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Combinatorial t-designs are a class of highly regular set systems subject to inter-

esting incidence conditions. These objects have been found to be very useful in

applications ranging from tournament scheduling to traffic routing in communica-

tion networks. In the work presented here, we use a particularly nicely-structured

class of combinatorial designs, known as symmetric 2-designs, to solve a problem

concerning secure re-keying in a wireless communication system after the ejection

of one or more users from the network. We show that employing a symmetric

2-design as a key distribution in this type of system provides a number of bene-

fits, including collusion prevention and provably light loads for the base station to

execute necessary secure re-keying operations. We show that a class of symmetric

2-design key distribution allows for minimal re-keying procedures after multiple

simultaneous user ejections and that this problem is NP-hard for arbitrary key

distributions. For cases where the structure of symmetric 2-designs is insufficient

to make these strong claims, we present a novel algorithm for identifying a col-

lection of keys sufficient to re-key a network after any number of ejections. We

provide simulation results to show that for symmetric 2-design key distributions

this algorithm performs significantly better than existing solutions. To make these

guarantees, we draw connections between combinatorial designs, cover-free families

and various key distribution methodologies. We conclude by presenting a sample

application of this machinery, namely the advanced metering infrastructure being



deployed to monitor end-user electricity consumption as part of the smart grid.

The wireless sensors employed in this scheme have tight constraints on memory,

computation and power, and so symmetric encryption is a natural choice for data

security. The distribution of the cryptographic keys necessary for these operations

is difficult, and fluid group membership further complicates the problem. The

widespread adoption of AMI has the potential to significantly increase the effi-

ciency of the power distribution network. The acceptability of AMI to consumers

is directly tied to their perceived security; a robust infrastructure is necessary to

assure consumers of the protection of their personal information.
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CHAPTER 1

T -DESIGNS

1.1 Introduction

Design theory is a branch of combinatorics which is concerned with various forms of

incidence among subsets drawn from some underlying support set. Over the course

of its development, design theory has been shown to have remarkable connections

to diverse areas of mathematics including number theory, finite geometry, linear

error-correcting codes and graph theory. Given the breadth of its reach, it may be

surprising to learn that the earliest roots of design theory find themselves among

the recreational mathematics of the mid-1800s. Kirkman posed perhaps the first

problem in design theory in an 1847 edition of Lady and Gentleman’s Diary :

“Fifteen young ladies in a school walk out three abreast for seven days

in succession: it is required to arrange them daily so that no two shall

walk twice abreast.”

For obvious reasons, this statement is known as Kirkman’s schoolgirl problem. Few

branches of pure mathematics are conceived in magazines, and the fact that design

theory bucks this trend is a testament both to its often seemingly simple problem

statements and to its utility in modeling real-world situations. As with all problems

in the field, Kirkman’s school problem is concerned with a collection of elements

and the exact way in which subsets of those elements are related to one another.

For instance, here Kirkman stipulates that any pair of school girls appears in at

most one row. If we take the school girls as our elements and define incidence to
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mean being located together in a row, then any pair of elements is incident at most

once. To put this qualitative definition on firm mathematical footing, a more basic

definition is first needed.

Definition 1.1.1. A (finite) set system is an ordered pair (X,B) in which X is

a (finite) set and B is a collection of subsets of X. We will call the elements of

X points and the sets of B blocks. We say a set system is uniform if all blocks

have the same cardinality and regular if all points occur in the same number of

blocks.

Note that this definition does not specify that the collection B is itself a set;

there may exist identical blocks in B. Set systems are an incredibly diverse and

flexible class of mathematical objects. The pair (V, E) consisting of the vertices

and (hyper)edges of a (hyper)graph constitute a set system. The matroid (M, I)

consisting of a ground set and a collection of independent sets also defines a set

system. A probability space (Ω,F , P ) can be thought of a set system in which the

collection of subsets F ⊆ 2Ω forms a σ-algebra, together with a probability measure

P . Most importantly for the work presented here is the class of set systems known

as t-designs.

1.2 t-designs

The combinatorial objects known as t-designs grew out of the seminal works of

19th century mathematicians such as Kirkman and Steiner. These designs are

most fundamentally uniform and regular set systems with an additional incidence

condition.

Definition 1.2.1. A set system (X,B) is a t-(v, b, r, k, λ) design if

2



(1) |X| = v

(2) |B| = b

(3) every x ∈ X occurs in exactly r sets in B

(4) |B| = k for all B ∈ B

(5) every t-subset of X appears in exactly λ blocks in B.

We call r and k the replication number and block size, respectively. Note that

even here the property that B is a set, that is, that there are no repeated blocks,

is not required a priori. Designs containing no repeated blocks are often referred

to as simple. For the balance of this work, we will assume that every design which

we introduce is simple. We will also omit from consideration the complete design

which is composed of all k-subsets of X with t ≤ k.

Conditions (1)-(4) impose uniformity and regularity on the set system. It is

condition (5) that puts t-designs apart from all other set systems, and indeed it is

not easily satisfied. Designs with t = 1 are redundantly defined, as condition (3)

would imply that r = λ in this case. We will therefore always assume that t > 1.

Designs with t = 2 have been relatively well-studied and will be main mathematical

tool used in the applications featured here. Some infinite classes of t-designs with

small λ are known for t > 2. For instance, there is a 3-(q2 + 1, q + 1, 1) design, a

so-called Möbius or inversive plane, for every prime power q [11]. However, no t-

(v, b, r, k, λ) design is known to exist for any t > 5 and λ < 4 [11]. Determining how

many if any t-(v, k, 1) designs exist for large t is one of the largest open problems

in design theory.

The parameters of a t-(v, b, r, k, λ) design are not independent of one another.

Simple algebraic equations allow us to write any two of the parenthetical parame-
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ters in terms of the remaining three. The proofs of these well-known theorems are

included here both for completeness and so that the reasoning and methods found

in the original work presented later will have proper motivation.

Result 1.2.1. The parameters of a t-(v, b, r, k, λ) design (X,B) satisfy bk = vr.

Proof. We will count the total number of points in all blocks in two ways. There

are b blocks in B, each containing exactly k points. Additionally, there are v points

in X, each occurring in exactly r blocks. Hence, the total number of points in the

design is bk = vr.

Result 1.2.2. The parameters of a t-(v, b, r, k, λ) design (X,B) satisfy λ(v− 1) =

r(k − 1).

Proof. Fix x ∈ X. We will count the number of pairs (x, y), y ∈ X and y �= x,

occurring in all blocks in B. For all v − 1 choices of suitable y there exist exactly

λ blocks containing both x and y. For the right side of the equality, the point

x occurs in exactly r blocks, and in each there are exactly k − 1 other distinct

points.

Despite the fact that Result 1.2.1 and Result 1.2.2 imply that there exists a

more concise notation which describes any t-(v, b, r, k, λ) design, we will continue

to use this expanded version for clarity’s sake, except in one particular class that

will be introduced below.
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Example 1.2.1 ([11]). Let X = {a, b, . . . , o} and define

B = {abc, djn, ehm, fio, gkl

ahi, beg, cmn, dko, fjl

ajk, bmo, cef, dhl, gin

ade, bln, cij, fkm, gho

afg, bhj, clo, dim, ekn

alm, bik, cdg, ejo, fhn

ano, bdf, chk, eil, gjm}. (1.1)

The pair (X,B) is a 2-(15, 35, 7, 3, 1) design. If we associate each a, b, . . . , o dis-

tinctly with one of 15 school girls, take the blocks of B as the rows of girls and

take each of the rows of this array of B as one of the days of the week, then this

presentation of (X,B) is a solution to Kirkman’s schoolgirl problem.

Example 1.2.2. Let X = {0, 1, . . . , 6} and define

B = {{0, 1, 3}, {1, 2, 4},{2, 3, 5}, {3, 4, 6},

{4, 5, 0}, {5,6, 1}, {6, 0, 2}}. (1.2)

One can verify that (X,B) is 2-(7, 7, 3, 3, 1) design. This design can be identified

with the projective geometry PG(2,2) which will be discussed in Section 1.3.1. It

is commonly known as the Fano plane.

We note that in this particular case the number of points v equals the number

of blocks b, and the replication number r equals the block size k. This additional

structure is indicative of a larger class of 2-(v, v, k, k, λ) designs which have been

by far the most extensively investigated in design theory literature.
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1.3 Symmetric 2-Designs

Fischer’s inequality states that for any 2-(v, b, r, k, λ) design the number of blocks

is at least the number of points, that is b ≥ v. The class of 2-designs which meet

this bound with equality are called symmetric.

Definition 1.3.1. A symmetric 2-(v, k, λ) design of order q = k − λ is a 2-

(v, v, k, k, λ) design.

We will sometimes refer to a symmetric 2-(v, k, λ) design simply as a symmetric

design if the parameters are either clear or irrelevant. Here the term “symmetric”

refers not to any geometrical property necessarily, but rather to the equivalence

of the conditions on the numbers of blocks and points and on the block size and

the replication number. For reasons that we will not delve into here, some au-

thors prefer to use the term square to describe 2-(v, v, k, k, λ) designs. Symmetric

designs have yet another interesting (and useful) equivalence between blocks and

points: any two blocks have intersection cardinality λ. In fact, these symmetries

are themselves equivalent.

Theorem 1.3.1. Given a 2-(v, b, r, k, λ) design (X,B), the following are equiva-

lent:

(1) v = b,

(2) r = k,

(3) any two blocks share exactly λ points.

Proof. Result 1.2.1 shows the bidirectional equivalence (1) ⇔ (2). To see, (3) ⇒

(1), consider a set system constructed in the following way. For each x ∈ X, define
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B�
x = {B ∈ B : x ∈ B}, and let B� = {B�

x}x∈X be the collection of these sets

with x ranging over X. Then the pair (B,B�) form a 2-design by hypothesis (3); it

is easy to verify that 2-design axioms hold. Fisher’s inequality then implies that

|B| ≤ |B�| = |X|. But since (X,B) is a 2-design, Fisher’s inequality also implies

that |X| ≤ |B| and hence v = |X| = |B| = b.

For (1) ⇒ (3), fix a block B ∈ B and let λi be the number of points shared

between B and Bi ∈ {B1, B2, . . . , Bv−1}. (We have assumed (1), as well, since we

have shown (1) ⇒ (2) previously.) Each of the k points of B occurs in exactly

k − 1 other blocks in B, leading to the equation

k(k − 1) =
v−1�

i=1

λi. (1.3)

Then by Result 1.2.2 with r = k, we have

λ =
1

v − 1

v−1�

i=1

λi, (1.4)

so that the first moment of any collection {λi} is λ. Suppose that λ = 1. Each

λi is a non-negative integer, and since λ = 1, every two points occurs in exactly

1 block so that λi < 2 for all i = 1, 2, . . . , v − 1. Then Equation 1.4 implies that

λi = 1 for all i = 1, 2, . . . , v − 1. Since B was chosen arbitrarily, the desired result

holds for λ = 1.

Now suppose that λ > 1. Each of the
�
k
2

�
pairs of points from B occurs in

exactly λ− 1 other blocks, giving the relation

(λ− 1)

�
k

2

�
=

v−1�

i=1

�
λi

2

�
(1.5)

(λ− 1)k(k − 1) =
v−1�

i=1

λi(λi − 1). (1.6)
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Again using Result 1.2.2, we arrive at

λ(λ− 1) =
1

v − 1

v−1�

i=1

λi(λi − 1) (1.7)

λ2 =
1

v − 1

v−1�

i=1

λ2
i , (1.8)

where the final line follows from the first moment result above. Hence, the second

(non-central) moment of any collection {λi} is λ2. The first and second moment

equations of {λi} are enough to show that λi = λ for all i = 1, 2, . . . , v − 1. We

can define an auxiliary integer-valued variable −λ ≤ δi ≤ k−λ for each λi so that

λi = λ+ δi. (1.9)

Then Equation 1.4 implies that
�v−1

i=1 δi = 0. After substitution by the auxiliary

variable Equation 1.8 reads

λ2 =
1

v − 1

v−1�

i=1

λ2
i (1.10)

=
1

v − 1

v−1�

i=1

(λ+ δi)
2 (1.11)

=
1

v − 1

v−1�

i=1

(λ2 + 2λδi + δ2i ) (1.12)

= λ2 +
1

v − 1

v−1�

i=1

δ2i , (1.13)

which holds only if δi = 0 for all i = 1, 2, . . . , v − 1. Hence, the arbitrarily chosen

block B shares exactly λ points with any other block, and so any two blocks share

exactly λ points. Having shown (1) ⇔ (2) and (1) ⇔ (3), the desired result has

been proved.

To the author’s knowledge, the reasoning showing (1) ⇒ (3) is novel. The stan-

dard technique requires the introduction of incidence matrices and relies heavily

on linear algebraic machinery. While powerful in its own right, this traditional
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approach does intentionally distance itself from the combinatorial nature of the

problem. The new approach maintains contact with the combinatorial underpin-

nings of the subject and shows that identical results are within reach using more

elementary tools.

The most powerful existence criteria concerning symmetric designs are the cel-

ebrated non-existence results due to Bruck and Ryser, who together proved the

result for λ = 1 [5], and Ryser and Chowla, who later extended the result for the

cases where λ > 1 [9].

Result 1.3.1 (Bruck-Ryser-Chowla). If a symmetric 2-(v, k, λ) design exists with

v even, then k − λ is a square. If a symmetric 2-(v, k, λ) design exists with v odd,

then the equation x2 = (k − λ)y2 + (−1)(v−1)/2λz2 has a nontrivial solution in the

integers.

The proof of this theorem is lengthy not especially informative to the material

covered in this text; it is available in most textbooks on design theory. It is a

testament to the wide mathematical connections of design theory that a question

involving only incidence between finite sets should involve the existence of solutions

of a Diophantine equation. In 1989, Lam, Thiel and Swiercz provided the most

recent advancement past the Bruck-Ryser-Chowla thereom by proving that there

does not exist a symmetric 2-(121,11,1) design via a computerized search [24].

1.3.1 Projective Planes

Singer provided the most well-known construction algorithm for symmetric 2-

designs. His method deals with vector space inclusion over a finite field. Designs

9



generated in this fashion will be used in later as key distributions for group com-

munications systems. We will see that their properties allow for powerful results

concerning the ability to re-key the system after one or more user is ejected from

the network.

Result 1.3.2 (Singer, [35]). There exists a symmetric 2-(q2+q+1, q+1, 1) design

for every prime power q.

Proof. Let V be the 3-dimensional vector space over the finite field GF (q). Let the

points of X be the 1-dimensional subspaces of V . For each 2-dimensional subspace

W of V , define

BW = {U \ {0} : 0 ≤ U ≤ W ≤ V }, (1.14)

where the symbol ≤ denotes vector space inclusion. Then define a set system by

identifying points and blocks with each of the 1- and 2-dimensional subspaces of

V , respectively, and associating point-block incidence with vector space inclusion,

that is

B = {BW : W ≤ V, dim(W ) = 2}. (1.15)

It remains to verify that the conditions of a 2-design are satisfied.

Each 1-dimensional subspace of V contains exactly q−1 nonzero elements, and

after excluding the zero vector, these 1-dimensional subspaces partition the vectors

in V . Hence, the number of points is

|X| =
q3 − 1

q − 1
(1.16)

= q2 + q + 1. (1.17)

By construction, the number of blocks is identical to the number of distinct 2-

dimensional subspaces of V . In a 3-dimensional vector space, each 2-dimensional

10



subspace can be be uniquely identified by its 1-dimensional dual subspace. Hence,

|B| = |X| (1.18)

= q2 + q + 1, (1.19)

and so v = |X| = |B| = b.

To determine the number of 2-dimensional subspaces containing a fixed 1-

dimensional subspace L, first note that the choice of any nonzero vector not in

L uniquely determines a 2-dimensional subspace, namely their span in V . Next,

note that two 2-dimensional subspaces of V which both include L must be disjoint

outside of L. Hence, these these 2-dimensional subspaces partition the nonzero

vectors of V \ L, and so the replication number is

r =
q3 − q

q2 − q
(1.20)

= q + 1. (1.21)

Each 2-dimensional subspace W of V contains q2 − 1 nonzero vectors, and the

included 1-dimensional subspaces partition the nonzero vectors in W with each

containing exactly q − 1 vectors. Hence,

|BW | =
q2 − 1

q − 1
(1.22)

= q + 1 (1.23)

for every BW ∈ B. Therefore, we have r = q + 1 = k.

It remains to show to that the 2-design incidence condition is satisfied, namely

that any two distinct 1-dimensional subspaces of V are contained in exactly λ = 1

2-dimensional subspace of V . Since V is 3-dimensional, this inclusion relation is

satisfied only by the span of the two 1-dimensional subspaces.

11



Consider two distinct 2-dimensional subspaces A and B of V . Then dim(A ∩

B) < 2 since the subspaces are distinct, but dim(A ∩ B) ≥ 1 because

dim(A ∪ B) ≤ dim(V ) (1.24)

dim(A) + dim(B)− dim(A ∩ B) ≤ dim(V ) (1.25)

dim(A ∩ B) ≥ 1. (1.26)

Hence, we have dim(A∩B) = 1, and so any two blocks share exactly one point.

Singer’s construction can easily be extended to deal with the inclusion of one-

dimensional subspaces in d-dimensional hyperplanes in the vector space GF (q)d+1.

Such a set system is called a projective geometry of order q over GF (q)d+1 de-

noted PG(d, q). For the work presented here, the projective planes PG(2, q) will

suffice. The symmetric 2-design featured in Example 1.2.2 follows from the Singer

construction for a projective plane with q = 2.

1.3.2 Biplanes

While we have so far concentrated on symmetric designs with λ = 1, other symmet-

ric designs do exist. These classes of symmetric designs are far less well understood

that their projective plane counterparts. One class that will be featured in later

applications are the symmetric designs with λ = 2.

Definition 1.3.2. A biplane is symmetric 2-(v, k, 2) design.

There are only finitely namely biplanes known to exist, namely for k = 4, 5, 6, 9, 11, 13

[11]. Moreover, it is widely conjectured that for any λ > 1 there are only finitely

many symmetric designs.
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Example 1.3.1. Let X = {0, 1, . . . , 10} and define

B = {{1, 3, 4, 5, 9}.{2, 4, 5, 6, 10}, {3, 5, 6, 7, 0}, {4, 6, 7, 8, 1}, (1.27)

{5, 7, 8, 9, 2}, {6, 8, 9, 10, 3}, {7, 9, 10, 0, 4}, {8, 10, 0, 1, 5}, (1.28)

{9, 0, 1, 2, 6}, {10, 1, 2, 3, 7}, {0, 2, 3, 4, 8}}. (1.29)

One can verify that (X,B) is a biplane of order 3, a symmetric 2-(11,5,2) design.

1.4 Residuals of Symmetric Designs

It is often advantageous to think of a set system (X,B) as a set system (X �,B�)

with points and/or blocks removed. In this way, seemingly disparate classes of

combinatorial objects can be linked. Existence results for one class can be applied

the other, and one can investigate which properties of the original set system are

preserved during the transformation. For our work here, the concept of a residual

set system will be very useful.

Definition 1.4.1. Let (X,B) be a set system. The E-residual, {E1, E2, . . . , Er} =

E ⊆ B, is the set system (X �,B�) with

X � = X \
�

r�

i=1

Ei

�
(1.30)

B� =

�
C \

�
r�

i=1

Ei

�
: C ∈ B \ E

�
. (1.31)

If E is a single set B ∈ B, we will often abuse notation and identify the E-

residual of (X,B) as the B-residual. If in addition the choice of B is understood

or irrelevant, we will refer to the B-residual as simply the residual. Symmetric

designs are unique among 2-designs in that their residuals are also 2-designs.
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Result 1.4.1. The B-residual of a symmetric 2-(v, k, λ) design (X,B) is 2-(v −

k, v − 1, k, k − λ, λ) design for every B ∈ B.

Proof. Clearly there are v− k points and v− 1 blocks in the residual. Every point

not in B in the original design remains in exactly k blocks in the residual, so the

replication number of the residual is k. By Theorem 1.3.1, every block C ∈ B\{B}

shares exactly λ points with B. Hence, every block in the residual contains exactly

k − λ points. Since every pair of points from X appear in exactly 2 blocks in B,

any pair of points in X \ B remain in exactly λ blocks in the residual. Hence, all

2-design axioms are satisfied.

Notice that we do not prove that residual of a symmetric 2-design is symmetric,

and in fact they are not.

1.4.1 Affine Planes

The residual of a projective plane of order q is a 2-(q2, q2 + q, q+ 1, q, 1) design by

Result 1.4.1. Such a design is known as an affine plane of order q. While an affine

plane of order q can always be constructed as the residual of a projective plane of

the same order, their structure is perhaps best elucidated by a construction due

to Bose [3].

Result 1.4.2. There exits a 2-(q2, q2 + q, q+ 1, q, 1) design for every prime power

q.

Proof. Let V be the 2-dimensional vector space of the finite field GF (q). Associate

the set of points X with the q2 elements of V . For all one-dimensional subspaces
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W < V and α ∈ V , define

W + α = {w + α : w ∈ W} (1.32)

to be the translate of W by α. Define the collection of blocks to be all distinct

translates of all 1-dimensional subspaces of V . Any translate has the same cardi-

nality as the original 1-dimensional subspace, so the block size is q.

Considering the translates of a fixed 1-dimensional subspace as cosets of an

additive group, it is clear that that any two of these translates are either identical

or disjoint. Hence, there are q2/q = q distinct translates of any given 1-dimensional

subspace. From this fact, we can derive both the replication number and the

number of blocks in the candidate design.

The collection of 1-dimensional subspaces partition the set V \{0}; any vector is

included in its span, and any two linear subspaces intersect only at the zero vector.

Hence, there are (q2 − 1)/(q − 1) = q + 1 distinct 1-dimensional subspaces of V .

Since any element β ∈ V occurs in exactly one translate of each 1-dimensional

subspace, namely W +β for each 0 < W < V , we find that the replication number

is |{W : 0 < W < V }| = q + 1. Each linear subspace has exactly q distinct

translates, and no two translates of two distinct linear subspaces can be identical.

This implies that there are (q + 1)q = q2 + q total blocks.

So far we have derived all parenthetical parameters of the candidate design

except λ, and it remains to show that any two vectors in V occur in exactly one

block. Consider two vectors α, β ∈ V , and let W be the span of (α − β). (Note

that this construction is symmetric with respect to points, i.e. span(α − β) =
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span(β − α).) Then we verify

α = (α− β) · 1 + β (1.33)

β = (α− β) · 0 + β, (1.34)

so that both α and β are contained in W + β. To prove uniqueness, assume for

contradiction that there exists another translate U + γ containing both α and β.

Then

u+ γ = α = w + β (1.35)

u� + γ = β = w� + β. (1.36)

Subtracting one equation from the other, we have

u− u� = w − w�. (1.37)

But the left side is an element u�� of U , and ku�� is equal to the difference of elements

in W for all k ∈ GF (q). Varying k over the entirety of GF (q) generates U . Hence,

U ⊆ W . Considering the right side of the equation in the same manner shows

W ⊆ U . With containment in both directions, we have shown the uniqueness of a

translate containing any two vectors in V .

Note that since the blocks of B represent the translates of vector subspaces,

the blocks are either disjoint or have constant intersection cardinality.

As with projective planes, we can naturally extend the notion of the affine plane

of order q to the affine geometry AG(d, q) in which the points are the vectors of

GF (q)d, the blocks are correspond to translates of the (d−1)-dimensional subspaces

of GF (q)d, and point-block inclusion is taken set-wise [6].
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Example 1.4.1. Let X = {0, 1, 2, 5} and define

B = {{0, 1}, {2, 5}

{0, 2}, {1, 5}

{0, 5}, {1, 2}}. (1.38)

The pair (X,B) is an affine plane of order 2. It is also the {3, 4, 6}-residual of the

projective plane of order 2 featured in Example 1.2.2.

1.4.2 Residuals of Biplanes

The current understanding of biplanes is much less complete than that of their

projective plane counterparts. The natural notions of geometry in the latter con-

text allow for powerful existence and structural theorems about both the projective

planes themselves and their residuals. Unfortunately, no such unifying theory has

been discovered for biplanes, and so the results here remain piece-meal. For in-

stance, biplane residuals have been documented for use in coding theory as in work

of Key and Tonchev in [21]. But on the whole, these designs have received little

attention due to a lack of firm intuitive footing.
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CHAPTER 2

SECURE RE-KEYING IN GROUP COMMUNICATION SYSTEMS

2.1 Wireless Sensor Networks

In a wireless sensor network (WSN), a collection sensor nodes collect data and

wirelessly communicate these data to other sensor nodes and/or to a base station

in charge of aggregation and processing. The sensors nodes themselves are designed

to be cheap and long-lasting so that a large number can be deployed simultaneously.

The popular Zigbee wireless sensor platform supports network sizes of over 64,000

nodes each with a battery life of over 1 year [34]. As wireless sensor technologies

have matured, WSNs have been used in a wide variety of applications, including

military deployments, precision agriculture and health monitoring. For a recent

survey of uses of WSNs, see [1]. There are two primary types of WSN, hierarchical

and distributed. In a hierarchical WSN, a central authority (e.g., base station

or trust center) coordinates the network. The amount of control given to the

central authority varies. We typically assume that the central authority has greater

resources and is more secure than the sensor nodes. Hierarchical WSNs can be

efficiently coordinated but are sensitive to the loss or compromise of the central

authority, both of which result in network failure. In a distributed WSN, there

is no central authority coordinating the network; information flows through the

network in a distributed fashion. Distributed WSNs are more resilient to node loss

but can be less efficient than their hierarchical counterparts. For our work here,

we will consider a one-level hierarchical WSN, that is, a base station overseeing

a collection of equally privileged sensor nodes. The base station will be tasked

with broadcasting a group-wide information stream and coordinating encryption
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through the distribution of cryptographic keys. It may be the case that a sensor

node cannot directly communicate with the base station. In this case, other nodes

act as intermediaries on a multi-hop path. Hence, even in a hierarchical WSN, it

is important that individual nodes maintain the ability to communicate with one

another.

Data security during transmission is a priority in many WSN applications, and

cryptography is an obvious solution. Public-key cryptography is a mainstay of

modern wired communications, but the unique constraints found in WSNs make

symmetric (private) key cryptography the preferred solution. While not an issue

with wired devices, the computationally expensive mathematical procedures and

relatively large cryptographic keys found in most public key cryptography schemes

are out of place in this context. Symmetric key cryptography, in which a single

cryptographic key is used in both encryption and decryption, is a better solution

in most WSNs. The idea of symmetric cryptography is not a new one. Clas-

sic examples of symmetric key encryption range from the Caesar cipher to the

Enigma machine. More recently, the National Institute of Standards and Technol-

ogy (NIST) has approved the symmetric block ciphers included in the Advanced

Encryption Standard (AES) for protecting data owned by the federal government

[32]. The 128-bit flavor of the AES is the specified encryption of the Zigbee stan-

dard [2]. The relative simplicity of the encryption and decryption procedures does

come at a cost, however. First, network connectivity becomes unassured, as any

two users within range of one another can securely communicate if and only if

both have access to at least one common cryptographic key. Second, an encrypted

message is decipherable to any user owning the appropriate key, not just the in-

tended recipient. In a full mesh Zigbee network operating in the commercial mode,

every pair of users possesses a unique cryptographic key in order to address these
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concerns [30]; each user of n users then owns O(n) keys. For even moderately

sized networks, this number of keys represents a considerable memory overhead

for the individual sensor nodes. When designing a reasonable solution to put in

practice, we will have to make tradeoffs between the connectivity and the potential

for eavesdropping within the network.

In a more general model for key distribution in a communication system em-

ploying symmetric encryption first introduced by Mitchell and Piper [29], each user

ui, i = 1, 2, . . . , b, receives a collection of keys Bi, called a key chain, drawn without

replacement from a network-wide key pool X of cardinality v. Limited memory

at the sensor nodes upper bounds the number of keys a sensor node can store.

It is typically advantageous for a sensor node to store as many keys as possible

in order to maximize the probability that it will be able to securely communicate

with its neighbors; it is therefore reasonable to assume that the key chain size k

is constant across all users. Given these assumptions, the collection X of keys

together with the collection of key chains B = {B1, B2, . . . , Bb} forms a uniform

set system (X,B) as presented in Definition 1.1.1. The combinatorial properties of

this set system can have enormous impacts on the efficacy of the sensor network.

Qualitatively speaking, large key chains relative to the size of the key pool

result in higher probability that two users will share a common cryptographic key.

In the extreme case, there is a single key in the key pool, and every sensor node has

access to this key. Such a key distribution can be found in the Zigbee residential

security mode, for instance [30]. This scheme provides a small degree of security at

very low memory cost but is not preferred for critical applications, because if the

single key is compromised, then no secure communication can take place between

members of the network. In one of the first key distribution schemes, Eschenauer
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and Gligor proposed choosing the size k key chain of each of the b users of the WSN

uniformly randomly and without replacement from a key pool of size v [19]. The

probability that any two users can securely communicate is then determined by

the relative sizes of k and v. In many applications, however, firmer guarantees as

to network connectivity are needed. It is not surprising that the key distributions

satisfying these tougher constraints have more mathematical structure than those

of randomized schemes. The combinatorial t-designs investigated in Chapter 1

are a class of natural candidates due to their uniformity, regularity and incidence

conditions. The class of 2-designs are both the most plentiful known class of t-

designs and the best understood, and so we will focus our efforts on these special

designs. As first document by Çamtepe and Yener [7], a 2-design (X,B) can

be used as a key distribution for a WSN by associating the points and blocks

of the design with the keys and key chains of the key distribution, respectively.

Unfortunately, it is frequently the case that two blocks in a arbitrary 2-design

are disjoint, and so two users may not share a common cryptographic key with

which to communicate securely. In this situation, their message must pass through

one or more intermediaries along a multi-hop path. The presence of multi-hop

paths increases both latency and overhead, as nodes are required to spend more

resources communicating messages other than their own. Lee and Stinson put

forward µ-common intersection designs which ensure that there exist at least µ

distinct 2-hop paths between any two users which cannot communicate directly

[25]. Mathematically, any pair of disjoint blocks of the design have non-empty

intersections with at least µ common blocks. Chakrabarti, Maitra and Roy took

a more probabilistic approach by assigning to each user the keys associated with

multiple blocks from a 2-design [8]. In this way, many of the desirable properties

of 2-designs are preserved while increasing the probability that two users share
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common key. This benefit comes at the cost of higher storage and administrative

costs at the sensor nodes. In many communication scenarios, probabilistic results

about network connectivity are not sufficient and strong claims about worst-case

performance are necessary.

If it is required that any two nodes be able to securely communicate directly,

even more structure is needed in the key distribution. The scheme of Çamtepe

and Yener based on projective planes is in many senses optimal [7]: all users have

the same number of keys, providing uniformity among memory requirements; each

key is owned by a constant number of users, giving a constant cost if a key being

leaked to an adversary; every pair of users share a single key and so possess the

minimal amount of information required to communicate. These features do not

come free, however. A key distribution formed by a projective plane supports

far fewer users than other key distributions with identical key chain and key pool

sizes. For instance, a projective plane of order q has key chain size q+ 1, key pool

size q2 + q + 1 and supports q2 + q + 1 users, while a randomized distribution due

to Eschenauer and Gligor supports with key chain size q + 1 and key pool size

q2 + q + 1 supports
�
q2+q+1
q+1

�
users.

An attentive reader may have noticed that if the role of points and blocks were

interchanged in key distribution based on a 2-design, then the final axiom of a

2-design, namely that any pair of points occurs in exactly λ blocks, would imply

that any two users share exactly λ common cryptographic keys. This would be

a very desirable characteristic, but it comes at a large cost. Fischer’s inequality

states that the number of blocks is at least as large as the number of points, and

so under the alternate formulation, the number of users supported by the system

is at most the number of keys. This is not competitive with many other classes of
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key distribution schemes which typically support many more users than they have

keys.

2.2 Group Communication Systems

A group communication system is in many ways an extension of a WSN. Here,

in addition to aggregating and processing the data collected by the sensor nodes

under its control, the base station also broadcasts a so-called group communication

stream. Making the same assumptions about the necessity of data security and the

limitations of the sensor nodes, this group communication stream is symmetrically

encrypted by the base station using a group-wide session key to which every user

has access. Each user additionally owns a collection of administrative keys which

are used, for instance, to distribute a new session key if the need arises. We

typically use the term “key chain” in this context to refer to a user’s collection of

administrative keys only. Similarly, the term “key pool” in this context is used to

refer to the collection of all administrative keys.

Fluid membership makes key distribution in group communications systems a

difficult task. For example, suppose that a new member joins the network. It is

possible that this new member has been recording the encrypted group commu-

nication stream before her addition to the network. Hence, if the session key is

not changed after her arrival, the new user can decrypt old communications that

she was not at the time privileged to hear; this is known as the backward secrecy

problem. For another case, suppose a member leaves or must be ejected from

the network. Clearly, the session key must be changed, because if not the ejected

member can continue decoding the private group communication to which he is no
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longer privileged; this is known as the forward secrecy problem. But member leave

is more complicated than member join, because after a user ejection the replace-

ment session key must be securely disseminated without using any administrative

key owned by the ejected user; encrypting the new session key using an administra-

tive key owned by the ejected member would be pointless, as the ejected member

could simply decrypt the replacement session key and regain access to the group

communication. When a user leaves the network, the base station generates a

fresh session key together with new administrative keys to replace those owned by

the ejected user. The new session and administrative keys are collectively known

as the re-keying message. The base station then securely distributes the re-keying

message to all remaining privileged members. The technical difficulty arises in

that this secure distribution must be accomplished without using any key owned

by any ejected user(s). The exact manner in which secure re-keying is achieved

can vary, and some methods are far more efficient than others.

Harney and Muckenhirn were among the first to consider the problem of group

key management [20]. One of the notable limitations of their Group Key Man-

agement Protocol (GKMP) is that the system cannot be re-keyed after a user

ejection; a new group is formed after every such event. Wong, Gouda and Lam

introduced n-ary trees as group key management structures [39]. The leaves of

the tree represent keys owned by individual users, all interior nodes represent sub-

group keys and the root represents the session key. Each of v users then owns

all keys on the path from the associated leaf to the root, and so each user owns

logn v keys. These authors show that the base station must send n(logn(v) − 1)

separate encryptions of the re-keying message. This efficient re-keying set comes

at the cost of increased number of total keys necessary to maintain a given num-

ber of users. To support v users using an n-ary tree, the base station must store
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�logn v
i=0 ni = (n1+logn v−1)/(n−1) keys. For instance, in a binary tree supporting v

users, the base station must store and administer 2v−1 keys. Eltoweissy, Heydari,

Morales and Sudborough introduced the concept of an (v, k,m) exclusion basis

system (EBS) [17]. In this set system the points represent users and the blocks

represent keys; note that this is the reverse of set systems we consider here. A

(v, k,m) EBS supports v users {1, 2, . . . , v} and can be re-keyed after the ejection

of single user e with m sets such that their union is {1, 2, . . . , e− 1, e + 1, . . . , v}.

The authors show that this scheme supports v ≤
�
k+m
k

�
users where k is the key

chain size. We will see that this class of structures is a subset of a larger class of

combinatorial objects. Their formulation provides for support for a large number

of users, but is susceptible to collusion attacks. In the original work that follows,

we will present a scheme that is in some sense a compromise between these two

systems.

2.2.1 Cover-free Families

For a concrete example of how the re-keying problem dictates the structure of the

underlying administrative key distribution, first consider the case in which a single

user is ejected from the network. In a default re-keying solution, the base station

sequentially encrypts the re-key message with every administrative key not owned

by the ejected user and broadcasts the encrypted message. For instance, this is

the solution put forward by Eltoweissy et al. to re-key an exclusion basis system

[17]. Any privileged user remaining after the single ejection can gain access to the

replacement keys if and only if he has access to at least one administrative key not

owned by the ejected user. Hence, the system can be securely re-keyed after the

ejection of one user if and only if no key chain is identical to or a proper subset of
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any other. In symbols, B � C for every pair of distinct sets B and C in B.

In general, we are concerned with the ability of the system to eject more than

one user simultaneously. If a group of users is found to be colluding to compromise

the network, they must be ejected together; if even one of the colluders receives

the replacement session key, he can distribute it to his cohort and so neutralize

the re-keying operation. Suppose again that the base station encrypts the re-key

message sequentially with each administrative key not owned by any of the ejected

members and broadcasts to the group. Then a remaining user can decrypt the

replacement keys if and only if she has access to at least one key not owned by any

of the ejected users. Mathematically speaking, the base station can successfully re-

key the network after any r simultaneous ejections if and only if no user’s key chain

is included in the union of r other key chains. The formulation of this requirement

is captured exactly in the definition of an r-cover-free family.

Definition 2.2.1. An r-cover-free family is a set system (X,B) in which any

distinct blocks B1, B2, . . . , Br and A in B satisfy

A �
r�

i=1

Bi. (2.1)

In words, no union of r blocks covers any other block.

The case in which r = 1 was investigated by Sperner in the mid-1920s [35].

Here, the cover-free family is an anti-chain in the poset under inclusion of the

power set of X. Sperner bounded the size of a 1-cover-free family of an ambient

v-set X at

|B| ≤
�

v

�v/2�

�
. (2.2)

Notice that this agrees with preliminary intuition that the collection of all subsets

of size �v/2� is maximal under non-inclusion.
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The subject of cover-free families lay dormant until the 1960s when Kautz and

Singleton later investigated the more general case of r > 1 in a coding theoretic

context [23]. In data retrieval systems it is often advantageous to classify files

according to certain descriptors which are drawn form a system-wide dictionary.

A file is then identified by the collection of descriptors it satisfies. In the framework

considered by Kautz and Singleton, the descriptors themselves are associated with

binary words of length n, and a file is associated with the component-wise OR of

the descriptors it satisfies. Under what circumstances is this mapping well-defined?

For an error case, consider a file which satisfies a collection of descriptors D but not

some fixed descriptor D /∈ D. If D is logically included in the component-wise OR

of the descriptors in D, then the retrieval system would incorrectly deduce that the

file also satisfies D. Hence, if we require that the retrieval system support up to r

descriptors per file without ambiguity, no descriptor may be logically included in

the component-wise OR of any r other descriptors. Considering each component in

the length n binary word to be an element in a support setX and each descriptor as

a set containing the points from X to be the components in which the descriptor’s

binary word is equal to 1 gives the modern formulation of a r-cover-free family.

It is somehow appropriate that the first modern usage of cover-free families was

developed in application to a real world problem. Indeed, cover-free families have

been re-discovered several times exactly because their structure is so utilitarian.

Desmet et al. proposed using cover-free families to protect spread spectrum com-

munications systems from insider adversaries [15]. Cover-free families were put

forward by Colbourn, Ling and Syrotiuk for transmission scheduling in mobile ad

hoc networks without knowledge of the network topology [12]. Wang and Pieprzyk

used 2-cover-free families for anonymous membership broadcast schemes in which

a base station can broadcast a message and only the intended recipient can deduce
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the message’s destination [38]. Staddon, Stinson and Wei introduced cover-free

families as traceability codes [36]; here illegally distributed content can be traced

back to the users who colluding to pirate the content.

Cover-free families have received attention from theoreticians, as well. Erdös,

Frankl and Füredi gave one of the first thorough treatments of the subject from a

theoretical perspective [18]. They documented construction techniques, bounded

the cardinality of a cover-free family with given parameters and investigated the

interplay between the size of an r-cover-free family and the cover parameter r.

More recently, Stinson and Wei have produced a generalization of the concept

cover-freedom [37]: a (w, r; d)-cover-free family is a collection of subsets B of a

support set X such that any w blocks B1, B2, . . . , Bw ∈ B and r other blocks

A1, A2, . . . , Ar ∈ B satisfy
�����

�
w�

i=1

Bi

�
\
�

r�

j=1

Aj

������ ≥ d. (2.3)

The traditional notion of a r-cover-free family is included here as the class of

(1, r; 1)-cover-free families. In the applications that follow, the added power pro-

vided by this generalization will not be needed, and we will always take the term

cover-free family to mean the original, limited definition. Ling, Wang and Xing

give an excellent review of both cover-free family theory and applications [27].

As early as the late 1980s, cover-free families were recognized for their ability

to prevent collusion [29]. In the context of a WSN, if no user’s key chain lies in the

union of r other key chains, then no r users can collude to forge the key chain of

any other user. More recently, however, Xu, Chen and Wang have proposed using

an r-cover-free family as the key distribution in a group communication system

supporting up to r simultaneous user ejections [40]. In the re-keying phase, Xu

et al. stipulate that the base station first determine a collection of keys in which
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every non-ejected owns at least one of these selected keys, and no ejected member

owns any; the authors give no construction for this collection. We will simply

call any such collection of keys a re-keying set where the exact key distribution

and number of ejected users under consideration are clear. Then to re-key the

network, the base station must encrypt the re-key message with each key in the

re-keying set and broadcast the result to the network. It is obviously desirable

to minimize the size of this collection, because the no secure communication can

take place until the network has been re-keyed. At the same time, the method

for finding a minimal re-keying set should be as computationally inexpensive as

possible to minimize load at the base station. Balancing re-keying latency and the

computational complexity of determining a suitably small re-keying set is integral

to the success of a re-keying solution.

2.2.2 NP-hardness of Minimal Re-keying

Manufacturing a minimal re-keying set is related to Hitting Set, one of Karp’s

original NP-complete problems [22]. Hitting Set can be phrased as an optimization

problem in the following way: given a set X and a collection B of subsets of X,

what is the minimal cardinality of H ⊆ X such that H “hits” every set in B, that

is H ∩B �= ∅, for every B ∈ B. We can formalize the relationship between Hitting

Set and secure re-keying in the following theorem.

Theorem 2.2.1. The problem of finding a minimal re-keying set after any number

of user leaves in a group communication system with key distribution (X �,B�) is

NP-hard.

Proof. We will reduce from Hitting Set, meaning we will show that every instance of
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Hitting Set corresponds to at least one instance of the re-keying problem; therefore,

the re-keying problem is at least as difficult as Hitting Set. Let X be the support

set and B the collection of subsets of X for which we want to find a minimal hitting

set. Let E be a set disjoint from X, and suppose that E represents the union of

the key chains of the ejected users. Let

Bi = B�
i \ E

B� = {B�
i : Bi ∈ B}

X � = X ∪ E

so that (X �,B�) is a key distribution of the network before the user ejection(s).

This mapping can clearly be performed in polynomial time. Then the Hitting Set

problem on the set system (X,B) is equivalent to the minimal re-keying problem on

the key distribution (X �,B�) in the case where any user(s) owning the key collection

E is ejected from the network. Hence, Hitting Set is many-one reducible to the

minimal re-keying set problem.

We note for completeness that Wong, Gouda and Lam independently stated

(but did not prove) the NP-hardness of the re-keying problem using a Set Cover

reduction [39]. The statement of the theorem makes no assumptions about the

exact nature of the key distribution. And in general the results of a NP-hardness

theorem should be always taken with a grain of salt. The theorem does not claim

that finding a minimal re-keying set is always hopeless endeavor, but rather that

finding a minimal re-keying set for an arbitrary key distribution should be expected

to be difficult. Therefore, the theorem naturally points towards only considering

key distributions with a large amount of combinatorial and/or algebraic structure

and hoping that this structure is enough to circumvent the natural difficulty of the

problem.
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2.3 Secure Re-keying Using Symmetric 2-Designs

We have seen in Chapter 1 that t-designs and symmetric 2-designs in particu-

lar have nice combinatorial structure. Perhaps this structure is enough to allow

for strong results as minimal hitting set cardinalities of these set systems and

their residuals. In this way, we could guarantee that symmetric 2-designs would

be suitable as key distributions in group communication systems with non-static

membership. First we must prove that after a given number of ejections a hitting

set exists. As previously discussed, for a group communication system to support

secure re-keying after any r simultaneous user leaves it is necessary and sufficient

that the key distribution of the network forms an r-cover-free family.

Result 2.3.1 ([18]). A symmetric 2-(v, k, λ) design (X,B) forms a �(k − 1)/λ�-

cover-free family.

Proof. Fix a block B ∈ B. Because the design is symmetric, any block not equal

to B shares exactly λ points with B. Suppose there is a collection of blocks whose

cardinality λ intersections with B are disjoint from one another. Then since B has

k points, and each block in the selected collection covers exactly λ, the covering

collection must have at least �k/λ� members, and clearly no fewer will suffice to

cover B. Then in particular no collection of �k/λ� − 1 = �(k − 1)/λ� blocks will

cover B. Since B was chosen arbitrarily, the pair (X,B) forms a �(k−1)/λ�-cover-

free family.

Theorem 1.3.1 and Result 2.3.1 shows that a symmetric 2-(v, k, λ) design is a

natural candidate for a key distribution of a group communication system since it

supports full mesh connectivity and O(k) simultaneous ejections. Projective planes

are both the most plentiful known class of symmetric 2-designs and by Result 2.3.1
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support the largest number of simultaneous user leaves relative to key chain size

k, and so we will focus our attention here.

2.3.1 Projective Plane Key Distributions

In 1978, Brouwer and Schrijver unknowingly settled the problem of minimal re-

keying in a projective plane key distribution after a single user leave. As we

discussed in Section 1.4, the residual of a projective plane of order q is an affine

plane of order q, and so the collection of keys and key rings found in a projective

plane key distribution after a single user leave form the points and blocks of an

affine plane. Brouwer and Schrijver bounded the number of points needed to meet

every hyperplane in AG(2, q).

Result 2.3.2 ([4]). Let (X,B) be a projective plane of order q formed by the points

and lines of PG(2, q). Then the cardinality of the minimal hitting set of the E-

residual of (X,B) is 2q − 1 for any E ∈ B.

Brouwer and Schrijver were investigating blocking and hitting sets of projective

planes and their residuals in a purely theoretic context; yet again, pure mathemat-

ics research finds its way into an applied context decades later. This result gives

a firm foundation on which to base optimality results for a single ejection from

a projective plane key distribution. The following theorem allows us to extend

optimality results to cases involving multiple simultaneous ejections.

Theorem 2.3.1. Let h0 be the cardinality of any minimal hitting set of a set

system (X,B). Then for any {E1, . . . , En} = E ⊆ B the cardinality of the minimal
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hitting set of the E-residual set system (X �,B�) with

X � = X \
�

n�

i=1

Ei

�
(2.4)

B� =

�
C \

�
n�

i=1

Ei

�
: C ∈ B \ E

�
. (2.5)

as in Definition 1.4.1 is at least h0 − n.

Proof. Let S0 be any minimal hitting set of (X,B). Consider removing any 2

points from S0 and tracking how many blocks are no longer hit by the resulting

set. Suppose that only one block is uncovered by this process. Stated differently,

there is a unique block that contains as its hitting set elements the 2 chosen points;

all other blocks contain at least one element from the hitting set that is not one of

the selected points. Hence, we could remove either of the selected points from S0

and create a hitting set with cardinality strictly less than |S0|. This contradicts the

minimality of S0, so removing two points from the hitting set necessarily uncovers

at least 2 blocks. So the contrapositive is also true, namely that removing fewer

than 2 blocks results in removing fewer than 2 points from any minimal hitting

set. Hence, a hitting set of (X \ B,B \ {B}) for some B ∈ B must have at least

|S0| − 1 points. Repeated application of this case gives the desired result.

It may seem counterintuitive that removing blocks from a set system might act

to increase the minimal hitting set cardinality, but there is an example of such

behavior close at hand.

Example 2.3.1. Let (X,B) be a projective plane of order q. Since any two blocks

in a projective plane share exactly one point, any block is a hitting set of the set

system. Hence, the size of a minimal hitting set is at most h0 ≤ q + 1. (In fact,

this is exactly the minimum hitting set cardinality, a fact which we will not prove
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here.) Now consider the residual of (X,B) after the removal of a single block.

Result 2.3.2 states that the minimal hitting set of the set system has cardinality

2q − 1. Hence, removing a block from the set system acts to increase the minimal

hitting set cardinality for any q > 1.

There are several constructions of hitting sets of cardinality 2q − 1 for the

residual of a projective plane of order q, and Result 2.3.2 shows that all such

hitting sets are optimal; we will present one such construction in the following

theorem. But theoretical investigation of these hitting sets stops here; to the

author’s knowledge, no work has been done on determining the minimal hitting

set of the residual of a projective plane after two or more block removals. Theorem

2.3.1 provides a framework for discussing optimality hitting sets in these scenarios.

We next show that a minimal hitting set of size 2q − 2 of a projective plane after

any two block removals is in fact achievable.

Theorem 2.3.2. Given a key distribution (X,B) based on a projective plane of

order q, a minimal re-keying set after the ejection of a single member contains

2q − 1 points, and a minimal re-keying set after the simultaneous ejection of two

members contains 2q − 2 points.

Proof. Fix E ∈ B as the user that is to be ejected. Choose any other user B ∈

B \ {E} and let xe = B ∩E. Now, B shares exactly 1 point with every remaining

block, and it is either the case that this point is xe or it isn’t. There are q − 1

blocks in the first class, all of them necessarily disjoint from each other. We can

use as a rekeying set B \ {xe} together with one point from each of these q − 1

blocks. Hence, the minimal rekeying set size is at most q + (q − 1) = 2q − 1. The

work of Brouwer and Schrijver featured in Result 2.3.2 shows that this number of

points is also necessary.
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Now suppose that users E1, E2 ∈ B leave the system. Since q ≥ 2, there exists

at least B ∈ B such that E1 ∩ B = xe = B ∩ E2. Every block in B shares exactly

one element with B and in only q−2 blocks besides E1 and E2 is this point xe, and

these q−3 blocks are necessarily disjoint outside of xe. Hence, it suffices to take as

a re-keying set B \ {xe} and any one point from each of the q− 2 remaining blocks

which contain xe. Thus, a re-keying set of cardinality 2q − 2 is sufficient to re-key

a projective plane key distribution after two simultaneous ejections. Result 2.3.2

together with Theorem 2.3.1 shows that this number of points is also necessary.

One can imagine making similar arguments as those in the proof of Theorem

2.3.2 for the cases of more than two simultaneous ejections. However, due to the

structure of symmetric 2-designs not all ejection cases are isomorphic, that is, the

properties of the minimal re-keying set will be dependent on exactly which users

were ejected together. For instance, in the case of three simultaneous user leaves

from a projective plane key distribution, it may or may not be the case that all

three users share a common key. One can easily verify using arguments similar to

those above that the size of the minimal re-keying set is dependent on whether this

property is satisfied. Rather than enumerate a growing list of cases for increasing

number of ejections, we will point out that a re-keying set is guaranteed by Result

2.3.1 for any collection of k − 1 or fewer simultaneous user leaves. In Section 2.4

we will present an algorithm which produces optimal results for the cases of one

and two simultaneous ejections and significantly smaller re-keying sets for larger

numbers of user leaves than the current available technologies are able to produce.
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Table 2.1: Comparison of binary tree, projective plane and exclusion basis system
key distributions parameters for fixed key chain size k

Binary tree Projective plane Exclusion basis system
Users supported 2k k2 − k + 1

�
k+m
k

�

Key pool size 2k+1 − 1 k2 − k + 1 k +m
Key chain size k k k
Re-key messages k − 1 2k − 3 m
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2.3.2 Biplane Key Distributions

Standing by themselves, it is difficult to tell whether the optimal re-keying sets

from Theorem 2.3.2 are “good”. It may be the case that a slight alteration of

the structure of the key distribution could give better re-keying performance at

little or no cost to the other desirable qualities of the communication system. One

natural place to begin a comparison is with the symmetric 2-(v, k, 2) biplanes.

Theorem 2.3.3. Given a key distribution (X,B) based on a biplane of order q ≥ 2,

a minimal re-key set after the ejection of a single member contains at most q

keys, and a minimal re-keying set after the simultaneous ejection of two members

contains at most q keys.

Proof. We will upper bound the rekeying load in this scenario by explicit construc-

tion of suitable rekeying sets.

For the case of a single ejection, let E ∈ B be the key chain of the ejected

user. Choose any B ∈ B \ {E}, and define Xe = B ∩ E. Every pair of blocks

shares exactly two common points, and every pair of points occurs in exactly two

blocks. Hence, the only blocks containing Xe are E and B themselves, and every

other block contains at least one point in B \Xe. Thus, the rekeying load for this

scenario is at most k − 2 = q.

For the case of two simultaneous ejections, let E1, E2 ∈ B be the key chains of

the ejected user. The replication number and the order of a biplane are related

by r = q + 2. Since q ≥ 2, we have r ≥ 4. Hence it is possible to choose

B ∈ B \ {E1, E2} such that B contains a point xe found in both E1 and E2. The

collection B ∩ (E1 ∪E2) must contain exactly 3 points. If it contained 2, then the

two points E1 ∩ E2 would occur in more than two blocks, a contradiction of the
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2-design axiom. If it contained 4, then the intersections B ∩ E1 and B ∩ E2, each

having cardinality 2, would be disjoint, a contradiction on our choice of B.

Any block B� ∈ B \ {E1, E2} is hit by B \ (E1 ∪ E2) unless both of the points

shared between B� and B occur in B ∩ (E1 ∪ E2) = {xe, y, z}. Without loss of

generality, suppose that the pair {xe, y} occurs in both B and E1 and that the pair

{xe, z} occurs in both B and E2. The remaining pair {y, z} appears in B and one

other block U . Hence, this block U is the only block not hit by the set B\(E1∪E2).

It suffices to take one point from U to complete the re-keying set. Hence, there

exists a re-keying set of size |B| −B ∩ (E1 ∪E2) + 1 = k − 3 + 1 = k − 2 = q.

Unfortunately, there is no known biplane equivalent of Result 2.3.2, and so far

a proof has alluded the author. We can, however, establish that in some cases the

bounds from Theorem 2.3.3 are tight.

An order q = 2 biplane is a 2-(7,4,2) design. To improve on the bound in

this case, a hitting set of cardinality 1 of a E-residual or {E1, E1}-residual of the

biplane must be found. But this is impossible, since ever point occurs in exactly

4 blocks. Hence, one point is not sufficient to hit the 6 blocks remaining after one

ejection or the 5 blocks left after two ejections.

Next, take for instance the case of ejections from the biplane of order q = 3

featured in Example 1.3.1. To improve on the result above, a re-keying set with

fewer than q = 3 keys must be constructed. Any key hits k = 5 key chains, any

single pair of keys occurs in exactly two blocks. Hence, any pair of points hits

2k − 2 = 8 key chains by inclusion-exclusion. There are v = 11 users Clearly no

set of q− 1 = 2 keys is sufficient for either the one or two ejection case, and so the

bounds from Theorem 2.3.3 above are tight when q = 3.
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Suppose now that the key distribution is based on the biplane of order q = 4,

so that k = 6. A re-keying set improving on Theorem 2.3.3 has at most 3 keys. By

inclusion exclusion, any three 3 keys hits at most 3k−2
�
3
2

�
+
�
3
3

�
= 18−6+1 = 13

key chains. There are 16 blocks in the original biplane, and so a set of any 3 keys

is insufficient to re-key the system after the ejection of one or two users, and so

the bounds Theorem 2.3.3 are tight when q = 4.

We can encapsulate these ideas in the following theorem.

Theorem 2.3.4. Given a key distribution (X,B) based on a biplane of order 2 ≤

q ≤ 2, a minimal re-key set after the ejection of a single member contains q

keys, and a minimal re-keying set after the simultaneous ejection of two members

contains q keys. Hitting sets of these cardinalities are achievable.

This is where this type of reasoning about minimal hitting sets in residuals of bi-

planes runs dry. The tactic used by Brouwer and Schrijver to determine cardinality

of a minimal hitting set of AG(d, q) relies heavily on the vector space interpreta-

tion of the set system. Unfortunately, there is no straight-forward equivalent in

the context of biplanes; these set systems are defined by axioms that are not in

agreement with those of finite geometry, and to date there has been no successful

work in connecting biplanes of arbitrary order outside of their axiomatic definition.

We will see later in the form of simulation results that the bound presented in the

previous theorems can certainly be improved for larger orders.
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2.4 Hitting Set Constructions

While in general finding a minimal hitting set is hard, there do exist approxima-

tion algorithms which guarantee that the hitting set produced will be at most a

multiplicative factor times the minimal cardinality. Take for instance the following

greedy algorithm for finding a hitting set of the residual set system (X,B).

Greedy algorithm

(0) H ← ∅; B� ← B; X � ← X

(1) H ← H ∪ {x} such that x ∈ X � and |{B ∈ B� : x ∈ B}| is maximal

(2) X � ← X � \ {x}

(3) B� ← {B \X � : B ∈ B� and B ∩H = ∅}

(4) if H is a hitting set of B, return H; else, go to (1).

We note for clarity that if in Step (1) there are multiple valid choices for x,

we select one uniformly at random. Chvatal showed that this algorithm produces

hitting sets that are at most ln(k) times the minimal hitting set cardinality [10].

We will see that in practice, the algorithm performs much better than this bound

for residuals of symmetric designs.

The default re-keying solution is to take as the re-keying set all keys not owned

by any ejected user. One can imagine that such a scheme does not provide com-

petitive results. So instead we compare the greedy algorithm to a randomized

construction in which keys chosen uniformly randomly without replacement from

the key pool and until the accumulated collection forms a re-keying set.
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Randomized algorithm

(0) H ← ∅

(1) H ← H ∪ {x} with x ∈ X \H chosen uniformly randomly

(2) if H is a hitting set of B, return H; else, go to (1).

The data presented in Table 2.2 and Figure 2.4 detail the performance of the

greedy algorithm when applied to the key distribution based on a projective plane

of order 11. For each data point, users where chosen uniformly randomly without

replacement and ejected from the network. The greedy and randomized algorithms

were then performed on the residual set system and the cardinalities of these

re-keying sets were recorded. (Note that since the projective plane of order 11

forms an 11-cover-free according to Result 2.3.1, both algorithms are guaranteed to

terminate documented data points.) The procedure was repeated N = 1000 times.

Error bars in Figure 2.4 have width 4 times the standard error σ/
√
N , where σ

is the sample standard deviation. Result 2.3.2 and Theorem ?? imply that the

minimal cardinalities of a re-keying sets after one ejection and two simultaneous

ejections for this key distribution are 21 and 20, respectively, and indeed the greedy

algorithm produces such minimal re-keying sets for all N trials. For greater than 2

simultaneous ejections, the greedy algorithm exhibits near constant performance,

requiring roughly separate encryptions of the replacement keys in order to secure

the network after the simultaneous ejection of 3 to 11 users. Note that the default

re-keying scheme is competitive with neither the randomized nor greedy algorithm.

Table 2.3 features sample mean and standard deviation data from N = 1000

trials of the greedy and randomized algorithms applied to the key distribution
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based on a biplane of order 7. (Note that biplane of order 7 forms 4-cover-free

family by Result 2.3.1.) Figure 2.4 displays this data; error bars in Figure 2.4

have width 4 times the standard error σ/
√
N , where σ is the sample standard

deviation. The results are similar to those observed in the projective plane example

with a few notable exceptions. For the cases of one ejection and two simultaneous

ejections, the greedy algorithm sometimes produces hitting sets of cardinality 6.

This performance beats the upper bounds guaranteed by Theorem 2.3.3. We have

shown, however, that Theorem 2.3.3 is tight for q ≤ 6. Together, these facts imply

that the minimal hitting sets of biplanes have more interesting structure than those

of projective planes. For more than 2 simultaneous ejections, the greedy algorithm

has near constant performance. Note that the default re-keying scheme is not

competitive with either of the other two algorithms.
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Table 2.2: Comparison of the sample mean µ (sample standard deviation σ) cardi-
nalities with N = 1000 for greedy, random and default re-keying set construction
algorithms for a projective plane of order 11

No. ejections Greedy Random Default
1 21.00 (0.00) 45.61 (7.59) 121.00 (0.00)
2 20.00 (0.00) 44.13 (6.76) 110.00 (0.00)
3 20.18 (0.43) 43.16 (6.36) 99.93 (0.25)
4 20.05 (0.53) 42.27 (6.43) 90.70 (0.50)
5 20.06 (0.62) 40.84 (5.73) 82.25 (0.70)
6 20.07 (0.65) 39.68 (5.40) 74.54 (0.92)
7 20.09 (0.72) 38.61 (4.94) 67.51 (1.11)
8 20.10 (0.76) 37.03 (4.91) 61.01 (1.39)
9 20.20 (0.79) 35.90 (4.35) 55.19 (1.53)
10 20.31 (0.86) 35.13 (4.04) 49.90 (1.65)
11 20.42 (0.92) 33.82 (3.68) 45.03 (1.80)
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Table 2.3: Comparison of the sample mean µ (sample standard deviation σ) cardi-
nalities with N = 1000 for greedy, random and default re-keying set construction
algorithms for a biplane of order 7

No. ejections Greedy Random Default
1 6.97 (0.16) 11.66 (2.14) 28.00 (0.00)
2 6.99 (0.19) 10.66 (1.69) 21.00 (0.00)
3 6.91 (0.40) 9.75 (1.38) 15.57 (0.49)
4 6.85 (0.54) 8.91 (1.07) 11.48 (0.75)
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Figure 2.1: Plot of the data featured in Table 2.2 with error bar width representing
4 times the standard error σ/

√
1000
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Figure 2.2: Plot of the data featured in Table 2.3 with error bar width representing
4 times the standard error σ/

√
1000
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CHAPTER 3

ADVANCED METERING INFRASTRUCTURE

3.1 Neighborhood Area Networks

The increasing availability of accurate, real-time electricity consumption data has

the potential to substantially increase both the efficiency and the quality of service

offered by utility providers. With knowledge of current conditions, power compa-

nies and their business partners can reduce waste by bringing generators online

only when inferred demand begins to outstrip current supply. Real-time demand

statistics also enable service providers to price electricity on a hourly or finer

timescale. Customers who are provided with this pricing information can make

better-informed choices as to when to perform energy-intensive tasks. These lo-

cal cost-saving behaviors, known as economic demand response, organically flatten

global demand. A reduced peak-to-average demand ratio further benefits electric-

ity providers and their customers by eliminating the need to support generators

which may only operate in extreme usage scenarios. The ensemble of technologies

used to gather and analyze the electricity consumption data necessary to make de-

mand response possible is known as advanced metering infrastructure (AMI). The

Federal Energy Regulatory Commission (FERC) has estimated that as of 2010,

AMI penetration in the United States reached 8.7% nationwide and over 13% in

some areas, with over 500 groups offer demand response services [14]. This level of

participation represents an 85% increase in a two year period. The advancement of

AMI is also receiving significant fiscal support from the federal government. The

American Recovery and Reinvestment Act has so far awarded over $790 million

dollars for AMI development and deployment [33], and in addition AMI projects
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have received funding through federal commitments to the modernization of the

nation’s electrical grid. We note that while the work presented here will focus on

the applications of AMI to distribution of electricity, it is becoming more prevalent

to use similar advanced metering technologies and techniques in water and natural

gas utilities.

In the deployment of a distribution system featuring AMI, homes are first

retrofitted with “smart” meters as replacement for traditional mechano-electric

meters. These smart meters monitor consumption in the usual way on an hourly

or sub-hourly basis and in addition transmit usage data to a neighborhood-wide

collection station at least once daily [14]. A collection station oversees the neigh-

borhood area network (NAN) by aggregating consumption statistics and sending

a summary to the electricity provider. Transmissions from smart meters to collec-

tion stations are typically wireless to facilitate easy installation, while the backhaul

from the collection station to the electricity provider is typically a wired connec-

tion. The 2010 FERC AMI definition specifies that in return for the consumption

data gathered from smart meters, electricity providers must supply customers with

current utility price information at least once daily; the definition does not specify

the mode in which this information be conveyed, however. On top of this base

level of service, one can imagine entrusting further functionality to the AMI, in-

cluding providing fine grain (e.g. sub-daily or more frequent) pricing data, sending

pricing data directly to the home via the smart meter, emergency consumption re-

duction for outage avoidance, quality of service monitoring and remote disconnect

capabilities.

The potential for AMI to be a transformative set of technologies is directly

tied to its perceived security. Accurate prediction of system-wide demand requires
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large-scale participation, and universal adoption of a non-secure system is not

realistic. Customers are less likely to accept a system which does not closely

their guard personal information or does not provide strong assurances that the

pricing data and commands received at the home smart meter can be trusted.

Privacy issues related to utility consumption data have been receiving attention

at both the federal and state levels. The 2010 Guidelines for Smart Grid Cyber

Security published by the National Institute of Standards and Technology (NIST)

documents the need for the security of consumer data to remain a priority as smart

grid technologies advance and are deployed [31]. The California Public Utilities

Commission has recently dealt with privacy issues related to the availability of

customer utility consumption data both to the customers themselves and to “other

interested persons” [13]. More recently, President Obama has ordered a 60 day

cyber-security review, including the security of the nation’s electric grid. These

concerns are not unfounded. Lisovich, Mulligan and Wicker have shown that even

the coarse-grain consumption information provided by AMI can be used to infer

details as to what is taking place within a household [28]. Lerner and Mulligan

have detailed potential types of abuse stemming from unencrypted AMI data and

discussed Fourth Amendment implications to AMI data availability [26]. Without

encryption on the provider-to-customer link, a system with AMI is vulnerable to

attacks in which an adversary impersonates the utility provider. Depending on

the level of control over individual homes given to the provider through a smart

meter, such an impersonation could result in consequences ranging from incorrect

pricing information to termination of services.

At its core, AMI is a wireless sensor network (WSN) as described in Section 2.1.

Advanced metering systems which provide feedback to consumers through smart

meters have a level of infrastructure on top of the underlying WSN. In addition
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to communicating securely with the base station, each consumer must be able to

decode the group-wide pricing information and commands being transmitted via

the NAN collection station. In other words, this additional functionality forms a

group communication system as discussed in Section 2.2.

3.2 Home Area Networks

Next generation utility technology will also focus on intra-home applications. A

base station within the home, perhaps taking the form of the smart meter itself,

will collect consumption information from individual appliances using non-intrusive

load monitor (NILM) technology. In the past, NILM technology has centered on

feature-detection at the home-wide level, that is, extracting appliance load signa-

tures from a single home-wide monitoring point [16]. This is a complicated problem

as the load monitor must be trained to recognize the power consumption signatures

of individual appliances from aggregate data. Suitably sophisticated techniques

including neural network training and cluster detection have been put forward as

possible solutions; see the work of Zeifman and Roth for a recent overview [41].

Many consumer devices (e.g., OWL, TED, PowerCost) incorporate some or all

aspects of this technology.

Another appliance-level monitoring strategy involves placing sensors on indi-

vidual appliances. Each sensor then transmits the power drawn by its associated

appliance to a collection station. In this way, the signatures are already disaggre-

gated. For instance, the Chinese firm Sailwider has developed an appliance-level

monitoring system in which a sensor is placed between the appliance and a stan-

dard electrical outlet. In another system, General Electric is developing a collection
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of appliances that will interface with the company’s Brillion consumption moni-

toring platform. The end-to-end control of this system provides the home-wide

station the ability to alter the functional behavior of appliances based on current

utility prices. This bi-directional communication constitutes a group communica-

tion system. Such systems present the same security risks as their AMI equivalents

discussed above and perhaps even more so. Since each appliance is transmitting

its consumption, an eavesdropper could potentially determine the number, make,

model and operational schedule of a home’s monitored appliances. Moreover, the

collection of appliances in a home changes over time, and the event of membership

change in the network must be considered. Intra-home appliance-level monitoring

and control technologies are still in their infancy, however, and no common plat-

form has been converged upon. It is unclear whether wireless sensor motes with

limited computational and batter life (like the ones considered in this text) will

come out the winners.
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CHAPTER 4

CONCLUSION

We have presented in this work a scheme for a cryptographic key pre-distribution

and secure re-keying based on symmetric 2-designs. These combinatorial objects

are natural candidates due to their highly regular structure and well-documented

construction algorithms. We provided results showing that a symmetric 2-(v, k, λ)

design forms a �(k − 1)/λ�-cover-free family. This prevents up �(k − 1)/λ� users

from pooling their key chains in order to impersonate another user. Moreover, this

same structure allows secure re-keying after up to �(k − 1)/λ� simultaneous user

ejections. We showed that in general the problem of finding a collection of keys

suitable for re-keying a group communication system after even one user ejection is

NP-hard. Fortunately, the combinatorial structure of symmetric 2-designs allowed

us to circumvent the natural difficult of this problem. We provided an algorithm

for constructing a re-keying set after one or two simultaneous user ejections from

a projective plane key distribution, and produced a combination of known results

and novel work to show that these re-keying sets are minimal. We provided a sim-

ilar construction for biplane key distributions; we proved the re-keying sets here

are minimal in some cases. For more than two simultaneous ejections in either of

these key distributions, we cited a well-known approximation algorithm for Hitting

Set. We provided simulation results documenting that this algorithm performs sig-

nificantly better than existing solutions. We compared these symmetric 2-design

schemes to existing key distributions on a number of different metrics.

We presented a sample application of this technology in the form of advanced

metering infrastructure (AMI), on both the home and appliance level. We doc-

umented existing literature showing that the information being passed from con-
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sumer to utility provider through the AMI presents a potential privacy hazard,

and we concluded the wireless sensor networks being deployed to monitor end-user

utility consumption as part of the AMI should be symmetrically encrypted. One

such solution has been presented in the main body of this work.
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