n}\right)}(t)=\frac{\prod_{i=1}^{n}\left(1-t^{a_{i}}\right)}{(1-t)^{n}}=\operatorname{Hilb}_{S /\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)}(t) .
$$

This equality is the starting point of the Eisenbud-Green-Harris Conjecture in Chapter 3.

Next, we will construct the minimal free resolutions of Borel ideals.

Definition 2.2.7. A monomial ideal M in S is a Borel ideal if the following condition is satisfied: if $i<j$ and $x_{j} m \in M$ for some monomial m, then $x_{i} m \in M$.

For any monomial $m \in S$, we define $\max (m)=\max \left\{i \mid x_{i}\right.$ divides $\left.m\right\}$ and $\min (m)=\min \left\{i \mid x_{i}\right.$ divides $\left.m\right\}$

Lemma 2.2.8. Let M be a Borel ideal in S. If m is a monomial in M, then there exists a minimal monomial generator u of M such that u divides m and $\max (u) \leq \min (m / u)$. We call u the beginning of m, denoted by $b(m)$.

Construction 2.2.9. (Eliahou-Kervaire)[EK] Let M be a Borel ideal in S minimallly generated by monomials m_{1}, \ldots, m_{r}. We construct the Eliahou-Kervaire resolution \mathbf{E}_{M} as follows.

For each sequence $1 \leq j_{1}<\cdots<j_{p}<\max \left(m_{i}\right)$, let the symbol $\left(m_{i} ; j_{1}, \ldots, j_{p}\right)$ denote the generator of the free S-module $S\left(-m_{i} x_{j_{1}} \cdots x_{j_{p}}\right)$ in homological degree $p+1$ and multidegree $m_{i} x_{j_{1}} \cdots x_{j_{p}}$. Here in $S\left(-m_{i} x_{j_{1}} \cdots x_{j_{p}}\right)$, the element 1 has multidegree $m_{i} x_{j_{1}} \cdots x_{j_{p}}$.

The Eliahou-Kervaire resolution \mathbf{E}_{M} has basis

$$
\mathcal{B}=\{1\} \cup\left\{\left(m_{i} ; j_{1}, \ldots, j_{p}\right) \mid 1 \leq j_{1}<\cdots<j_{p}<\max \left(m_{i}\right), 1 \leq i \leq r\right\},
$$

where 1 is the basis in homological degree 0 , and in homological degree 1 , the basis elements are $\left(m_{1} ; \emptyset\right), \ldots,\left(m_{r} ; \emptyset\right)$.

We define the map d on the set \mathcal{B} by setting $d(1)=1, d\left(m_{i} ; \emptyset\right)=m_{i}$ for $1 \leq i \leq r$,
and for $p \geq 1$,

$$
\begin{aligned}
d\left(m_{i} ; j_{1}, \ldots, j_{p}\right) & =\sum_{q=1}^{p}(-1)^{q+1} x_{j_{q}}\left(m_{i} ; j_{1}, \ldots, \hat{j}_{q}, \ldots, j_{p}\right) \\
& -\sum_{q=1}^{p}(-1)^{q+1} \frac{m_{i} x_{j_{q}}}{b\left(m_{i} x_{j_{q}}\right)}\left(b\left(m_{i} x_{j_{q}}\right) ; j_{1}, \ldots, \hat{j}_{q}, \ldots, j_{p}\right),
\end{aligned}
$$

where the symbols not in \mathcal{B} are regarded as zeros.

Theorem 2.2.10. Let M be a Borel ideal in S, then the Eliahou-Kervaire resolution \mathbf{E}_{M} is the minimal free resolution of M.

Note that lex ideals are Borel ideals. So Construction 2.2.9 also gives the minimal free resolutions of lex ideals, and then it is easy to get the graded Betti numbers of lex ideals.

Example 2.2.11. Let $L=\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{3}\right)$ be the lex ideal in $k\left[x_{1}, x_{2}, x_{3}\right]$ as in Example 2.1.7. By Construction 2.2.9, the minimal free resolution \mathbf{E}_{L} of S / L has basis

$$
1 ;\left(x_{1}^{2} ; \emptyset\right),\left(x_{1} x_{2} ; \emptyset\right),\left(x_{1} x_{3} ; \emptyset\right),\left(x_{2}^{3} ; \emptyset\right) ;\left(x_{1} x_{2} ; 1\right),\left(x_{1} x_{3} ; 1\right),\left(x_{1} x_{3} ; 2\right),\left(x_{2}^{3} ; 1\right) ;\left(x_{1} x_{3} ; 1,2\right) .
$$

And we have the map d such that

$$
\begin{aligned}
& d\left(x_{1} x_{2} ; 1\right)=x_{1}\left(x_{1} x_{2} ; \emptyset\right)-x_{2}\left(x_{1}^{2} ; \emptyset\right), \quad d\left(x_{1} x_{3} ; 1\right)=x_{1}\left(x_{1} x_{3} ; \emptyset\right)-x_{3}\left(x_{1}^{2} ; \emptyset\right), \\
& d\left(x_{1} x_{3} ; 2\right)=x_{2}\left(x_{1} x_{3} ; \emptyset\right)-x_{3}\left(x_{1} x_{2} ; \emptyset\right), \quad d\left(x_{2}^{3} ; 1\right)=x_{1}\left(x_{2}^{3} ; \emptyset\right)-x_{2}^{2}\left(x_{1} x_{2} ; \emptyset\right), \\
& d\left(x_{1} x_{3} ; 1,2\right)=x_{1}\left(x_{1} x_{3} ; 2\right)-x_{2}\left(x_{1} x_{3} ; 1\right)+x_{3}\left(x_{1} x_{2} ; 1\right) .
\end{aligned}
$$

Therefore, the minimal free resolution of S / L is

$$
\begin{aligned}
0 & \rightarrow S\left(-x_{1}^{2} x_{2} x_{3}\right) \xrightarrow{d_{3}} S\left(-x_{1}^{2} x_{2}\right) \oplus S\left(-x_{1}^{2} x_{3}\right) \oplus S\left(-x_{1} x_{2} x_{3}\right) \oplus S\left(-x_{1} x_{2}^{3}\right) \\
& \xrightarrow{d_{2}} S\left(-x_{1}^{2}\right) \oplus S\left(-x_{1} x_{2}\right) \oplus S\left(-x_{1} x_{3}\right) \oplus S\left(-x_{2}^{3}\right) \xrightarrow{d_{1}} S \rightarrow S / L \rightarrow 0,
\end{aligned}
$$

where

$$
d_{3}=\left(\begin{array}{c}
x_{3} \\
-x_{2} \\
x_{1} \\
0
\end{array}\right), d_{2}=\left(\begin{array}{cccc}
-x_{2} & -x_{3} & 0 & 0 \\
x_{1} & 0 & -x_{3} & -x_{2}^{2} \\
0 & x_{1} & x_{2} & 0 \\
0 & 0 & 0 & x_{1}
\end{array}\right), d_{1}=\left(\begin{array}{llll}
x_{1}^{2} & x_{1} x_{2} & x_{1} x_{3} & x_{2}^{3}
\end{array}\right) .
$$

So, $\beta_{1,2}(S / L)=3, \beta_{1,3}(S / L)=1 ; \beta_{2,3}(S / L)=3, \beta_{2,4}(S / L)=1 ; \beta_{3,4}(S / L)=1$.

Macaulay's Theorem is a special case of the following theorem.

Theorem 2.2.12. (Bigatti-Hulett-Pardue) Let I be a graded ideal in S. Let L be the lex ideal in S with the same Hilbert function as I. Then for all i, j,

$$
\beta_{i, j}(S / I) \leq \beta_{i, j}(S / L),
$$

that is, every lex ideal has maximal graded Betti numbers among all graded ideals with the same Hilbert function.

The following mapping cone construction is helpful when constructing new resolutions from old ones.

Construction 2.2.13. (Mapping Cone) Let $0 \rightarrow M_{1} \xrightarrow{\phi} M_{2} \xrightarrow{\psi} M_{3} \rightarrow 0$ be a short exact sequence of finitely generated graded S-modules. Let

$$
\mathbf{F}: 0 \rightarrow F_{n} \xrightarrow{d_{n}^{F}} \cdots \xrightarrow{d_{2}^{F}} F_{1} \xrightarrow{d_{1}^{F}} F_{0} \xrightarrow{d_{0}^{F}} M_{1} \rightarrow 0
$$

be a graded free resolution of M_{1}. Let

$$
\mathbf{G}: 0 \rightarrow G_{n} \xrightarrow{d_{n}^{G}} \cdots \xrightarrow{d_{2}^{G}} G_{1} \xrightarrow{d_{1}^{G}} G_{0} \xrightarrow{d_{0}^{G}} M_{2} \rightarrow 0
$$

be a graded free resolution of M_{2}. Let $\Phi: \mathbf{F} \rightarrow \mathbf{G}$ be be a morphism of complexes of degree zero which is over the map $\phi: M_{1} \rightarrow M_{2}$.

Let $C_{0}=G_{0}$ and $C_{i}=F_{i-1} \oplus G_{i}$ for $1 \leq i \leq n+1$. Let $d_{0}^{C}=\psi d_{0}^{G}$ and for $1 \leq i \leq n+1$,

$$
d_{i}^{C}=\left(\begin{array}{cc}
-d_{i-1}^{F} & 0 \\
\Phi_{i-1} & d_{i}^{G}
\end{array}\right)
$$

It is easy to check that $d_{i-1}^{C} d_{i}^{C}=0$. We call the new complex

$$
M C(\Phi): 0 \rightarrow C_{n+1} \xrightarrow{d_{n+1}^{c}} \cdots \xrightarrow{d_{2}^{c}} C_{1} \xrightarrow{d_{1}^{c}} C_{0} \xrightarrow{d_{0}^{c}} M_{3} \rightarrow 0
$$

the mapping cone of Φ.

Theorem 2.2.14. In the above construction, the mapping cone $M C(\Phi)$ is a graded free resolution of M_{3}.

Note that in Construction 2.2.13, even if both \mathbf{F} and \mathbf{G} are minimal free resolutions, $M C(\Phi)$ may not be minimal. In chapter 5 , We will use the mapping cone construction to get the minimal free resolutions of a class of monomial ideals in the polynomial ring S.

CHAPTER 3

SOME CASES OF THE EISENBUD-GREEN-HARRIS CONJECTURE

3.1 Known results about the conjecture

Given any homogeneous ideal I in S, Macaulay (Theorem 2.1.8) proved that there exists a lex ideal L with the same Hilbert function. As a generalization of Macaulay's Theorem, Clements and Lindström (Theorem 2.1.11) proved that if $I \subset S$ is a homogeneous ideal containing $x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{r}^{a_{r}}$ for some integers $2 \leq$ $a_{1} \leq a_{2} \leq \cdots \leq a_{r}$ and $1 \leq r \leq n$, then there exists a lex ideal $L \subset S$ such that $L+\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{r}^{a_{r}}\right)$ has the same Hilbert function as I. Here, $L+\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{r}^{a_{r}}\right)$ is called a lex-plus-powers ideal in S. Motivated by Example 2.2.6, we have the following conjecture.

Conjecture 3.1.1. (Eisenbud-Green-Harris)[EGH]If $I \subset S$ is a homogeneous ideal containing a regular sequence of forms $f_{1}, f_{2}, \ldots, f_{r}$ of degrees $a_{1}, a_{2}, \ldots, a_{r}$ where $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{r}$ and $1 \leq r \leq n$, then there exists a homogeneous ideal in S containing $x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{r}^{a_{r}}$ with the same Hilbert function.

The above conjecture is called the EGH Conjecture. By the ClementsLindström Theorem, the EGH Conjecture can be stated in the following equivalent form: If $I \subset S$ is a homogeneous ideal containing a regular sequence of forms $f_{1}, f_{2}, \ldots, f_{r}$ of degrees $a_{1}, a_{2}, \ldots, a_{r}$, then there exists a lex-plus-powers ideal $L+\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{r}^{a_{r}}\right)$ in S with the same Hilbert function.

The following are some known cases of the EGH Conjecture.

Theorem 3.1.2. (Mermin)[Me] If $I \subset S$ is a homogeneous ideal containing a regular
sequence of monomials $m_{1}, m_{2}, \ldots, m_{r}$ of degrees $a_{1}, a_{2}, \ldots, a_{r}$, then there exists a lex-plus-powers ideal $L+\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{r}^{a_{r}}\right)$ in S with the same Hilbert function.

Note that the above theorem is trivial if $r=n$.
Theorem 3.1.3. (Cooper)[Co1] Let k be an algebraically closed field of characteristic zero. The EGH Conjecture holds if $I \subset S=k\left[x_{1}, x_{2}, x_{3}\right]$ has minimal generators which are all in the same degree and two of the minimal generators form a regular sequence in $k\left[x_{1}, x_{2}\right]$.

Cooper [Co2] also studied the conjecture for some cases with $r=n=3$ in a geometric setting.

In [CM, Propositions 9 and 10], Caviglia and Maclagan proved that if the EGH conjecture holds for all regular sequences of length n, then it holds for all regular sequences of length $r \leq n$. So the rest of the paper will always assume $r=n$.

Definition 3.1.4. (Caviglia-Maclagan)[CM] Fix integers $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and let d be a non-negative integer. We say that $E G H(d)$ holds if for any homogeneous ideal $I \subset S$ containing a regular sequence of forms of degrees $a_{1}, a_{2}, \ldots, a_{n}$, there exists an homogeneous ideal $J \subset S$ containing $x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{n}^{a_{n}}$ such that $\operatorname{dim}_{k} I_{d}=\operatorname{dim}_{k} J_{d}$ and $\operatorname{dim}_{k} I_{d+1}=\operatorname{dim}_{k} J_{d+1}$.

Note that given any non-negative integer d, there is a lex-plus-powers ideal $J=L+\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{n}^{a_{n}}\right)$ such that $\operatorname{dim}_{k} I_{d}=\operatorname{dim}_{k} J_{d}$. And the ClementsLindström Theorem implies that $\mathrm{EGH}(d)$ holds if and only if $\operatorname{dim}_{k} I_{d+1} \geq$ $\operatorname{dim}_{k}\left\{S_{1} J_{d} \bigoplus\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{n}^{a_{n}}\right)_{d+1}\right\}$. It follows that the EGH Conjecture holds if and only if $\operatorname{EGH}(d)$ holds for all non-negative integers d. In addition, we only need to check if $\operatorname{EGH}(d)$ holds for $d<\sum_{i=1}^{n}\left(a_{i}-1\right)$ because $I_{d}=S_{d}$ for $d>\sum_{i=1}^{n}\left(a_{i}-1\right)$.

Lemma 3.1.5. (Caviglia-Maclagan)[CM] Fix integers $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and set $N=\sum_{i=1}^{n}\left(a_{i}-1\right)$. Then for any $0 \leq d \leq N-1, E G H(d)$ holds if and only if $E G H(N-1-d)$ holds.

Theorem 3.1.6. (Caviglia-Maclagan)[CM] Fix integers $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$. If $a_{i}>\sum_{j=1}^{i-1}\left(a_{j}-1\right)$ for all $2 \leq i \leq n$ then the EGH Conjecture holds.

An immediate consequence of the above theorem is that the EGH Conjecture holds for $n=2$. Indeed, if $2 \leq a_{1} \leq a_{2}$ then $a_{2}>a_{1}-1$. The $n=2$ case was also obtained by Richert [Ri].

Francisco [Fra] proved the following almost complete intersection case.
Theorem 3.1.7. (Francisco)[Fra] Fix integers $2 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and let d be an integer such that $d \geq a_{1}$. Let $I \subset S$ be a homogeneous ideal minimally generated by forms f_{1}, \ldots, f_{n}, g where f_{1}, \ldots, f_{n} is a regular sequence, $\operatorname{deg} f_{i}=a_{i}$ and $\operatorname{deg} g=d$. Let $J=\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{n}^{a_{n}}, m\right)$, where m is the greatest monomial in lex order in degree d not in $\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{n}^{a_{n}}\right)$. Then $\operatorname{dim}_{k} I_{d+1} \geq \operatorname{dim}_{k} J_{d+1}$.

In section 3.2 and section 3.3, we will focus on the case $a_{1}=a_{2}=\cdots=a_{n}=2$. The EGH Conjecture was originally stated in this case [EGH]. Richert [Ri] says that he verified the EGH Conjecture for $a_{1}=a_{2}=\cdots=a_{n}=2$ and $n \leq 5$, but this result was not published. Herzog and Popescu [HP] proved that if k is a field of characteristic zero and I is minimally generated by generic quadratic forms, then the EGH Conjecture holds.

3.2 Some new cases of the conjecture

The following proposition implies that EGH(1) holds if $a_{1}=\cdots=a_{n}=2$.

Proposition 3.2.1. Let $I=\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{m}\right)$ be an ideal in S, where f_{1}, \ldots, f_{n} is a regular sequence of 2-forms and g_{1}, \ldots, g_{m} are linearly independent 1-forms over k with $1 \leq m \leq n$. Set $J=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}, x_{1}, \ldots, x_{m}\right) \subset S$. Then

$$
\operatorname{dim}_{k} I_{2} \geq \operatorname{dim}_{k} J_{2} .
$$

Proof. Since $J_{2}=\left(x_{1}, \ldots, x_{m}\right)_{2} \bigoplus \operatorname{span}\left\{x_{m+1}^{2}, \ldots, x_{n}^{2}\right\}$, it follows that

$$
\operatorname{dim}_{k} J_{2}=\operatorname{dim}_{k}\left(x_{1}, \ldots, x_{m}\right)_{2}+(n-m) .
$$

Without the loss of generality we can assume that $g_{1}=x_{1}, \ldots, g_{m}=x_{m}$ and then $I=\left(x_{1}, \ldots, x_{m}, f_{1}, \ldots, f_{n}\right)$. Hence,

$$
\operatorname{dim}_{k} I_{2}=\operatorname{dim}_{k}\left(x_{1}, \ldots, x_{m}\right)_{2}+\operatorname{dim}_{k}\left(I /\left(x_{1}, \ldots, x_{m}\right)\right)_{2}
$$

Set $t=\operatorname{dim}_{k}\left(I /\left(x_{1}, \ldots, x_{m}\right)\right)_{2}$. Then there exists $1 \leq i_{1}<\cdots<i_{t} \leq n$ such that $\bar{f}_{i_{1}}, \ldots, \bar{f}_{i_{t}}$ form a basis of the k-vector space $\left(I /\left(x_{1}, \ldots, x_{m}\right)\right)_{2}$. Thus we have $I=\left(x_{1}, \ldots, x_{m}, f_{i_{1}}, \ldots, f_{i_{t}}\right)$ which implies that $\operatorname{ht}(I) \leq m+t$. Since f_{1}, \ldots, f_{n} is a regular sequence it follows that $\operatorname{ht}\left(f_{1}, \ldots, f_{n}\right)=n$. But $\left(f_{1}, \ldots, f_{n}\right) \subset I \subset\left(x_{1}, \ldots, x_{n}\right)$ and $\operatorname{ht}\left(x_{1}, \ldots, x_{n}\right)=n$, thus $h t(I)=n$ which implies $n \leq m+t$ and then $t \geq n-m$. So $\operatorname{dim}_{k} I_{2} \geq \operatorname{dim}_{k} J_{2}$ and the theorem is proved.

Theorem 3.2.2. If $a_{1}=a_{2}=\cdots=a_{n}=2$ and $2 \leq n \leq 4$ then the EGH Conjecture holds.

Proof. Let $N=\sum_{i=1}^{n}\left(a_{i}-1\right)$. Note that $\operatorname{EGH}(0)$ always holds trivially and $\mathrm{EGH}(1)$ holds by Proposition 3.2.1, so we only need to show that $\mathrm{EGH}(2), \ldots, \mathrm{EGH}(N-1)$ hold.

If $n=2$ then $N-1=1$ and there is nothing to prove, so that the EGH Conjecture is true.

If $n=3$ then $N-1=2$. By Lemma 3.1.5, $\mathrm{EGH}(2)$ holds if and only if $\mathrm{EGH}(0)$ holds. So EGH(2) holds and the EGH Conjecture is true.

If $n=4$ then $N-1=3$. By Lemma 3.1.5, $\mathrm{EGH}(3)$ holds if and only if $\mathrm{EGH}(0)$ holds; EGH(2) holds if and only if EGH(1)holds. Therefore, EGH(2) and EGH(3) hold, and the EGH Conjecture is true.

Note that if we want to show the cases $n=5$ and $n=6$ then $\operatorname{EGH}(2)$ needs to be proved directly which is not as simple as Proposition 3.2.1. Richert [Ri] claimed that he had a proof for $n \leq 5$ but not for $n=6$ because his proof is different from mine.

The EGH Conjecture also holds in the following two simple cases where regular sequences have nice structures.

Proposition 3.2.3. Let f_{1}, \ldots, f_{n} be a regular sequence of 2-forms in S. Then the $E G H$ Conjecture holds in the following two cases:
(1) $f_{1}=l_{1}^{2}, \ldots, f_{n}=l_{n}^{2}$, where $l_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$ for $1 \leq i \leq n, a_{i j} \in k$ and $\operatorname{det}\left(a_{i j}\right) \neq 0$.
(2) For $1 \leq i \leq n, f_{i}=\sum_{m \in S_{2}} a_{i, m} m$, where the sum is over all monomials m in S_{2}, $a_{i, m} \in k$ and $a_{i, m}=0$ for $m<_{\text {lex }} x_{i}^{2}$. Here we assume $x_{1}>x_{2}>\cdots>x_{n}$ and use the lex order.

Proof. (1) Note that the k-algebra map $F: S \longrightarrow S$ defined by $F\left(x_{i}\right)=l_{i}$ for $1 \leq i \leq n$ is an graded isomorphism. So the Hilbert function is preserved under F^{-1}. It follows that the EGH Conjecture holds.
(2) First we claim that $a_{i, x_{i}^{2}} \neq 0$ for all $1 \leq i \leq n$. Indeed, if not, then let j be the smallest integer such that $a_{j, x_{j}^{2}}=0$. If $j=1$ then $f_{1}=0$ which is a contradiction.

Hence $j>1$. Since $a_{i, m}=0$ for $m<_{\text {lex }} x_{i}^{2}$, it follows that $\left(f_{1}, \ldots, f_{j}\right) \subseteq\left(x_{1}, \ldots, x_{j-1}\right)$, so that

$$
\left(f_{1}, \ldots, f_{n}\right) \subseteq\left(x_{1}, \ldots, x_{j-1}, f_{j+1}, \ldots, f_{n}\right)
$$

Since f_{1}, \ldots, f_{n} is a regular sequence, we have that $\operatorname{ht}\left(f_{1}, \ldots, f_{n}\right)=n$ which implies $\operatorname{ht}\left(x_{1}, \ldots, x_{j-1}, f_{j+1}, \ldots, f_{n}\right)=n$, but $\left(x_{1}, \ldots, x_{j-1}, f_{j+1}, \ldots, f_{n}\right)$ is generated by $n-1$ elements and its height can not be n. So we get a contradiction and the claim is proved.

Now we consider the initial ideal $\operatorname{in}_{<_{\text {rlex }}}\left(f_{1}, \ldots, f_{n}\right)$ with respect to the reverse lex order such that $x_{n}>\cdots>x_{1}$. With this monomial order, by the above claim it is easy to see that $\operatorname{in}_{<_{\text {rlex }}} f_{i}=x_{i}^{2}$. Thus, $\operatorname{in}_{<_{\text {rlex }}}\left(f_{1}, \ldots, f_{n}\right)=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$. Given any homogeneous ideal I containing f_{1}, \ldots, f_{n}, since $\mathrm{in}_{<_{\text {rlex }}}(I)$ contains $\operatorname{in}_{<_{\text {rlex }}}\left(f_{1}, \ldots, f_{n}\right)=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ and $\operatorname{in}_{<_{\text {rlex }}}(I)$ has the same Hilbert function as I, it follows that I has the same Hilbert function as a monomial ideal containing $x_{1}^{2}, \ldots, x_{n}^{2}$. So the EGH Conjecture holds.

Remark 3.2.4. The above proposition is actually an easy consequence of the fact that the Hilbert function is preserved under $G L(n, k)$ actions on the variables or by taking initial ideas. In part (2) of the above proposition, if we replace "lex" by "reverse lex", or replace " $m<_{l e x} x_{i}^{2 "}$ by " $m>_{\text {lex }} x_{i}^{2 "}$, then the result still holds.

In general, f_{1}, \ldots, f_{n} do not satisfy the assumptions in the above proposition.

By part (2) of the above proposition, the EGH Conjecture in the case of $a_{1}=\cdots=a_{n}=2$ can be stated in the following equivalent form: If $I \subset S$ is a homogeneous ideal containing a regular sequence of $n 2$-forms, then there exists a homogeneous ideal in S containing f_{1}, \ldots, f_{n} with the same Hilbert function,
where f_{1}, \ldots, f_{n} are some 2-forms satisfying part (2) of the above proposition.

3.3 Almost complete intersections

This section proves Theorem 3.1.7 for the case $a_{1}=\cdots=a_{n}=2$. The key ingredient of any proof of the EGH Conjecture should be about the use of the assumption that $f_{1}, f_{2}, \ldots, f_{n}$ is a regular sequence in S. In [Fra], Francisco made use of the fact that if $f_{1}, f_{2}, \ldots, f_{n}$ is a regular sequence in S then the minimal free resolution of $S /\left(f_{1}, \ldots, f_{n}\right)$ over S is given by the Koszul complex. In this section we will use the regular sequence assumption in different ways. Before proving Theorem 3.3.4, we look at some lemmas about regular sequences. The following lemma is a special case of Proposition 7 in [CM], which was originally proved in [DGO].

Lemma 3.3.1. (Davis-Geramita-Orecchia)[DGO] Let f_{1}, \ldots, f_{n} be a regular sequence of 2 -forms in S. Let I be a homogeneous ideal containing f_{1}, \ldots, f_{n}. Then for all $0 \leq$ $d \leq n$, we have

$$
\operatorname{dim}_{k}\left(S /\left(f_{1}, \ldots, f_{n}\right)\right)_{d}=\operatorname{dim}_{k}(S / I)_{d}+\operatorname{dim}_{k}\left(S /\left(\left(f_{1}, \ldots, f_{n}\right): I\right)\right)_{n-d},
$$

or equivalently,

$$
\operatorname{dim}_{k}\left(I /\left(f_{1}, \ldots, f_{n}\right)\right)_{d}=\operatorname{dim}_{k}\left(S /\left(\left(f_{1}, \ldots, f_{n}\right): I\right)\right)_{n-d}
$$

Lemma 3.3.2. Let I be an ideal in S minimally generated by some 2-forms. If the height of I is $r \geq 1$, that is, $h t(I)=r$, then I contains a regular sequence f_{1}, \ldots, f_{r} of 2-forms.

Proof. Let s be the maximal integer such that I contains a regular sequence f_{1}, \ldots, f_{s} of 2-forms. Then it is easy to see that $s \geq 1$ and we have

$$
s=\operatorname{ht}\left(f_{1}, \ldots, f_{s}\right) \leq \operatorname{ht}(I)=r .
$$

Hence, it suffices to show that $s=r$.

To prove by contradiction, we assume $s<r$. Let f_{1}, \ldots, f_{s} be a regular sequence of 2-forms contained in I, then $\operatorname{ht}\left(f_{1}, \ldots, f_{s}\right)=s<r$. Let P_{1}, \ldots, P_{l} be the prime divisors of the ideal $\left(f_{1}, \ldots, f_{s}\right)$. Since S is Cohen-Macaulay, we have $\operatorname{ht}\left(P_{i}\right)=s$ for $1 \leq i \leq l$. If $I \subseteq P_{1} \cup \cdots \cup P_{l}$, then there exists i such that $I \subseteq P_{i}$, which implies $\operatorname{ht}(I) \leq \operatorname{ht}\left(P_{i}\right)=s<r ;$ but $\operatorname{ht}(I)=r$, thus I is not contained in $P_{1} \cup \cdots \cup P_{l}$. Since I is generated by 2 -forms, it follows that there exists a 2 -form f_{s+1} in I such that $f_{s+1} \notin P_{1} \cup \cdots \cup P_{l}$. Thus, f_{s+1} is a non-zero-divisor of $S /\left(f_{1}, \ldots, f_{s}\right)$. Therefore, I contains a regular sequence $f_{1}, \ldots, f_{s}, f_{s+1}$ of 2 -forms, which contradicts the definition of s. So $s=r$ and the lemma is proved.

Lemma 3.3.3. If f_{1}, \ldots, f_{n} is a regular sequence of 2 -forms in S and $g_{1} f_{1}+g_{2} f_{2}+$ $\cdots+g_{n} f_{n}=0$ for some q-forms $g_{1}, g_{2}, \ldots, g_{n}$, then $g_{1}, g_{2}, \ldots, g_{n} \in\left(f_{1}, \ldots, f_{n}\right)_{q}$. More precisely, we have $q \geq 2$ and there exists a skew-symmetric $n \times n$ matrix A of $(q-2)$-forms such that

$$
\left(\begin{array}{llll}
g_{1} & g_{2} & \ldots & g_{n}
\end{array}\right)=\left(\begin{array}{llll}
f_{1} & f_{2} & \ldots & f_{n}
\end{array}\right) A
$$

Proof. Let $K\left(f_{1}, \ldots, f_{n}\right)$ be the Koszul complex with e_{1}, \ldots, e_{n} the basis in homological degree 1 . Since f_{1}, \ldots, f_{n} is a regular sequence, we have $H_{1}\left(K\left(f_{1}, \ldots, f_{n}\right)\right)=$ 0 . Thus, if $g_{1} f_{1}+\cdots+g_{n} f_{n}=0$ then there exists $(q-2)$-forms $h_{i j}$ for $1 \leq i<j \leq n$ such that

$$
g_{1} e_{1}+\cdots+g_{n} e_{n}=\sum_{1 \leq i<j \leq n} h_{i j}\left(f_{j} e_{i}-f_{i} e_{j}\right)
$$

Comparing the coefficients of e_{1}, \ldots, e_{n}, we get

$$
\left(\begin{array}{llll}
g_{1} & g_{2} & \ldots & g_{n}
\end{array}\right)=\left(\begin{array}{llll}
f_{1} & f_{2} & \ldots & f_{n}
\end{array}\right) A
$$

where A is a skew-symmetric matrix with the $(i, j)^{\text {th }}$ entry given by $-h_{i j}$ for $i<j$.

Theorem 3.3.4. Let $I \subset S$ be a homogeneous ideal minimally generated by a regular sequence of 2 -forms f_{1}, \ldots, f_{n} and a d-form g with $d \geq 2$. Let $J=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}, m\right)$, where m is the greatest monomial in lex order in degree d not in $\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)$. Then $\operatorname{dim}_{k} I_{d+1} \geq \operatorname{dim}_{k} J_{d+1}$.

We will prove this theorem by two different methods. The first method uses Lemma 3.3.1 and Lemma 3.3.2.

Proof. Note that $\left(f_{1}, \ldots, f_{n}\right)_{n+1}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{n+1}=S_{n+1}$, hence $d \leq n$. Since the $d=n$ case is also trivial, we will assume that $2 \leq d \leq n-1$. It is easy to see that $m=x_{1} \cdots x_{d}$ and then $\operatorname{dim}_{k} J_{d+1}=\operatorname{dim}_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{d+1}+n-d$. On the other hand,

$$
\operatorname{dim}_{k} I_{d+1}=\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}\right)_{d+1}+n-\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{d+1} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) .
$$

Let $r=\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{d+1} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) \leq n$. Since $\operatorname{dim}_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{d+1}=$ $\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}\right)_{d+1}$ we need only to show $r \leq d$.

To prove by contradiction, we assume that $r>d$. Then without the loss of generality, we can assume that $x_{1} g, \ldots, x_{r} g \in\left(f_{1}, \ldots, f_{n}\right)_{d+1}$. Then we have $x_{1}, \ldots, x_{r} \in\left(\left(f_{1}, \ldots, f_{n}\right): I\right)$. Note that

$$
\frac{S}{\left(x_{1}, \ldots, x_{r}, f_{1}, \ldots, f_{n}\right)} \cong \frac{k\left[x_{r+1}, \ldots, x_{n}\right]}{\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)},
$$

where $\bar{f}_{1}, \ldots, \bar{f}_{n}$ are the images of f_{1}, \ldots, f_{n} in the quotient ring $S /\left(x_{1}, \ldots, x_{r}\right)$ $\cong k\left[x_{r+1}, \ldots, x_{n}\right]$. Since $k\left[x_{r+1}, \ldots, x_{n}\right] /\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)$ has dimension zero, we have $\operatorname{ht}\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)=n-r$. Hence, by Lemma 3.3.2, $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)$ contains a regular sequence g_{1}, \ldots, g_{n-r} of 2 -forms in the polynomial ring $k\left[x_{r+1}, \ldots, x_{n}\right]$. Thus, for all $i \geq 0$,

$$
\operatorname{dim}_{k}\left(k\left[x_{r+1}, \ldots, x_{n}\right] /\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)\right)_{i} \leq\binom{ n-r}{i} .
$$

Therefore, by Lemma 3.3.1, we have

$$
\begin{aligned}
1 & =\operatorname{dim}_{k}\left(I /\left(f_{1}, \ldots, f_{n}\right)\right)_{d} \\
& =\operatorname{dim}_{k}\left(S /\left(\left(f_{1}, \ldots, f_{n}\right): I\right)\right)_{n-d} \\
& \leq \operatorname{dim}_{k}\left(S /\left(x_{1}, \ldots, x_{r}, f_{1}, \ldots, f_{n}\right)\right)_{n-d} \\
& =\operatorname{dim}_{k}\left(k\left[x_{r+1}, \ldots, x_{n}\right] /\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)\right)_{n-d} \\
& \leq\binom{ n-r}{n-d} \\
& =0, \text { since } r>d .
\end{aligned}
$$

So we get a contradiction and $r \leq d$.

The following proof of Theorem 3.3.4 uses Lemma 3.3.3.

Proof. As in the previous proof, we can assume $2 \leq d \leq n-1$.

First we consider the case $d=2$ and $n \geq 3$. Now $J=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}, x_{1} x_{2}\right)$ and $\operatorname{dim}_{k} J_{3}=\operatorname{dim}_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{3}+n-2$. On the other hand,

$$
\operatorname{dim}_{k} I_{3}=\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}\right)_{3}+n-\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right)
$$

Since $\operatorname{dim}_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{3}=\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}\right)_{3}$ we need only to show that

$$
\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) \leq 2
$$

We prove by contradiction, so assume $\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) \geq 3$. Then without the loss of generality we can assume that

$$
\begin{aligned}
& x_{1} g=\vec{f} \cdot \vec{p}_{1}, \\
& x_{2} g=\vec{f} \cdot \vec{p}_{2}, \\
& x_{3} g=\vec{f} \cdot \vec{p}_{3},
\end{aligned}
$$

where \vec{f} is the row vector $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ and $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$ are some column vectors of 1 -forms. Hence we have

$$
g\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)=\vec{f} \cdot\left(\begin{array}{lll}
\vec{p}_{1} & \vec{p}_{2} & \vec{p}_{3}
\end{array}\right)
$$

Since

$$
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ccc}
x_{2} & x_{3} & 0 \\
-x_{1} & 0 & x_{3} \\
0 & -x_{1} & -x_{2}
\end{array}\right)=0
$$

it follows that

$$
\begin{aligned}
& \vec{f} \cdot\left(\begin{array}{lll}
\vec{p}_{1} & \vec{p}_{2} & \vec{p}_{3}
\end{array}\right)\left(\begin{array}{ccc}
x_{2} & x_{3} & 0 \\
-x_{1} & 0 & x_{3} \\
0 & -x_{1} & -x_{2}
\end{array}\right) \\
& =\vec{f} \cdot\left(\begin{array}{lll}
x_{2} \vec{p}_{1}-x_{1} \vec{p}_{2} & x_{3} \vec{p}_{1}-x_{1} \vec{p}_{3} & x_{3} \vec{p}_{2}-x_{2} \vec{p}_{3}
\end{array}\right)=0 .
\end{aligned}
$$

By Lemma 3.3.3 there are skew-symmetric $n \times n$ matices A_{12}, A_{13}, A_{23} of scalars such that

$$
\left(\begin{array}{lll}
x_{2} \vec{p}_{1}-x_{1} \vec{p}_{2} & x_{3} \vec{p}_{1}-x_{1} \vec{p}_{3} & x_{3} \vec{p}_{2}-x_{2} \vec{p}_{3}
\end{array}\right)=\left(\begin{array}{lll}
A_{12} \vec{f}^{T} & A_{13} \vec{f}^{T} & A_{23} \vec{f}^{T}
\end{array}\right)
$$

Since

$$
\left(\begin{array}{ccc}
x_{2} & x_{3} & 0 \\
-x_{1} & 0 & x_{3} \\
0 & -x_{1} & -x_{2}
\end{array}\right)\left(\begin{array}{c}
x_{3} \\
-x_{2} \\
x_{1}
\end{array}\right)=0
$$

it follows that

$$
\left(\begin{array}{lll}
A_{12} \vec{f}^{T} & A_{13} \vec{f}^{T} & A_{23} \vec{f}^{T}
\end{array}\right)\left(\begin{array}{c}
x_{3} \\
-x_{2} \\
x_{1}
\end{array}\right)=0
$$

so that $\left(x_{3} A_{12}-x_{2} A_{13}+x_{1} A_{23}\right) \vec{f}^{T}=0$. Since $x_{3} A_{12}-x_{2} A_{13}+x_{1} A_{23}$ is an $n \times n$ matrix of 1-forms, it follows from Lemma 3.3.3 that $x_{3} A_{12}-x_{2} A_{13}+x_{1} A_{23}=0$ and then
$A_{12}=A_{13}=A_{23}=0$. Thus, $x_{2} \vec{p}_{1}-x_{1} \vec{p}_{2}=0$ which implies that $\overrightarrow{p_{1}}$ can be divided by x_{1}. So $g=\vec{f} \cdot\left(\vec{p}_{1} / x_{1}\right)$ and then $g \in\left(f_{1}, \ldots, f_{n}\right)_{2}$ which contradicts the assumption that I is minimally generated by f_{1}, \ldots, f_{n}, g. So we have proved the case $d=2$.

Then we consider the case $d=3$ and $n \geq 4$. Now $J=\left(x_{1}^{2}, \ldots, x_{n}^{2}, x_{1} x_{2} x_{3}\right)$ and $\operatorname{dim}_{k} J_{4}=\operatorname{dim}_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{4}+n-3$. On the other hand,

$$
\operatorname{dim}_{k} I_{4}=\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}\right)_{4}+n-\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{4} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) .
$$

Since $\operatorname{dim}_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)_{4}=\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}\right)_{4}$ we need only to show that

$$
\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{4} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) \leq 3
$$

We prove by contradiction, so assume $\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{4} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) \geq 4$. Then without the loss of generality we can assume that

$$
\begin{aligned}
& x_{1} g=\vec{f} \cdot \vec{p}_{1}, \\
& x_{2} g=\vec{f} \cdot \vec{p}_{2}, \\
& x_{3} g=\vec{f} \cdot \vec{p}_{3}, \\
& x_{4} g=\vec{f} \cdot \vec{p}_{4},
\end{aligned}
$$

where $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \vec{p}_{4}$ are some column vectors of 2 -forms. Hence we have

$$
g\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right)=\vec{f} \cdot\left(\begin{array}{llll}
\vec{p}_{1} & \vec{p}_{2} & \vec{p}_{3} & \vec{p}_{4}
\end{array}\right) .
$$

Since

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right)\left(\begin{array}{cccccc}
x_{2} & x_{3} & x_{4} & 0 & 0 & 0 \\
-x_{1} & 0 & 0 & x_{3} & x_{4} & 0 \\
0 & -x_{1} & 0 & -x_{2} & 0 & x_{4} \\
0 & 0 & -x_{1} & 0 & -x_{2} & -x_{3}
\end{array}\right)=0,
$$

it follows that

$$
\begin{aligned}
& \vec{f} \cdot\left(\begin{array}{llll}
\vec{p}_{1} & \vec{p}_{2} & \vec{p}_{3} & \vec{p}_{4}
\end{array}\right)\left(\begin{array}{cccccc}
x_{2} & x_{3} & x_{4} & 0 & 0 & 0 \\
-x_{1} & 0 & 0 & x_{3} & x_{4} & 0 \\
0 & -x_{1} & 0 & -x_{2} & 0 & x_{4} \\
0 & 0 & -x_{1} & 0 & -x_{2} & -x_{3}
\end{array}\right) \\
& =\vec{f} \cdot\left(\begin{array}{lll}
x_{2} \vec{p}_{1}-x_{1} \vec{p}_{2} & \cdots & x_{4} \vec{p}_{3}-x_{3} \vec{p}_{4}
\end{array}\right)=0 .
\end{aligned}
$$

By Lemma 3.3.3 there are skew-symmetric $n \times n$ matices $A_{12}, A_{13}, \ldots, A_{34}$ of 1forms such that

$$
\left(\begin{array}{lll}
x_{2} \vec{p}_{1}-x_{1} \vec{p}_{2} & \cdots & x_{4} \vec{p}_{3}-x_{3} \vec{p}_{4}
\end{array}\right)=\left(\begin{array}{lll}
A_{12} \vec{f}^{T} & \cdots & A_{34} \vec{f}^{T}
\end{array}\right) .
$$

Since

$$
\left(\begin{array}{cccccc}
x_{2} & x_{3} & x_{4} & 0 & 0 & 0 \\
-x_{1} & 0 & 0 & x_{3} & x_{4} & 0 \\
0 & -x_{1} & 0 & -x_{2} & 0 & x_{4} \\
0 & 0 & -x_{1} & 0 & -x_{2} & -x_{3}
\end{array}\right)\left(\begin{array}{cccc}
x_{3} & x_{4} & 0 & 0 \\
-x_{2} & 0 & x_{4} & 0 \\
0 & -x_{2} & -x_{3} & 0 \\
x_{1} & 0 & 0 & x_{4} \\
0 & x_{1} & 0 & -x_{3} \\
0 & 0 & x_{1} & x_{2}
\end{array}\right)=0
$$

it follows that

$$
\left(\begin{array}{lll}
A_{12} \vec{f}^{T} & \cdots & A_{34} \vec{f}^{T}
\end{array}\right)\left(\begin{array}{cccc}
x_{3} & x_{4} & 0 & 0 \\
-x_{2} & 0 & x_{4} & 0 \\
0 & -x_{2} & -x_{3} & 0 \\
x_{1} & 0 & 0 & x_{4} \\
0 & x_{1} & 0 & -x_{3} \\
0 & 0 & x_{1} & x_{2}
\end{array}\right)=0
$$

that is,

$$
\left(\left(x_{3} A_{12}-x_{2} A_{13}+x_{1} A_{23}\right) \vec{f}^{T} \quad \cdots \quad\left(x_{4} A_{23}-x_{3} A_{24}+x_{2} A_{34}\right) \vec{f}^{T}\right)=0
$$

By Lemma 3.3.3 there are skew-symmetric $n \times n$ matices $B_{123,1}, \ldots, B_{123, n}, \ldots, B_{234, n}$ of scalars such that

$$
\begin{aligned}
& x_{3} A_{12}-x_{2} A_{13}+x_{1} A_{23}=\left(\begin{array}{c}
\overrightarrow{f B} B_{123,1} \\
\vdots \\
\overrightarrow{f B} B_{123, n}
\end{array}\right), \\
& x_{4} A_{12}-x_{2} A_{14}+x_{1} A_{24}=\left(\begin{array}{c}
\overrightarrow{f B} B_{124,1} \\
\vdots \\
\overrightarrow{f B} B_{124, n}
\end{array}\right), \\
& x_{4} A_{13}-x_{3} A_{14}+x_{1} A_{34}=\left(\begin{array}{c}
\overrightarrow{f B} B_{134,1} \\
\vdots \\
\overrightarrow{f B} B_{134, n}
\end{array}\right), \\
& x_{4} A_{23}-x_{3} A_{24}+x_{2} A_{34}=\left(\begin{array}{c}
\overrightarrow{f B} B_{234,1} \\
\vdots \\
\overrightarrow{f B} B_{234, n}
\end{array}\right) .
\end{aligned}
$$

Since

$$
\left(\begin{array}{cccc}
x_{3} & x_{4} & 0 & 0 \\
-x_{2} & 0 & x_{4} & 0 \\
0 & -x_{2} & -x_{3} & 0 \\
x_{1} & 0 & 0 & x_{4} \\
0 & x_{1} & 0 & -x_{3} \\
0 & 0 & x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{c}
x_{4} \\
-x_{3} \\
x_{2} \\
-x_{1}
\end{array}\right)=0
$$

it follows that for any $1 \leq i \leq n$,

$$
\vec{f}\left(x_{4} B_{123, i}-x_{3} B_{124, i}+x_{2} B_{134, i}-x_{1} B_{234, i}\right)=0 .
$$

Since $x_{4} B_{123, i}-x_{3} B_{124, i}+x_{2} B_{134, i}-x_{1} B_{234, i}$ is an $n \times n$ matrix of 1-forms, it follows from Lemma 3.3.3 that

$$
x_{4} B_{123, i}-x_{3} B_{124, i}+x_{2} B_{134, i}-x_{1} B_{234, i}=0,
$$

and then $B_{123,1}=\cdots=B_{234, n}=0$. Thus, $x_{3} A_{12}-x_{2} A_{13}+x_{1} A_{23}=0$ which implies that $x_{2} A_{13}-x_{1} A_{23}$ can be divided by x_{3}. Let A_{13}^{\prime} and A_{23}^{\prime} be the skew-symmetric matrices of 1-forms obtained from A_{13} and A_{23} by keeping only the terms containing x_{3}, then we have

$$
\begin{align*}
A_{12} & =\frac{1}{x_{3}}\left(x_{2} A_{13}-x_{1} A_{23}\right) \\
& =\frac{1}{x_{3}}\left(x_{2} A_{13}^{\prime}-x_{1} A_{23}^{\prime}\right) \\
& =x_{2} \frac{A_{13}^{\prime}}{x_{3}}-x_{1} \frac{A_{23}^{\prime}}{x_{3}} . \tag{3.1}
\end{align*}
$$

Thus,

$$
x_{2} \vec{p}_{1}-x_{1} \vec{p}_{2}=A_{12} \vec{f}^{T}=\left(x_{2} \frac{A_{13}^{\prime}}{x_{3}}-x_{1} \frac{A_{23}^{\prime}}{x_{3}}\right) \vec{f}^{T},
$$

and then,

$$
x_{1}\left(\vec{p}_{2}-\frac{A_{23}^{\prime}}{x_{3}} \vec{f}^{T}\right)=x_{2}\left(\vec{p}_{1}-\frac{A_{13}^{\prime}}{x_{3}} \vec{f}^{T}\right),
$$

so that $\vec{p}_{1}-\frac{A_{13}^{\prime}}{x_{3}} \vec{f}^{T}$ can be divided by x_{1}. Note that $\frac{A_{13}^{\prime}}{x_{3}}$ is an $n \times n$ skew-symmetric matrix of scalars, which implies that $\vec{f} \frac{A_{13}^{\prime}}{x_{3}} \vec{f}^{T}=0$. So we have $x_{1} g=\vec{f} \cdot\left(\vec{p}_{1}-\frac{A_{13}^{\prime}}{x_{3}} \vec{f}^{T}\right)$ and then $g=\vec{f} \cdot \frac{1}{x_{1}}\left(\vec{p}_{1}-\frac{A_{13}^{\prime}}{x_{3}} \vec{f}^{T}\right) \in\left(f_{1}, \ldots, f_{n}\right)_{3}$ which contradicts the assumption that I is minimally generated by f_{1}, \ldots, f_{n}, g. So we have proved the case $d=3$.

Proceeding in the same way we can prove the theorem for all $2 \leq d \leq n-1$ and we are done.

The second proof actually uses the minimal free resolution (Koszul complex) of $S /\left(x_{1}, x_{2}, \ldots, x_{i}\right)$. This is because we add only one polynomial g in degree d. If we add two or more polynomials in degree d, things get very complicated and the second proof does not work any more. The first proof also depends heavily on adding just one polynomial g. If we add two or more polynomials in degree d, then $\left(\left(f_{1}, \ldots, f_{n}\right): I\right)$ will not always contain many variables as in our first proof.

After proving theorem 3.3.4, it is natural to consider the following problem, which is a special case of the EGH Conjecture.

Problem 3.3.5. Let f_{1}, \ldots, f_{n} be a regular sequence of 2 -forms in S with $n \geq 3$. Let $g, h \in S$ be 2 -forms such that $\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g, h\right)_{2}=n+2$. Is it true that $\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g, h\right)_{3} \geq \operatorname{dim}_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}, x_{1} x_{2}, x_{1} x_{3}\right)_{3}=n^{2}+2 n-5 ?$

From section 2 , we know that it is true if $3 \leq n \leq 4$, or if f_{1}, \ldots, f_{n} satisfy the assumption of Proposition 3.2.3. From [HP], we know that it is true if g and h are generic 2 -forms and $\operatorname{Char}(k)=0$.

By theorem 3.3.4 we see that $\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right)$ can only be 0,1 or 2 . In the next proposition we study the case $\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right)=2$ by using a combination of techniques used in the two proofs of Theorem 3.3.4.

Proposition 3.3.6. Let f_{1}, \ldots, f_{n} be a regular sequence of 2 -forms in S with $n \geq 3$. Let g, hbe 2 -forms such that $\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g, h\right)_{2}=n+2$. If $\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{g\}\right)$ $=2$, then

$$
\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g, h\right)_{3} \geq n^{2}+2 n-5
$$

Proof. Since $\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right)=2$, there exists linearly independent 1 -forms l_{1} and l_{2} such that

$$
\begin{aligned}
& l_{1} g=\vec{f} \cdot \vec{p}_{1}, \\
& l_{2} g=\vec{f} \cdot \vec{p}_{2}
\end{aligned}
$$

where \vec{f} is the row vector $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ and \vec{p}_{1}, \vec{p}_{2} are some column vectors of 1-forms.

To prove by contradiction, we assume that $\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g, h\right)_{3}<n^{2}+2 n-5$.

Since

$$
\begin{aligned}
& \operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g, h\right)_{3} \\
& =\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g\right)_{3}+n-\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}, g\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~h}\}\right) \\
& =\left(\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}\right)_{3}+n-2\right)+n-\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}, g\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~h}\}\right) \\
& =n^{2}+2 n-2-\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}, g\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~h}\}\right),
\end{aligned}
$$

it follows that $\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}, g\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~h}\}\right) \geq 4$. Without the loss of generality, we can assume that

$$
\begin{aligned}
& x_{1} h=l_{3} g+\vec{f} \cdot \vec{p}_{3}, \\
& x_{2} h=l_{4} g+\vec{f} \cdot \vec{p}_{4}, \\
& x_{3} h=l_{5} g+\vec{f} \cdot \vec{p}_{5}, \\
& x_{4} h=l_{6} g+\vec{f} \cdot \vec{p}_{6},
\end{aligned}
$$

where $l_{3}, l_{4}, l_{5}, l_{6}$ are some 1 -forms and $\vec{p}_{3}, \vec{p}_{4}, \vec{p}_{5}, \vec{p}_{6}$ are some column vectors of 1-forms. Multiplying the above 4 equations by l_{1}, because $l_{1} g=\vec{f} \cdot \vec{p}_{1}$, we get that

$$
x_{1}\left(l_{1} h\right), x_{2}\left(l_{1} h\right), x_{3}\left(l_{1} h\right), x_{4}\left(l_{1} h\right) \in\left(f_{1}, \ldots, f_{n}\right)_{4}
$$

By the second proof of Theorem 3.3.4, we conclude that $l_{1} h \in\left(f_{1}, \ldots, f_{n}\right)_{3}$. Similarly, we have $l_{2} h \in\left(f_{1}, \ldots, f_{n}\right)_{3}$. Thus,

$$
l_{1}, l_{2} \in\left(\left(f_{1}, \ldots, f_{n}\right):\left(f_{1}, \ldots, f_{n}, g, h\right)\right) .
$$

Without the loss of generality we can assume that $l_{1}=x_{1}$ and $l_{2}=x_{2}$. Therefore,
similar to the first proof of Theorem 3.3.4, we have

$$
\begin{aligned}
2 & =\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}, g, h\right) /\left(f_{1}, \ldots, f_{n}\right)\right)_{2} \\
& =\operatorname{dim}_{k}\left(S /\left(\left(f_{1}, \ldots, f_{n}\right):\left(f_{1}, \ldots, f_{n}, g, h\right)\right)\right)_{n-2} \\
& \leq \operatorname{dim}_{k}\left(S /\left(x_{1}, x_{2}, f_{1}, \ldots, f_{n}\right)\right)_{n-2} \\
& =\operatorname{dim}_{k}\left(k\left[x_{3}, \ldots, x_{n}\right] /\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)\right)_{n-2} \\
& \leq\binom{ n-2}{n-2} \\
& =1,
\end{aligned}
$$

which is a contradiction. So $\operatorname{dim}_{k}\left(f_{1}, \ldots, f_{n}, g, h\right)_{3} \geq n^{2}+2 n-5$ and we are done.
Remark 3.3.7. The key point of the above proof is that there exist two 1 -forms l_{1} and l_{2} such that $l_{1}, l_{2} \in\left(\left(f_{1}, \ldots, f_{n}\right):\left(f_{1}, \ldots, f_{n}, g, h\right)\right)$, which is not the case if

$$
\operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~g}\}\right) \neq 2 \text { and } \operatorname{dim}_{k}\left(\left(f_{1}, \ldots, f_{n}\right)_{3} \cap S_{1} \operatorname{span}\{\mathrm{~h}\}\right) \neq 2
$$

It would be interesting to study the other two cases of Problem 3.3.5.

We end this section by looking at two criteria and one example about regular sequences. Here we do not assume that $f_{1}, f_{2}, \ldots, f_{n}$ are of degrees 2. One simple criterion for $f_{1}, f_{2}, \ldots, f_{n}$ being a regular sequence in S is the following:

$$
f_{1}, f_{2}, \ldots, f_{n} \text { is a regular sequence } \Longleftrightarrow \operatorname{Rad}\left(f_{1}, \ldots, f_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) .
$$

The other criterion follows easily from [Mt, Corollary on Page 161], which says: f_{1}, \ldots, f_{n} is a regular sequence in S if and only if the following condition holds:

$$
\text { if } g_{1} f_{1}+\cdots+g_{n} f_{n}=0 \text { for some } g_{1}, \ldots, g_{n} \in S \text {, then } g_{1}, \ldots, g_{n} \in\left(f_{1}, \ldots, f_{n}\right) \text {. }
$$

In general, given homogeneous polynomials f_{1}, \ldots, f_{n} of degrees 2 in S, it is hard to check by hand whether f_{1}, \ldots, f_{n} form a regular sequence, although
generically f_{1}, \ldots, f_{n} form a regular sequence. The following example gives a characterization of a special class of regular sequences.

Example 3.3.8. Let $f_{1}=x_{1} l_{1}, \ldots, f_{n}=x_{n} l_{n}$ be a sequence of homogeneous polynomials in S, where $l_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$ with $a_{i j} \in k$ and $i=1, \ldots, n$. Let A be the $n \times n$ matrix $\left(a_{i j}\right)$. For any $1 \leq r \leq n$ and $1 \leq i_{1}<\cdots<i_{r} \leq n$, let $A\left[i_{1}, \ldots, i_{r}\right]$ be the submatrix of A formed by rows i_{1}, \ldots, i_{r} and columns i_{1}, \ldots, i_{r}. By looking at the primary decomposition of the ideal $\left(f_{1}, \ldots, f_{n}\right)$, we see that f_{1}, \ldots, f_{n} is a regular sequence if and only if $\operatorname{det}\left(A\left[i_{1}, \ldots, i_{r}\right]\right) \neq 0$ for all $1 \leq r \leq n$ and $1 \leq i_{1}<\cdots<i_{r} \leq n$. It would be interesting to know if the EGH Conjecture holds in this special case.

CHAPTER 4

MACAULAY'S THEOREM FOR SOME PROJECTIVE MONOMIAL CURVES

4.1 Introduction

In 1927, Macaulay proved that for every graded ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$ there exists a lex ideal with the same Hilbert function (see Theorem 2.1.8). Then it is interesting to know if similar results hold for graded quotient rings of the polynomial ring S. From 2.1.11 we see that Macaulay's Theorem holds over the quotient ring $k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{a_{1}}, \cdots, x_{n}^{a_{n}}\right)$, where $2 \leq a_{1} \leq \cdots \leq a_{n} \leq \infty$. Recently, Mermin and Peeva [MP] raised the problem to find other graded quotient rings over which Macaulay's Theorem holds.

Toric varieties, cf. [Fu], have been extensively studied in Algebraic Geometry. They are very interesting because they can be studied with methods and ideas from Algebraic Geometry, Combinatorics, Commutative Algebra and Computational Algebra. In [GHP], Gasharov, Horwitz and Peeva introduced the notion of a lex ideal in the toric ring (see Definition 2.1.12 and Definition 2.1.14) and raised the question [GHP, 4.1] to find projective toric rings over which Macaulay's Theorem holds. They proved in [GHP, Theorem 5.1] that Macaulay's Theorem holds for the rational normal curves.

The goal of this chapter is to study whether Macaulay's Theorem holds for other projective monomial curves.

In Theorem 4.3.1 we prove that Macaulay's Theorem holds for projective
monomial curves defined by the toric ideals associated to matrices of the form

$$
A=\left(\begin{array}{ccccc}
0 & 1 & \cdots & n-2 & n-1+h \\
1 & 1 & \cdots & 1 & 1
\end{array}\right), \text { where } n \geq 3, h \in \mathbb{Z}^{+} .
$$

In Theorem 4.4.1 we consider matrices of the form

$$
A=\left(\begin{array}{ccccc}
0 & 1+h & 2+h & \cdots & n-1+h \\
1 & 1 & 1 & \cdots & 1
\end{array}\right), \text { where } n \geq 3, h \in \mathbb{Z}^{+}
$$

and prove that if $h=1$ or $n=3$, Macaulay's Theorem holds; otherwise, Macaulay's Thereom does not hold.

Finally, in Theorem 4.4 .5 we prove that Macaulay's Theorem does not hold if

$$
A=\left(\begin{array}{ccccccc}
0 & 1 & \cdots & m-1 & m+h & \cdots & n-1+h \\
1 & 1 & \cdots & 1 & 1 & \cdots & 1
\end{array}\right)
$$

where $n \geq 4,2 \leq m \leq n-2$ and $h \in \mathbb{Z}^{+}$.

In section 2.1,We have defined toric rings and lex ideals in toric rings. Before invesgating Macaulay's Theorem over toric rings, we list some known results and make some small but useful observations.

By [GHP, Theorem 2.5], we know that for any homogeneous ideal J in R, there exists a monomial ideal M in R such that M has the same Hilbert function as J. So, to show that Macaulay's Theorem holds over R, we only need to prove that given any monomial ideal M in R, there exists a lex ideal L in R with the same Hilbert function. Furthermore, we will use [GHP, Lemma 4.2], which states:

Lemma 4.1.1 (Gasharov-Horwitz-Peeva). Macaulay's Theorem holds over R if and only if for every $d \geq 0$ and for every d-monomial space W, we have the inequality:

$$
\operatorname{dim}_{k} R_{1} L_{W} \leq \operatorname{dim}_{k} R_{1} W,
$$

where L_{W} is the lex d-monomial space in R_{d} such that $\operatorname{dim}_{k} L_{W}=\operatorname{dim}_{k} W$.

Remark 4.1.2. Let W be a d-monomial space spanned by monomials $w_{1}, \ldots, w_{s} \in$ R_{d}, then we have that

$$
\operatorname{dim}_{k} W=\left|\left\{w_{1}, \ldots, w_{s}\right\}\right| \text { and } \operatorname{dim}_{k} R_{1} W=\left|\left\{x_{i} w_{j} \in R_{d+1} \mid 1 \leq i \leq n, 1 \leq j \leq s\right\}\right| .
$$

If W^{\prime} is another d-monomial space spanned by monomials $w_{1}^{\prime}, \ldots, w_{t}^{\prime} \in R_{d}$, then we have

$$
\operatorname{dim}_{k} W \cap W^{\prime}=\left|\left\{w_{1}, \ldots, w_{s}\right\} \cap\left\{w_{1}^{\prime}, \ldots, w_{t}^{\prime}\right\}\right| .
$$

Remark 4.1.3. Let m be a monomial in R. Pick a representative $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ from the fiber of m. Then $\varphi\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)=u^{\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}} v^{\alpha_{1}+\cdots+\alpha_{n}}$, where φ is defined in Definition 2.1.12. This is independent of the choice of the representative. Define

$$
u(m)=u\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right):=\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n} .
$$

Note that $\operatorname{deg} m=\alpha_{1}+\cdots+\alpha_{n}$, then for monomials $m, m^{\prime} \in R$,

$$
m=m^{\prime} \Longleftrightarrow u(m)=u\left(m^{\prime}\right) \text { and } \operatorname{deg} m=\operatorname{deg} m^{\prime} .
$$

Hence, for any $d \geq 1$, we have a natural order $>_{u}$ on the monomials in R_{d} : for monomials $m, m^{\prime} \in R_{d}$, we say that $m>_{u} m^{\prime}$ if $u(m)<u\left(m^{\prime}\right)$. Note that the lex order $>_{\text {lex }}$ may not concide with the natural order $>_{u}$. This is illustrated in the following example.

Example 4.1.4. Let $A=\left(\begin{array}{lll}0 & 1 & 3 \\ 1 & 1 & 1\end{array}\right)$, then in $R_{2}, x_{1} x_{3}>_{\text {lex }} x_{2}^{2}$, but $x_{2}^{2}>_{u} x_{1} x_{3}$.

We use lex order $>_{\text {lex }}$ instead of $>_{u}$ to define lex ideals in R because we want to have the following crucial property: If L_{d} is a lex d-monomial space in R_{d}, then $R_{1} L_{d}$ is a lex $(d+1)$-monomial space in R_{d+1}. By [GHP, Theorem 3.4], we know that
this property holds for the lex order $>_{\text {lex }}$. However, by the above example, it is easy to see that this property does not hold for the natural order $>_{u}$. Indeed, let $L_{1}=\operatorname{span}\left\{x_{1}\right\} \subseteq R_{1}$, then L_{1} is lex with respect to the natural order $>_{u}$ and $R_{1} L_{1}=\operatorname{span}\left\{x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}\right\} \subseteq R_{2} ;$ but in R_{2}, since $x_{1}^{2}>_{u} x_{1} x_{2}>_{u} x_{2}^{2}>_{u} x_{1} x_{3}$, one sees that $R_{1} L_{1}$ is not lex with respect to the natural order $>_{u}$.

Remark 4.1.5. In the polynomial ring S we have the following property: if L_{d} is a lex d-monomial space in S_{d} and m is the first monomial in $S_{d} \backslash L_{d}$, then

$$
\begin{equation*}
\operatorname{dim}_{k} S_{1}\left(L_{d}+k m\right)>\operatorname{dim}_{k} S_{1} L_{d}, \tag{}
\end{equation*}
$$

and in particular, $x_{n} m \notin S_{1} L_{d}$. However, this may not be true in R, and we have the following example.

Example 4.1.6. Let $A=\left(\begin{array}{llll}0 & 1 & 3 & 4 \\ 1 & 1 & 1 & 1\end{array}\right), L_{2}=\operatorname{span}\left\{x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right\}$ and $m=x_{2}^{2}$, then L_{2} is lex in R_{2} and m is the first monomial after $x_{1} x_{4}$. Since

$$
\begin{array}{ll}
u\left(x_{1} x_{2}^{2}\right)=u\left(x_{2} x_{1} x_{2}\right), & u\left(x_{2} x_{2}^{2}\right)=u\left(x_{1} x_{1} x_{3}\right), \\
u\left(x_{3} x_{2}^{2}\right)=u\left(x_{2} x_{1} x_{4}\right), & u\left(x_{4} x_{2}^{2}\right)=u\left(x_{3} x_{1} x_{3}\right),
\end{array}
$$

it follows that $R_{1}\left(L_{2}+k m\right)=R_{1} L_{2}$ and $x_{4} m \in R_{1} L_{2}$. Thus, $\operatorname{dim}_{k} R_{1}\left(L_{2}+k m\right)=$ $\operatorname{dim}_{k} R_{1} L_{2}$ and (${ }^{*}$) fails.

4.2 Lemmas for general projective monomial curves

In this section, we prove three lemmas which hold for projective monomial curves. These lemmas will be used later in section 4.3 and section 4.4.

First we make the following observation. Let $I_{\mathcal{A}}$ be the toric ideal associated
to $\mathcal{A}=\left\{\binom{a_{1}}{1}, \ldots,\binom{a_{n}}{1}\right\}$; then without the loss of generality, we can assume that $a_{i} \neq a_{j}$ for $i \neq j$. By changing the order of the variables in S, we can assume $a_{1}<\cdots<a_{n}$. Let $B=\left(\begin{array}{cc}1 & -a_{1} \\ 0 & 1\end{array}\right)$ and $p=\operatorname{gcd}\left(a_{2}-a_{1}, \cdots, a_{n}-a_{1}\right)$, then we have

$$
\frac{1}{p} B A=\left(\begin{array}{cccc}
0 & \left(a_{2}-a_{1}\right) / p & \cdots & \left(a_{n}-a_{1}\right) / p \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

Since A and $\frac{1}{p} B A$ have the same kernel, by Theorem 2.1.13 they define the same toric ideal, so that we can always assume that $0=a_{1}<a_{2}<\cdots<a_{n}$ and $\operatorname{gcd}\left(a_{2}, \cdots, a_{n}\right)=1$.

Given a d-monomial space W, in order to calculate $\operatorname{dim}_{k} R_{1} W$ efficiently, we have the following lemma.

Lemma 4.2.1. Let W be a d-monomial space spanned by monomials $w_{1}, \ldots, w_{s} \in R_{d}$ with $u\left(w_{1}\right)<\cdots<u\left(w_{s}\right)$. Then

$$
\operatorname{dim}_{k} R_{1} W=s n-\sum_{1 \leq i<j \leq s} \lambda\left(w_{i}, w_{j}\right),
$$

where

$$
\begin{gathered}
\lambda\left(w_{i}, w_{j}\right)=\mid\left\{(p, q) \mid 1 \leq p<q \leq n, u\left(x_{q}\right)-u\left(x_{p}\right)=u\left(w_{j}\right)-u\left(w_{i}\right),\right. \text { and there exist } \\
\text { no } \left.p<r<q, i<k<j \text { such that } u\left(x_{r}\right)-u\left(x_{p}\right)=u\left(w_{j}\right)-u\left(w_{k}\right)\right\} \mid .
\end{gathered}
$$

Proof. By induction on s. If $s=1$, then the assertion is clear. If $s>1$, then setting $W^{\prime}=\operatorname{span}\left\{w_{1}, \cdots, w_{s-1}\right\}$, we get

$$
\begin{aligned}
\operatorname{dim}_{k} R_{1} W & =\operatorname{dim}_{k} R_{1}\left(W^{\prime}+k w_{s}\right) \\
& =\operatorname{dim}_{k}\left(R_{1} W^{\prime}+R_{1}\left(k w_{s}\right)\right) \\
& =\operatorname{dim}_{k} R_{1} W^{\prime}+\operatorname{dim}_{k} R_{1}\left(k w_{s}\right)-\operatorname{dim}_{k} R_{1} W^{\prime} \cap R_{1}\left(k w_{s}\right) .
\end{aligned}
$$

By the induction hypothesis, we have that

$$
\operatorname{dim}_{k} R_{1} W^{\prime}=(s-1) n-\sum_{1 \leq i<j \leq s-1} \lambda\left(w_{i}, w_{j}\right), \quad \text { and } \quad \operatorname{dim}_{k} R_{1}\left(k w_{s}\right)=n .
$$

Note that

$$
\begin{aligned}
& \operatorname{dim}_{k} R_{1} W^{\prime} \cap R_{1}\left(k w_{s}\right) \\
& =\mid\left\{1 \leq p \leq n \mid x_{p} w_{s}=x_{q} w_{i} \text { in } R_{d+1}, \text { for some } 1 \leq i \leq s-1, q>p\right\} \mid \\
& =\sum_{1 \leq i \leq s-1} \mid\left\{1 \leq p \leq n \mid x_{p} w_{s}=x_{q} w_{i} \text { in } R_{d+1} \text {, for some } q>p,\right. \text { and there exists } \\
& \left.\quad \text { no } i<k<s \text { such that } x_{p} w_{s}=x_{r} w_{k} \text { for some } r>p\right\} \mid \\
& =\sum_{1 \leq i \leq s-1} \lambda\left(w_{i}, w_{s}\right) .
\end{aligned}
$$

So we have

$$
\begin{aligned}
\operatorname{dim}_{k} R_{1} W & =(s-1) n-\sum_{1 \leq i<j \leq s-1} \lambda\left(w_{i}, w_{j}\right)+n-\sum_{1 \leq i \leq s-1} \lambda\left(w_{i}, w_{s}\right) \\
& =s n-\sum_{1 \leq i<j \leq s} \lambda\left(w_{i}, w_{j}\right) .
\end{aligned}
$$

The following two lemmas will be helpful when we prove Theorem 4.4.1.
Lemma 4.2.2. Let $A=\left(\begin{array}{cccc}a_{1} & a_{2} & \cdots & a_{n} \\ 1 & 1 & \cdots & 1\end{array}\right)$ and $A^{\prime}=\left(\begin{array}{cccc}b_{1} & b_{2} & \cdots & b_{n} \\ 1 & 1 & \cdots & 1\end{array}\right)$ be such that $0=a_{1}<a_{2}<\cdots<a_{n}, 0=b_{1}<b_{2}<\cdots<b_{n}$ and $a_{i}+b_{n+1-i}=a_{n}$ for $i=1, \ldots, n$. Set $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $S^{\prime}=k\left[y_{1}, \ldots, y_{n}\right]$. Then we have an isomorphism $\hat{f}: S \longrightarrow S^{\prime}$ with $\hat{f}\left(x_{i}\right)=y_{n+1-i}$. Let $R=S / I_{\mathcal{A}}$ be the toric ring associated to A and $R^{\prime}=S^{\prime} / I_{\mathcal{F}^{\prime}}$ the toric ring associted to A^{\prime}; then \hat{f} induces an isomorphism $f: R \longrightarrow R^{\prime}$ such that $f\left(x_{i}+I_{\mathcal{A}}\right)=y_{n+1-i}+I_{\mathcal{A}{ }^{\prime}}$.

Proof. Given a monomial $m=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ in S, we have

$$
\begin{aligned}
u(m)+u(\hat{f}(m)) & =u\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)+u\left(y_{n}^{\alpha_{1}} \cdots y_{1}^{\alpha_{n}}\right) \\
& =\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}+\alpha_{1} b_{n}+\cdots+\alpha_{n} b_{1} \\
& =\alpha_{1}\left(a_{1}+b_{n}\right)+\cdots+\alpha_{n}\left(a_{n}+b_{1}\right) \\
& =\left(\alpha_{1}+\cdots+\alpha_{n}\right) a_{n} \\
& =\operatorname{deg}(m) a_{n} .
\end{aligned}
$$

If $m-m^{\prime} \in I_{\mathcal{A}}$ for some monomials $m, m^{\prime} \in S$, then by Remark 4.1.3 we have that $u(m)=u\left(m^{\prime}\right)$ and $\operatorname{deg}(m)=\operatorname{deg}\left(m^{\prime}\right)$. Hence $u(\hat{f}(m))=u\left(\hat{f}\left(m^{\prime}\right)\right)$ and $\operatorname{deg}(\hat{f}(m))=$ $\operatorname{deg}\left(\hat{f}\left(m^{\prime}\right)\right)$, so that $\hat{f}(m)-\hat{f}\left(m^{\prime}\right)=\hat{f}\left(m-m^{\prime}\right) \in I_{\mathcal{H}^{\prime}}$. Similarly, if $m-m^{\prime} \in I_{\mathcal{A}^{\prime}}$, then $\hat{f}^{-1}\left(m-m^{\prime}\right) \in I_{\mathcal{A}}$. Thus, $\hat{f}\left(I_{\mathcal{A}}\right)=I_{\mathcal{H}^{\prime}}$ and therefore, \hat{f} induces an isomorphism f from R to R^{\prime} such that $f\left(x_{i}+I_{\mathcal{A}}\right)=y_{n+1-i}+I_{\mathcal{H}^{\prime}}$.

Lemma 4.2.3. Under the assumption of Lemma 4.2.2,we have the following two properties.
(1) If $W \subseteq R_{d}$ is a d-monomial space spanned by monomials $m_{1}, \ldots, m_{r} \in R_{d}$ with $u\left(w_{1}\right)<\cdots<u\left(w_{r}\right)$, then $f(W) \subseteq R_{d}^{\prime}$ is a d-monomial space spanned by monomials $f\left(w_{1}\right), \ldots, f\left(w_{r}\right) \in R_{d}^{\prime}$ with $u\left(f\left(w_{1}\right)\right)>\cdots>u\left(f\left(w_{r}\right)\right)$, and $\operatorname{dim}_{k} R_{1} W=\operatorname{dim}_{k} R_{1}^{\prime} f(W)$.
(2) Note that we have defined a lex order $>_{\text {lex }}$ in R_{d}. Now setting $y_{n}>\cdots>y_{1}$, we have a lex order $>_{\text {lex }}$ in S^{\prime} which induces a lex order $>_{\text {lex }}$ in R_{d}^{\prime}. Let m be a monomial in R_{d} with top representative $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, then $f(m)$ is a monomial in R_{d}^{\prime} with top representative $\hat{f}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)=y_{n}^{\alpha_{1}} \cdots y_{1}^{\alpha_{n}}$. Furthermore, if monomials $m, m^{\prime} \in R_{d}$ are such that $m>_{\text {lex }} m^{\prime}$, then $f(m)>_{\text {lex }} f\left(m^{\prime}\right)$ in R_{d}^{\prime}; if L_{d} is a lex d monomial space in R_{d}, then $f\left(L_{d}\right)$ is a lex d-monomial space in $R_{d^{\prime}}^{\prime}$, if Macaulay's Theorem holds over R, then Macaulay's Theorem holds over R^{\prime}.

Proof. (1)It is clear that $f(W)$ is a d-monomial space in R_{d}^{\prime}. By the proof of Lemma 4.2.2, we see that $u\left(w_{i}\right)+u\left(f\left(w_{i}\right)\right)=d a_{n}$, which implies that $u\left(f\left(w_{i}\right)\right)>u\left(f\left(w_{j}\right)\right)$ for $i<j$. Note that $a_{p}-a_{q}=b_{q}-b_{p}$ for any $p \neq q$ and $u\left(w_{i}\right)-u\left(w_{j}\right)=u\left(f\left(w_{j}\right)\right)-u\left(f\left(w_{i}\right)\right)$ for any $i \neq j$, so that the last part of the assertion follows directly from Lemma 4.2.1.
(2)By contradiction, we assume that $y_{n}^{\beta_{1}} \cdots y_{1}^{\beta_{n}}$ is in the fiber of $f(m)$ and $y_{n}^{\beta_{1}} \cdots y_{1}^{\beta_{n}}>_{\text {lex }} y_{n}^{\alpha_{1}} \cdots y_{1}^{\alpha_{n}}$ in S^{\prime}, then $\hat{f}^{-1}\left(y_{n}^{\beta_{1}} \cdots y_{1}^{\beta_{n}}\right)=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$ is also in the fiber of m and $x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}>_{\text {lex }} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ in S, which is a contradiction. So we have proved the first part of the assertion, and the rest of the assertion follows easily.

Remark 4.2.4. If we set $y_{1}>\cdots>y_{n}$ in Lemma 4.2.3 (2), then the assertion may not hold. Indeed, considering Example 4.1.6, we have that $A=A^{\prime}$; let $m=x_{1} x_{3}^{2}$ in R, then $x_{1} x_{3}^{2}$ is the top-representative of the fiber of m, but $\hat{f}\left(x_{1} x_{3}^{2}\right)=y_{4} y_{2}^{2}$ is not the top-represtative of the fiber of $f(m)$. Also, by Theorems 4.3.1 and 4.4.1, we will see that even if Macaulay's Theorem holds over R, it may not hold over R^{\prime}.

4.3 A class of projective monomial curves

Throughout this section,

$$
A=\left(\begin{array}{ccccc}
0 & 1 & \cdots & n-2 & n-1+h \\
1 & 1 & \cdots & 1 & 1
\end{array}\right), \text { where } n \geq 3, h \in \mathbb{Z}^{+}
$$

and R is the toric ring associated to A. We prove:

Theorem 4.3.1. Macaulay's Theorem holds over R.

For the proof of Theorem 4.3.1, we need the following lemmas 4.3.2, 4.3.3, 4.3.5, 4.3.7, 4.3.8, 4.3.9, 4.3.10, 4.3.11.

Lemma 4.3.2. Let m be a monomial in R. Suppose that

$$
u(m)=\alpha(n-1+h)+\beta(n-2)+\gamma
$$

where α, β and γ are non-negative integers such that $\beta(n-2)+\gamma<n-1+$ hand $\gamma<n-2$. If $\gamma \neq 0$, then $x_{1}^{\operatorname{deg}(m)-\alpha-\beta-1} x_{r+1} x_{n-1}^{\beta} x_{n}^{\alpha}$ is the top-representative of the fiber of m. If $\gamma=0$, then $x_{1}^{\operatorname{deg}(m)-\alpha-\beta} x_{n-1}^{\beta} x_{n}^{\alpha}$ is the top-representative of the fiber of m.

Proof. Pick a monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ from the fiber of m , and run the following algorithm.

Input: $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$

Step 1: If $\sum_{i=1}^{n-1} \alpha_{i}(i-1)<n-1+h$, go to Step 2. Otherwise, choose $\beta_{2}, \ldots, \beta_{n-1} \in$ \mathbb{Z} such that $0 \leq \beta_{2} \leq \alpha_{2}, \ldots, 0 \leq \beta_{n-1} \leq \alpha_{n-1}, \sum_{i=2}^{n-1} \beta_{i}(i-1) \geq n-1+h$ and $\sum_{i=2}^{n-1} \beta_{i}(i-1)$ is minimial with respect to this property. Run the division algorithm, we get $\sum_{i=2}^{n-1} \beta_{i}(i-1)=\beta_{n}(n-1+h)+\delta$, for some $\beta_{n} \geq 1$ and $0 \leq \delta<n-1+h$. Let $j=\min \left\{i \mid \beta_{i} \neq 0\right\}$. Then $\delta<j-1$, otherwise, it contradicts to the minimality of $\sum_{i=1}^{n-1} \beta_{i}(i-1)$. Setting

$$
\begin{aligned}
\alpha_{j} & :=\alpha_{j}-\beta_{j}, \\
& \cdots \cdots, \\
\alpha_{n-1} & :=\alpha_{n-1}-\beta_{n-1}, \\
\alpha_{n} & :=\alpha_{n}+\beta_{n}, \\
\alpha_{\delta+1} & :=\alpha_{\delta+1}+1, \\
\alpha_{1} & :=\alpha_{1}+\left(\beta_{j}+\cdots+\beta_{n-1}\right)-\beta_{n}-1,
\end{aligned}
$$

we get a new monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ which is still in the fiber of m and is strictly bigger with respect to $>_{l e x}$ in S. Go back to step 1.

Step 2: If $\sum_{i=1}^{n-2} \alpha_{i}(i-1)<n-2$, stop. Otherwise, choose $\beta_{2}, \ldots, \beta_{n-2} \in \mathbb{Z}$ such that $0 \leq \beta_{2} \leq \alpha_{2}, \cdots, 0 \leq \beta_{n-2} \leq \alpha_{n-2}, \sum_{i=2}^{n-2} \beta_{i}(i-1) \geq n-2$ and $\sum_{i=2}^{n-2} \beta_{i}(i-1)$ is minimial with respect to this property. Run the division algorithm, we get $\sum_{i=2}^{n-2} \beta_{i}(i-1)=\beta_{n-1}(n-2)+\delta$, for some $\beta_{n-1} \geq 1$ and $0 \leq \delta<n-2$. Let $j=\min \{i \mid$ $\left.\beta_{i} \neq 0\right\}$. Then $\delta<j-1$, otherwise, it contradicts to the minimality of $\sum_{i=2}^{n-2} \beta_{i}(i-1)$. Setting

$$
\begin{aligned}
\alpha_{j} & :=\alpha_{j}-\beta_{j}, \\
& \cdots \cdots, \\
\alpha_{n-2} & :=\alpha_{n-2}-\beta_{n-2}, \\
\alpha_{n-1} & :=\alpha_{n-1}+\beta_{n-1}, \\
\alpha_{\delta+1} & :=\alpha_{\delta+1}+1 \\
\alpha_{1} & :=\alpha_{1}+\left(\beta_{j}+\cdots+\beta_{n-2}\right)-\beta_{n-1}-1,
\end{aligned}
$$

we get a new monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ which is still in the fiber of m and is strictly bigger with respect to $>_{l e x}$ in S. Go back to step 2.

The algorithm stops after finitely many steps and the output of the algorithm is the monomial described in the lemma. If the top-representative of the fiber of m is different from the monomial given in the lemma, then we can run the algorithm on the top-representative to get a bigger monomial in the fiber, which is a contradiction. So the monomial given in the lemma is the top-representative of the fiber of m.

Lemma 4.3.3. R has the following two properties.
(1) Let m be a monomial in R_{d}; if $w \in S$ is the top-representative of the fiber of m, then $x_{n} w \in S$ is the top-representative of the fiber of $x_{n} m \in R_{d+1}$.
(2) If L_{d} is a lex d-monomial space in R_{d} and m is the first monomial in $R_{d} \backslash L_{d}$, then $\operatorname{dim}_{k} R_{1}\left(L_{d}+k m\right)>\operatorname{dim}_{k} R_{1} L_{d}$ and $x_{n} m \notin R_{1} L_{d}$.

Proof. (1) Let $\widehat{m} \in S$ be the top-representative of the fiber of $x_{n} m$. Since $u\left(x_{n} m\right) \geq$ $n-1+h$, by Lemma 4.3.2 we have $x_{n} \mid \widehat{m}$. Suppose that $\widehat{m}=x_{n} w^{\prime}$ for some monomial $w^{\prime} \in S$, then it is easy to see that w^{\prime} is the top-representative of the fiber of m, so that $w^{\prime}=w$ and $\widehat{m}=x_{n} w$. So $x_{n} w$ is the top-representative of the fiber of $x_{n} m$.
(2) It suffices to prove that $x_{n} m \notin R_{1} L_{d}$. By contradiction, we assume $x_{n} m \in$ $R_{1} L_{d}$, then there exist $x_{i}, 1 \leq i<n$ and $m^{\prime} \in L_{d}$ such that $x_{n} m=x_{i} m^{\prime}$ in R_{d+1}. Let w, w^{\prime} be the top-representatives of the fibers of m and m^{\prime}, respectively; then by (1), $x_{n} w$ is the top-representative of the fiber of $x_{n} m$. Since $m^{\prime}>_{\text {lex }} m$ in R_{d}, we have $w^{\prime}>_{\text {lex }} w$ in S, and then $x_{i} w^{\prime}$ is in the fiber of $x_{n} m$ such that $x_{i} w^{\prime}>_{\text {lex }} x_{n} w$, which is a contradiction. So, $x_{n} m \notin R_{1} L_{d}$.

Definition 4.3.4. Let W be a d-monomial space spanned by some monomials $w_{1}, \ldots, w_{s} \in R_{d}$ with $0=u\left(w_{1}\right)<\cdots<u\left(w_{s}\right)$. For $i \geq 0$, set
$W(i)=\left\{w_{j} \mid\right.$ the top representative of w_{j} can be divided by x_{n}^{i} but not by $\left.x_{n}^{i+1}\right\}$.

The set $W(i)$ is called n-compressed if $W(i)=\emptyset$ or $W(i)=\left\{w_{k_{i}}, w_{k_{i}+1}, \ldots, w_{k_{i}+t}\right\}$, for some $t \geq 0$ and $1 \leq k_{i} \leq s$, such that

$$
u\left(w_{k_{i}}\right)=i(n-1+h), u\left(w_{k_{i}+1}\right)=i(n-1+h)+1, \ldots, u\left(w_{k_{i}+t}\right)=i(n-1+h)+t .
$$

We say that a d-monomial space C is n-compressed if $C(i)$ is n-compressed for every $i \geq 0$.

Lemma 4.3.5. Let m_{1}, m_{2} be two monomials in R_{d} with $u\left(m_{1}\right)<u\left(m_{2}\right)$. Suppose that $u\left(m_{1}\right)=\alpha_{1}(n-1+h)+\beta_{1}$, and $u\left(m_{2}\right)=\alpha_{2}(n-1+h)+\beta_{2}$, where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are nonnegative integers and $\beta_{1}, \beta_{2}<n-1+h$.
(1) If $\alpha_{1}=\alpha_{2}$, then $\left.m_{1}\right\rangle_{\text {lex }} m_{2}$.
(2) If $\alpha_{1}<\alpha_{2}$ and $\beta_{1}-\beta_{2} \leq\left(\alpha_{2}-\alpha_{1}\right)(n-2)$, then $\left.m_{1}\right\rangle_{\text {lex }} m_{2}$.
(3) If $\alpha_{1}<\alpha_{2}$ and $\beta_{1}-\beta_{2}>\left(\alpha_{2}-\alpha_{1}\right)(n-2)$, then $m_{2}>_{\text {lex }} m_{1}$.

Proof. By Lemma 4.3.2, we can assume that $\alpha_{1}=0$.
(1) Now $u\left(m_{1}\right)=\beta_{1}, u\left(m_{2}\right)=\beta_{2}, 0 \leq \beta_{1}<\beta_{2}<n-1+h$, and we only need to prove the case $\beta_{2}=\beta_{1}+1$. Suppose that $\beta_{1}=\beta(n-2)+\gamma$, where β, γ are nonnegative integers and $\gamma<n-2$. If $\gamma=0$, then $\beta_{2}=\beta(n-2)+1$, so that by Lemma 4.3.2, $x_{1}^{d-\beta} x_{n-1}^{\beta}$ and $x_{1}^{d-\beta-1} x_{2} x_{n-1}^{\beta}$ are the top-representatives of the fibers of m_{1} and m_{2} respectively, thus $m_{1}>_{\text {lex }} m_{2}$. If $\gamma>0$, then $\beta_{2}=\beta(n-2)+\gamma+1$, so that by Lemma 4.3.2, $x_{1}^{d-\beta-1} x_{\gamma+1} x_{n-1}^{\beta}$ and $x_{1}^{d-\beta-1} x_{\gamma+2} x_{n-1}^{\beta}$ are the top-representatives of the fibers of m_{1} and m_{2} respectively, thus $\left.m_{1}\right\rangle_{\text {ex }} m_{2}$.
(2) Suppose that $\beta_{1}=\beta(n-2)+\gamma$, and $\beta_{2}=\beta^{\prime}(n-2)+\gamma^{\prime}$, where $\beta, \beta^{\prime}, \gamma, \gamma^{\prime}$ are nonnegative integers and $\gamma, \gamma^{\prime}<n-2$. Then

$$
\beta_{1}-\beta_{2}=\left(\beta-\beta^{\prime}\right)(n-2)+\gamma-\gamma^{\prime} \leq \alpha_{2}(n-2),
$$

that is,

$$
\begin{equation*}
\left(\beta-\left(\beta^{\prime}+\alpha_{2}\right)\right)(n-2) \leq \gamma^{\prime}-\gamma \tag{}
\end{equation*}
$$

If $\gamma=\gamma^{\prime}=0$, then by $\left({ }^{*}\right)$, we have $\beta \leq \beta^{\prime}+\alpha_{2}$; by Lemma 4.3.2, we see that $x_{1}^{d-\beta} x_{n-1}^{\beta}$ and $x_{1}^{d-\left(\beta^{\prime}+\alpha_{2}\right)} x_{n-1}^{\beta^{\prime}} x_{n}^{\alpha_{2}}$ are the top-representatives of the fibers of m_{1} and m_{2} respectively, so that $\left.m_{1}\right\rangle_{\text {lex }} m_{2}$. If $\gamma=0$ and $\gamma^{\prime}>0$, then $\gamma^{\prime}-\gamma<n-2$, hence by $\left({ }^{*}\right)$ we have $\beta \leq \beta^{\prime}+\alpha_{2}$; by Lemma 4.3.2, we see that $x_{1}^{d-\beta} x_{n-1}^{\beta}$ and $x_{1}^{d-\left(\beta^{\prime}+\alpha_{2}\right)-1} x_{\gamma^{\prime}+1} x_{n-1}^{\beta^{\prime}} x_{n}^{\alpha_{2}}$ are the top-representatives of the fibers of m_{1} and m_{2} respectively, so that $m_{1}>_{\text {lex }}$ m_{2}. If $\gamma>0$ and $\gamma^{\prime}=0$, then $\gamma^{\prime}-\gamma<0$, hence by $\left({ }^{*}\right)$ we have $\beta<\beta^{\prime}+\alpha_{2}$; by Lemma 4.3.2, we see that $x_{1}^{d-\beta-1} x_{\gamma+1} x_{n-1}^{\beta}$ and $x_{1}^{d-\left(\beta^{\prime}+\alpha_{2}\right)} x_{n-1}^{\beta^{\prime}} x_{n}^{\alpha_{2}}$ are the top-representatives of
the fibers of m_{1} and m_{2} respectively, so that $m_{1}>_{\text {lex }} m_{2}$. If $\gamma>0$ and $\gamma^{\prime}>0$, then by Lemma 4.3.2, we see that $x_{1}^{d-\beta-1} x_{\gamma+1} x_{n-1}^{\beta}$ and $x_{1}^{d-\left(\beta^{\prime}+\alpha_{2}\right)-1} x_{\gamma^{\prime}+1} x_{n-1}^{\beta^{\prime}} x_{n}^{\alpha_{2}}$ are the toprepresentatives of the fibers of m_{1} and m_{2} respectively; and by $\left({ }^{*}\right)$, we have either $\gamma^{\prime} \geq \gamma, \beta \leq \beta^{\prime}+\alpha_{2}$ or $\gamma^{\prime}<\gamma, \beta<\beta^{\prime}+\alpha_{2}$, then it follows that $\left.m_{1}\right\rangle_{\text {lex }} m_{2}$.
(3) We use the notations in the proof of (2). Now $\left(\beta-\left(\beta^{\prime}+\alpha_{2}\right)\right)(n-2)>\gamma^{\prime}-\gamma$. If $\gamma^{\prime} \geq \gamma$, then $\beta>\beta^{\prime}+\alpha_{2}$, and similar to the proof of (2), it is easy to check that $m_{2} \succ_{\text {lex }} m_{1}$; if $\gamma^{\prime}<\gamma$, then $\gamma^{\prime}-\gamma>-(n-2)$, hence $\beta \geq \beta^{\prime}+\alpha_{2}$, so that similar to the proof of (2), we get $m_{2}>_{\text {lex }} m_{1}$.

Remark 4.3.6. By Lemma 4.3 .5 we make the following remarks.
(1) By Lemma 4.3.5, we see that the lex order $\succ_{\text {lex }}$ induces a total oder on the set of nonnegative integers.
(2) If L_{d} is a lex d-monomail spce, then by Lemma 4.3.5, it is easy to see that L_{d} is n-compressed and $\left|L_{d}(0)\right| \geq\left|L_{d}(1)\right| \geq\left|L_{d}(2)\right| \geq \cdots$.
(3) If L_{d} is a lex d-monomail spce and $\left|L_{d}(i)\right|<n-1+h$ for some $i \geq 0$, then by Lemma 4.3.5, one sees easily that $\left|L_{d}(i+1)\right| \leq \max \left\{0,\left|L_{d}(i)\right|-(n-2)\right\}$.
(4) If L_{d} is a lex d-monomail spce, then $\left|L_{d}(i+j)\right| \geq\left(\left|L_{d}(i)\right|-1\right)-j(n-2)$ for $i, j \geq 0$. Indeed, if $\left|L_{d}(i)\right|-\left(\left|L_{d}(i+j)\right|+1\right)>j(n-2)$, then by Lemma 4.3.5 (3), it is easy to see that L_{d} is not lex, which is a contradiction.
(5) Let L_{d} be a lex d-monomail space spanned by monomials $m_{1}, \cdots, m_{s} \in R_{d}$ with $0=u\left(m_{1}\right)<\cdots<u\left(m_{s}\right)$, and $L_{d^{\prime}}^{\prime}$ a lex d^{\prime}-monomail space spaned by monomials $m_{1}^{\prime}, \cdots, m_{s}^{\prime} \in R_{d^{\prime}}$ with $0=u\left(m_{1}^{\prime}\right)<\cdots<u\left(m_{s}^{\prime}\right)$; then by Lemma 4.3.5, we have $u\left(m_{i}\right)=u\left(m_{i}^{\prime}\right)$ for $1 \leq i \leq s$. In particular, by Lemma 4.2.1 we have $\operatorname{dim}_{k} R_{1} L_{d}=\operatorname{dim}_{k} R_{1} L_{d^{\prime}}^{\prime}$.
(6) Let W be a d-monomial space spanned by monomials $w_{1}, \ldots, w_{s} \in R_{d}$ with $u\left(w_{1}\right)<\ldots<u\left(w_{s}\right)$. If $u\left(w_{s}\right)>d$, setting $\alpha=u\left(w_{s}\right)-d$ and $W^{\prime}=$ $\operatorname{span}\left\{x_{1}^{\alpha} w_{1}, \ldots, x_{1}^{\alpha} w_{s}\right\} \subseteq R_{d+\alpha}$, we have that $u\left(x_{1}^{\alpha} w_{i}\right)=u\left(w_{i}\right), u\left(x_{1}^{\alpha} w_{s}\right)=d+\alpha$, and Lemma 4.2.1 implies that $\operatorname{dim}_{k} R_{1} W=\operatorname{dim}_{k} R_{1} W^{\prime}$. So, by (5) and the above observation, to prove Lemma 4.1.1, we can always assume that $u\left(w_{s}\right) \leq d$, and then for any $0 \leq j \leq u\left(w_{s}\right)$, there exists $m=x_{1}^{d-j} x_{2}^{j}$ in R_{d} such that $u(m)=j$. Furthermore, there exists $\widehat{w_{i}} \in R_{d}$ such that $u\left(\widehat{w}_{i}\right)=u\left(w_{i}\right)-u\left(w_{1}\right)$. Let $\widehat{W}=\operatorname{span}\left\{\widehat{w}_{1}, \ldots, \widehat{w}_{s}\right\} \subseteq R_{d}$; then by Lemma 4.2.1, we have $\operatorname{dim}_{k} R_{1} W=\operatorname{dim}_{k} R_{1} \widehat{W}$, so that to prove Lemma 4.1.1, we can also assume that $u\left(w_{1}\right)=0$.

Lemma 4.3.7. Let L_{d} be a lex d-monomial space in R_{d} such that $L_{d} \neq R_{d}$, and m the first monomial in $R_{d} \backslash L_{d}$. Then

$$
\operatorname{dim}_{k} R_{1}\left(L_{d}+k m\right)-\operatorname{dim}_{k} R_{1} L_{d}= \begin{cases}n, & \text { if } u(m)=0 \\ 2, & \text { if } 1 \leq u(m) \leq h \\ 1, & \text { if } u(m)>h .\end{cases}
$$

Proof. Let $a_{m}=\operatorname{dim}_{k} R_{1}\left(L_{d}+k m\right)-\operatorname{dim}_{k} R_{1} L_{d}$; by Lemma 4.2.1 and Remark 4.3.6 (5), we see that a_{m} depends only on $u(m)$ and does not depend on d. If $u(m)=0$, then it is clear that $a_{m}=n$. If $u(m)>h$, then by Lemma 4.3.3 (2), we see that $a_{m} \geq 1$.

If $1 \leq u(m) \leq h$, then $a_{m} \geq 2$. Indeed, if $x_{n-1} m \in R_{1} L_{d}$, then $x_{n-1} m=x_{j} m^{\prime}$ in R_{d} for some $j \neq n-1$ and $m^{\prime} \in L_{d}$. Since $u\left(x_{n-1} m\right)=u\left(x_{n-1}\right)+u(m) \leq n-2+h$, it follows that $u\left(m^{\prime}\right) \leq n-2+h$. Note that $m^{\prime} \succ_{\text {ex }} m$, then by Lemma 4.3.5 (1), we see that $u\left(m^{\prime}\right)<u(m)$, hence $x_{j}=x_{n}$, and then $u\left(x_{n-1} m\right)=u\left(x_{n} m^{\prime}\right) \geq n-1+h$, which is a contradiction. Thus, $x_{n-1} m \notin R_{1} L_{d}$. By Lemma 4.3.3 (2), we see that $x_{n} m$ is also not in $R_{1} L_{d}$, so $a_{m} \geq 2$.

Next we set $d=n+h$ and cosider R_{n+h}. By Lemma 4.3.2, it is easy to see that for any monomial $m \in R_{n+h}, u(m) \geq n-1+h$ if and only if $m=x_{n} m^{\prime}$ for some monomial $m^{\prime} \in R_{n-1+h}$, so that

$$
R_{n+h}=x_{n} R_{n-1+h} \bigoplus\left(\bigoplus_{i=0}^{n-2+h} k m_{i}\right)
$$

where $m_{i}=x_{1}^{n+h-i} x_{2}^{i}$ in R_{n+h} is such that $u\left(m_{i}\right)=i$, thus we have

$$
\operatorname{dim}_{k} R_{n+h}-\operatorname{dim}_{k} R_{n-1+h}=n-1+h .
$$

On the other hand, since R_{n-1+h} is a lex $(n-1+h)$-monomial space and $R_{n+h}=$ $R_{1} R_{n-1+h}$, it follows that

$$
\begin{aligned}
\operatorname{dim}_{k} R_{n+h}-\operatorname{dim}_{k} R_{n-1+h} & =(n-1)+\sum_{1 \leq u(m) \leq h}\left(a_{m}-1\right)+\sum_{u(m)>h}\left(a_{m}-1\right) \\
& \geq n-1+h .
\end{aligned}
$$

Since the equality holds, we must have that $a_{m}=2$ if $1 \leq u(m) \leq h$ and $a_{m}=1$ if $u(m)>h$.

Lemma 4.3.8. Let C be an n-compressed d-monomial space.
(1) $R_{1} C$ is an n-compressed $(d+1)$-monomial space.
(2) If C is spanned by monomials $c_{1}, \ldots, c_{s} \in R_{d}$ with $u\left(c_{i}\right)=i-1$ and $s \leq h+1$, then $\left|R_{1} C(0)\right|=n-2+s,\left|R_{1} C(1)\right|=s,\left|R_{1} C(j)\right|=0$ for $j \geq 2$, and $\operatorname{dim}_{k} R_{1} C=$ $n+2(s-1)$.
(3) If C is spanned by monomials $c_{1}, \ldots, c_{s} \in R_{d}$ with $u\left(c_{i}\right)=i-1$ and $h+2 \leq s \leq$ $n-1+h$, then $\left|R_{1} C(0)\right|=n-1+h,\left|R_{1} C(1)\right|=s,\left|R_{1} C(j)\right|=0$ for $j \geq 2$, and $\operatorname{dim}_{k} R_{1} C=n-1+h+s$.

Proof. (1) Let m be a monomial in $R_{1} C$ such that $u(m)=p(n-1+h)+q$ for some $p \geq 0$ and $1 \leq q<n-1+h$; then $m=x_{j} m^{\prime}$ for some j and $m^{\prime} \in C$. If $n-1+h$ divides
$u\left(m^{\prime}\right)$ then $j \neq 1$ or n, so that $x_{j-1} m^{\prime} \in R_{1} C$ and $u\left(x_{j-1} m^{\prime}\right)=u\left(x_{j} m^{\prime}\right)-1=u(m)-1$; if $n-1+h$ does not divide $u\left(m^{\prime}\right)$, then since C is n-compressed, we have a monomial $m^{\prime \prime} \in C$ such that $u\left(m^{\prime \prime}\right)=u\left(m^{\prime}\right)-1$, so that $x_{j} m^{\prime \prime} \in R_{1} C$ and $u\left(x_{j} m^{\prime \prime}\right)=u\left(x_{j} m^{\prime}\right)-1=$ $u(m)-1$. So $R_{1} C$ is an n-compressed $(d+1)$-monomial space.
(2) It is clear that $\left|R_{1} C(j)\right|=0$ for $j \geq 2$. By Lemma 4.2.1, we have

$$
\begin{aligned}
\operatorname{dim}_{k} R_{1} C & =s n-\sum_{1 \leq i \leq s-1} \lambda\left(c_{i}, c_{i+1}\right) \\
& =s n-(s-1)(n-2) \\
& =n+2(s-1) .
\end{aligned}
$$

Thus, $\left|R_{1} C(0)\right|+\left|R_{1} C(1)\right|=n+2(s-1)$. By (1), we know that $R_{1} C$ is n-compressed, so that $u\left(x_{n-1} c_{s}\right)=n-2+s-1<n-1+h$ and $u\left(x_{n} c_{s}\right)=n-1+h+s-1$ imply that $\left|R_{1} C(0)\right| \geq n-2+s$ and $\left|R_{1} C(1)\right| \geq s$. Thus, $\left|R_{1} C(0)\right|=n-2+s$ and $\left|R_{1} C(1)\right|=s$.
(3) It is clear that $\left|R_{1} C(j)\right|=0$ for $j \geq 2$. By Lemma 4.2.1, we have

$$
\begin{aligned}
\operatorname{dim}_{k} R_{1} C & =s n-\sum_{1 \leq i \leq s-1} \lambda\left(c_{i}, c_{i+1}\right)-\sum_{1 \leq i \leq s-h-1} \lambda\left(c_{i}, c_{i+h+1}\right) \\
& =s n-(s-1)(n-2)-(s-h-1) \\
& =n-1+h+s .
\end{aligned}
$$

Thus, $\left|R_{1} C(0)\right|+\left|R_{1} C(1)\right|=n-1+h+s$. By (1), we know that $R_{1} C$ is n-compressed, so that $u\left(x_{n+h-s} c_{s}\right)=n-2+h<n-1+h$ and $u\left(x_{n} c_{s}\right)=n-1+h+s-1$ imply that $\left|R_{1} C(0)\right| \geq n-1+h$ and $\left|R_{1} C(1)\right| \geq s$. Thus, $\left|R_{1} C(0)\right|=n-1+h$ and $\left|R_{1} C(1)\right|=s$.

Lemma 4.3.9. Let W be a d-monomial space spanned by monomials $w_{1}, \ldots, w_{s} \in R_{d}$ with $u\left(w_{1}\right)<\cdots<u\left(w_{s}\right) \leq d$, and $u\left(w_{s}\right)-u\left(w_{1}\right)<n-1+h$. Let C be the n compressed d-monomial space spanned by monomials $c_{1}, \ldots, c_{s} \in R_{d}$ with $u\left(c_{i}\right)=i-1$ for $1 \leq i \leq s$, and set $\widehat{W}=\left\{\right.$ monomial $\left.m \in R_{1} W \mid u\left(w_{1}\right) \leq u(m)<u\left(w_{1}\right)+n-1+h\right\}$. Then $|\widehat{W}| \geq\left|R_{1} C(0)\right|$ and $\operatorname{dim}_{k} R_{1} W \geq \operatorname{dim}_{k} R_{1} C$.

Proof. By Remark 4.3.6 (6), we can assume that $u\left(w_{1}\right)=0$, then $u\left(w_{s}\right)<n-1+h$, and $\widehat{W}=R_{1} W(0)$. By Lemma 4.3.8, we see that $\left|R_{1} C(1)\right|=s$, hence $\left|R_{1} W(1)\right| \geq$ $s=\left|R_{1} C(1)\right|$. Note that $\operatorname{dim}_{k} R_{1} W=\left|R_{1} W(0)\right|+\left|R_{1} W(1)\right|$ and $\operatorname{dim}_{k} R_{1} C=\left|R_{1} C(0)\right|+$ $\left|R_{1} C(1)\right|$, thus we only need to prove that $\left|R_{1} W(0)\right| \geq\left|R_{1} C(0)\right|$.

First we suppose $s \leq h+1$, then by Lemma 4.3 .8 we have $\left|R_{1} C(0)\right|=n-2+s$. If there exist w_{i}, w_{i+1} such that $u\left(w_{i+1}\right)-u\left(w_{i}\right)>n-2$, then $0=u\left(x_{1} w_{1}\right)<u\left(x_{1} w_{2}\right)<$ $\cdots<u\left(x_{1} w_{i}\right)<u\left(x_{2} w_{i}\right)<\cdots<u\left(x_{n-1} w_{i}\right)<u\left(x_{1} w_{i+1}\right)<\cdots<u\left(x_{1} w_{s}\right)<n-1+h$, which implies that $\left|R_{1} W(0)\right| \geq s+n-2=\left|R_{1} C(0)\right|$. So we can assume that $u\left(w_{i+1}\right)-$ $u\left(w_{i}\right) \leq n-2$ for $1 \leq i \leq s-1$. For any non-negtive integer $l \leq u\left(x_{n-1} w_{s}\right)$, there exists w_{i} such that $u\left(w_{i}\right)$ is maximal with respect to the property that $u\left(w_{i}\right) \leq l$, then it is easy to see that $0 \leq l-u\left(w_{i}\right) \leq n-3$ and $u\left(x_{l-u\left(w_{i}\right)+1} w_{i}\right)=l$. Therefore, if $u\left(x_{n-1} w_{s}\right) \geq n-1+h$, then

$$
\left|R_{1} W(0)\right|=n-1+h \geq n-2+s=\left|R_{1} C(0)\right| ;
$$

if $u\left(x_{n-1} w_{s}\right)<n-1+h$, then

$$
\left|R_{1} W(0)\right|=u\left(x_{n-1} w_{s}\right)+1 \geq(n-2)+(s-1)+1=\left|R_{1} C(0)\right| .
$$

Next we suppose $h+2 \leq s \leq n-1+h$, then by Lemma 4.3 .8 we have $\left|R_{1} C(0)\right|=$ $n-1+h$, and it is easy to see that $u\left(w_{i+1}\right)-u\left(w_{i}\right) \leq n-2$ for $1 \leq i \leq s-1$, and $u\left(x_{n-1} w_{s}\right) \geq n-1+h$; therefore, similar to the above argument, we have $\left|R_{1} W(0)\right|=n-1+h=\left|R_{1} C(0)\right|$.

Lemma 4.3.10. Let W be a d-monomial space spanned by monomials $w_{1}, \ldots, w_{s} \in R_{d}$ with $u\left(w_{1}\right)<\cdots<u\left(w_{s}\right) \leq d$. If there exists $1 \leq i<j \leq s$ such that $j-i \geq h$ and $u\left(w_{j}\right)-u\left(w_{i}\right)<n-1+h$, then

$$
\operatorname{dim}_{k} R_{1} L_{W} \leq \operatorname{dim}_{k} R_{1} W,
$$

where L_{W} is the lex d-monomial space in R_{d} such that $\operatorname{dim}_{k} L_{W}=\operatorname{dim}_{k} W$.

Proof. By Lemma 4.3.7, we have that $\operatorname{dim}_{k} R_{1} L_{W} \leq \operatorname{dim}_{k} L_{W}+(n-1)+h=$ $\operatorname{dim}_{k} W+n-1+h=s+n-1+h$. On the other hand, it is easy to check that if $1 \leq p<i$, then $x_{1} w_{p} \notin R_{1} \operatorname{span}\left\{w_{p+1}, \ldots, w_{i}, \ldots, w_{j}\right\}$; if $j<q \leq s$, then $x_{n} w_{q} \notin R_{1} \operatorname{span}\left\{w_{1}, \ldots, w_{j}, \ldots, w_{q-1}\right\}$. Thus, we have

$$
\operatorname{dim}_{k} R_{1} W \geq \operatorname{dim}_{k} R_{1} \operatorname{span}\left\{w_{i}, \ldots, w_{j}\right\}+(i-1)+(s-j) .
$$

By Lemma 4.3.8 and 4.3.9, it is easy to see that

$$
\operatorname{dim}_{k} R_{1} \operatorname{span}\left\{w_{i}, \ldots, w_{j}\right\} \geq n-1+h+(j-i+1) .
$$

Therefore, we have

$$
\begin{aligned}
\operatorname{dim}_{k} R_{1} W & \geq n-1+h+(j-i+1)+(i-1)+(s-j) \\
& =n-1+h+s \\
& \geq \operatorname{dim}_{k} R_{1} L_{W} .
\end{aligned}
$$

Lemma 4.3.11. Let C be an n-compressed d-monomial space in R_{d}, and suppose that there exists $t \geq 0$ such that $0<|C(i)| \leq h$ for $i=0, \ldots$, and $|C(i)|=0$ for $i>t$. Then

$$
\operatorname{dim}_{k} R_{1} L_{C} \leq \operatorname{dim}_{k} R_{1} C,
$$

where L_{C} is the lex d-monomial space in R_{d} such that $\operatorname{dim}_{k} L_{C}=\operatorname{dim}_{k} C$.

Proof. If $|C(j)|<|C(j+1)|+(n-2)$ for some $0 \leq j \leq t-1$, then we consider the n-compressed d-monomial space C^{\prime} such that

$$
\begin{aligned}
\left|C^{\prime}(j)\right| & =|C(j)|+1, \\
\left|C^{\prime}(t)\right| & =|C(t)|-1, \\
\left|C^{\prime}(i)\right| & =|C(i)| \text { if } i \neq j, t .
\end{aligned}
$$

By Lemma 4.3.8, one sees easily that

$$
\begin{aligned}
\left|R_{1} C(0)\right| & =|C(0)|+(n-2), \\
\left|R_{1} C(i)\right| & =\max \{|C(i)|+(n-2),|C(i-1)|\} \text { for } 1 \leq i \leq t, \\
\left|R_{1} C(t+1)\right| & =|C(t)|, \\
\left|R_{1} C(i)\right| & =0 \text { for } i>t+1 .
\end{aligned}
$$

and we have similar formulas for C^{\prime}. Then it is easy to check that

$$
\begin{aligned}
\left|R_{1} C^{\prime}(j)\right| & \leq\left|R_{1} C(j)\right|+1, \\
\left|R_{1} C^{\prime}(t)\right| & \leq\left|R_{1} C(t)\right|, \\
\left|R_{1} C^{\prime}(t+1)\right| & =\left|R_{1} C(t+1)\right|-1, \\
\left|R_{1} C^{\prime}(i)\right| & =\left|R_{1} C(i)\right| \text { for } i \neq j, t, t+1 .
\end{aligned}
$$

Therefore, we have that $\operatorname{dim}_{k} C^{\prime}=\operatorname{dim}_{k} C$ and $\operatorname{dim}_{k} R_{1} C^{\prime} \leq \operatorname{dim}_{k} R_{1} C$. If $\left|C^{\prime}(j)\right|=h+$ 1, then by Lemma 4.3.10, $\operatorname{dim}_{k} R_{1} L_{C} \leq \operatorname{dim}_{k} R_{1} C^{\prime}$, and then $\operatorname{dim}_{k} R_{1} L_{C} \leq \operatorname{dim}_{k} R_{1} C$. So we can assume that $\left|C^{\prime}(j)\right| \leq h$, that is, C^{\prime} satisfies the assumption of the Lemma.

By the above observation, we can assume that C is an n-compressed d monomial space in R_{d} and there exists $t \geq 0$, such that $0<|C(i)| \leq h$ for $0 \leq i \leq t$, $|C(i)| \geq|C(i+1)|+(n-2)$ for $0 \leq i \leq t-1$, and $|C(i)|=0$ for $i>t$. Then by Lemma 4.3.8, it is easy to see that

$$
\begin{aligned}
\operatorname{dim}_{k} R_{1} C & =|C(0)|+(n-2)+|C(0)|+|C(1)|+\cdots+|C(t)| \\
& =|C(0)|+n-2+\operatorname{dim}_{k} C .
\end{aligned}
$$

If $\left|L_{C}(0)\right|>|C(0)|$, then by Remark 4.3.6 (4), we have that for $1 \leq i \leq t$,

$$
\left|L_{C}(i)\right| \geq\left|L_{C}(0)\right|-1-i(n-2) \geq|C(0)|-i(n-2) \geq|C(i)|,
$$

and then

$$
\begin{aligned}
\operatorname{dim}_{k} L_{C} & \geq\left|L_{C}(0)\right|+\left|L_{C}(1)\right|+\cdots+\left|L_{C}(t)\right| \\
& >|C(0)|+|C(1)|+\cdots+|C(t)| \\
& =\operatorname{dim}_{k} C,
\end{aligned}
$$

which is a contradiction. So we have $\left|L_{C}(0)\right| \leq|C(0)| \leq h$. By Remark 4.3.6 (2), we see that $\left|L_{C}(i)\right| \leq h$ for $i \geq 0$. Thus, by Remark 4.3 .6 (3), one sees easily that there exists $t^{\prime} \geq 0$ such that $\left|L_{C}(i)\right| \geq\left|L_{C}(i+1)\right|+(n-2)$ for $0 \leq i \leq t^{\prime}-1$, and $\left|L_{C}(i)\right|=0$ for $i>t^{\prime}$. Therefore, by Lemma 4.3.8, it is easy to see that

$$
\begin{aligned}
\operatorname{dim}_{k} R_{1} L_{C} & =\left|L_{C}(0)\right|+(n-2)+\left|L_{C}(0)\right|+\left|L_{C}(1)\right|+\cdots+\left|L_{C}\left(t^{\prime}\right)\right| \\
& =\left|L_{C}(0)\right|+(n-2)+\operatorname{dim}_{k} L_{C} \\
& \leq|C(0)|+n-2+\operatorname{dim}_{k} C \\
& =\operatorname{dim}_{k} R_{1} C .
\end{aligned}
$$

Proof of Theorem 4.3.1. Let W be a d-monomial space spanned by monomials w_{1}, \ldots, w_{s} in R_{d} with $u\left(w_{1}\right)<\cdots<u\left(w_{s}\right)$; by Lemma 4.1.1, we only need to prove that

$$
\operatorname{dim}_{k} R_{1} L_{W} \leq \operatorname{dim}_{k} R_{1} W,
$$

where L_{W} is the lex d-monomial space in R_{d} such that $\operatorname{dim}_{k} L_{W}=\operatorname{dim}_{k} W$.

By Remark 4.3.6 (6), we can assume that $u\left(w_{1}\right)=0$ and $u\left(w_{s}\right) \leq d$. Note that there exist $1=i_{0}<i_{1}<\cdots<i_{t} \leq s$ for some $t \geq 0$ such that $u\left(w_{s}\right)-u\left(w_{i_{t}}\right)<n-1+h$,
and for $1 \leq j \leq t, u\left(w_{i_{j}-1}\right)-u\left(w_{i_{j-1}}\right)<n-1+h$ and $u\left(w_{i_{j}}\right)-u\left(w_{i_{j-1}}\right) \geq n-1+h$. Set

$$
\begin{aligned}
W[0] & =\left\{w_{i_{0}}, \ldots, w_{i_{1}-1}\right\}, \\
W[1] & =\left\{w_{i_{1}}, \ldots, w_{i_{2}-1}\right\}, \\
& \ldots, \ldots, \\
W[t] & =\left\{w_{i_{t}}, \ldots, w_{s}\right\},
\end{aligned}
$$

then by Lemma 4.3.10, we can assume that $|W[j]| \leq h$ for $0 \leq j \leq t$.

Let C be the n-compressed d-monomial space such that $|C(j)|=|W[j]|$ for $0 \leq j \leq t$ and $|C(j)|=0$ for $j \geq t+1$, then $\operatorname{dim}_{k} C=\operatorname{dim}_{k} W$ and it is easy to see that

$$
\begin{aligned}
& \operatorname{dim}_{k} R_{1} C=\left|R_{1} C(0)\right|+\left|R_{1} C(1)\right|+\cdots+\left|R_{1} C(t)\right|+\left|R_{1} C(t+1)\right|, \\
& \operatorname{dim}_{k} R_{1} W=\left|\left(R_{1} W\right)[0]\right|+\left|\left(R_{1} W\right)[1]\right|+\cdots+\left|\left(R_{1} W\right)[t]\right|+\left|\left(R_{1} W\right)[t+1]\right|,
\end{aligned}
$$

where $\left(R_{1} W\right)[0]=R_{1} W(0),\left(R_{1} W\right)[t+1]$ is the set of monomails $m \in R_{1} W$ such that $u(m) \geq u\left(w_{i_{t}}\right)+n-1+h$, and for $1 \leq j \leq t,\left(R_{1} W\right)[j]$ is the set of monomials $m \in R_{1} W$ such that $u\left(w_{i_{j-1}}\right)+n-1+h \leq u(m)<u\left(w_{i_{j}}\right)+n-1+h$. First it is easy to see that

$$
\left|\left(R_{1} W\right)[t+1]\right| \geq|W[t]|=|C(t)|=\left|R_{1} C(t+1)\right| .
$$

Then By Lemma 4.3.9, we get

$$
\left|R_{1} W(0)\right| \geq\left|R_{1} C(0)\right| .
$$

Finally, by Lemma 4.3.8 it is easy to see that for $1 \leq j \leq t$,

$$
\left|R_{1} C(j)\right|=\max \{|C(j-1)|,|C(j)|+(n-2)\} ;
$$

if $\left|R_{1} C(j)\right|=|C(j-1)|$, then we have

$$
\left|\left(R_{1} W\right)[j]\right| \geq|W[j-1]|=|C(j-1)|=\left|R_{1} C(j)\right| ;
$$

if $\left|R_{1} C(j)\right|=|C(j)|+(n-2)$, then by Lemma 4.3.9, we also have

$$
\left|\left(R_{1} W\right)[j]\right| \geq\left|R_{1} C(j)\right| .
$$

So, we get $\operatorname{dim}_{k} R_{1} W \geq \operatorname{dim}_{k} R_{1} C$. By Lemma 4.3.11, we know that $\operatorname{dim}_{k} R_{1} C \geq$ $\operatorname{dim}_{k} R_{1} L_{C}$, where L_{C} is the lex d-monomail space such that $\operatorname{dim}_{k} L_{C}=\operatorname{dim}_{k} C$. Note that $L_{C}=L_{W}$, so $\operatorname{dim}_{k} R_{1} W \geq \operatorname{dim}_{k} R_{1} L_{W}$.

4.4 Two other classes of projective monomial curves

The main results of this section are Theorem 4.4.1 and Theorem 4.4.5.

Theorem 4.4.1. Let

$$
A=\left(\begin{array}{ccccc}
0 & 1+h & 2+h & \cdots & n-1+h \\
1 & 1 & 1 & \cdots & 1
\end{array}\right), \text { where } n \geq 3, h \in \mathbb{Z}^{+}
$$

Let R be the toric ring associated to A.
(1) If $h=1$, then Macaulay's Theorem holds over R.
(2) If $n=3$, then Macaulay's Theorem holds over R.
(3) If $h \geq 2$ and $n \geq 4$, then Macaulay's Theorem does not hold over R.

In order to prove Theorem 4.4.1, we need the following lemmas 4.4.2, 4.4.3, 4.4.4.

Lemma 4.4.2. Let R be the toric ring defined in Theorem 4.4.1 and R^{\prime} the toric ring defined in section 4.3 such that R and R^{\prime} satisfy the assumptions of Lemma 4.2.2; then we have an isomorphism $\hat{f}: S=k\left[x_{1}, \ldots, x_{n}\right] \longrightarrow S^{\prime}=k\left[y_{1}, \ldots, y_{n}\right]$ with $\hat{f}\left(x_{i}\right)=y_{n+1-i}$, which induces an isomorphism f from R to R^{\prime}. Setting $x_{1}>\cdots>x_{n}$ and $y_{1}>\cdots>y_{n}$ as usual, by definition 2.1.14 we have the lex orders $>_{\text {lex, }}>_{\text {lex }}$ in R and R^{\prime}.
(1) Let m be a monomial in R_{d} such that $y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}$ is the top representative of the fiber of the monomail $f(m) \in R_{d^{\prime}}^{\prime}$ then $\hat{f}^{-1}\left(y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}\right)=x_{1}^{\alpha_{n}} \cdots x_{n}^{\alpha_{1}}$ is the toprepresentative of the fiber of m.
(2) Let m and m^{\prime} be two monomials in R_{d} such that $u(m)<u\left(m^{\prime}\right)$, then $\left.m\right\rangle_{\text {lex }} m^{\prime}$ in R_{d}, so that the lex order $>_{\text {lex }}$ in R_{d} is the same as the natural order $>_{u}$ definde in Remark 4.1.3.

Proof. (1)Suppose that $x_{1}^{\beta_{n}} \cdots x_{n}^{\beta_{1}}$ is the top representative of the fiber of m, then $\beta_{n} \geq \alpha_{n}$ and $\hat{f}\left(x_{1}^{\beta_{n}} \cdots x_{n}^{\beta_{1}}\right)=y_{1}^{\beta_{1}} \cdots y_{n}^{\beta_{n}}$ is a monomial in the fiber of $f(m)$. Since $y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}$ is the top representative of the fiber of $f(m)$, by Lemma 4.3.2 we have $\beta_{n} \leq \alpha_{n}$, so that $\beta_{n}=\alpha_{n}$, and then $\beta_{n-1} \geq \alpha_{n-1}$, but by Lemma 4.3.2 we have $\beta_{n-1} \leq \alpha_{n-1}$, so that $\beta_{n-1}=\alpha_{n-1}$. If there exits $2 \leq i \leq n-2$ such that $\beta_{i}>\alpha_{i}$ and $\beta_{j}=\alpha_{j}$ for $j>i$, then the monomial $y_{1}^{\beta_{1}} \cdots y_{i}^{\beta_{i}} y_{i+1}^{\alpha_{i+1}} \cdots y_{n}^{\alpha_{n}}$ is in the fiber of $f(m)$, by Lemma 4.3.2 on sees easily that $\beta_{i} \leq \alpha_{i}$, which is a contradiction, so we have $\beta_{i}=\alpha_{i}$ for $i=2, \ldots, n-2$. Since $\operatorname{deg}(m)=\beta_{1}+\cdots+\beta_{n}=\alpha_{1}+\cdots+\alpha_{n}$, it follows that $\beta_{1}=\alpha_{1}$, and then $x_{1}^{\alpha_{n}} \cdots x_{n}^{\alpha_{1}}=x_{1}^{\beta_{n}} \cdots x_{n}^{\beta_{1}}$ is the top-representative of the fiber of m.
(2)Let $y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}, y_{1}^{\beta_{1}} \cdots y_{n}^{\beta_{n}}$ be the top-representatives of the fibers of $f(m)$ and $f\left(m^{\prime}\right)$, then (1) implies that $x_{1}^{\alpha_{n}} \cdots x_{n}^{\alpha_{1}}, x_{1}^{\beta_{n}} \cdots x_{n}^{\beta_{1}}$ are the top-representatives of the fibers of m and m^{\prime}. Since $u(m)<u\left(m^{\prime}\right)$, by Lemma 4.2.3(1), we have $u(f(m))>$ $u\left(f\left(m^{\prime}\right)\right)$, so that Lemma 4.3.2 implies $\alpha_{n} \geq \beta_{n}$. If $\alpha_{n}>\beta_{n}$, then $m>_{\text {lex }} m^{\prime}$ and we are done. So we may assume $\alpha_{n}=\beta_{n}$. Then similarly, by Lemma 4.3 . 2 we have $\alpha_{n-1} \geq \beta_{n-1}$, and if $\alpha_{n-1}>\beta_{n-1}$, we are done. So we can also assume that $\alpha_{n-1}=$ β_{n-1}. Then applying Lemma 4.3.2 again, we see that there exist $2 \leq r \leq n-2$,
$1 \leq r^{\prime} \leq r-1$ such that

$$
\begin{aligned}
& y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}=y_{1}^{d-1-\alpha_{n-1}-\alpha_{n}} y_{r} y_{n-1}^{\alpha_{n-1}} y_{n}^{\alpha_{n}}, \\
& y_{1}^{\beta_{1}} \cdots y_{n}^{\beta_{n}}=y_{1}^{d-1-\alpha_{n-1}-\alpha_{n}} y_{r^{\prime}} y_{n-1}^{\alpha_{n-1}} y_{n}^{\alpha_{n}},
\end{aligned}
$$

and then we have that

$$
\begin{aligned}
x_{1}^{\alpha_{n}} \cdots x_{n}^{\alpha_{1}} & =x_{1}^{\alpha_{n}} x_{2}^{\alpha_{n-1}} x_{n+1-r} x_{n}^{d-1-\alpha_{n-1}-\alpha_{n}} \\
& >_{\text {lex }} x_{1}^{\alpha_{n}} x_{2}^{\alpha_{n-1}} x_{n+1-r^{\prime}} x_{n}^{d-1-\alpha_{n-1}-\alpha_{n}} \\
& =x_{1}^{\beta_{n}} \cdots x_{n}^{\beta_{1}},
\end{aligned}
$$

which implies $m>_{l e x} m^{\prime}$.
Lemma 4.4.3. Let R be the toric ring defined in Theorem 4.4.1 and suppose $h=1$. Let L_{d} be an r dimensional lex d-monomial space in R_{d} with $0 \leq r<\operatorname{dim}_{k} R_{d}$, and m the first monomial in $R_{d} \backslash L_{d}$. If we set

$$
a_{r}=\operatorname{dim}_{k} R_{1}\left(L_{d}+k m\right)-\operatorname{dim}_{k} R_{1} L_{d},
$$

then $a_{0}=n, a_{1}=2$ and $a_{r}=1$ for $1<r<\operatorname{dim}_{k} R_{d}$.

Proof. Without the loss of generality, we can assume $d \geq 1$. It is clear that $a_{0}=n$. If $r=1$, then it is easy to see that $L_{d}=\operatorname{span}\left\{x_{1}^{d}\right\}$ and $m=x_{1}^{d-1} x_{2}$ in R_{d}, so that by Lemma 4.2.1,

$$
\operatorname{dim}_{k} R_{1}\left(L_{d}+k m\right)=2 n-\lambda\left(x_{1}^{d}, x_{1}^{d-1} x_{2}\right)=2 n-(n-2)=n+2,
$$

hence $a_{0}+a_{1}=n+2$, and then $a_{1}=2$. If $1<r<\operatorname{dim}_{k} R_{d}$, by Lemma 4.4.2, we see that $u\left(x_{n} m\right)>u\left(x_{j} m^{\prime}\right)$ for any $1 \leq j \leq n$ and any monomail $m^{\prime} \in L_{d}$, hence $x_{n} m \notin R_{1} L_{d}$, and then $a_{r} \geq 1$ for $1<r<\operatorname{dim}_{k} R_{d}$. Note that $\operatorname{dim}_{k} R_{1} R_{d}=\operatorname{dim}_{k} R_{d+1}$, and it is easy to see that

$$
\operatorname{dim}_{k} R_{d+1}-\operatorname{dim}_{k} R_{d}=\operatorname{dim}_{k} R_{d+1}^{\prime}-\operatorname{dim}_{k} R_{d}^{\prime}=n-1+h=n,
$$

where R^{\prime} is the toric ring defined in Lemma 4.4.2. Thus,

$$
\left(a_{0}-1\right)+\left(a_{1}-1\right)+\sum_{1<r<\operatorname{dim}_{k} R_{d}}\left(a_{r}-1\right)=n,
$$

so that $\sum_{1<r<\operatorname{dim}_{k} R_{d}}\left(a_{r}-1\right)=0$, which implies $a_{r}=1$ for $1<r<\operatorname{dim}_{k} R_{d}$.

Lemma 4.4.4. Let R and R^{\prime} be the toric rings defined in Lemma 4.4.2 and suppose $n=3$. If L_{d}, L_{d}^{\prime} are lex d-monomial spaces in R_{d} and R_{d}^{\prime} such that $\operatorname{dim}_{k} L_{d}=\operatorname{dim}_{k} L_{d^{\prime}}^{\prime}$ then $\operatorname{dim}_{k} R_{1} L_{d}=\operatorname{dim}_{k} R_{1}^{\prime} L_{d}^{\prime}$.

Proof. Since the toric ring R is defined by the matrix $A=\left(\begin{array}{ccc}0 & 1+h & 2+h \\ 1 & 1 & 1\end{array}\right)$ and KerA has dimension 1, one sees easily that the toric ideal $I_{\mathcal{A}}$ is generated by the binomial $x_{2}^{2+h}-x_{1} x_{3}^{1+h}$, so that we have $R=k\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{2}^{2+h}-x_{1} x_{3}^{1+h}\right)$, and similarly, $R^{\prime}=k\left[y_{1}, y_{2}, y_{3}\right] /\left(y_{2}^{2+h}-y_{1}^{1+h} y_{3}\right)$.

Let T_{d} be the set of monomials in $k\left[x_{1}, x_{2}, x_{3}\right]_{d}$ which can not be divided by x_{2}^{2+h} and T_{d}^{\prime} the set of monomials in $k\left[y_{1}, y_{2}, y_{3}\right]_{d}$ which can not be divided by y_{2}^{2+h}. It is easy to see that for any monomial $m \in R_{d}$ there is one and only one monomial in the fiber of m that can not be divided by x_{2}^{2+h}, then it follows that the monomials in R_{d} are in one-to-one correspondence with the monomials in T_{d}. Furthermore, if $\operatorname{dim}_{k} L_{d}=r$ and L_{d} is spanned by the monomials $m_{1}, \ldots, m_{r} \in R_{d}$ with $u\left(m_{1}\right)<\cdots<u\left(m_{r}\right)$, then m_{1}, \ldots, m_{r} have top-representatives $w_{1}, \ldots, w_{r} \in T_{d}$ that are the first r monomials in T_{d}. Similarly, if $\operatorname{dim}_{k} L_{d}^{\prime}=r$ and L_{d}^{\prime} is spanned by monomials $m_{1}^{\prime}, \ldots, m_{r}^{\prime} \in R_{d^{\prime}}^{\prime}$, then $m_{1}^{\prime}, \ldots, m_{r}^{\prime}$ have top-representatives $w_{1}^{\prime}, \ldots, w_{r}^{\prime} \in$ T_{d}^{\prime} that are the first r monomials in T_{d}^{\prime}.

Note that the natural isomorphism $g: S=k\left[x_{1}, x_{2}, x_{3}\right] \longrightarrow S^{\prime}=k\left[y_{1}, y_{2}, y_{3}\right]$ with $g\left(x_{j}\right)=y_{j}$ for $j=1,2,3$ induces an order-preserving bijection between T_{d} and $T_{d^{\prime}}^{\prime}$, then $g\left(w_{i}\right)=w_{i}^{\prime}$ for $1 \leq i \leq r$. Setting $W=\operatorname{span}\left\{w_{1}, \ldots, w_{r}\right\} \subseteq S_{d}$ and
$W^{\prime}=\operatorname{span}\left\{w_{1}^{\prime}, \ldots, w_{r}^{\prime}\right\} \subseteq S_{d^{\prime}}^{\prime}$ one sees easily that $\operatorname{dim}_{k} S_{1} W=\operatorname{dim}_{k} S_{1}^{\prime} W^{\prime}$. Let p be the number of monomials in $S_{1} W$ that can be divided by x_{2}^{2+h} and p^{\prime} the number of monomials in $S_{1}^{\prime} W^{\prime}$ that can be divided by y_{2}^{2+h}; then we have $p=p^{\prime}$. Note that if $x_{2} w_{i}$ can be divided by x_{2}^{2+h} for some i, then $x_{2} w_{i}=x_{3}\left(x_{1} x_{3}^{h} w_{i} / x_{2}^{1+h}\right)$ in R_{d+1} and $x_{1} x_{3}^{h} w_{i} / x_{2}^{1+h}=w_{j}$ for some $j<i$. Therefore, the monomials in the lex $(\mathrm{d}+1)$ monomial space $R_{1} L_{d}$ are in one-to-one correspondence with the monomials in $S_{1} W$ that can not be divided by x_{2}^{2+h}, so that we have

$$
\operatorname{dim}_{k} R_{1} L_{d}=\operatorname{dim}_{k} S_{1} W-p
$$

Similarly, we have

$$
\operatorname{dim}_{k} R_{1}^{\prime} L_{d}^{\prime}=\operatorname{dim}_{k} S_{1}^{\prime} W-p^{\prime},
$$

and so $\operatorname{dim}_{k} R_{1} L_{d}=\operatorname{dim}_{k} R_{1}^{\prime} L_{d}^{\prime}$.

Proof of Theorem 4.4.1. (1) Let W be a d-monomial space spanned by monomials $w_{1}, \ldots, w_{r} \in R_{d}$ with $u\left(w_{1}\right)<\cdots<u\left(w_{r}\right)$. By Lemma 4.1.1, it suffices to prove that $\operatorname{dim}_{k} R_{1} L_{W} \leq \operatorname{dim}_{k} R_{1} W$, where L_{W} is the lex d-monomial space in R_{d} such that $\operatorname{dim}_{k} L_{W}=\operatorname{dim}_{k} W=r$.

We prove by induction on r. If $r=1$, then $\operatorname{dim}_{k} R_{1} L_{W}=\operatorname{dim}_{k} R_{1} W=n$. If $r=2$, then by Lemma 4.4.3, $\operatorname{dim}_{k} R_{1} L_{W}=a_{0}+a_{1}=n+2$, and by Lemma 4.2.1, $\operatorname{dim}_{k} R_{1} W=2 n-\lambda\left(w_{1}, w_{2}\right)$. It is easy to see that $\lambda\left(w_{1}, w_{2}\right) \leq n-2$, thus we have

$$
\operatorname{dim}_{k} R_{1} W \geq 2 n-(n-2)=n+2=\operatorname{dim}_{k} R_{1} L_{W}
$$

If $r>2$,let \widehat{W} be the d-monomial space spanned by monomials $w_{1}, \ldots, w_{r-1} \in R_{d}$ and $L_{\widehat{W}}$ the lex d-monomial space in R_{d} such that $\operatorname{dim}_{k} L_{\widehat{W}}=\operatorname{dim}_{k} \widehat{W}=r-1$, then by induction we have $\operatorname{dim}_{k} R_{1} L_{\widehat{W}} \leq \operatorname{dim}_{k} R_{1} \widehat{W}$. By Lemma 4.4.3, we see that $\operatorname{dim}_{k} R_{1} L_{W}=\operatorname{dim}_{k} R_{l} L_{\widehat{W}}+1$. On the other hand, since $u\left(x_{n} w_{r}\right)>u\left(x_{j} w_{i}\right)$ for any
$1 \leq j \leq n$ and any $1 \leq i \leq r-1$, we have $x_{n} w_{r} \notin R_{1} \widehat{W}$, and then $\operatorname{dim}_{k} R_{1} W \geq$ $\operatorname{dim}_{k} R_{1} \widehat{W}+1$. Therefore,

$$
\operatorname{dim}_{k} R_{1} W \geq \operatorname{dim}_{k} R_{1} \widehat{W}+1 \geq \operatorname{dim}_{k} R_{1} L_{\widehat{W}}+1=\operatorname{dim}_{k} R_{1} L_{W}
$$

and we are done.
(2)Let W be an r-dimendsional d-monomial space in R_{d}. By Lemma 4.1.1, it suffices to prove that $\operatorname{dim}_{k} R_{1} L_{W} \leq \operatorname{dim}_{k} R_{1} W$ where L_{W} is the lex d-monomial space in R_{d} such that $\operatorname{dim}_{k} L_{W}=r$.

Let f and R^{\prime} be as in Lemma 4.4.2, then by Lemma 4.2.3 (1), we see that $f(W)$ is an r-dimensional d-monomial space in R_{d}^{\prime} and $\operatorname{dim}_{k} R_{1} W=\operatorname{dim}_{k} R_{1}^{\prime} f(W)$. Let $L_{f(W)}^{\prime}$ be the lex d-monomial space in R_{d}^{\prime} such that $\operatorname{dim}_{k} L_{f(W)}^{\prime}=r$, then by Lemma 4.4.4, we have $\operatorname{dim}_{k} R_{1} L_{W}=\operatorname{dim}_{k} R_{1}^{\prime} L_{f(W)}^{\prime}$. By Theorem 4.3.1, we see that R^{\prime} satisfies Macaulay's Theorem, hence $\operatorname{dim}_{k} R_{1}^{\prime} L_{f(W)}^{\prime} \leq \operatorname{dim}_{k} R_{1}^{\prime} f(W)$. So, $\operatorname{dim}_{k} R_{1} L_{W} \leq$ $\operatorname{dim}_{k} R_{1} W$, and we are done.
(3)Considering the 1 -monomial space $W=\operatorname{span}\left\{x_{2}, x_{3}\right\}$ and the lex 1monomial space $L_{W}=\operatorname{span}\left\{x_{1}, x_{2}\right\}$ in R_{1}, we have $\operatorname{dim}_{k} W=\operatorname{dim}_{k} L_{W}=2$. However, by lemma 4.2.1, it is easy to see that

$$
\operatorname{dim}_{k} R_{1} W=2 n-\lambda\left(x_{2}, x_{3}\right)=2 n-(n-2)=n+2,
$$

and

$$
\operatorname{dim}_{k} R_{1} L_{W}=2 n-\lambda\left(x_{1}, x_{2}\right)= \begin{cases}2 n-1, & \text { if } n \leq h+2 \\ 2 n-(1+n-h-2)=n+h+1, & \text { if } n \geq h+3\end{cases}
$$

Since $h \geq 2$ and $n \geq 4$, one can check easily that $\operatorname{dim}_{k} R_{1} L_{W}>\operatorname{dim}_{k} R_{1} W$. So by Lemma 4.1.1, Macaulay's Theorem does not hold over R.

Theorem 4.4.5. Let

$$
A=\left(\begin{array}{ccccccc}
0 & 1 & \cdots & m-1 & m+h & \cdots & n-1+h \\
1 & 1 & \cdots & 1 & 1 & \cdots & 1
\end{array}\right)
$$

where $n \geq 4,2 \leq m \leq n-2$ and $h \in \mathbb{Z}^{+}$. Let R be the toric ring associated to A. Then Macaulay's Theorem does not hold over R.

Proof. We have three cases.

Case 1: $h \leq m-1$. Let $W=\operatorname{span}\left\{x_{1}^{2}, x_{1} x_{2}, \ldots, x_{1} x_{m}, x_{2} x_{m}\right\} \subseteq R_{2}$ and $L_{W}=$ $\operatorname{span}\left\{x_{1}^{2}, x_{1} x_{2}, \ldots, x_{1} x_{m}, x_{1} x_{m+1}\right\} \subseteq R_{2}$, then W is a 2-monomail space in R_{2} and L_{W} is a lex 2-monomial space in R_{2} such that $\operatorname{dim}_{k} W=\operatorname{dim}_{k} L_{W}=m+1$. By Lemma 4.2.1, we have

$$
\begin{gathered}
\operatorname{dim}_{k} R_{1} W=(m+1) n-\sum_{1 \leq i<j \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{j}\right)-\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{2} x_{m}\right), \\
\operatorname{dim}_{k} R_{1} L_{W}=(m+1) n-\sum_{1 \leq i<j \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{j}\right)-\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right),
\end{gathered}
$$

so that we get

$$
\operatorname{dim}_{k} R_{1} L_{W}-\operatorname{dim}_{k} R_{1} W=\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{2} x_{m}\right)-\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right) .
$$

It is easy to see that

$$
\lambda\left(x_{1} x_{m}, x_{2} x_{m}\right)=n-2, \quad \lambda\left(x_{1} x_{m-h}, x_{2} x_{m}\right)=1,
$$

and

$$
\lambda\left(x_{1} x_{i}, x_{2} x_{m}\right)=0 \text { for } 1 \leq i \leq m-1 \text { and } i \neq m-h .
$$

Thus, we have

$$
\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{2} x_{m}\right)=n-2+1=n-1
$$

On the other hand, one sees easily that

$$
\lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right)= \begin{cases}1, & \text { if } m-h \leq i \leq m-1 \\ 0, & \text { if } i<m-h\end{cases}
$$

If $n-m-1 \geq h+1$, then it is easy to check that

$$
\begin{aligned}
\lambda\left(x_{1} x_{m}, x_{1} x_{m+1}\right) & =1+((m-1)-(h+1)+1)+((n-m-1)-(h+1)+1) \\
& =n-2 h-1
\end{aligned}
$$

so that we have

$$
\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right)=h+n-2 h-1=n-h-1
$$

and then

$$
\operatorname{dim}_{k} R_{1} L_{W}-\operatorname{dim}_{k} R_{1} W=n-1-(n-h-1)=h \geq 1>0,
$$

therefore, by Lemma 4.1.1 we see that Macaulay's Theorem does not hold over R. If $n-m-1<h+1$, then it is easy to check that

$$
\lambda\left(x_{1} x_{m}, x_{1} x_{m+1}\right)=1+((m-1)-(h+1)+1)=m-h,
$$

so that we have

$$
\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right)=h+m-h=m
$$

and then

$$
\operatorname{dim}_{k} R_{1} L_{W}-\operatorname{dim}_{k} R_{1} W=n-1-m \geq n-1-(n-2)=1>0,
$$

so by Lemma 4.1.1 we see that Macaulay's Theorem does not hold over R.

Case 2: $h \geq m$ and $m<n-2$. Let W and L_{W} be the same 2-monomial spaces as in Case 1, then

$$
\operatorname{dim}_{k} R_{1} L_{W}-\operatorname{dim}_{k} R_{1} W=\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{2} x_{m}\right)-\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right) .
$$

It is easy to see that

$$
\lambda\left(x_{1} x_{m}, x_{2} x_{m}\right)=n-2, \text { and } \lambda\left(x_{1} x_{i}, x_{2} x_{m}\right)=0 \text { for } 1 \leq i \leq m-1 .
$$

Thus, we have

$$
\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{2} x_{m}\right)=n-2
$$

On the other hand, one sees easily that

$$
\lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right)=1 \text { for } 1 \leq i \leq m-1 .
$$

If $n-m-1 \geq h+1$, then it is easy to check that

$$
\lambda\left(x_{1} x_{m}, x_{1} x_{m+1}\right)=1+((n-m-1)-(h+1)+1)=n-m-h,
$$

so that we have

$$
\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right)=m-1+n-m-h=n-h-1,
$$

and then

$$
\operatorname{dim}_{k} R_{1} L_{W}-\operatorname{dim}_{k} R_{1} W=n-2-(n-h-1)=h-1 \geq m-1 \geq 1>0,
$$

therefore, by Lemma 4.1.1 we see that Macaulay's Theorem does not hold over R. If $n-m-1<h+1$, then it is easy to check that $\lambda\left(x_{1} x_{m}, x_{1} x_{m+1}\right)=1$, so that we have

$$
\sum_{1 \leq i \leq m} \lambda\left(x_{1} x_{i}, x_{1} x_{m+1}\right)=m-1+1=m,
$$

and then

$$
\operatorname{dim}_{k} R_{1} L_{W}-\operatorname{dim}_{k} R_{1} W=n-2-m>n-2-(n-2)=0,
$$

so by Lemma 4.1.1 we see that Macaulay's Theorem does not hold over R.

Case 3: $h \geq m$ and $m=n-2$. Let p be the maximal integer such that $p \leq$ $(h-1) /(m-1)$, then $p \geq 1$. Considering R_{p+1}, we see that for any monomial
$w \in R_{p+1}, 0 \leq u(w) \leq(p+1)(n-1+h)$. More precisely, one can check easily that there are $(n-1)+(p-i)(m-1)+i$ monomials $w \in R_{p+1}$ such that $i(n-1+h) \leq$ $u(w)<(i+1)(n-1+h)$ for $0 \leq i \leq p$, so that

$$
\operatorname{dim}_{k} R_{p+1}=1+\sum_{i=0}^{p}(n-1)+(p-i)(m-1)+i=1+(p+1)\left(n+\frac{p m}{2}-1\right)
$$

Similarly, we have

$$
\begin{aligned}
\operatorname{dim}_{k} R_{p+2} & =(n-1+h)+1+\sum_{i=0}^{p}(n-1)+(p-i)(m-1)+(i+1) \\
& =n+h+p+1+(p+1)\left(n+\frac{p m}{2}-1\right)
\end{aligned}
$$

Setting $l=1+(p+1)\left(n+\frac{p m}{2}-1\right)$ we have that

$$
\operatorname{dim}_{k} R_{p+1}=l \text { and } \operatorname{dim}_{k} R_{1} R_{p+1}=\operatorname{dim}_{k} R_{p+2}=n+h+p+l .
$$

Let W be the l-monomial space spanned by the monomials $w_{1}, \ldots, w_{l} \in R_{l}$ such that $u\left(w_{i}\right)=i-1$ for $1 \leq i \leq l$. Let monomials $w_{1}^{\prime}, \ldots, w_{l}^{\prime}$ be a basis of R_{p+1}, and let L_{W} be the l-monomial space spanned by the monomials $x_{1}^{l-p-1} w_{1}^{\prime}, \ldots, x_{1}^{l-p-1} w_{l}^{\prime} \in$ R_{l}, then it is easy to see that L_{W} is a lex l-monomial space such that

$$
\operatorname{dim}_{k} L_{W}=\operatorname{dim}_{k} W=l \text { and } \operatorname{dim}_{k} R_{1} L_{W}=\operatorname{dim}_{k} R_{1} R_{p+1}=n+h+p+l .
$$

However, by Lemma 4.2.1, one can check easily that

$$
\operatorname{dim}_{k} R_{1} W=\ln -(l-1)(n-2)-((l-1)-(h+1)+1)=n+h-1+l,
$$

so that

$$
\operatorname{dim}_{k} R_{l} L_{W}-\operatorname{dim}_{k} R_{1} W=(n+h+p+l)-(n+h-1+l)=p+1 \geq 2>0,
$$

so by Lemma 4.1.1 we see that Macaulay's Theorem does not hold over R.

CHAPTER 5

MINIMAL FREE RESOLUTIONS OF LINEAR EDGE IDEALS

5.1 Introduction

In this chapter we consider minimal free resolutions of quadratic monomial ideals in $S=k\left[x_{1}, \ldots, x_{n}\right]$. By polarization, the study of such resolutions is equivalent to the study of the resolutions of squarefree quadratic monomial ideals, that is, edge ideals. Such an ideal can be easily encoded in a graph as follows: let G be a simple graph with vertices x_{1}, \ldots, x_{n}, then the edge ideal I_{G} of the graph G is the monomial ideal in S generated by $\left\{x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\}\right.$ is an edge of $\left.G\right\}$. The general goal is to relate the properties of the minimal free resolution of I_{G} and the combinatorial properties of the graph G. In 1990, Fröberg [Fro] proved that I_{G} has a linear free resolution if and only if the complement graph \bar{G} is chordal (see Definition 5.2.1). Because of this, I_{G} is called a linear edge ideal if \bar{G} is chordal.

Minimal free resolutions were constructed for the following two classes of linear edge ideals. In [CN], Corso and Nagel used cellular resolutions to get the minimal free resolutions of the linear edge ideals I_{G} where G is a Ferrers graph. In [Ho], Horwitz constructed the minimal free resolutions of the linear edge ideals I_{G} provided that G does not contain an ordered subgraph as in Figure 5.1, which is called the pattern Γ in [Ho]. However, from Example 3.18 in [Ho], we see that if \bar{G} is complicated, then it may be impossible to satisfy the Γ avoidance condition. In Construction 5.3.4 and Theorem 5.3 .7 we provide the minimal free resolutions of all linear edge ideals. The construction is different than the one in [Ho] and the following paragraph explains the difference.

Figure 5.1: Patten Γ

In 1990, Eliahou and Kervaire (See Construction 2.2.9) constructed the minimal free resolutions of Borel ideals. In 1995, Charalambous and Evans [CE] noted that the Eliahou-Kervaire resolution can be obtained by using iterated mapping cones (See Construction 2.2.13). Then in 2002, Herzog and Takayama [HT] used the iterated mapping cone construction to obtain the minimal free resolutions of monomial ideals which have linear quotients and satisfy some regularity condition. Following this idea, in 2007, Horwitz [Ho] constructed the minimal free resolutions of a class of linear edge ideals. In [HT] and [Ho], the constructions are based on induction on the number of generators of the monomial ideal and the resolutions are similar to the Eliahou-Kervaire resolution. In this chapter we will use the mapping cone construction in a new way: (1) we use induction on the number of variables, that is the number of vertices of G; (2) in each induction step, we use the mapping cone construction twice. Consequently, the minimal free resolution in this chapter is very different from the Eliahou-Kervaire resolution and is not a modification of the resolution obtained in [Ho] (See Remark 5.3.12).

Another thing that plays an important role in our construction is the notion of a perfect elimination order (See Definition 5.2.1) of a chordal graph. From [Di] and [HHZ], we know that every chordal graph has a perfect elimination order on the set of vertices; conversely, it is easy to see that if a simple graph has a perfect elimination order then it is chordal. Therefore, a simple graph
is chordal if and only if it has a perfect elimination order. In general, given a chordal graph, there are many perfect elimination orders. In section 5.2 we give an algorithm (Algorithm 5.2.2) to produce a special perfect elimination order on the vertices of a chordal graph. This special perfect elimination order has a nice property (Lemma 5.3.2) and will be used in the construction of the minimal free resolutions of linear edge ideals.

In section 5.3 we construct the minimal free resolutions of linear edge ideals and Theorem 5.3.7 is the main result of this paper.

In section 5.4 we prove $d^{2}=0$ case by case, where d is the differential defined in Construction 5.3.4. The proof is not difficult but very long.

Section 5.5 gives a nice formula (Corollary 5.5.2) for calculating the Betti numbers of linear edge ideals and the formula works for any perfect elimination order of \bar{G}. Finally, in Corollary 5.5.4, we use our method to prove another Betti number formula obtained by Roth and Van Tuyl in [RV] (see also [HV]).

5.2 Perfect elimination orders

In this section we use H to denote a chordal graph. In the other sections of this paper, we have $H=\bar{G}$.

Definition 5.2.1. Let H be a simple graph with vertices x_{1}, \ldots, x_{n}. We write $x_{i} x_{j} \in$ H if $\left\{x_{i}, x_{j}\right\}$ is an edge of H. We say that $C=\left(x_{j_{1}} x_{j_{2}} \ldots x_{j_{r}}\right)$ is a cycle of H of length r if $x_{j_{i}} \neq x_{j_{l}}$ for all $1 \leq i<l \leq r$ and $x_{j_{i}} x_{j_{i+1}} \in H$ for all $1 \leq i \leq r\left(\right.$ where $\left.x_{j_{r+1}}=x_{j_{1}}\right)$. A chord in the cycle C is an edge between two non-consecutive vertices in the cycle. We say that H is a chordal graph if every cycle of length >3 in H has a
chord. The order x_{1}, \ldots, x_{n} on the vertices of H is called a perfect elimination order if the following condition is satisfied: for any $1 \leq i<j<l \leq n$, if $x_{i} x_{j} \in H$ and $x_{i} x_{l} \in H$, then $x_{j} x_{l} \in H$.

The perfect elimination orders we will use in sections 5.3 and 5.4 are given by the following algorithm.

Algorithm 5.2.2. Let H be a chordal graph with vertices x_{1}, \ldots, x_{n}. Let Σ be a set containing a sequence of sets.

Input: $\Sigma=\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}, i=n+1$.

Step 1: Choose and remove a vertex v from the first set in Σ. Set $i:=i-1$ and $v_{i}:=v$. If the first set in Σ is now empty, remove it from Σ. Go to setp 2 .

Step 2: If $\Sigma=\emptyset$, stop. If $\Sigma \neq \emptyset$, suppose $\Sigma=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$. For any $1 \leq j \leq r$, replace the set S_{j} by two sets T_{j} and T_{j}^{\prime} such that $S_{j}=T_{j} \cup T_{j^{\prime}}^{\prime} T_{j} \cap T_{j}^{\prime}=\emptyset, v_{i} w \in H$ for any $w \in T_{j}$ and $v_{i} w^{\prime} \notin H$ for any $w^{\prime} \in T_{j}^{\prime}$. Now we set

$$
\Sigma:=\left\{T_{1}, T_{2}, \ldots, T_{r}, T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{r}^{\prime}\right\}
$$

Remove all the empty sets from Σ. Go back to step 1.

Output: v_{1}, \ldots, v_{n}.

Remark 5.2.3. The above algorithm is a modification of algorithm of Rose-Tarjan-Lueker. In section 5.2 of [RTL], they set

$$
\Sigma:=\left\{T_{1}, T_{1}^{\prime}, T_{2}, T_{2}^{\prime}, \ldots, T_{r}, T_{r}^{\prime}\right\}
$$

The reason we difine Σ differently in Algorithm 5.2.2 is illustrated in Example 5.2.6 and Lemma 5.3.2.

Before proving Theorem 5.2.5, we make the following observation.

Lemma 5.2.4. Let v_{1}, \ldots, v_{n} be an output of Algorithm 5.2.2. If $v_{i} v_{l} \in H, v_{j} v_{l} \notin H$ and $i<j<l$, then there exists λ with $j<\lambda<l$ such that $v_{i} v_{\lambda} \notin H$ and $v_{j} v_{\lambda} \in H$.

Proof. Since $v_{i} v_{l} \in H, v_{j} v_{l} \notin H$ and $i<j<l$, it follows from the algorithm that after v_{l} is taken from the first set of Σ, v_{i} and v_{j} will be in different sets of Σ and the set containing v_{i} is before the set containing v_{j}. If there does not exist $j<\lambda<l$ such that $v_{i} v_{\lambda} \notin H$ and $v_{j} v_{\lambda} \in H$, then after v_{j+1} is taken from the first set of Σ, the set containing v_{i} is still before the set containing v_{j} and in particular, v_{j} is not in the first set of the new Σ. So after removing v_{j+1} we need to remove a vertex different from v_{j}, which is a contradiction. So there must exist $j<\lambda<l$ such that $v_{i} v_{\lambda} \notin H$ and $v_{j} v_{\lambda} \in H$.

Theorem 5.2.5. The output of Algorithm 5.2.2 is a perfect elimination order of the chordal graph H.

Proof. First, we see that v_{1}, \ldots, v_{n} is a reordering of the vertices x_{1}, \ldots, x_{n} of H. To show that v_{1}, \ldots, v_{n} is a perfect elimination order, we need only show that for any $1 \leq i<j<l \leq n$, if $v_{i} v_{j} \in H$ and $v_{i} v_{l} \in H$, then $v_{j} v_{l} \in H$. Assume to the contrary that $v_{j} v_{l} \notin H$.

Since $v_{i} v_{l} \in H, v_{j} v_{l} \notin H$ and $i<j<l$, Lemma 5.2.4 implies that there exists $j<\lambda_{1}<l$ such that $v_{i} v_{\lambda_{1}} \notin H$ and $v_{j} v_{\lambda_{1}} \in H$. And we choose the largest λ_{1} which satisfies this property. If $v_{\lambda_{1}} v_{l} \in H$, then $\left(v_{i} v_{j} v_{\lambda_{1}} v_{l}\right)$ is a cycle of length 4 with no chord, which contradicts to the assumption that H is chordal. So $v_{\lambda_{1}} v_{l} \notin H$.

Since $v_{i} v_{l} \in H, v_{\lambda_{1}} v_{l} \notin H$ and $i<\lambda_{1}<l$, Lemma 5.2.4 implies that there exists $\lambda_{1}<\lambda_{2}<l$ such that $v_{i} v_{\lambda_{2}} \notin H$ and $v_{\lambda_{1}} v_{\lambda_{2}} \in H$. And we choose the largest λ_{2} which
satisfies this property. Note that by the choice of λ_{1}, we have that $v_{j} \nu_{\lambda_{2}} \notin H$. If $v_{\lambda_{2}} v_{l} \in H$, then $\left(v_{i} v_{j} v_{\lambda_{1}} v_{\lambda_{2}} v_{l}\right)$ is a cycle of length 5 with no chord, which contradicts to the assumption that H is chordal. So $v_{\lambda_{2}} v_{l} \notin H$.

Since $v_{i} v_{l} \in H, v_{\lambda_{2}} v_{l} \notin H$ and $i<\lambda_{2}<l$, Lemma 5.2.4 implies that there exists $\lambda_{2}<\lambda_{3}<l$ such that $v_{i} v_{\lambda_{3}} \notin H$ and $v_{\lambda_{2}} v_{\lambda_{3}} \in H$. And we choose the largest λ_{3} which satisfies this property. Note that by the choices of λ_{1} and λ_{2}, we have that $v_{j} v_{\lambda_{3}} \notin H$ and $v_{\lambda_{1}} v_{\lambda_{3}} \notin H$. If $v_{\lambda_{3}} v_{l} \in H$, then $\left(v_{i} v_{j} v_{\lambda_{1}} v_{\lambda_{2}} v_{\lambda_{3}} v_{l}\right)$ is a cycle of length 6 with no chord, which contradicts to the assumption that H is chordal. So $v_{\lambda_{3}} v_{l} \notin H$.

Proceeding in the same way, we get an infinite sequence of vertices $v_{\lambda_{1}}, v_{\lambda_{2}}$, $v_{\lambda_{3}}, \ldots$ such that $\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$. This is a contradiction because there are only finitely many vertices. So $v_{j} v_{l} \in H$ and we are done.

The following example illustrates the difference among different perfect elimination orders.

Example 5.2.6. Let H be the following chordal graph. Then $x_{7}, x_{6}, x_{5}, x_{1}, x_{4}, x_{2}, x_{3}$

Figure 5.2: Different perfect elimination orders
is a perfect elimination order of H, but it can not be produced by Algorithm 5.2.2 or the algorithm in [RTL]; $x_{7}, x_{5}, x_{6}, x_{4}, x_{3}, x_{2}, x_{1}$ is a perfect elimination order which can be produced by the algorithm in [RTL] ; $x_{7}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}$ is a perfect elimination order which is produced by Algorithm 5.2.2.

If we compare these three perfect elimination orders, the third one looks nicer in the sense that there is no unnecessary "jump" in the perfect elimination order. Here, "jump" means going from one branch of the star-shaped graph H to another branch. For example, in the first perfect elimination order, x_{5} is followed by x_{1} instead of x_{4}; in the second perfect elimination order, x_{7} is followed by x_{5} instead of x_{6}. However, in the third perfect elimination order, this kind of "jump" does not happen unless it is necessary, say, x_{6} is followed by x_{5}. This nice property of the perfect elimination orders produced by Algorithm 5.2.2 is reflected in Lemma 5.3.2 .

5.3 Construction of the resolution

Let G be a simple graph with vertices x_{1}, \ldots, x_{n}. The complement graph \bar{G} of G is the simple graph with the same vertex set whose edges are the non-edges of G. The subgraph of G induced by vertices $x_{i_{1}}, \ldots, x_{i_{r}}$ for some $1 \leq i_{1}<\cdots<i_{r} \leq n$ is the simple graph with the vertices $x_{i_{1}}, \ldots, x_{i_{r}}$ and the edges that connect them in G. We define the preneighborhood of a vertex x_{j} in G to be the set

$$
\operatorname{pnbhd}\left(x_{j}\right)=\left\{x_{i} \mid i<j, x_{i} x_{j} \in G\right\} .
$$

The following two lemmas will be important in section 5.3 and section 5.4.

Lemma 5.3.1. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G}. For any $1 \leq i<$ $j<l \leq n$, if $x_{i} x_{j} \in G$, then $x_{i} x_{l} \in G$ or $x_{j} x_{l} \in G$. In particular, if pnbhd $\left(x_{i}\right) \nsubseteq \operatorname{pnbhd}\left(x_{j}\right)$ for some $1 \leq i<j \leq n$ then $x_{i} x_{j} \in G$.

Proof. Assume to the contrary that $x_{i} x_{l} \notin G$ and $x_{j} x_{l} \notin G$, then $x_{i} x_{l} \in \bar{G}$ and $x_{j} x_{l} \in \bar{G}$. Since x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of \bar{G}, we have $x_{i} x_{j} \in \bar{G}$, and hence $x_{i} x_{j} \notin G$, which is a contradiction.

Lemma 5.3.2. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 5.2.2.
(1) If $x_{i} x_{j} \in \bar{G}$ for some $i<j$, then for any $i<t \leq j$ we have $\operatorname{pnbhd}\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{t}\right)$ in G.
(2) If pnbhd $\left(x_{i}\right) \nsubseteq \operatorname{pnbh} d\left(x_{t}\right)$ in G for some $i<t$, then $x_{i} x_{j} \in G$ for all $j \geq t$.

Proof. Note that part (1) and part (2) are equivalent, so we only need to prove part (1). Assume to the contrary that there exists $i<t \leq j$ such that $\operatorname{pnbhd}\left(x_{i}\right) \nsubseteq$ $\operatorname{pnbhd}\left(x_{t}\right)$ in G. We choose the minimal t which satisfies this property. Then there exists $l<i$ such that $x_{l} x_{i} \notin \bar{G}, x_{l} x_{t} \in \bar{G}$. Since x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of \bar{G}, we must have that $x_{i} x_{t} \notin \bar{G}$ and in particular $t \neq j$. Now since $x_{i} x_{t} \notin \bar{G}, x_{i} x_{j} \in \bar{G}$ and $i<t<j$, Lemma 5.2.4 implies that there exists $i<m<t$ such that $x_{m} x_{t} \in \bar{G}, x_{m} x_{j} \notin \bar{G}$. However, $x_{m} x_{t} \in \bar{G}, x_{l} x_{t} \in \bar{G}$ and $l<$ $m<t$ imply that $x_{l} x_{m} \in \bar{G}$, so that $\operatorname{pnbhd}\left(x_{i}\right) \nsubseteq \operatorname{pnbhd}\left(x_{m}\right)$ and $i<m<t<j$, which contradicts to the minimality of t. So for all $i<t \leq j, \operatorname{pnbhd}\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{t}\right)$ in G.

Let G be a simple graph with vertices x_{1}, \ldots, x_{n}. The edge ideal I_{G} of the graph G is the monomial ideal in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ with the minimal generating set $\left\{x_{i} x_{j} \mid x_{i} x_{j} \in G\right\}$. An important result about edge ideals was obtained by Fröberg in [Fro].

Theorem 5.3.3 (Fröberg). Let I_{G} be the edge ideal of a simple graph G. Then I_{G} has a linear free resolution if and only if \bar{G} is chordal.

By the above theorem, the edge ideal I_{G} of a simple graph G is called a linear edge ideal if \bar{G} is chordal. The goal of this section is to construct the minimal free resolution of S / I_{G} where I_{G} is a linear edge ideal.

Construction 5.3.4. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 5.2.2.

If $p \geq 1, q \geq 1,1 \leq i_{1}<\cdots<i_{p}<j_{1}<\cdots<j_{q} \leq n$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{1}}\right)$, then the symbol $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ will be used to denote the generator of the free S-module $S\left(-x_{i_{1}} \cdots x_{i_{p}} x_{j_{1}} \cdots x_{j_{q}}\right)$ in homological degree $p+$ $q-1$ and multidegree $x_{i_{1}} \cdots x_{i_{p}} x_{j_{1}} \cdots x_{j_{q}}$. We set

$$
\mathcal{B}=\{1\} \cup \bigcup_{p \geq 1, q \geq 1}\left\{\begin{array}{ll}
\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right): & \begin{array}{l}
1 \leq i_{1}<\cdots<i_{p}<j_{1}<\cdots<j_{q} \leq n \\
\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{1}}\right)
\end{array}
\end{array}\right\} .
$$

We define the map d on the set \mathcal{B} by $d(1)=1, d\left(x_{i_{1}} \mid x_{j_{1}}\right)=x_{i_{1}} x_{j_{1}}$, and for $p+q \geq 3$,

$$
\begin{aligned}
& d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& =\sum_{s=1}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +\sum_{t=1}^{q}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +\sum_{s=1}^{p}(-1)^{s+1+\beta} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)
\end{aligned}
$$

where $\beta=\min \left\{t \mid 2 \leq t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\}$.

Note that if $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)$ for all $1 \leq t \leq q$, then β does not exist and there are no β terms in the above formula. Also, if $p+q \geq 3$, then the formula of d may yield symbols which are not in \mathcal{B} and we will regard them as zeros. And Lemma 5.3.2 implies that for any $1 \leq t \leq \beta-1$ and $\beta \leq t^{\prime} \leq q$, we have $x_{j_{t}} x_{j_{t^{\prime}}} \in G$.

Example 5.3.5. The following are some examples for the formula of d.
(1). If $p \geq 2$ and $q=1$, then just like the Koszul complex, we have that

$$
d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}\right)=\sum_{s=1}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}\right)
$$

(2). If $p \geq 2, q=3,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \backslash \operatorname{pnbhd}\left(x_{j_{2}}\right)=\left\{x_{i_{1}}\right\}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{3}}\right)$, then $\beta=2$ and a computation will reveal that

$$
\begin{aligned}
& d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}, x_{j_{3}}\right) \\
& =x_{i_{1}}\left[\left(x_{i_{2}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}, x_{j_{3}}\right)+\left(x_{i_{2}}, \ldots, x_{i_{p}}, x_{j_{1}} \mid x_{j_{2}}, x_{j_{3}}\right)\right] \\
& +\sum_{s=2}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}, x_{j_{3}}\right) \\
& +(-1)^{2+p} x_{j_{2}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{3}}\right)+\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}} \mid x_{j_{3}}\right)\right] \\
& +(-1)^{3+p} x_{j_{3}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, x_{j_{2}}\right) .
\end{aligned}
$$

(3). If $p \geq 2, q \geq 4, \beta=3,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \backslash \operatorname{pnbhd}\left(x_{j_{3}}\right)=\left\{x_{i_{1}}, x_{i_{2}}\right\}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq$ $\operatorname{pnbhd}\left(x_{j_{4}}\right)$, then a computation will reveal that

$$
\begin{aligned}
d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)= & \sum_{s=1}^{p}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +\sum_{t=1}^{q}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) .
\end{aligned}
$$

Lemma 5.3.6. Let d be the map defined in Construction 5.3.4. Then $d^{2}=0$.

The proof of the above lemma is very long and is given in section 5.4. The next theorem is the main result of this chapter.

Theorem 5.3.7. Let \mathbf{F} be the multigraded complex of free S-modules with basis \mathcal{B} and differential d as defined in Construction 5.3.4. Then \mathbf{F} is the minimal free resolution of S / I_{G}.

Proof. We prove by induction on the number of vertices of the graph G. If G has one or two vertices then it is clear. Now as in Construction 5.3.4, let G have vertices x_{1}, \ldots, x_{n} with $n \geq 3$.

If $\operatorname{pnbhd}\left(x_{n}\right)=\emptyset$ in G, then $x_{i} x_{n} \in \bar{G}$ for all $1 \leq i \leq n-1$. Since x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of \bar{G}, it follows that \bar{G} is a complete graph, so that G has no edges. Hence $I_{G}=(0)$ and there is nothing to prove. Next we will assume that $\operatorname{pnbhd}\left(x_{n}\right)=\left\{x_{\lambda_{1}}, \ldots, x_{\lambda_{r}}\right\}$ for some $1 \leq \lambda_{1}<\cdots<\lambda_{r} \leq n-1$.

Let G^{\prime} be the graph obtained from G by deleting the edges $x_{\lambda_{1}} x_{n}, \ldots, x_{\lambda_{r}} x_{n}$. Then I_{G} and $I_{G^{\prime}}$ are both edge ideals in S. Note that $\overline{G^{\prime}}$ is chordal. Indeed, it is easy to see that $x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}$ is in the reverse order of a perfect elimination order of $\overline{G^{\prime}}$ produced by Algorithm 5.2.2. Setting $J=\left(x_{\lambda_{1}}, \ldots, x_{\lambda_{r}}\right) \subseteq S$, we have $I_{G}=I_{G^{\prime}}+x_{n} J$ and a natural short exat sequence

$$
0 \longrightarrow \frac{I_{G^{\prime}}+x_{n} J}{I_{G^{\prime}}} \longrightarrow \frac{S}{I_{G^{\prime}}} \longrightarrow \frac{S}{I_{G}}=\frac{S}{I_{G^{\prime}}+x_{n} J} \longrightarrow 0
$$

Note that $x_{n} J \cap I_{G^{\prime}}=x_{n} I_{G^{\prime}}$: indeed, by Lemma 5.3 .1 we see that $I_{G^{\prime}} \subseteq J$ and hence $x_{n} I_{G^{\prime}} \subseteq x_{n} J \cap I_{G^{\prime}} ;$ on the other hand, if $x_{n} m \in I_{G^{\prime}}$ for some monomial $m \in J$, then $m \in I_{G^{\prime}}$, and hence $x_{n} J \cap I_{G^{\prime}} \subseteq x_{n} I_{G^{\prime}}$. Therefore,

$$
\frac{I_{G^{\prime}}+x_{n} J}{I_{G^{\prime}}} \cong \frac{x_{n} J}{x_{n} J \cap I_{G^{\prime}}}=\frac{x_{n} J}{x_{n} I_{G^{\prime}}} .
$$

Let $G^{\prime \prime}$ be the subgraph of G induced by the vertices x_{1}, \ldots, x_{n-1}. Then $\overline{G^{\prime \prime}}$ is chordal and x_{1}, \ldots, x_{n-1} is in the reverse order of a perfect elimination order of $\overline{G^{\prime \prime}}$ produced by Algorithm 5.2.2. Let $S^{\prime}=k\left[x_{1}, \ldots, x_{n-1}\right] \subseteq S$. Then $I_{G^{\prime \prime}}$ is an edge ideal in the polynomial ring S^{\prime} and $I_{G^{\prime \prime}} S=I_{G^{\prime}}$. Set

$$
\mathcal{B}^{\prime}=\{1\} \cup \bigcup_{p \geq 1, q \geq 1}\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right): \begin{array}{l}
\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \in \mathcal{B} \\
j_{q} \leq n-1
\end{array}\right\} .
$$

Suppose that \mathbf{L} is the multigraded complex of free S^{\prime}-modules with basis \mathcal{B}^{\prime} and differential $d_{\mathbf{L}}=d$ as defined in Construction 5.3.4, then by the induction hypothesis, \mathbf{L} is the minimal free resolution of $S^{\prime} / I_{G^{\prime \prime}}$. Let $\mathbf{F}^{\prime}=\mathbf{L} \otimes S$. Since $S=S^{\prime}\left[x_{n}\right]$ is a flat S^{\prime}-module, it follows that \mathbf{F}^{\prime} is the multigraded minimal free resolution of the S-module $S^{\prime} / I_{G^{\prime \prime}} \otimes S=S /\left(I_{G^{\prime \prime}} S\right)=S / I_{G^{\prime}}$, and \mathbf{F}^{\prime} has basis \mathcal{B}^{\prime} and differential $d^{\prime}=d_{\mathbf{L}}=d$ as in Construction 5.3.4. Setting

$$
\begin{aligned}
& \mathcal{A}=\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right):\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \in \mathcal{B}^{\prime}\right\}, \\
& \mathcal{T}=\left\{\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right): p \geq 1,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{n}\right)\right\},
\end{aligned}
$$

we have the disjoint union

$$
\mathcal{B}=\mathcal{B}^{\prime} \cup \mathcal{A} \cup \mathcal{T} .
$$

Let $\mathbf{E}: \cdots \rightarrow E_{1} \rightarrow E_{0} \rightarrow x_{n} I_{G^{\prime}}$ be the multigraded minimal free resolution of $x_{n} I_{G^{\prime}}$ induced naturally by the minimal free resolution \mathbf{F}^{\prime} of $S / I_{G^{\prime}}$. Then \mathbf{E} has basis \mathcal{A} and the basis element $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is in homological degree $p+q-2$ in \mathbf{E}. We denote the differential of \mathbf{E} by $d_{\mathbf{E}}$. Note that $d_{\mathbf{E}}\left(x_{i_{1}} \mid\right.$ $\left.x_{j_{1}}, x_{n}\right)=x_{i_{1}} x_{j_{1}} x_{n}$. Let \mathbf{K} be the multigraded complex of free S-modules with basis \mathcal{T} and differential $-\partial=-d$ where d is as in Construction 5.3.4. Note that the basis element $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right)$ is in homological degree $p-1$ in \mathbf{K}. And it is easy to see that \mathbf{K} is the minimal free resolution of $x_{n} J$.

For any $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \in \mathcal{A}$, we have that

$$
\begin{aligned}
d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) & =\mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +\mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +\mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
\end{aligned}
$$

where $\mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is the sum of the terms of $d\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid\right.$ $\left.x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ that contain basis elements in $\mathcal{A}, \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is the sum of the terms that contain basis elements in \mathcal{T} and $\mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}}\right.$ | $\left.x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)$ is the sum of the terms that contain basis elements in \mathcal{B}^{\prime}. Note that $\mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=(-1)^{q+1+p} x_{n}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$. And by the definition of d, we can check that if $p+q \geq 3$, then

$$
\mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d_{\mathbf{E}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

We claim that $-\mu_{2}: \mathbf{E} \rightarrow \mathbf{K}$ is a multigraded complex map of degree 0 lifting the inclusion map $\phi: x_{n} I_{G^{\prime}} \rightarrow x_{n} J$. Indeed, $\phi d_{\mathbf{E}}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)=x_{i_{1}} x_{j_{1}} x_{n}$, and

$$
\begin{aligned}
(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) & = \begin{cases}\partial\left(x_{j_{1}}\left(x_{i_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \in G \\
\partial\left(x_{i_{1}}\left(x_{j_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \notin G\end{cases} \\
& =x_{i_{1}} x_{j_{1}} x_{n} .
\end{aligned}
$$

Hence, $\phi d_{\mathbf{E}}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)=(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)$. Then we need to show that for $p+$ $q \geq 3$,

$$
\left(-\mu_{2}\right) d_{\mathbf{E}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) .
$$

By Lemma 5.3.6, we have that

$$
\begin{align*}
0 & =d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \tag{5.1}\\
& =\mu_{1} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+\mu_{2} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +\mu_{3} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+\partial \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) \\
& +d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right) .
\end{align*}
$$

In the above formula, collecting the terms which contain basis elements in \mathcal{T}, we get

$$
\mu_{2} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+\partial \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=0 .
$$

Since $\mu_{1}=d_{\mathbf{E}}$ for $p+q \geq 3$, it follows that

$$
\left(-\mu_{2}\right) d_{\mathbf{E}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=(-\partial)\left(-\mu_{2}\right)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right),
$$

and the claim is proved.

Let $\mathbf{F}^{\prime \prime}$ be the mapping cone $\mathrm{MC}\left(-\mu_{2}\right)$. Then $\mathbf{F}^{\prime \prime}: \cdots \rightarrow F_{1}^{\prime \prime} \rightarrow F_{0}^{\prime \prime} \rightarrow x_{n} J / x_{n} I_{G^{\prime}}$ is a multigraded free resolution of $x_{n} J / x_{n} I_{G^{\prime}}$. Note that $F_{0}^{\prime \prime}=K_{0}$ and $F_{i}^{\prime \prime}=$ $E_{i-1} \bigoplus K_{i}$ for $i \geq 1$. If we denote the differential of $\mathbf{F}^{\prime \prime}$ by $d^{\prime \prime}$, then $d_{0}^{\prime \prime}\left(x_{i_{1}} \mid x_{n}\right)=$ $-\partial\left(x_{i_{1}} \mid x_{n}\right)=-x_{i_{1}} x_{n}, \quad d_{1}^{\prime \prime}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right)=-\mu_{2}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right), \quad d_{1}^{\prime \prime}\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right)=-\partial\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right)$, that is, $d_{1}^{\prime \prime}=\left(-\mu_{2},-\partial\right)$, and for $i \geq 2$,

$$
d_{i}^{\prime \prime}=\left(\begin{array}{cc}
-d_{\mathbf{E}} & 0 \\
-\mu_{2} & -\partial
\end{array}\right)=\left(\begin{array}{cc}
-\mu_{1} & 0 \\
-\mu_{2} & -\partial
\end{array}\right) .
$$

Since the differential matrices of $\mathbf{F}^{\prime \prime}$ have monomial entries, $\mathbf{F}^{\prime \prime}$ is the minimal free resolution of $x_{n} J / x_{n} I_{G^{\prime}} \cong\left(I_{G^{\prime}}+x_{n} J\right) / I_{G^{\prime}}$.

Next we define a map $\mu: \mathbf{F}^{\prime \prime} \rightarrow \mathbf{F}^{\prime}$ such that $\mu: F_{0}^{\prime \prime}=K_{0} \rightarrow F_{0}^{\prime}=S$ is given by $\mu\left(x_{i_{1}} \mid x_{n}\right)=x_{i_{1}} x_{n}$ and for $i \geq 1, \mu: F_{i}^{\prime \prime}=E_{i-1} \bigoplus K_{i} \rightarrow F_{i}^{\prime}$ is given by
$\mu=\left(\mu_{3}, 0\right)$. We claim that $-\mu$ is a multigraded complex map of degree 0 lifting the inclusion map $\psi:\left(I_{G^{\prime}}+x_{n} J\right) / I_{G^{\prime}} \rightarrow S / I_{G^{\prime}}$. Indeed, if $i=0$ then $\psi d_{0}^{\prime \prime}\left(x_{i_{1}} \mid x_{n}\right)=-x_{i_{1}} x_{n}$, $d_{0}^{\prime}(-\mu)\left(x_{i_{1}} \mid x_{n}\right)=-x_{i_{1}} x_{n}$, and hence $\psi d_{0}^{\prime \prime}=d_{0}^{\prime}(-\mu)$. If $i=1$ then

$$
\begin{aligned}
(-\mu) d_{1}^{\prime \prime}\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) & =(-\mu)\left(-\mu_{2}\right)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) \\
& = \begin{cases}\mu\left(x_{j_{1}}\left(x_{i_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \in G \\
\mu\left(x_{i_{1}}\left(x_{j_{1}} \mid x_{n}\right)\right), & \text { if } x_{i_{1}} x_{n} \notin G\end{cases} \\
& =x_{i_{1}} x_{j_{1}} x_{n}, \\
d_{1}^{\prime}(-\mu)\left(x_{i_{1}} \mid x_{j_{1}}, x_{n}\right) & =d_{1}^{\prime}\left(x_{n}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right) \\
& =x_{i_{1}} x_{j_{1}} x_{n}, \\
(-\mu) d_{1}^{\prime \prime}\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right) & =(-\mu)(-\partial)\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right) \\
& =\mu\left(x_{i_{1}}\left(x_{i_{2}} \mid x_{n}\right)-x_{i_{2}}\left(x_{i_{1}} \mid x_{n}\right)\right) \\
& =x_{i_{1}} x_{i_{2}} x_{n}-x_{i_{2}} x_{i_{1}} x_{n}=0, \\
d_{1}^{\prime}(-\mu)\left(x_{i_{1}}, x_{i_{2}} \mid x_{n}\right) & =d_{1}^{\prime}(0)=0,
\end{aligned}
$$

and hence $(-\mu) d_{1}^{\prime \prime}=d_{1}^{\prime}(-\mu)$. If $i \geq 2$ then it is easy to see that for $p \geq 3$,

$$
(-\mu) d_{i}^{\prime \prime}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right)=d_{i}^{\prime}(-\mu)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{n}\right)=0
$$

so we need only to prove that for $p+q=i+1 \geq 3$,

$$
(-\mu) d_{i}^{\prime \prime}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d_{i}^{\prime}(-\mu)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

that is,

$$
\mu\left(-\mu_{1}-\mu_{2}\right)\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

Since $\mu \mu_{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=0$, it suffices to prove that

$$
-\mu_{3} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)
$$

However, in formula (5.1), collecting the terms which contain basis elements in \mathcal{B}^{\prime}, we see that

$$
\mu_{3} \mu_{1}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)+d \mu_{3}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{n}\right)=0
$$

and the claim is proved. So $\mu: \mathbf{F}^{\prime \prime} \rightarrow \mathbf{F}^{\prime}$ is a complex map lifting $-\psi:\left(I_{G^{\prime}}+\right.$ $\left.x_{n} J\right) / I_{G^{\prime}} \rightarrow S / I_{G^{\prime}}$, and it is eay to see that μ is multigraded of degree 0.

Let \mathbf{F}^{*} be the mapping cone $\mathrm{MC}(\mu)$. Then $\mathbf{F}^{*}: \cdots \rightarrow F_{1}^{*} \rightarrow F_{0}^{*} \rightarrow \operatorname{coker}(-\psi)$ gives a multigraded free resolution of $\operatorname{coker}(-\psi)=S / I_{G}$. Note that $F_{0}^{*}=S$, $F_{1}^{*}=F_{0}^{\prime \prime} \bigoplus F_{1}^{\prime}=K_{0} \bigoplus F_{1}^{\prime}$ and for $i \geq 2, F_{i}^{*}=F_{i-1}^{\prime \prime} \bigoplus F_{i}^{\prime}=E_{i-2} \bigoplus K_{i-1} \bigoplus F_{i}^{\prime}$. If we denote the differential of \mathbf{F}^{*} by d^{*}, then $d_{0}^{*}(1)=1, d_{1}^{*}=\left(\mu, d_{1}^{\prime}\right)$,

$$
d_{2}^{*}=\left(\begin{array}{cc}
-d_{1}^{\prime \prime} & 0 \\
\mu & d_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
\mu_{2} & \partial & 0 \\
\mu_{3} & 0 & d
\end{array}\right),
$$

and for $i \geq 3$,

$$
d_{i}^{*}=\left(\begin{array}{cc}
-d_{i-1}^{\prime \prime} & 0 \\
\mu & d_{i}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
\mu_{1} & 0 & 0 \\
\mu_{2} & \partial & 0 \\
\mu_{3} & 0 & d
\end{array}\right)
$$

Note that \mathbf{F}^{*} and \mathbf{F} have the same basis and the same differential. So $\mathbf{F}^{*}=\mathbf{F}$, and then \mathbf{F} is a multigraded free resolution of S / I_{G}. Since $d_{i}\left(F_{i}\right) \subseteq\left(x_{1}, \ldots, x_{n}\right) F_{i-1}$ for all $i \geq 1$, the resolution \mathbf{F} is minimal, and we are done.

Example 5.3.8. Let G be the following graph. Then \bar{G} is chordal and $x_{1}, x_{2}, x_{3}, x_{4}$

Figure 5.3: A resolution of pattern Γ
is in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 5.2.2. Note that

$$
S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad I_{G}=\left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}\right),
$$

$\operatorname{pnbhd}\left(x_{1}\right)=\emptyset, \operatorname{pnbhd}\left(x_{2}\right)=\left\{x_{1}\right\}, \operatorname{pnbhd}\left(x_{3}\right)=\left\{x_{1}\right\}, \operatorname{pnbhd}\left(x_{4}\right)=\left\{x_{1}, x_{2}\right\}$.
By Construction 5.3.4, the minimal free resolution of S / I_{G} has basis

$$
\begin{aligned}
& 1 ;\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right),\left(x_{1} \mid x_{2}, x_{3}\right),\left(x_{1} \mid x_{2}, x_{4}\right),\left(x_{1} \mid x_{2}\right) \\
& \left(x_{1} \mid x_{3}, x_{4}\right),\left(x_{1} \mid x_{3}\right) ;\left(x_{1}, x_{2} \mid x_{4}\right),\left(x_{1} \mid x_{4}\right),\left(x_{2} \mid x_{4}\right)
\end{aligned}
$$

And we have the map d such that

$$
\begin{aligned}
& d\left(x_{1} \mid x_{2}\right)=x_{1} x_{2}, \quad d\left(x_{1} \mid x_{3}\right)=x_{1} x_{3} \\
& d\left(x_{1} \mid x_{4}\right)=x_{1} x_{4}, \quad d\left(x_{2} \mid x_{4}\right)=x_{2} x_{4} \\
& d\left(x_{1} \mid x_{2}, x_{3}\right)=x_{2}\left(x_{1} \mid x_{3}\right)-x_{3}\left(x_{1} \mid x_{2}\right) \\
& d\left(x_{1} \mid x_{2}, x_{4}\right)=x_{2}\left(x_{1} \mid x_{4}\right)-x_{4}\left(x_{1} \mid x_{2}\right) \\
& d\left(x_{1} \mid x_{3}, x_{4}\right)=x_{3}\left(x_{1} \mid x_{4}\right)-x_{4}\left(x_{1} \mid x_{3}\right) \\
& d\left(x_{1}, x_{2} \mid x_{4}\right)=x_{1}\left(x_{2} \mid x_{4}\right)-x_{2}\left(x_{1} \mid x_{4}\right) \\
& d\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)=x_{2}\left(x_{1} \mid x_{3}, x_{4}\right)-x_{3}\left(x_{1} \mid x_{2}, x_{4}\right)+x_{4}\left(x_{1} \mid x_{2}, x_{3}\right)
\end{aligned}
$$

Therefore, the minimal free resolution of S / I_{G} is

$$
\begin{aligned}
0 \rightarrow & S\left(-x_{1} x_{2} x_{3} x_{4}\right) \xrightarrow{d_{3}} S\left(-x_{1} x_{2} x_{3}\right) \oplus S\left(-x_{1} x_{2} x_{4}\right) \oplus S\left(-x_{1} x_{3} x_{4}\right) \oplus S\left(-x_{1} x_{2} x_{4}\right) \\
& \xrightarrow{d_{2}} S\left(-x_{1} x_{2}\right) \oplus S\left(-x_{1} x_{3}\right) \oplus S\left(-x_{1} x_{4}\right) \oplus S\left(-x_{2} x_{4}\right) \xrightarrow{d_{1}} S \rightarrow S / I_{G}
\end{aligned}
$$

where

$$
d_{3}=\left(\begin{array}{c}
x_{4} \\
-x_{3} \\
x_{2} \\
0
\end{array}\right), d_{2}=\left(\begin{array}{cccc}
-x_{3} & -x_{4} & 0 & 0 \\
x_{2} & 0 & -x_{4} & 0 \\
0 & x_{2} & x_{3} & -x_{2} \\
0 & 0 & 0 & x_{1}
\end{array}\right), d_{1}=\left(\begin{array}{llll}
x_{1} x_{2} & x_{1} x_{3} & x_{1} x_{4} & x_{2} x_{4}
\end{array}\right)
$$

Remark 5.3.9. In the above example, we have that $\operatorname{pnbhd}\left(x_{1}\right) \subseteq \operatorname{pnbhd}\left(x_{2}\right) \subseteq$ $\operatorname{pnbhd}\left(x_{3}\right) \subseteq \operatorname{pnbhd}\left(x_{4}\right)$. But in general, given a linear edge ideal I_{G}, there may not exist a perfect elimination order of \bar{G} such that its reverse order x_{1}, \ldots, x_{n} satisfies $\operatorname{pnbhd}\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{i+1}\right)$ in G for $i=1, \ldots, n-1$. For example, if \bar{G} is the star-shaped chordal graph in Example 5.2.6, then we can check that \bar{G} has no perfect elimination order satisfying the above property. However, the following proposition says that if the above property is satisfied then the perfect elimination order of \bar{G} can be produced by Algorithm 5.2.2.

Proposition 5.3.10. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal. Let x_{1}, \ldots, x_{n} be in the reverse order of a perfect elimination order of \bar{G} such that pnbhd $\left(x_{i}\right) \subseteq \operatorname{pnbhd}\left(x_{i+1}\right)$ in G for $i=1, \ldots, n-1$. Then the perfect elimination order x_{n}, \ldots, x_{1} of \bar{G} can be produced by Algorithm 5.2.2.

Proof. First we choose $v_{n}=x_{1}$ in Algorithm 5.2.2. Since $\operatorname{pnbhd}\left(x_{2}\right) \subseteq \operatorname{pnbhd}\left(x_{j}\right)$ in G for any $2<j \leq n$, it follows that if $x_{1} x_{2} \notin \bar{G}$ then $x_{1} x_{j} \notin \bar{G}$ for all $2<j \leq n$, so that in Algorithm 5.2 .2 we can choose $v_{n-1}=x_{2}$. Now suppose that we have chosen $v_{n}=x_{1}, v_{n-1}=x_{2}, \ldots, v_{n-(i-2)}=x_{i-1}$ for some $3 \leq i \leq n$. Since pnbhd $\left(x_{i}\right) \subseteq$ $\operatorname{pnbhd}\left(x_{j}\right)$ in G for any $i<j \leq n$, it follows that for any $1 \leq l \leq i-1$, if $x_{l} x_{i} \notin \bar{G}$ then $x_{l} x_{j} \notin \bar{G}$ for all $i<j \leq n$, so that in Algorithm 5.2 .2 we can choose $v_{n-(i-1)}=x_{i}$. So by using induction we see that x_{n}, \ldots, x_{1} can be the output of Algorithm 5.2.2 and we are done.

Remark 5.3.11. If the conditions in the above proposition are satisfied, then there will be no β terms in the differential formula. However, as we have seen in Remark 5.3.9, the conditions in the above proposition can not always be satisfied, especially when \bar{G} is a complicated chordal graph. So in general, the β terms in the differential formula can not be avoided.

Remark 5.3.12. Let $G=K_{n}$ be the complete graph with n vertices x_{1}, \ldots, x_{n}. Then we have the Eliahou-Kervaire resolution of S / I_{G}. It is easy to see that the basis element $\left(x_{i} x_{j} ; i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}\right)$ with $i_{1}<\cdots<i_{p}<i<j_{1}<$ $\cdots<j_{q}<j$ in the Eliahou-Kervaire resolution corresponds naturally to the basis element $\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{i} \mid x_{j_{1}}, \ldots, x_{j_{q}}, x_{j}\right)$ in Construction 5.3.4. But the differential maps defined on them are different. For example, if $G=K_{3}$, then $d\left(x_{2} x_{3} ; 1\right)=x_{1}\left(x_{2} x_{3} ; \emptyset\right)-x_{3}\left(x_{1} x_{2} ; \emptyset\right)$, but $d\left(x_{1}, x_{2} \mid x_{3}\right)=x_{1}\left(x_{2} \mid x_{3}\right)-x_{2}\left(x_{1} \mid x_{3}\right)$. So in the case of complete graphs, the resolution defined in Construction 5.3.4 does not recover the Eliahou-Kervaire resolution. By contrast, the resolution in [Ho] recovers the Eliahou-Kervaire resolution in the case of complete graphs.

5.4 The proof of $d^{2}=0$

Before proving Lemma 5.3.6, we look at the following example.

Example 5.4.1. Let G be the graph such that \bar{G} is the chordal graph given in Example 5.2.6. Then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ is in the reverse order of a perfect elimination order of \bar{G} produced by Algorithm 5.2.2. Note that in G,

$$
\operatorname{pnbhd}\left(x_{5}\right)=\left\{x_{1}, x_{2}, x_{3}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{6}\right)=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\} .
$$

Next we check that $d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)=0$. In fact, by the definition of d, we have
that

$$
\begin{aligned}
d\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)= & x_{1}\left(x_{2}, x_{3} \mid x_{5}, x_{6}\right)-x_{2}\left(x_{1}, x_{3} \mid x_{5}, x_{6}\right) \\
& +x_{3}\left[\left(x_{1}, x_{2} \mid x_{5}, x_{6}\right)+\left(x_{1}, x_{2}, x_{5} \mid x_{6}\right)\right]-x_{6}\left(x_{1}, x_{2}, x_{3} \mid x_{5}\right), \\
d\left(x_{1}\left(x_{2}, x_{3} \mid x_{5}, x_{6}\right)\right)= & x_{1} x_{2}\left(x_{3} \mid x_{5}, x_{6}\right)-x_{1} x_{3}\left[\left(x_{2} \mid x_{5}, x_{6}\right)+\left(x_{2}, x_{5} \mid x_{6}\right)\right] \\
& +x_{1} x_{6}\left(x_{2}, x_{3} \mid x_{5}\right), \\
d\left(-x_{2}\left(x_{1}, x_{3} \mid x_{5}, x_{6}\right)\right)= & -x_{2} x_{1}\left(x_{3} \mid x_{5}, x_{6}\right)+x_{2} x_{3}\left[\left(x_{1} \mid x_{5}, x_{6}\right)+\left(x_{1}, x_{5} \mid x_{6}\right)\right] \\
& -x_{2} x_{6}\left(x_{1}, x_{3} \mid x_{5}\right), \\
d\left(x_{3}\left(x_{1}, x_{2} \mid x_{5}, x_{6}\right)\right)= & x_{3} x_{1}\left(x_{2} \mid x_{5}, x_{6}\right)-x_{3} x_{2}\left(x_{1} \mid x_{5}, x_{6}\right) \\
& -x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right)+x_{3} x_{6}\left(x_{1}, x_{2} \mid x_{5}\right), \\
d\left(x_{3}\left(x_{1}, x_{2}, x_{5} \mid x_{6}\right)\right)= & x_{3} x_{1}\left(x_{2}, x_{5} \mid x_{6}\right)-x_{3} x_{2}\left(x_{1}, x_{5} \mid x_{6}\right)+x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right), \\
d\left(-x_{6}\left(x_{1}, x_{2}, x_{3} \mid x_{5}\right)\right)= & -x_{6} x_{1}\left(x_{2}, x_{3} \mid x_{5}\right)+x_{6} x_{2}\left(x_{1}, x_{3} \mid x_{5}\right)-x_{6} x_{3}\left(x_{1}, x_{2} \mid x_{5}\right) .
\end{aligned}
$$

So the sum of the terms in $d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)$ containing $x_{1} x_{2}$ is

$$
x_{1} x_{2}\left(x_{3} \mid x_{5}, x_{6}\right)-x_{2} x_{1}\left(x_{3} \mid x_{5}, x_{6}\right)=0
$$

the sum of the terms in $d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)$ containing $x_{1} x_{3}$ is

$$
-x_{1} x_{3}\left[\left(x_{2} \mid x_{5}, x_{6}\right)+\left(x_{2}, x_{5} \mid x_{6}\right)\right]+x_{3} x_{1}\left(x_{2} \mid x_{5}, x_{6}\right)+x_{3} x_{1}\left(x_{2}, x_{5} \mid x_{6}\right)=0
$$

and similarly, we have

$$
\begin{aligned}
x_{2} x_{3}\left[\left(x_{1} \mid x_{5}, x_{6}\right)\right. & \left.+\left(x_{1}, x_{5} \mid x_{6}\right)\right]-x_{3} x_{2}\left(x_{1} \mid x_{5}, x_{6}\right)-x_{3} x_{2}\left(x_{1}, x_{5} \mid x_{6}\right)=0, \\
& -x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right)+x_{3} x_{5}\left(x_{1}, x_{2} \mid x_{6}\right)=0, \\
& x_{1} x_{6}\left(x_{2}, x_{3} \mid x_{5}\right)-x_{6} x_{1}\left(x_{2}, x_{3} \mid x_{5}\right)=0 \\
& -x_{2} x_{6}\left(x_{1}, x_{3} \mid x_{5}\right)+x_{6} x_{2}\left(x_{1}, x_{3} \mid x_{5}\right)=0 \\
& x_{3} x_{6}\left(x_{1}, x_{2} \mid x_{5}\right)-x_{6} x_{3}\left(x_{1}, x_{2} \mid x_{5}\right)=0 .
\end{aligned}
$$

Therefore, $d^{2}\left(x_{1}, x_{2}, x_{3} \mid x_{5}, x_{6}\right)=0$.

Proof of Lemma 5.3.6. First we have that

$$
\begin{aligned}
d^{2}\left(x_{i_{1}} \mid x_{j_{1}}\right) & =d\left(x_{i_{1}} x_{j_{1}}\right)=x_{i_{1}} x_{j_{1}}=0 \text { in } S / I_{G}, \\
d^{2}\left(x_{i_{1}}, x_{i_{2}} \mid x_{j_{1}}\right) & =d\left(x_{i_{1}}\left(x_{i_{2}} \mid x_{j_{1}}\right)-x_{i_{2}}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right) \\
& =x_{i_{1}} x_{i_{2}} x_{j_{1}}-x_{i_{2}} x_{i_{1}} x_{j_{1}}=0, \\
d^{2}\left(x_{i_{1}} \mid x_{j_{1}}, x_{j_{2}}\right) & = \begin{cases}d\left(x_{j_{1}}\left(x_{i_{1}} \mid x_{j_{2}}\right)-x_{j_{2}}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right), & \text { if } x_{i_{1}} x_{j_{2}} \in G \\
d\left(x_{i_{1}}\left(x_{j_{1}} \mid x_{j_{2}}\right)-x_{j_{2}}\left(x_{i_{1}} \mid x_{j_{1}}\right)\right), & \text { if } x_{i_{1}} x_{j_{2}} \notin G\end{cases} \\
& = \begin{cases}x_{j_{1}} x_{i_{1}} x_{j_{2}}-x_{j_{2}} x_{i_{1}} x_{j_{1}}, & \text { if } x_{i_{1}} x_{j_{2}} \in G \\
x_{i_{1}} x_{j_{1}} x_{j_{2}}-x_{j_{2}} x_{i_{1}} x_{j_{1}}, & \text { if } x_{i_{1}} x_{j_{2}} \notin G\end{cases} \\
& =0 .
\end{aligned}
$$

Next we need only to prove that $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0$ for $p+q \geq 4$. Just as in Example 5.4.1, it suffices to prove that if we write out all the terms of $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$, then given any $\lambda, \lambda^{\prime} \in\left\{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}\right\}$, the sum of the terms containing $x_{\lambda} x_{\lambda^{\prime}}$ is zero, that is all the terms containing $x_{\lambda} x_{\lambda^{\prime}}$ cancel. Hence, a computation will reveal that if β does not exist, that is $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{t}}\right)$ for all $1 \leq t \leq q$, then $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0$. So we will assume that $q \geq 2$ and β exists. The proof is case by case and there are five main cases.
[Case A]: $\lambda, \lambda^{\prime} \in\left\{i_{1}, \ldots, i_{p}\right\}$.
[Case A-a]: if $1 \leq s<s^{\prime} \leq p$ such that $x_{i_{s}} x_{j_{\beta}} \in G$ and $x_{i_{s}} x_{j_{\beta}} \in G$, then the sum of the terms containing $x_{i_{s}} x_{i_{s}}$, is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{s^{\prime}} x_{i_{s^{\prime}}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{s^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{s^{\prime}+1} x_{i_{s^{\prime}}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{s^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0
\end{aligned}
$$

[Case A-b]: suppose that there is a term containing $x_{i_{s}} x_{i_{\alpha}}$ for some $1 \leq s, \alpha \leq p$
such that $x_{i_{s}} x_{j_{\beta}} \in G$ and $x_{i_{\alpha}} x_{j_{\beta}} \notin G$. Without the loss of generality, we assume $s<\alpha$.

Subcase (i): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{i_{\alpha}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\alpha} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then we set

$$
\beta^{\prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
$$

Lemma 5.3.2 implies that for any $\beta \leq t \leq q, x_{j_{1}} x_{j_{t}}, \ldots, x_{j_{\beta-1}} x_{j_{t}} \in G$, so we have

$$
\beta^{\prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\}
$$

Subsubcase (ii)(a): if one of the following conditions is satisfied:

1) β^{\prime} does not exist,
2) $x_{i_{s}} x_{j_{\beta^{\prime}}} \in G$,
3) $x_{i_{s}} x_{j_{\beta^{\prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}}}\right)$,
then the sum of the terms containing $x_{i_{s}} x_{i_{\alpha}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\alpha} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (ii)(b): if $x_{i_{s}} x_{j_{\beta^{\prime}}} \notin G,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{i_{\alpha}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\alpha} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\alpha+1} x_{i_{\alpha}}\left\{(- 1) ^ { s + 1 } x _ { i _ { s } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{\beta^{\prime}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta^{\prime}-1}} \mid x_{j_{\beta^{\prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime}-\beta+1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta^{\prime}-1}} \mid x_{j_{\beta^{\prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0
\end{aligned}
$$

Note that in the above two subsubcases, if $s=1$ and $\alpha=p=2$ then the terms containing $\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ are zeros.
[Case A-c]: suppose that there is a term containing $x_{i_{\alpha}} x_{i_{\alpha^{\prime}}}$ for some $1 \leq \alpha<$ $\alpha^{\prime} \leq p$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$ and $x_{i_{\alpha^{\prime}}} x_{j_{\beta}} \notin G$.

Subcase (i): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{i_{\alpha^{\prime}}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\alpha^{\prime}} x_{i_{\alpha^{\prime}}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\alpha^{\prime}+1} x_{i_{\alpha^{\prime}}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{i_{\alpha^{\prime}}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\alpha^{\prime}} x_{i_{\alpha^{\prime}}},\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right) \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\alpha^{\prime}+1} x_{i_{\alpha^{\prime}}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha^{\prime}}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Note that if $\alpha=1$ and $\alpha^{\prime}=p=2$, then in the above formula, the two terms containing $\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, \widehat{x_{i_{\alpha}^{\prime}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ are zeros.
[Case B]: $\lambda \in\left\{i_{1}, \ldots, i_{p}\right\}$ and $\lambda^{\prime}=j_{1}$.
[Case B-a]: suppose that there is a term containing $x_{i_{s}} x_{j_{1}}$ for some $1 \leq s \leq p$ such that $x_{i_{s}} x_{j_{\beta}} \in G$, then it is easy to see that $\beta \neq 2$ and the sum of the terms containing $x_{i_{s}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{1+(p-1)} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{p+1} x_{j_{1}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

[Case B-b]: suppose that there is a term containing $x_{i_{\alpha}} x_{j_{1}}$ for some $1 \leq \alpha \leq p$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$.

Subcase (i): $\beta=2$. If we have $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then it is easy to see that there is no term containing $x_{i_{\alpha}} x_{j_{1}}$, hence we must have $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$ and the sum of the terms containing $x_{i_{\alpha}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{p} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \widehat{\widehat{x_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+1} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}} \mid x_{j_{2}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (ii): if $\beta>2$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{p} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \widehat{\widehat{x_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{p+1} x_{j_{1}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (iii): if $\beta>2$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of
the terms containing $x_{i_{\alpha}} x_{j_{1}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{p} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+1} x_{j_{1}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{p+1} x_{j_{1}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

[Case C]: $\lambda \in\left\{i_{1}, \ldots, i_{p}\right\}$ and $\lambda^{\prime} \in\left\{j_{2}, \ldots, j_{q}\right\}$.
[Case C-a]: if $1 \leq s \leq p, 2 \leq t \leq q$ such that $x_{i_{s}} x_{j_{\beta}} \in G$ and $t \neq \beta$, then the sum of the terms containing $x_{i_{s}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

[Case C-b]: suppose that there is a term containing $x_{i_{\alpha}} x_{j_{t}}$ for some $1 \leq \alpha \leq p$, $2 \leq t \leq q$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$ and $t \neq \beta$.

Subcase (i): if $\left\{x_{i_{1}}, \ldots, \widehat{i_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{i_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then as in subcase (ii) of [Case A-b], we set

$$
\begin{aligned}
\beta^{\prime} & =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} \\
& =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
\end{aligned}
$$

Subsubcase (ii)(a): if $t<\beta$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t+(p-1)+1} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (ii)(b): if one of the following conditions is satisfied:

1) $t>\beta$ and β^{\prime} does not exist,
2) $t>\beta$ and $t \neq \beta^{\prime}$,
3) $t=\beta^{\prime}=q$,
4) $t=\beta^{\prime}$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}+1}}\right)$,
then the sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{t+(p-1)} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t+p-1} x_{j_{t}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Note that in the above two subsubcases, if $\alpha=p=1$ then the terms containing $\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)$ are zeros and β^{\prime} does not exist.

Subsubcase (ii)(c): if $t=\beta^{\prime}$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime}+1}}\right)$, then the
sum of the terms containing $x_{i_{\alpha}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left\{(- 1) ^ { t + (p - 1) } x _ { j _ { t } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{t}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{t-1}} \mid x_{j_{t+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{t+p-1} x_{j_{t}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.(-1)^{t-\beta+1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{t-1}} \mid x_{j_{t+1}}, \ldots, x_{j_{q}}\right)\right]\right\} \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right]=0
\end{aligned}
$$

[Case C-c]: suppose that there is a term containing $x_{i_{s}} x_{j_{\beta}}$ for some $1 \leq s \leq p$ such that $x_{i_{s}} x_{j_{\beta}} \in G$. We set

$$
\beta^{\prime \prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\}
$$

Lemma 5.3.2 implies that for any $\beta \leq t \leq q, x_{j_{1}} x_{j_{t}}, \ldots, x_{j_{\beta-1}} x_{j_{t}} \in G$, so we have

$$
\beta^{\prime \prime}=\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
$$

Subcase (i): if $\beta=q$ or $\left\{x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and $x_{i_{s}} x_{j_{\beta+1}} \notin G$, then $\beta^{\prime \prime}=$ $\beta+1$ and the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{s+1} x_{i_{s}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{s}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (iii): if one of the following conditions is satisfied:

1) $\beta<q$ and $\beta^{\prime \prime}$ does not exist,
2) $\beta^{\prime \prime}>\beta+1$ and $x_{i_{s}} x_{j_{\beta^{\prime \prime}}} \in G$,
3) $\beta^{\prime \prime}>\beta+1, x_{i_{s}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$
then the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& +(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (iv): if $\beta^{\prime \prime}>\beta+1, x_{i_{s}} x_{j_{\beta^{\prime \prime}}} \notin G,\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$, then the sum of the terms containing $x_{i_{s}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{s+1} x_{i_{s}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{s+1} x_{i_{s}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots,, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta^{\prime \prime}-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{s+1} x_{i_{s}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta_{-1}}} \mid x_{j_{\beta_{1}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime \prime}-\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{s}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

[Case C-d]: suppose that there is a term containing $x_{i_{\alpha}} x_{j_{\beta}}$ for some $1 \leq \alpha \leq p$ such that $x_{i_{\alpha}} x_{j_{\beta}} \notin G$. As in [Case C-c], we set

$$
\begin{aligned}
\beta^{\prime \prime} & =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} \\
& =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
\end{aligned}
$$

Subcase (i): if $\beta=q$ or $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (ii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then we have the following three subsubcases.

Subsubcase (ii)(a): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and $x_{i_{\alpha}} x_{j_{\beta+1}} \notin G$, then $\beta^{\prime \prime}=\beta+1$ and the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\beta+p-1} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (ii)(b): if $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and one of the following conditions is satisfied:

1) $\beta^{\prime \prime}$ does not exist,
2) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \in G$,
3) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$,
then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\beta+p-1} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (ii)(c): if $\beta^{\prime \prime} \geq \beta+2, x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}\left[(-1)^{\beta+(p-1)} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\beta+p-1} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta_{-1}} \mid} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left\{(- 1) ^ { \alpha + 1 } x _ { i _ { \alpha } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{\beta^{\prime \prime}-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime-}}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta_{-1}}} \mid x_{j_{\beta_{+1}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime \prime}-\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

Subcase (iii): if $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta}}\right)$, then just as in subcase (ii), we have the following three subsubcases.

Subsubcase (iii)(a): if $\left\{x_{i_{1}}, \ldots, \widehat{i_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and $x_{i_{\alpha}} x_{j_{\beta+1}} \notin G$, then $\beta^{\prime \prime}=\beta+1$ and the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (iii)(b): if $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$ and one of the following conditions is satisfied:

1) $\beta^{\prime \prime}$ does not exist,
2) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \in G$,
3) $x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$,
then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subsubcase (iii)(c): if $\beta^{\prime \prime} \geq \beta+2, x_{i_{\alpha}} x_{j_{\beta^{\prime \prime}}} \notin G$ and $\left\{x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}\right\} \subseteq$ $\operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$, then the sum of the terms containing $x_{i_{\alpha}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\alpha+1} x_{i_{\alpha}}(-1)^{\beta+(p-1)} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left\{(- 1) ^ { \alpha + 1 } x _ { i _ { \alpha } } \left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{\beta^{\prime \prime}-1}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime-}}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{\alpha+1} x_{i_{\alpha}}\left[\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta_{-1}}} \mid x_{j_{\beta_{+1}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.+(-1)^{\beta^{\prime \prime-}-\beta}\left(x_{i_{1}}, \ldots, \widehat{x_{i_{\alpha}}}, \ldots,, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{\beta^{\prime \prime}-1}} \mid x_{j_{\beta^{\prime \prime}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

[Case D]: $\lambda=j_{1}$ and $\lambda^{\prime} \in\left\{j_{2}, \ldots, j_{q}\right\}$.
[Case D-a]: suppose that there is a term containing $x_{j_{1}} x_{j_{t}}$ for some $2 \leq t \leq q$ such that $t \neq \beta$, then $\beta \neq 2$ and if $t=2$ then $\beta \neq 3$. Hence, the sum of the terms
containing $x_{j_{1}} x_{j_{t}}$ is

$$
\begin{aligned}
& (-1)^{1+p} x_{j_{1}}(-1)^{(t-1)+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \widehat{x_{j_{1}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t+p} x_{j_{t}}(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \widehat{x_{j_{1}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

[Case D-b]: suppose that there is a term containing $x_{j_{1}} x_{j_{\beta}}$.

Subcase (i): $\beta=2$. Assume that $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{3}}\right)$, then there is no term containing $x_{j_{1}} x_{j_{\beta}}$, hence we must have $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{3}}\right)$ and the sum of the terms containing $x_{j_{1}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid \widehat{x_{j_{1}}}, x_{j_{3}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+2} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, \widehat{x_{j_{1}}} \mid x_{j_{3}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (ii): if $\beta>2$ such that $\beta=q$ or $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{j_{1}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{1+p} x_{j_{1}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

Subcase (iii): if $\beta>2$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+1}}\right)$, then the sum of the terms containing $x_{j_{1}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{1+p} x_{j_{1}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{1+p} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{2}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{p+2} x_{j_{1}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{2}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

[Case E]: $\lambda, \lambda^{\prime} \in\left\{j_{2}, \ldots, j_{q}\right\}$.
[Case E-a]: if $2 \leq t<t^{\prime} \leq q$ such that $t \neq \beta$ and $t^{\prime} \neq \beta$, then the sum of the terms containing $x_{j_{t}} x_{j_{t^{\prime}}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{\left(t^{\prime}-1\right)+p} x_{j_{t^{\prime}}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{t^{\prime}+p} x_{j_{t^{\prime}}}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)=0 .
\end{aligned}
$$

[Case E-b]: suppose that there is a term containing $x_{j_{t}} x_{j_{\beta}}$ for some $2 \leq t \leq q$ with $t \neq \beta$. As in [Case C-c], we set

$$
\begin{aligned}
\beta^{\prime \prime} & =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} \\
& =\min \left\{t \mid \beta<t \leq q,\left\{x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{t}}\right)\right\} .
\end{aligned}
$$

Subcase (i): if one of the following conditions is satisfied:

1) $\beta=q$,
2) $\beta=q-1$ and $t=q$,
3) $\beta^{\prime \prime}=\beta+1$ and $t \neq \beta^{\prime \prime}$,
4) $\beta^{\prime \prime}=\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta+2}}\right)$,
5) $\beta^{\prime \prime}=\beta+2$ and $t=\beta+1$,
then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right) \\
& =0, \text { for } t<\beta \text {; } \\
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{(t-1)+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right) \\
& =0, \text { for } t>\beta .
\end{aligned}
$$

Subcase (ii): if $\beta^{\prime \prime}=\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta+2}}\right)$, then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+2}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}(-1)^{(t-1)+p} x_{j_{t}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+2}}, \ldots, x_{j_{q}}\right)\right]=0 .
\end{aligned}
$$

Subcase (iii): if one of the following conditions is satisfied:

1) $\beta=q-1, t<\beta$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{q}}\right)$,
2) $\beta \leq q-2$ and $\beta^{\prime \prime}$ does not exist,
3) $\beta^{\prime \prime}>\beta+1, t \neq \beta^{\prime \prime}$ such that $t \neq \beta+1$ or $\beta^{\prime \prime} \neq \beta+2$,
4) $\beta^{\prime \prime}>\beta+1$ and $t=\beta^{\prime \prime}=q$,
5) $\beta^{\prime \prime}>\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \nsubseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}+1}}\right)$,
then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{(\beta-1)+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta-1}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{t+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t+p+1} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, \widehat{x_{j_{\beta}}} \mid x_{j_{\beta+1}}, \ldots, x_{j_{q}}\right)\right] \\
& =0, \text { for } t<\beta ;
\end{aligned}
$$

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left[(-1)^{(t-1)+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}(-1)^{t-1+p} x_{j_{t}}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right] \\
& =0, \text { for } t>\beta .
\end{aligned}
$$

Subcase (iv): if $\beta^{\prime \prime}>\beta+1, t=\beta^{\prime \prime}$ and $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{\beta^{\prime \prime}}}\right)$, then the sum of the terms containing $x_{j_{t}} x_{j_{\beta}}$ is

$$
\begin{aligned}
& (-1)^{t+p} x_{j_{t}}(-1)^{\beta+p} x_{j_{\beta}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.+(-1)^{\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta+p} x_{j_{\beta}}\left\{(- 1) ^ { (t - 1) + p } x _ { j _ { t } } \left[\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right.\right. \\
& \left.+(-1)^{t-1}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{t_{1}}} \mid x_{j_{t+1}}, \ldots, x_{j_{q}}\right)\right] \\
& +(-1)^{\beta}(-1)^{t-1+p} x_{j_{t}}\left[\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, x_{j_{\beta-1}} \mid x_{j_{\beta+1}}, \ldots, \widehat{x_{j_{t}}}, \ldots, x_{j_{q}}\right)\right. \\
& \left.\left.(-1)^{t-\beta}\left(x_{i_{1}}, \ldots, x_{i_{p}}, x_{j_{1}}, \ldots, \widehat{x_{j_{\beta}}}, \ldots, x_{j_{t-1}} \mid x_{j_{t_{t+1}}}, \ldots, x_{j_{q}}\right)\right]\right\}=0 .
\end{aligned}
$$

Since the above five main cases have included all the possible terms, it follows that $d^{2}\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)=0$ and we are done.

5.5 Betti numbers

In Section 5.3, to construct the differential maps of the minimal free resolution of S / I_{G}, we need to assume that x_{n}, \ldots, x_{1} is a perfect elimination order of \bar{G} produced by Algorithm 5.2.2. However, to get a nice formula for Betti numbers (Corollary 5.5.2), we only need to know a basis for the minimal free resolution.

Therefore, we have the following theorem which does not require that the perfect elimination order x_{n}, \ldots, x_{1} of \bar{G} is produced by Algorithm 5.2.2.

Theorem 5.5.1. Let G be a simple graph with vertices x_{1}, \ldots, x_{n} such that \bar{G} is chordal and x_{1}, \ldots, x_{n} is in the reverse order of a perfect elimination order of \bar{G}. Then in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ we have the linear edge ideal I_{G} of the graph G. Let the symbol $\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right)$ be as defined in Construction 5.3.4. And we set

$$
\mathcal{B}=\{1\} \cup \bigcup_{p \geq 1, q \geq 1}\left\{\begin{array}{ll}
\left(x_{i_{1}}, \ldots, x_{i_{p}} \mid x_{j_{1}}, \ldots, x_{j_{q}}\right): & \begin{array}{l}
1 \leq i_{1}<\cdots<i_{p}<j_{1}<\cdots<j_{q} \leq n \\
\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\} \subseteq \operatorname{pnbhd}\left(x_{j_{1}}\right)
\end{array}
\end{array}\right\} .
$$

Then there exists a multigraded minimal free resolution \mathbf{F} of S / I_{G} such that \mathbf{F} has basis \mathcal{B}.

We will not prove Theorem 5.5.1 because the proof is very similar to the proof of Theorem 5.3.7. The only difference is that in the proof of Theorem 5.3.7 we know the complex maps $-\mu_{2}: \mathbf{E} \rightarrow \mathbf{K}$ and $\mu: \mathbf{F}^{\prime \prime} \rightarrow \mathbf{F}^{\prime}$ explicitly, while in the proof of Theorem 5.5.1 we only know their existence. However, we can still use the mapping cones to show the existence of the multigraded minimal free resolution with the desired basis \mathcal{B}.

Now Theorem 5.5.1 imply immediately the following corollary about Betti numbers and the projective dimension of S / I_{G}.

Corollary 5.5.2. Let I_{G} be a linear edge ideal as defined in Theorem 5.5.1. For $2 \leq i \leq n$, we set $\lambda_{i}=\left|\operatorname{pnbhd}\left(x_{i}\right)\right|$. Then for $i \geq 1$, the Betti numbers of S / I_{G} are

$$
\beta_{i, j}\left(S / I_{G}\right)= \begin{cases}\sum_{l=2}^{n}\left(\sum_{p=1}^{\lambda_{l}}\binom{\lambda_{l}}{p}\binom{n-l}{i-p}\right), & \text { if } j=i+1 \\ 0, & \text { if } j \neq i+1\end{cases}
$$

and the projective dimension of S / I_{G} is

$$
\operatorname{projdim}\left(S / I_{G}\right)=n-\min \left\{i-\lambda_{i}: 2 \leq i \leq n \text { and } \lambda_{i} \neq 0\right\} \leq n-1 .
$$

Proof. The formula for Betti numbers follows from counting the number of basis elements of homological degree i and degree $i+1$ in \mathcal{B}. The projective dimension formula also follows easily by looking at the basis elements in \mathcal{B}. Since $\lambda_{i} \leq i-1$ for $2 \leq i \leq n$, it follows that $\operatorname{projdim}\left(S / I_{G}\right) \leq n-1$.

Example 5.5.3. Let G be the graph such that \bar{G} is the chordal graph given in Example 5.2.6. Then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ is in the reverse order of a perfect elimination order of \bar{G} and we have that

$$
\lambda_{2}=0, \lambda_{3}=1, \lambda_{4}=2, \lambda_{5}=3, \lambda_{6}=4, \lambda_{7}=5
$$

Therefore, by Corollary 5.5.2, we have projdim $\left(S / I_{G}\right)=5$ and a computation will reveal that the Betti numbers of S / I_{G} are

$$
\beta_{1,2}=15, \beta_{2,3}=40, \beta_{3,4}=45, \beta_{4,5}=24, \beta_{5,6}=5
$$

In [RV] and [HV], the following formula for the Betti numbers is proved by using Hochster's formula. Now we prove the formula by using Theorem 5.5.1.

Corollary 5.5.4. Let I_{G} be the linear edge ideal of a graph G with vertices x_{1}, \ldots, x_{n}. For any nonempty subset σ of $\left\{x_{1}, \ldots, x_{n}\right\}$, let \bar{G}_{σ} be the subgraph of \bar{G} induced by σ and let $\#\left(\bar{G}_{\sigma}\right)$ be the number of connected components of \bar{G}_{σ}. Then for $i \geq 1$, we have

$$
\beta_{i, j}\left(S / I_{G}\right)= \begin{cases}\sum_{\sigma \subseteq\left\{x_{1}, \ldots, x_{n}\right\}| | \sigma \mid=i+1}\left(\#\left(\bar{G}_{\sigma}\right)-1\right), & \text { if } j=i+1, \\ 0, & \text { if } j \neq i+1 .\end{cases}
$$

Proof. Without the loss of generality, we can assume that x_{n}, \ldots, x_{1} is a perfect elimination order of the chordal graph \bar{G}. Let \mathcal{B} be as defined in Theorem 5.5.1. We say that the vertex x_{s} is smaller than the vertex x_{t} if $s<t$. For any $i \geq 1$, let $\sigma=\left\{x_{\alpha_{1}}, \ldots, x_{\alpha_{i+1}}\right\}$ be a subset of $\left\{x_{1}, \ldots, x_{n}\right\}$ for some $1 \leq \alpha_{1}<\cdots<\alpha_{i+1} \leq n$.

We claim that $\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{p-1}} \mid x_{\alpha_{p}}, \ldots, x_{\alpha_{i+1}}\right) \in \mathcal{B}$ if and only if $p \neq 1$ and $x_{\alpha_{p}}$ is the smallest vertex in the connected component of \bar{G}_{σ} containing $x_{\alpha_{p}}$. Indeed, if $p \geq 2$ and $x_{\alpha_{p}}$ is the smallest vertex in the connected component of \bar{G}_{σ} containing $x_{\alpha_{p}}$, then $x_{\alpha_{s}} x_{\alpha_{p}} \in G$ for all $1 \leq s \leq p-1$, so that $\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{p-1}} \mid x_{\alpha_{p}}, \ldots, x_{\alpha_{i+1}}\right) \in \mathcal{B}$. On the other hand, assume that $p \geq 2$ and there exists $1 \leq s \leq p-1$ such that $x_{\alpha_{s}}$ and $x_{\alpha_{p}}$ are in the same connected component of \bar{G}_{σ}. Set $\sigma^{\prime}=\left\{x_{\alpha_{1}}, \ldots, x_{\alpha_{p}}\right\} \subseteq \sigma$. Since $x_{\alpha_{i+1}}, \ldots, x_{\alpha_{1}}$ is a perfect elimination order of \bar{G}_{σ}, it is easy to see that $x_{\alpha_{s}}$ and $x_{\alpha_{p}}$ are still in the same connected component of $\bar{G}_{\sigma^{\prime}}$. Therefore, there exists $1 \leq s^{\prime} \leq p-1$ such that $x_{\alpha_{s^{\prime}}} x_{\alpha_{p}} \in \bar{G}_{\sigma^{\prime}}$, and hence $x_{\alpha_{s^{\prime}}} x_{\alpha_{p}} \notin G$, which implies $\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{p-1}} \mid x_{\alpha_{p}}, \ldots, x_{\alpha_{i+1}}\right) \notin \mathcal{B}$. So the claim is proved. It follows that there are $\#\left(\bar{G}_{\sigma}\right)-1$ basis elements in \mathcal{B} with multidegree $x_{\alpha_{1}} \cdots x_{\alpha_{i+1}}$ and we are done.

BIBLIOGRAPHY

[Bi] A. Bigatti: Upper bounds for the Betti numbers of a given Hilbert function, Comm. in Algebra 21 (1993), 2317-2334.
[CM] G. Caviglia, D. Maclagan: Some cases of the Eisenbud-Green-Harris conjecture, Math. Res. Lett., 15 (2008), no. 3, 427-433.
[CE] H. Charalambous, G. Evans: Resolutions obtained by iterated mapping cones, J. Algebra 176, (1995), no. 3, 750-754.
[CL] G. F. Clements, B. Lindström: A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory, 71969 230-238.
[Co1] S. M. Cooper: Growth conditions for a family of ideals containing regular sequences, J. Pure Appl. Algebra, 212 (2008), no. 1, 122-131.
[Co2] S. M. Cooper: The Eisenbud-Green-Harris Conjecture for ideals of points, Pre-print, (2008).
[CN] A. Corso, U. Nagel: Monomial and toric ideals associated to Ferrers graphs, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1371-1395.
[DGO] E. D. Davis, A. V. Geramita, F. Orecchia: Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc., 93 (1985), no. 4, 593597.
[Di] G. A. Dirac: On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76.
[EGH] D. Eisenbud, M. Green, J. Harris: Higher Castelnuovo theory, Astérisque, No. 218 (1993), 187-202.
[EK] S. Eliahou, M. Kervaire: Minimal resolutions of some monomial ideals, J. Algebra 129, (1990), 1-25.
[Fra] C. Francisco: Almost complete intersections and the lex-plus-powers conjecture, J. Algebra, 276 (2004), no. 2, 737-760.
[Fro] R. Fröberg: On Stanley-Reisner rings, Topics in Algebra, Banach Center Publ., 26, part 2, (1990), 57-70.
[Fu] W. Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies vol. 131, Princeton University Press, Princeton, NJ (1993)
[GHP] V. Gasharov, N. Horwitz, I. Peeva: Hilbert Functions over Toric Rings, Michigan Math. J. Volume 57(2008), 339-357.
[HV] H. T. Hà, A. Van Tuyl: Resolutions of square-free monomial ideals via facet ideals: a survey. Algebra, geometry and their interactions, 91-117, Contemp. Math. 448, Amer. Math. Soc., Providence, RI, (2007).
[HHZ] J. Herzog, T. Hibi, X. Zheng: Dirac's theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004), no. 7, 949-960.
[HP] J. Herzog, D. Popescu: Hilbert functions and generic forms, Compositio Math. 113 (1998), no. 1, 1-22.
[HT] J. Herzog, Y. Takayama: Resolutions by mapping cones. The Roos Festschrift volume, 2. Homology Homotopy Appl. 4 (2002), 277-294.
[Hi] D. Hilbert: Über die vollen Invariantensysteme, Math. Ann., 42 (1893), 313-373.
[Ho] N. Horwitz: Linear resolutions of quadratic monomial ideals, J. Algebra 318 (2007), no. 2, 981-1001.
[Hu] H. Hulett: Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. in Algebra 21 (1993), 2335-2350.
[Ka] G. Katona: A theorem for finite sets, Theory of Graphs(P. Erdös and G. Katona, eds.), Academic Press, New York (1968), 187-207.
[Kr] J. Kruskal: The number of Simplices in a complex, Mathematical Optimization Techniques (R. Bellman, ed.), University of California Press, Berkeley/Los Angeles (1963), 251-278.
[Ma] F. S. Macaulay: Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
[Mt] H. Matsumura: Commutative ring theory, Translated from the Japanese by M. Reid. Second edition. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1989.
[Me] J. Mermin: Monomial regular sequences, Proc. Amer. Math. Soc., 138 (2010), no. 6, 1983-1988.
[MP] J. Mermin and I. Peeva: Lexifying ideals, Mathematical Research Letters 13 (2006), no. 2-3, 409-422.
[Pa] K. Pardue: Deformation classes of graded modules and maximal Betti numbers, Ill. J. Math. 40 (1996), 564-585.
[Ri] B. P. Richert: A study of the lex plus powers conjecture, J. Pure Appl. Algebra, 186 (2004), no. 2, 169-183.
[RTL] D.J. Rose, R.E. Tarjan, G.S. Lueker: Algorithmic aspects of vertex elimination on graphs, SIAM Journal on Computing, Vol. 5, No. 2. (1976), 266283.
[RV] M. Roth, A. Van Tuyl: On the linear strand of an edge ideal, Comm. Algebra 35 (2007), no. 3, 821-832.

