
REFERENCE-DEPENDENT AMBIGUITY AVERSION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Maximilian Mihm

August 2011



c© 2011 Maximilian Mihm

ALL RIGHTS RESERVED



REFERENCE-DEPENDENT AMBIGUITY AVERSION

Maximilian Mihm, Ph.D.

Cornell University 2011

This dissertation contributes to the growing literature in economics on ambiguity aver-

sion. I identify an implicit reference-point assumption in the multiple priors model of

Gilboa and Schmeidler (1989), generalize their decision theory to allow for stochastic

reference-points, and study the market implications of endowment-dependent ambigu-

ity aversion. Chapter 2 identifies the implicit reference-point assumption in the multiple

priors model and provides an axiomatic characterization of a reference-dependent multi-

ple priors model. I also provide an axiomatic characterization of a reference-dependent

version of the Choquet Expected Utility model of Schmeidler (1989), which can ac-

commodate different attitudes towards ambiguity. Chapter 3 studies the implications of

reference-dependent ambiguity aversion when reference points are given by the endow-

ment in an Arrow-Debreu exchange economy. I illustrate that no-trade and underinsur-

ance are robust implications of ambiguity aversion when investors view ambiguity from

the perspective of their endowments. Chapter 4 extends the decision model to intertem-

poral choice problems and studies the effects of reference-dependent ambiguity aversion

in the context of a dynamic asset pricing model.
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CHAPTER 1

INTRODUCTION

There is a fundamental difference between the uncertainty involved in the roll of a

fair die and the uncertainty involved in predicting the performance of a company stock

over time. The roll of a die can be described with some confidence in terms of a proba-

bility law, while the uncertainty regarding stock performance is subjective and difficult

to quantify. It is therefore common to distinguish between the objective uncertainty

or risk involved in games of chance and the subjective uncertainty or ambiguity that is

more pervasive in economic decision problems. But how do decision makers respond

to ambiguity? In the classic subjective expected utility (SEU) theory of Savage (1954)

and Anscombe and Aumann (1963), decision makers act as if the problem of predicting

company stock performances is essentially analogous to betting on dice: They assign

a unique subjective probability distribution (often called a prior) over events and max-

imize expected utility with respect to this unique prior regardless of the source of the

uncertainty. As a theory of decision making under uncertainty, SEU is elegant and has

found many applications in economics, finance and other social sciences. But a line

of research following Knight (1921) has argued that the distinction between risk and

ambiguity – ignored in SEU theory – has behavioral implications that are important for

understanding choice behavior under uncertainty.

A powerful illustration of the Knightian perspective is provided by the well-known

Ellsberg (1961) paradox. The Ellsberg paradox is based on the following thought exper-

iment. Suppose a decision maker is confronted with two urns: Urn A contains 50 black

and 50 white balls, and urn B contains 100 black and white balls but in an unspecified

proportion. A ball will be drawn at random from an urn and the decision maker’s payoffs

are determined by the color that is drawn. The Ellsberg (1961) paradox is the finding
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that most individuals are indifferent about which should be the high payoff color in each

urn, but strictly prefer a bet involving urn A over the same bet involving urn B. Such

choices are inconsistent with the SEU hypothesis because they indicate a behaviorally

meaningful distinction between risk (faced in bets on urn A) and ambiguity (faced in

bets on urn B).

The Ellsberg paradox has motivated a large literature that studies decision making

under ambiguity. A seminal contribution to the decision theoretic literature is the multi-

ple priors or Maxmin Expected Utility (MEU) model of Gilboa and Schmeidler (1989).

Gilboa and Schmeidler propose a decision model in which the unique prior of SEU is

replaced with a set of priors (hence multiple priors), and the decision maker evaluates an

uncertain alternative according to its expected utility under the worst-case prior (hence

MEU). The set of priors reflects the perception of ambiguity and the minimization over

priors reflects an aversion to ambiguity. The MEU model is the best-known model of

ambiguity aversion in the literature. The axiomatic characterization provided by Gilboa

and Schmeidler is simple and normatively appealing, the MEU decision rule is consis-

tent with the Ellsberg paradox, and the model has been fruitfully applied to study the

effects of ambiguity aversion in finance, macroeconomics, labor economics and political

economy.

This dissertation presents a generalization of MEU. There is a sense in which MEU

implicitly assumes that ambiguity is perceived from the perspective of a particular

constant act (an alternative with payoffs that are not state-contingent). This implicit

reference-point assumption is not readily transparent from the axioms in Gilboa and

Schmeidler (1989) but becomes clear once these axioms are more carefully decom-

posed. While the other axioms that characterize the MEU decision rule are normatively

appealing, the constant reference-point assumption is somewhat arbitrary. Moreover,
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experimental evidence extending on the Ellsberg paradox has re-affirmed a behaviorally

meaningful distinction between risk and ambiguity aversion but explicitly casts doubt

on the assumption that ambiguity is always viewed from the perspective of constant acts

(Heath and Tversky, 1991; Fox and Tversky, 1995; Roca et al., 2006). In Chapter 2, I

therefore model decision makers who view ambiguity relative to an arbitrary reference-

point – not necessarily a constant act – and provide a representation theorem for this

extension of MEU. I refer to this as a Reference-Dependent Maxmin Expected Utility

(RMEU) decision model.

The influence of reference-points on decision making is well-documented in set-

tings with and without uncertainty, but the RMEU model identifies a novel channel for

reference-point effects. In contrast to cumulative prospect theory (Tversky and Kah-

neman, 1992), reference-effects in the RMEU model are ex-ante to the realization of

uncertainty and are directly related to the source of uncertainty and the ambiguity aver-

sion of the decision maker. As a result, the reference-effects in the RMEU model imply

a trade-off between an insurance motive for trade (due to risk aversion) and a hedging

motive for trade (due to ambiguity aversion). In existing models of ambiguity averse

preferences, ambiguity and risk are both perceived from the perspective of constant acts

and so aversion to ambiguity and aversion to risk both imply a motive to trade towards

full insurance. However, when ambiguity is viewed relative to a non-constant reference-

point – such as a status-quo, a particular contract, or a social convention – risk aversion

induces a motive to trade towards full insurance, while ambiguity aversion implies a mo-

tive to trade towards the reference-point. RMEU therefore identifies a natural trade-off

between hedging and insurance which is not captured by existing models of reference-

point effects (such as cumulative prospect theory) or by existing models of ambiguity

aversion (such as MEU).
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In Chapter 3 of the Dissertation, I illustrate that the RMEU model can change sub-

stantially our view of how ambiguity affects markets. In particular, the trade-off be-

tween hedging and insurance motives for trade implied by RMEU can explain the par-

tial participation, under-insurance and under-diversification of many potential investors

in financial markets (see, e.g., Campbell, 2006). MEU has been used to model these

features of modern asset markets, but it is still a matter of debate how general the ex-

planations provided by MEU are (see, e.g., Rigotti and Shannon, 2008, for a general

critique). For example, the first result on non-participation by MEU decision makers,

due to Dow and Werlang (1992), hinges crucially on the assumption that the investor

begins with a portfolio that is risk-free. Other applications of MEU, including Epstein

and Wang (1994) and Billot et al. (2000), are similarly restricted by conditions on the

status-quo allocation. It would be easy to conclude that ambiguity affects market al-

locations in a qualitative way only under knife-edge conditions (i.e. non-generically),

but the RMEU model illustrates that this conclusion is misplaced. While models of fi-

nancial markets with MEU investors must generally line up initial conditions with the

specific constant reference-point embedded in MEU theory, RMEU illustrates that am-

biguity can affect market outcomes for arbitrary initial allocations if investors use these

allocations as reference-points.

The final chapter of the dissertation extends the static analysis of Chapters 2 and 3

to study reference-dependent ambiguity aversion in an intertemporal setting. One sub-

stantial advantage of SEU is that it comes equipped with an essentially in-built theory of

dynamic behavior over time. This is not the case for models of ambiguity aversion (see,

e.g., Epstein and LeBreton, 1993; Siniscalchi, 2009a). However, Epstein and Schnei-

der (2003, 2007) have recently proposed extensions of MEU to intertemporal settings

that are both tractable and based on solid axiomatic foundations. I build on their work

and give an axiomatic characterization of a Recursive Reference-Dependent Maxmin
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Expected Utility (RRMEU) model, which is dynamically consistent (in an acceptable

sense) and embodies a natural theory of learning (prior-by-prior Bayesian updating).

As an application, I extend the intertemporal asset pricing model of Epstein and Wang

(1994) and illustrate robust price indeterminacy for all endowment processes. Epstein

and Wang (1994) demonstrate the possibility of price indeterminacy with recursive mul-

tiple priors utility and relate this price indeterminacy to the excess price volatility puz-

zle. However, using an intertemporal extension of MEU, they are not able to provide a

definitive answer regarding the “frequency” of such price indeterminacy, precisely be-

cause under MEU this depends on the initial conditions (i.e., the stochastic endowment

process). As in the application of the static decision theory in Chapter 3, I illustrate that

with RRMEU preferences, price indeterminacy is robust (and, in fact, ubiquitous).

1.1 Related Literature

The decision-theoretic literature on ambiguity is large and active (see, for example,

Siniscalchi, 2008, and the references therein for an overview). My analysis builds on

a number of contributions in the literature and in this section I discuss some of these

connections. Further references are given in the body of the text.

Ghirardato et al. (2004) study a decision maker (DM) whose preferences satisfy the

axioms in Gilboa and Schmeidler (1989) except (possibly) uncertainty aversion, and

thereby attribute a perception of (subjective) ambiguity to a DM without attributing a

particular attitude towards ambiguity. I perform essentially the opposite exercise. The

RMEU model satisfies uncertainty aversion, and generalizes certainty independence to

allow for the perception of ambiguity to be relative to a reference-point. Hence, a par-

ticular attitude towards ambiguity (namely, aversion) is fixed, but the DM regards ambi-

guity from the perspective of a reference-point which need not be constant.
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The separation of ambiguity and ambiguity attitude in Ghirardato et al. (2004) is

a key step also in the development of RMEU and is based on a model of ambiguity by

Bewley (2002). Bewley (2002) models ambiguity through incomplete preferences in the

Anscombe and Aumann (1963) framework, and gives a unanimity representation: The

DM acts as if (s)he entertains a set of priors Π and has a von Neumann/Morgenstern

payoff function u, and prefers f to g if and only if the expected utility of f is greater

than the expected utility of g for all priors in Π. When there is ambiguity (Π is not a

singleton) some alternatives are non-comparable. The model of preferences therefore

captures ambiguity in an intuitively appealing way, but does not embody any particular

ambiguity attitude. Bewley (2002) therefore introduces an inertia assumption to model

aversion to ambiguity: A DM chooses an alternative f only if the expected utility of f

is greater than the expected utility of the status-quo for all priors in Π. Under the inertia

assumption ambiguity-aversion depends on a (potentially) non-constant status quo, and

this naturally induces a status-quo bias. The same status-quo bias follows from RMEU

preferences when the reference-point is given by the status-quo. However, the interpre-

tation of the status-quo bias in Bewley (2002) is conceptually very different. In Bewley

(2002) inertia is an assumption about how decision makers respond to ambiguity but is

not related directly to the preferences of the individual. The RMEU model is a com-

plete preference model in which status-quo bias emanates from a particular perspective

on ambiguity (namely, status-quo-dependent-ambiguity) coupled with a particular re-

sponse to ambiguity (namely, ambiguity aversion). Moreover, an important practical

difference is that the choices made by the DM in Bewley’s model remain indeterminate

when there are alternatives in a choice set that dominate the status quo. In the RMEU

model demand is always single valued (at least when the DM is also risk averse), and

the RMEU model can therefore be used to model status-quo bias in a model with greater

predictive power.
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Ortoleva (2010) presents an alternative approach that can also provide revealed pref-

erence foundations for the inertia assumption in Bewley (2002).1 Ortoleva (2010) mod-

els a DM who has a context-free preference relation, as well as a preference relation

given any specific status-quo. Axioms describe preferences in the absence of a status

quo, preferences given any particular status-quo, and relate preferences given different

status-quibus to each other and to the status-quo-free preference. As a result, the axioms

can be verified only by observing the choices of a DM given all possible status-quibus.

In the RMEU model, the axioms describing behavior given a particular reference-point

can be verified by observing the choices of the DM given that particular reference-point

alone, and an axiom relating preferences given different reference-points is introduced

only to allow for meaningful comparative statics. The revealed preference foundations

in Ortoleva (2010) and in the RMEU model are therefore quite distinct. Moreover, the

model of reference-dependent ambiguity aversion does not contain any specific assump-

tion about what alternative will serve as a reference-point for a DM in a given context.

Status-quo bias can be modeled if the RMEU model is augmented with the assumption

that the reference-point is the status-quo. In this case, there is nevertheless a substantive

difference between the model in Ortoleva (2010) and the RMEU model in terms of the

effect that the status-quo has on choices. Ortoleva (2010) explicitly limits the status-quo

effect to a desire to hold on to the status-quo: The preference between two alterna-

tives is determined by a status-quo free preference relation, but alternatives are chosen

from a choice set only if they are preferred to the status-quo according to a status-quo-

dependent preference relation. However, a DM with reference-dependent ambiguity

averse preferences (and a reference-point given by the status quo) also acts as if all

available alternatives are related to the status-quo. The RMEU model therefore captures

a reference-effect that is explicitly ruled out in Ortoleva (2010). As a result, preferences

1The approach in Ortoleva (2010) is based on the model of reference-dependent preferences studied
in Masatlioglu and Ok (2005).
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given a reference-point are continuous in the RMEU model, while the preferences given

a status-quo are not continuous in the decision model studied in Ortoleva (2010). Also,

the reference-effect in the RMEU model implies that preferences generalize MEU, and

the comparison to existing models of ambiguity aversion is therefore more transparent.

The relation to MEU is also convenient because it allows for an extension of the RMEU

model to dynamic choice settings based on approaches to dynamic models of ambiguity

aversion in the existing literature.2 It is not clear how one would extend the model in

Ortoleva (2010) to study dynamic choice problems.

Sagi (2006) also provides a representation in a similar spirit to the RMEU repre-

sentation, but restricted to the context of choice under risk. Sagi (2006) provides an

axiomatic characterization of reference-dependent preferences over lotteries having the

following representation: For any two lotteries, p and q, and for any reference-lottery,

e, p �e q if and only if infχ∈Y E[χ(p) − χ(e)] ≥ infχ∈Y E[χ(q) − χ(e)], where Y is a

(suitably restricted) set of payoff functions on prizes, and E[χ(z)] is the expected util-

ity of z given payoff function χ (see Theorem 6 in Sagi, 2006). Sagi (2006) refers to

preferences with this representation as anchored preferences. For anchored preferences,

the reference-point effects the minimization over a set of payoff functions in a similar

manner as the reference-point effects the minimization over a set of priors in the RMEU

representation, although the axiomatic characterization of anchored preferences in Sagi

(2006) is closer to the approach in Ortoleva (2010).3

2I illustrate one approach to modeling RMEU in dynamic choice settings in Chapter 4, where I give
an axiomatic characterization of recursive reference-dependent ambiguity aversion preferences that gen-
eralize the recursive multiple-priors preferences in Epstein and Schneider (2003).

3Sagi (2006) also provides a detailed and relevant discussion of how anchored preferences relate to
cumulative prospect theory (Tversky and Kahneman, 1992). In particular, Sagi (2006) proposes a norma-
tive criterion for models of reference-dependent choice (under risk), which requires that for any lotteries
p and q, p �q q if and only if p �e q for all reference-points e (Axiom 1 in Sagi (2006)). This condition is
necessary and sufficient to rule out cyclic behavior that Sagi (2006) argues is difficult to interpret norma-
tively (the reader is referred to Sagi, 2006, for a more detailed discussion of the normative appeal of this
axiom). Under mild conditions, prospect theory, cumulative prospect theory and other commonly used
models of reference-dependent behavior violate this axiom, but it is satisfied by anchored preferences.
An appropriate generalization of Axiom 1 in Sagi (2006) to the Anscombe and Aumann (1963) setting is
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Finally, there is also a literature related to the equilibrium analysis of Chapter 3. In

particular, Rigotti and Shannon (2005) present a theory of exchange for an economy in

which consumers have the preferences introduced in Bewley (2002). They illustrate the

possibility of no-trade and indeterminacy of the equilibrium price as a result of the iner-

tia assumption in Bewley (2002), and relate their results to the possibility of endogenous

market incompleteness. Easley and O’Hara (2010) also study market collapse using Be-

wley’s decision model, and relate their analysis to the financial crisis of 2008. However,

a theory of exchange based on the preference in Bewley (2002) is conceptually and sub-

stantively different from the theory of exchange based on RMEU preferences in Chapter

3. Intuitively, one can view market collapse under RMEU as a missing markets problem.

The missing commodity that consumers with reference-dependent ambiguity aversion

preferences would like to purchase is information regarding the likelihood of states,

because ambiguity averse DM’s prefer risk regarding the realization of states to the am-

biguity they currently face. The same perspective does not follow from the decision

model in Bewley (2002) because in Bewley’s decision model there is no innate attitude

towards sources of uncertainty. DM’s have incomplete preferences, and there is no sense

in which they prefer objective lotteries to subjective uncertainty in the economy. The

inertia assumption introduced by Bewley (2002) is simply an assumption about how

consumers act when alternatives are not comparable to the status-quo. It is therefore not

exactly clear what the market collapse as a result of inertia means. The analysis under

reference-dependent ambiguity aversion therefore allows for a more transparent inter-

pretation in which market collapse is related to a particular attitude towards ambiguity,

namely ambiguity aversion.

The indeterminacy of equilibrium due to incomplete preferences is also distinct from

the indeterminacy of equilibrium due to reference-dependent ambiguity aversion. With

also satisfied by RMEU preferences, and in the axiomatic characterization in Section 2.2, I identify the
axiom that guarantees this.
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the decision model presented in Bewley (2002) there are two sources of indeterminacy:

(1) indeterminacy due to status-quo bias is similar to the indeterminacy of the equi-

librium price identified in Chapter 3 of this Dissertation; and (2) indeterminacy when

consumers trade away from the status-quo and the decision model therefore does not

provide a complete theory of how they choose amongst incomparable alternatives. For

a given endowment and risk preferences, more ambiguity leads to indeterminacy due

to a collapse of the market (as with RMEU). However, when there is less ambiguity

the equilibrium price and the equilibrium allocation are indeterminate because of the

incompleteness of the preferences. It is not clear what the economic interpretation for

this latter indeterminacy is. Consider, for example, an economy with no aggregate un-

certainty but an asymmetric distribution of endowments. With sufficient ambiguity, DM

with incomplete preferences and inertia do not trade and the competitive equilibrium

allocation is therefore unique and not a full insurance allocation (compare Figure 3.2.1).

Now consider the comparative static exercise of decreasing the ambiguity perceived by

consumers. Under general conditions, there will eventually be trade, and the set of

equilibrium allocation will generally be uncountable. In particular, it will include both

full-insurance and non-full-insurance allocations. It is therefore difficult to determine

whether there is still a trade off between hedging and insurance.

1.2 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 presents the static decision theory.

I decompose the axioms that characterize MEU in Gilboa and Schmeidler (1989) to

identify explicitly the reference-point assumption in the MEU model, and provide a rep-

resentation result for the generalization to arbitrary reference-point (the RMEU model).

I also provide a representation result for reference-dependent Choquet Expected Util-
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ity (CEU), which generalizes the CEU model in Schmeidler (1989) to accommodate

reference-dependent preferences with different attitudes to ambiguity (from ambiguity

aversion to ambiguity loving behavior). Chapter 3 analyzes risk sharing under RMEU

utility in an Arrow-Debreu exchange economy in which investors view ambiguity from

the perspectives of their initial endowment. I illustrate robust market collapse, non-

participation and underinsurance, and relate these to a trade-off between an insurance

motive to trade (due to risk aversion) and hedging motive to trade (due to ambiguity

aversion). Chapter 4 presents an axiomatic characterization of Recursive Reference-

Dependent Maxmin Expected Utility and generalizes the price indeterminacy result of

Epstein and Schneider (2003) in an intertemporal asset pricing model. All proofs are

presented separately in an Appendix.
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CHAPTER 2

REFERENCE-DEPENDENT AMBIGUITY AVERSION

2.1 Introduction

Following the seminal work of Frank Knight (1921), and in response to the Ellsberg

(1961) paradox, a growing literature in economics has studied decision making under

uncertainty when there is a behaviorally meaningful distinction between risk (uncer-

tainty that is easily quantified in terms of a probability law) and ambiguity (uncertainty

that is not easily quantified). In this Chapter, I introduce an axiomatic model of ambigu-

ity averse preferences in the Knightian tradition, and illustrate some of its key implica-

tions in a number of simple consumer choice problems. As in other decision models that

distinguish between ambiguity and risk, the perception of and response to ambiguity are

subjective and characterized behaviorally by weakening the independence axiom that re-

lates subjective uncertainty to objective randomization in the SEU theory of Anscombe

and Aumann (1963). In departure from existing models of ambiguity aversion, I study

decision makers who view ambiguity relative to a reference-point – some alternative in

the choice space that is particularly focal or familiar to them – and model ambiguity

aversion as a preference for hedging against this reference-dependent ambiguity.

Formally, the reference-dependent ambiguity aversion decision model generalizes

the Maxmin Expected Utility (MEU) model of Gilboa and Schmeidler (1989) by incor-

porating into the multiple-priors framework the well-documented influence of reference-

points. In the classic setting of Anscombe and Aumann (1963), I provide axioms on

preferences that characterize a decision maker who acts as if an alternative f , mapping

states of the world s ∈ S into lotteries over prizes f (s) ∈ ∆(X), is evaluated according to
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a utility functional of the form

V( f ) = min
π∈Π

∫
S

[
u( f (s)) − u(r(s))

]
π(ds) , (2.1)

where X is an outcome space, ∆(X) are lotteries with finite support on X, u : X → R

is a mixture-linear von Neumann/Morgenstern payoff function on lotteries over out-

comes, Π is a weak*-closed, convex set of priors, and r : S → ∆(X) is a refer-

ence point that describes the perspective from which the decision maker (DM) views

ambiguity. Due to the close relation to MEU, I refer to the decision model of (2.1)

as a Reference-Dependent Maxmin Expected Utility (RMEU) decision model.1 The

existence of multiple-priors, expressed by the non-singleton set Π, reflects ambigu-

ity about the likelihood of states and captures the idea that the decision maker is not

confident in one particular probability law. Risk aversion is a property of the von Neu-

mann/Morgenstern payoff function u, while the minimization over a set of priors implies

a distinct role for ambiguity aversion. Such a distinction has no behavioral implications

exactly when Π is a singleton, and in this case the RMEU model is equivalent to the

Subjective Expected Utility (SEU) model of Anscombe and Aumann (1963). However,

when Π is not a singleton, choice behavior under ambiguity differs from behavior under

risk. In this case, RMEU preferences coincide with MEU preferences if the reference-

point r is constant. But when Π is not a singleton and ambiguity is viewed from a

non-constant reference-point, the RMEU model is behaviorally distinct from both MEU

and SEU.

The behavioral distinction between RMEU and MEU preferences has substantive

implications for exchange under uncertainty. Chapter 3 demonstrates implications for

1Note, however, that the name may be misleading. As I argue in detail in the remainder of this Chapter,
MEU does not represent a reference-free benchmark of the RMEU decision rule. Rather, MEU is the
special case of RMEU preferences in which the reference-point is not state-contingent. When there are
multiple priors, preferences are by their nature reference-dependent and so the reference-free benchmark
should be viewed as SEU which is the special case of RMEU preferences without ambiguity aversion
(i.e., there is no reference-effect exactly when there is no ambiguity aversion).
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markets in more detail, but some observations by way of motivation are useful at this

stage. Under the SEU hypothesis, exchange under uncertainty is determined by a trade-

off between a speculative motive for exchange (due to differences in subjective beliefs)

and an insurance motive for exchange (due to risk aversion). While ambiguity aversion

in the MEU model reinforces the insurance motive for trade, RMEU more generally

implies a trade-off between ambiguity- and risk-aversion: Ambiguity aversion implies a

motive to hedge against ambiguity and participate in trades that are “more easily com-

pared” to the reference-point, while risk aversion implies a motive to trade for insurance.

MEU is the special case where these two motives generally coincide. However, when

reference-points are not constant across states, reference-dependent ambiguity aversion

implies a trade-off between the insurance and hedging motives that is not captured by

existing models of ambiguity averse preferences.

The potential trade-off between an insurance and hedging motive for trade is also

not captured in reference-dependent decision models in the spirit of cumulative prospect

theory (Tversky and Kahneman, 1992) in which reference-points affect payoffs ex-post

to the realization of uncertainty. In a typical application of cumulative prospect theory,

the reference-point may be some wealth level (such as current wealth) and outcomes

are viewed as deviations from this wealth level. The reference-point therefore does

not, in general, have the same structure as the objects of choice (which are mappings

from a state space to an outcome space), but it can affect behavior if gains and losses

with respect to the reference-point are evaluated with different ex-post utility functions

or different belief measures (Wakker and Tversky, 1993). In the RMEU model the

reference-point is an Anscombe and Aumann (1963) act with the same structure as the

objects of choice, and the reference-effect is ex-ante to the realization of uncertainty.

As a result, the model separates ambiguity aversion from risk aversion: Risk aversion

is a property of ex-post utility on outcomes, while the reference-effect is ex-ante and
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related to the way in which the DM perceives and therefore responds to ambiguity.

The following example helps to illustrate the differences between a model of reference-

dependent ambiguity aversion, MEU or models of reference-dependent preferences in

the spirit of cumulative prospect theory.

2.1.1 An insurance example

Consider a simple insurance problem. A risk averse decision maker (DM) with wealth

w and utility of wealth u(.) can purchase insurance against some loss L. What premium,

P, would the DM be willing to pay for full insurance against the loss? Suppose first that

the DM maximizes SEU with prior probability π̂ on the state where no loss occurs (state

1). At the solution P∗, illustrated in Figure 2.1.1, w−P∗ is the certainty equivalent of the

act (w,w − L) given prior π̂ and the payoff function u on ex-post wealth. Now suppose

that the DM is not confident in the prior π̂ and instead entertains the possibility that the

probability of state 1 is between π̂− ε and π̂+ ε. Given any premium 0 ≤ P ≤ L, a MEU

DM will choose to insure if

min
π∈[π̂−ε,π̂+ε]

{πu(w) + (1 − π)u(w − L)} ≤ u(w − P) . (2.2)

As a result, it is the prior under which loss is most likely to occur, π̂−ε, that is relevant for

the DM in deciding whether to insure. Figure 2.1.2 illustrates the certainty equivalent of

(w,w− L) for the MEU DM. The diagram depicts two indifference curves of a SEU DM

with priors π̂ − ε and π̂ + ε, respectively, that intersect on the 45◦ line. The indifference

curve of a MEU DM corresponding to the utility of (w,w − L) is given by the upper

envelope of the indifference curves of the SEU DMs. Ambiguity aversion therefore

implies that the DM is willing to pay a higher premium, P′ > P∗, for full insurance. We

can think of this in the following way. Viewed from the perspective of the alternative
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(w−P′,w−P′), the DM is ambiguous about alternatives (w1,w2) for which πu(w1)+ (1−

π)u(w2) = πu(w−P′) + (1−π)u(w−P′) = u(w−P′) for some π ∈ [π̂ − ε, π̂ + ε], because

the DM is not confident about the precise probability of state 1. Being ambiguity averse,

the DM prefers the full insurance outcome (w − P′,w − P′) to each of the alternatives in

the set of ambiguous alternatives. Since (π̂ − ε)u(w) + (π̂ + ε)u(w − L) = u(w − P′), the

DM will purchase full insurance at P′. In some sense, this is a reference-point argument.

Faced with ambiguity, the DM views ambiguity from the perspective of “purchase full

insurance” and prefers this alternative to any alternative that is not unambiguously better

(i.e., dominates the purchase of insurance for all priors in [π̂ − ε, π̂ + ε]).

The RMEU model allows for a simple change in perspective. In many insurance

problems not purchasing a policy is the status-quo, and a DM could therefore also view

ambiguity from the perspective of not purchasing the policy.2 With the reference-point

(w,w − L) the DM will purchase insurance at a premium P if

min
π∈[π̂−ε,π̂+ε]

{π [u(w − P) − u(w)] + (1 − π) [u(w − P) − u(w − L)]} ≥ 0 . (2.3)

As a result, it is the prior under which loss is least likely to occur, π̂+ε, that is relevant for

the DM in deciding whether to insure. Figure 2.1.3 illustrates the certainty equivalent of

(w,w−L) for an ambiguity averse DM who views ambiguity from the perspective of the

status-quo (w,w − L). The diagram depicts two indifference curves of a SEU DM with

prior π̂ − ε and π̂ + ε, respectively, that intersect at the point (w,w − L). An indifference

curve of the DM with RMEU preferences corresponding to the utility of (w,w − L)

is given by the upper envelope of these indifference curves. RMEU therefore implies

that the DM is willing to pay a lower premium for full insurance. The reason is that,

viewed from the perspective of the alternative (w,w − L), the DM is ambiguous about
2For example, a literature in psychology demonstrates that DM’s usually prefer errors of omission

(where they do not act and this turns out to be a mistake) to errors of commission (where they act and
this turns out to be a mistake, see, e.g., Kahneman and Tversky (1982)). In the case of insurance, not
purchasing insurance and incurring a loss is an error of omission while purchasing the policy and then
observing that no loss occurs is an error of commission.
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alternatives (w1,w2) for which πu(w1) + (1−π)u(w2) = πu(w) + (1−π)u(w− L) for some

π ∈ [π̂ − ε, π̂ + ε]. Being ambiguity averse the DM prefers not to purchase insurance

unless the purchase of insurance is unambiguously better (i.e., dominates the purchase

of insurance for all priors in [π̂ − ε, π̂ + ε]). This occurs at the premium P̄ < P∗. 

 

 

                            

 

 

 

                                                                                                                         

   

                                                                                                                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

2.1.1: SEU

 

 

 

                            

 

 

 

                                                                                                                         

   

                                                                                                                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

2.1.2: MEU

 

 

 

                            

 

 

 

                                                                                                                         

   

                                                                                                                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

2.1.3: RMEU

Figure 2.1: Certainty equivalents (and risk premia) for different decision models of decision making un-
der uncertainty: (2.1.2) Subjective Expected Utility; (2.1.2) Maxmin Expected Utility; (2.1.3) Reference-
Dependent Maxmin Expected Utility.

The RMEU decision maker is ambiguity averse, he just views ambiguity relative

to the reference-point (w,w − L), and is averse to this relative ambiguity. As a result,

the DM faces a trade-off between insurance against risk and hedging against ambigu-

ity. To illustrate, consider the effects of (1) an increase in risk aversion captured via a

strictly concave transformation of the payoff function u, and (2) an increase in ambigu-

ity captured by an increase in ε. It is straightforward to see that for a DM with MEU

preferences both an increase in risk-aversion and an increase in ambiguity imply that

the insurance premium P′ that the DM is willing to pay increases. The reason is that

an increase in risk-aversion increases the motive to insure under every prior the DM

regards possible, while an increase in ambiguity “shifts” the prior that is relevant for

the insurance problem to one where a loss is more likely to occur. Both effects increase

the insurance motive and therefore the willingness-to-pay. However, if (w,w − L) is

the reference-point for an ambiguity averse DM, an increase in risk aversion leads to

an increase in the insurance premium the DM is willing to pay, while an increase in
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ambiguity leads to a decrease in the willingness to pay. The increase in the willingness

to pay as a result of greater risk-aversion is exactly as in the MEU case. However, as

ambiguity increases, a DM who views ambiguity from the perspective of the status-quo

evaluates insurance in terms of a probability distribution under which loss is less likely

to occur. These effects therefore move in opposite directions.

The separation of ambiguity aversion from risk aversion in the RMEU model is

crucial to capture this trade-off. Consider, for example, a DM with a reference-point

r : S → X ⊂ R who evaluates alternatives (on the restricted space of Savage (1954) acts

mapping S to X) using the following utility functional

V̂( f ) = min
π∈Π

∫
S

u ( f (s) − r(s)) π(ds) , (2.4)

i.e., the DM maximizes the minimal expected utility over a set of priors but with pay-

offs determined on the deviations ( f (s) − r(s)) rather than the outcomes f (s) directly.

This utility specification captures a version of reference-dependent MEU in the spirit of

cumulative prospect theory, i.e., with ex-post reference-effects. The preferences repre-

sented by V̂ are RMEU preferences if and only if the DM is risk-neutral (and u is there-

fore linear). More generally, for the preferences represented by V̂ both ambiguity aver-

sion and risk aversion are relative to the reference-point. As a result, ambiguity aversion

and risk aversion both imply a motive to trade towards full insurance, except that now

full insurance is given by constant deviations from the state contingent reference-point,

r, rather than constant outcomes. However, in the RMEU model, ambiguity aversion

is relative to the reference-point while risk aversion is a property of ex-post utility on

prizes.

Some immediate implications of the difference between ex-ante and ex-post

reference-effects can be illustrated in the context of the insurance example from the

previous section. Figure 2.2.1 depicts the certainty equivalent of (w,w − L) for a DM
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with utility function V̂ and reference-point (w,w−L). Both an increase in ambiguity and

an increase in risk aversion now imply that the premium the DM is willing to pay de-

creases. Compare this to Figure 2.2.2, which illustrates that an increase in risk aversion

in the RMEU model leads to an increase in the willingness to pay for insurance. This

trade-off between reference-dependent ambiguity aversion and risk aversion requires an

ex-ante perspective on reference-effects related directly to the response to ambiguity.

The behavioral implications of an ex-ante reference-effect are studied formally in Chap-

ter 2.2. I outline the motivation for the key axiom in the following example. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1: Ex-post RMEU

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2: Ex-ante RMEU

Figure 2.2: Certainty equivalents with varying risk-aversion: (2.2.1) Ex-post Reference-Dependent
Maxmin Expected Utility model of Eq. 2.4; (2.2.2) Reference-Dependent Maxmin Expected Utility model
of Eq. 2.1.

2.1.2 An Ellsberg example

Consider the classic Ellsberg (1961) problem. Suppose that a DM is confronted with

two urns: Urn A contains 50 black and 50 white balls, and urn B contains 100 black and

white balls but in an unspecified proportion. A ball will be drawn at random from an

urn and the DM’s payoffs are determined by the color. The Ellsberg (1961) paradox is

the finding that most individuals are indifferent about which should be the high payoff

color in each urn, but strictly prefer a bet involving urn A over the same bet involving
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urn B. Such choices are inconsistent with the SEU hypothesis because they indicate a

behaviorally meaningful distinction between risk (faced in bets on urn A) and ambiguity

(faced in bets on urn B). However, Heath and Tversky (1991) and Fox and Tversky

(1995) observe that the Ellsberg (1961) paradox disappears when people are familiar

with the ambiguity they face. Their findings suggest that a DM’s perception of ambi-

guity may depend on the context from which uncertainty is viewed. Roca et al. (2006)

confirm this by showing that if individuals are endowed with a status-quo alternative

in an Ellsberg (1961) setting, they make choices that are inconsistent with models of

ambiguity aversion in which the reference-point is given by a constant act. They inter-

pret this as evidence that status-quo bias leads to ambiguity loving behavior. Instead,

the model of reference-dependent ambiguity aversion provides a more natural expla-

nation, namely that the DM’s ambiguity attitude does not change with the context of

the decision problem, but that the perspective from which they view ambiguity may be

context-dependent.

To illustrate, consider at first only bets on urn B and assume that the DM considers

a state space S = {s1, s2}, where s1 is the state in which the ball drawn from urn B

is black and s2 is the state in which the ball drawn from urn B is white. To focus on

the response to ambiguity, assume that the DM is risk neutral. The DM has a status-

quo alternative r = (6, 3). To think about this status-quo as a reference-point, suppose

that the DM must first decide whether to forgo r to realize any other alternative. Now

consider two alternatives f = (8, 2) and g = (4, 4). Giving up r for f is profitable in s1,

and detrimental in s2. Since the realization of states in urn B is subject to ambiguity, the

DM may therefore express a strict preference to keep r over f . Analogously, giving up

r for g is profitable in s2 and detrimental in s1, and the DM may therefore also express

a strict preference for r over g. When comparing f and g directly, f (s1) = g(s1) + 4,

and f (s2) = g(s2) − 2, but g is constant across states. Since the decision maker is (by
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assumption) risk neutral, indifference between f and g therefore seems plausible.

Now consider the following bet, h. A ball is drawn first from urn A. If the ball drawn

is black, the DM receives the bet f on urn B. If the ball drawn is white, the decision

maker receives bet g on urn B. A risk neutral decision maker is indifferent between h

and r.3 If the DM’s preferences are transitive, the decision maker therefore prefers h

to f and g. This preference ordering is a violation of the independence axiom used by

Anscombe and Aumann (1963) to characterize SEU. It is also a violation of the certainty

independence axiom used by Gilboa and Schmeidler (1989) to characterize MEU, since

the alternative g is constant across states. The reason for this violation is intuitive from

a reference-point perspective: While g is unambiguous in an absolute sense, g exhibits

relative ambiguity when viewed from the perspective of the status-quo r. It represents an

improvement in s1 and would make the DM worse off in s2. Since the state of the world

is determined by the unknown composition of balls in urn B the relation between r and

g is therefore ambiguous. However, viewed from the perspective of r all ambiguity in

bet h has been resolved and “replaced” with the objective uncertainty from urn A. Roca

et al. (2006) demonstrate that endowing individuals with a status-quo alternative in an

Ellsberg (1961) setting does indeed lead to the kind of violations of certainty indepen-

dence outlined in this thought experiment. The reference-dependent ambiguity model

rationalizes such violations, not by suggesting that DMs become ambiguity loving when

endowed with a status-quo, but by pointing out that such violations arise naturally when

decision makers are ambiguity averse and view ambiguity relative to the status-quo.

The key axiom behind the RMEU representation therefore characterizes behav-

iorally what it means for a DM to view ambiguity from the perspective of a particular

reference-point. I call this axiom “Reference-Independence”. It is a weakening of the

3Formally this requires that the DM’s preferences satisfy a monotonicity assumption, and that the DM
evaluates objective lotteries in terms of their expected utility.
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independence axiom that relates subjective uncertainty over states to the objective uncer-

tainty over outcomes in the SEU axiomatization of Anscombe and Aumann (1963).4 In

particular, Reference-Independence generalizes the certainty independence axiom in the

MEU model. In the MEU model, independence is replaced with two (jointly weaker)

axioms. First, an uncertainty aversion axiom (first introduced by Schmeidler, 1989)

captures a basic aversion to ambiguity (vs. risk).5 The RMEU model satisfies uncer-

tainty aversion, and is therefore also a model of ambiguity-aversion. Secondly, Gilboa

and Schmeidler (1989) introduce a certainty independence axiom that requires indepen-

dence to hold only with respect to constant acts.6 Gilboa and Schmeidler (1989, pp.

144–145) justify certainty independence by arguing that “a DM who prefers f to g can

more easily visualize the mixture of f and g with a constant [act] h than with an ar-

bitrary one, hence he is less likely to reverse his preferences.” The motivation behind

Reference-Independence is that the alternatives a DM “can more easily visualize” mix-

tures with may be context-depend. In the Reference-Independence axiom it is therefore

the reference-point, r, of the DM which occupies the role otherwise occupied by a con-

stant act in the certainty independence axiom. If r is constant across states, the decision

model is equivalent to MEU, but the model also allows for a more general perspec-

tive on ambiguity aversion in which ambiguity is perceived relative to a non-constant

reference-point.

4A preference relation � satisfies independence if, for all acts f , g and h, and for all α ∈ (0, 1), f � g
if and only if α f + (1 − α)h � αg + (1 − α)h.

5A preference relation � satisfies uncertainty aversion if, for all acts f ∼ g and for all α ∈ (0, 1),
α f + (1 − α)g � f . This is weaker than independence which requires indifference.

6Formally, a preference relation � satisfies certainty independence if, for all acts f , g and all constant
acts h, and for all α ∈ (0, 1), f � g if and only if α f + (1 − α)h � αg + (1 − α)h. Certainty independence
is weaker than independence which requires the same condition to hold but for all acts, not only acts that
are constant across states.
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2.2 A Model of Reference-Dependent Maxmin Expected Utility

In this Section, I give a behavioral characterization of the Reference-Dependent Maxmin

Expected Utility (RMEU) model in Eq. (2.2). The approach is to identify where the

implicit reference-point assumption is made in the axioms that characterize Maxmin

Expected Utility (MEU), and then generalize by imposing Reference-Independence in-

stead.

2.2.1 Decision environment

In the traditional setting of Anscombe and Aumann (1963), consider a (non-empty) state

space S , a (non-empty) set of outcomes or prizes X, and a set of lotteries P consisting of

all probabilities on X with finite support.7 The state space S is endowed with an algebra,

Σ, of events. Denote by ∆(Σ) the set of finitely-additive probabilities on Σ. This set is

endowed with the event-wise convergence topology. The objects of choice are the set

of acts, F , consisting of all (simple), finite-valued Σ-measurable functions f : S → P.8

The set of acts is endowed with a point-wise mixture operation, such that α f + (1 − α)g

is the act given by α f (s) + (1 − α)g(s) for each s ∈ S .

2.2.2 Preferences

The DM’s preferences depend on a reference-point (or reference-act) r ∈ F . A

reference-point is an alternative in the choice space that is especially familiar to the

7More accurately, the decision environment is based on the extension of the Anscombe and Aumann
(1963) framework in Fishburn (1970).

8Where it should not be confusing, I abuse notation and identify P with the subset of F consisting of
constant functions.
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DM, or is otherwise salient in the decision making process. I present axioms on pref-

erences given the reference-point that characterize a DM who acts as if (s)he perceives

ambiguity from the perspective of the reference-point, and has a negative attitude to-

wards this ambiguity. The decision model is therefore a theory about how individuals

view and respond to ambiguity from the perspective of a given reference-point, and does

not embody any particular assumption about what act will serve as a reference-point for

a DM in a given context. In applications the model needs to be augmented by a theory of

what constitutes the reference-point. MEU implicitly assumes that the reference-point is

a constant act, but other examples might include a status-quo or default option; a partic-

ular contract or investment project; or a personal recommendation or social convention.

For any reference-point r ∈ F , let �r⊂ F × F denote the preferences of the DM

given reference-point r, and denote the asymmetric and symmetric parts of �r by �r

and ∼r, respectively. With the conventional abuse of notation, denote the restriction of

preferences to P and X analogously.

2.2.3 Axioms

In the following I introduce three types of axioms:

1. The first set of axioms describe behavior given a particular reference-point, but

describe behavior that does not directly depend on the reference-point. In partic-

ular, for any given reference-point, the RMEU decision model is an example of a

variational preference and so I recall (for completeness) the axioms that character-

ize variational preferences in Maccheroni et al. (2006). I also provide a somewhat

simpler representation result for the case when preferences belong to the class of
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unbounded variational preferences.9

2. The second set of axioms describe behavior that is specific to preferences given a

particular reference-point. In fact, there is only one axiom that fully distinguishes

behavior given different reference-points, namely the Reference-Independence

axiom which characterizes behaviorally what it means for a DM to view ambi-

guity from the perspective of a particular reference-point.

3. A last set of axioms describe the relation between behavior given different

reference-points. To this end, I assume that the individual has a class of preference

relations, (�r)r∈F , one preference relation for each possible reference-point. Two

axioms are introduced that establish connections between these different prefer-

ence relations. The first is a Reference Translation (RT) condition that imposes a

rescaling invariance condition between behavior given different reference-points.

The second imposes an equivalence between unambiguous preferences (EUP)

given different reference-points. The behavioral content of these axioms is more

delicate because they are falsifiable only on the basis of choice data for a de-

cision maker under different reference-points.10 I view RT and EUP as axioms

that provide a natural structure for comparative statics. For example, EUP is the

assumption that the unambiguous preference relation (as defined in Ghirardato

et al., 2004) given two different reference-points coincides. Hence, EUP captures

the idea that the reference-point determines the perspective from which ambiguity

is perceived, not the degree of ambiguity perceived per se. This seems a natural

assumption to make for comparative statics purposes, but it is verifiable only if

behavior is observed under different reference-points.

9In Maccheroni et al. (2006) unbounded variational preferences are a particularly important example of
variational preferences for which they are able to attain tighter uniqueness conditions in the representation.

10The extension of the Ellsberg (1961) experiment in Roca et al. (2006) can be viewed as an attempt
to study behavior under different ambiguous reference-points. It is clear that experimental solicitation
of preferences under different reference-points always hinges on counterfactual assumptions about the
invariance of observations across reference-points.
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I first present a number of axioms that describe behavior regardless of the reference-

point. The following four axioms are standard in the literature on decision making

under uncertainty (see, e.g., Fishburn, 1970), and hold for a class of RMEU preference

for every reference-point r ∈ F .

Axiom 1 (Preorder) For all f , g ∈ F , not f �r g implies g �r f ; for all f , g, h ∈ F ,

f �r g and g �r h implies f �r h.

Axiom 2 (Non-trivial) There exist x, y ∈ X such that x �r y.

Axiom 3 (Monotonicity) For all f , g ∈ F , f (s) �r g(s) for all s ∈ S implies f �r g.

Axiom 4 ((Mixture) Continuity) For all f , g, h ∈ F , the sets {α ∈ [0, 1]|α f +(1−α)g �r

h} and {α ∈ [0, 1]|h �r α f + (1 − α)g} are closed.

The preceding axioms and independence together characterize Subjective Expected

Utility (SEU) (Fishburn, 1970). Schmeidler (1989) and Gilboa and Schmeidler (1989)

observe that independence excludes the phenomenon of hedging, i.e., a preference for

uncertainty that is objective rather than ambiguous in nature. They therefore introduce

two axioms that are jointly weaker than independence and that can be combined with

Axioms 1-4 to characterize behaviorally a Maxmin Expected Utility (MEU) decision

making criterion. The first axiom is uncertainty aversion (UA). It captures the idea

that hedging is beneficial, and therefore represents a basic negative attitude towards

ambiguity (see also the discussion in Schmeidler, 1989; Ghirardato et al., 2004). A DM

whose preferences satisfy UA at least always weakly prefers alternatives in which some

subjective uncertainty has been directly replaced with risk, but axiom is permissive of

preference reversals due to the ambiguity inherent in the source of uncertainty.
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Axiom 5 (Uncertainty Aversion (UA)) For all f , g ∈ F , f ∼r g implies(
1
2

)
f +

(
1
2

)
g �r f .

The second axiom introduced in Gilboa and Schmeidler (1989) is certainty indepen-

dence (CI).

Axiom 6 (Certainty Independence (CI)) For all f , g ∈ F , all x ∈ P and all α ∈ (0, 1),

f �r g ⇔ α f + (1 − α)x �r αg + (1 − α)x . (2.5)

CI is weaker than the Independence axiom implied by SEU because it rules out

preference reversals only when acts are mixed with a constant act. Independence rules

out preference reversals due to mixing with any arbitrary act. Gilboa and Schmeidler’s

(1989) objection to independence is that it rules out all possibility of hedging. They

justify CI on the basis that – even when a preference for hedging is permitted – constant

acts should be exempt because they are ambiguity neutral. However, whether a constant

act is unambiguous or not depends on the perspective from which it is viewed. For

example, relative to an alternative f = (4, 2) the constant act x = (3, 3) may appear

quite ambiguous: It represents an improvement on f in state 1 and a deterioration in

state 2. If the realization of states is determined by drawing a ball from an urn with an

unspecified proportion of black and white balls, then the benefits of x relative to f are

clearly ambiguous. Just as the likelihood of states is subjective when the proportion of

black and white balls is unspecified, the perspective on what constitutes an ambiguity

neutral act is also subjective and depends on the view of the DM. Hence, MEU is based

on the assumption that DMs regard constant acts as ambiguity neutral. In certainty

contexts it may be a justified assumption, but it is nevertheless an assumption and one

that is not well recognized as such in the literature. To make clearer the content of the
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assumption, it is insightful to decompose CI into two axioms which jointly imply CI but

are individually weaker.

Axiom 7 (Weak Certainty Independence (WCI)) For all f , g ∈ F , for all c1, c2 ∈ P

and for all α ∈ (0, 1),

α f + (1 − α)c1 �r αg + (1 − α)c1 ⇔ α f + (1 − α)c2 �r αg + (1 − α)c2 . (2.6)

Axiom 8 (Pivotal Independence (PI)) There exists a c ∈ P such that for all f , g ∈ F

and for all α ∈ (0, 1),

f �r g ⇔ α f + (1 − α)c �r αg + (1 − α)c . (2.7)

A non-trivial preference preorder that is non-trivial, monotone and continuous satis-

fies WCI and PI if and only if it satisfies the CI axiom in Gilboa and Schmeidler (1989).

Axiom 7 states that there should be no preference reversals if acts f and g are mixed in

a given proportion with two different constant acts. As the name suggests, it imposes

a translation invariance condition. The motivation given for this axiom in Maccheroni

et al. (2006) is that, fixing the mixture and varying only in terms of constant acts c does

not alter the absolute ambiguity exhibited by the act α f + (1 − α)c, and hence does not

introduce hedging opportunities in comparisons to αg + (1 − α)c. Varying the mixture

can introduce hedging opportunities because for α close to 0, the act α f + (1 − α)c

is close to constant, while for α close to 1 the act potentially pays off very differently

across states. Hence, in comparisons to αg+ (1−α)c, the source of uncertainty becomes

irrelevant as α converges to 0, but may become increasingly important as α converges

to 1. Likewise, holding the mixture fixed but varying in terms of non-constant acts also

introduces hedging opportunities. For example, if f = ( f1, f2) ∈ R2, and α ∈ (0, 1), the

act

f ′ = α f + (1 − α)
(

α

(1 − α)
f2,

α

(1 − α)
f1

)
= α( f1 + f2, f1 + f2) ,
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is constant across states. As a result, comparing f = α f + (1−α) f with αg+ (1−α) f , or

f ′ with αg+(1−α) f , may be subject to a very different degree of ambiguity. However, if

the mixture is held constant, whatever hedging opportunities can be realized by mixing

acts f and g with a constant act c1 are already realized in the mixture with c1, and

there are no additional hedging opportunities in mixing in the same proportion with an

alternative and also constant act c2. A DM whose preferences satisfy UA and WCI can

therefore be interpreted as displaying a type of constant absolute ambiguity aversion.11

Given Axioms 1-5 and Axiom 7, Axiom 8 is a reference-point assumption implicitly

embedded in the MEU decision model. In general, the mixture of the constant act c in

PI can affect the ambiguity exhibited by two acts f and g very differently. For example,

suppose that g = c. Then mixing g with c provides no hedging opportunity against

ambiguity in g, but may well provide hedging opportunities against the ambiguity in an

arbitrary act f . One way to justify precluding preference reversals due to mixtures with

c is therefore to argue that the DM views ambiguity from the perspective of the constant

act c, and can therefore “more easily visualize the mixture of f and g with the constant

act [c], than with an arbitrary one” (Gilboa and Schmeidler, 1989). Hence, PI is the

assumption that a constant act is ambiguity neutral. Of course, if one constant act is

ambiguity neutral all constant acts are ambiguity neutral. Indeed, in the MEU decision

model, which constant act serves as a reference-point can not be revealed by behavioral

data. PI simply implies that a MEU DM does “reveal” that he uses some constant act as

a reference-point.

It is not clear, however, that a DM will always view ambiguity from the perspective

of a constant act. A large literature in psychology, experimental and behavioral eco-

nomics demonstrates that decision making under uncertainty is often influenced by fea-

11Behavioral differences between WCI and CI are discussed in greater detail in Maccheroni et al.
(2006).
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tures of the context of the decision problem, or details of the decision making environ-

ment (Samuelson and Zeckhauser, 1988, see, e.g,), and it is plausible therefore that the

perspective from which ambiguity is viewed by a DM may also be context-dependent.

For example, the findings of Roca et al. (2006) suggest that DMs may view ambiguity

from the perspective of a status-quo even in simple Ellsberg (1961) settings. The key be-

havioral axiom for a RMEU preference is therefore the Reference-Independence axiom

discussed in the Introduction to this Chapter. Reference-Independence generalizes PI to

allow for ambiguity to be perceived from the perspective of a non-constant reference-

point. The reference-point can be interpreted as an act that is particularly familiar to a

decision maker and therefore plays a focal role in their decision making process, so that

the decision maker can “more easily visualize mixtures” with the reference-point than

with an arbitrary act. If the DM views ambiguity from the perspective of the reference-

point r, then r provides no hedging opportunities against ambiguity because all am-

biguity is defined relative to r. Hence, mixtures with r should not lead to preference

reversals. This is exactly the content of Reference-Independence axiom.

Axiom 9 (Reference-Independence (r-Independence)) For all f , g ∈ F and for all

α ∈ [0, 1], f �r g if and only if α f + (1 − α)r �r αg + (1 − α)r.

It is straightforward to verify that Axioms 1-7 and r-Independence are implied by

the utility representation in Eq. 2.1 for a given reference-point r. However, they are suf-

ficient only with some additional structure relating preferences with different reference-

points. Moreover, for comparative statics it is also of interest to know when the set of

priors Π and the von Neumann/Morgenstern utility payoff u are independent of r in a

class of preference relations (�r)r∈F . I therefore introduce two more axioms that estab-

lish a relationship between the preferences of a DM given different reference-points. As

the theory stands, the DM could have entirely different preference relations given two
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different reference-points. For example, the preference order given reference-point r′

could be the exact opposite of the preference order given reference-point r , r′. This

complete reversal of the preference order is consistent with the preceding axioms, but it

seems neither natural as a model of behavior nor useful as an assumption for compara-

tive statics. It therefore makes sense to impose some additional structure on the class of

preference relations to model how a decision maker behaves when the reference-point

changes.

The first axiom I introduce on the class of preference relations is motivated by the

idea that reference-points affect the perspective from which the decision maker views

ambiguity, but do not affect the degree of ambiguity that the decision maker perceives

per se. To formalize this idea, I follow Ghirardato et al. (2004) in defining an unam-

biguous preference relation given any reference-point, �∗r , and then assume that this

relation does not depend on the reference-point. Hence, the reference-point determines

the perspective from which ambiguity is viewed, not the degree of ambiguity that the

DM perceives.

Definition 1 (Unambiguous preferences) Let f , g ∈ F , then f is unambiguously pre-

ferred to g given reference point r, denoted f �∗ g, if for all h ∈ F and for all α ∈ (0, 1),

α f + (1 − α)h �r αg + (1 − α)h . (2.8)

The unambiguous preference relation �∗ is introduced and motivated in Ghirardato

et al. (2004). The basic idea is that if α f + (1 − α)h is preferred to αg + (1 − α)h for all

h ∈ F and for all α ∈ (0, 1), there is no hedging opportunity that can lead to a preference

reversal between f and g. “Hence”, f is unambiguously preferred to g. The unambigu-

ous preference relation is revealed by the DM, but the interpretation is attributed. For

a more detailed discussion of the sense in which �∗r captures unambiguous preferences,
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the reader is referred to Ghirardato et al. (2004). For the representation of a class of

RMEU preferences, I use the unambiguous preference relation to establish a connection

between the preference relations of a DM given different reference-points.

Axiom 10 (Equivalent Unambiguous Preferences (EUP)) For all r1, r2 ∈ F , and for

all f , g ∈ F ,

f �∗r1
g ⇔ f �∗r2

g . (2.9)

If we take the perspective that the preferences of a DM are revealed given a par-

ticular reference-point, then EUP has no behavioral content. EUP is therefore simply

a comparative statics assumption: We may not observe the choices a DM would make

given a different reference-point, but EUP formalize the counterfactual assumption that

if we were to observe these choices, the primitives of the RMEU model (the set of pri-

ors Π and the von Neumann/Morgenstern payoff function u) would not change. Even a

reference-free model of preferences must make such counterfactual assumptions about

behavior in contexts in which the DM is never observed. For example, if we observe the

choices of a DM in a particular context and conclude that the DM is a SEU maximizer,

there is nothing to guarantee that in a different (hypothetical) context the DM would not

exhibit reference-dependent behavior. Hence, SEU and (all decision models) involve

comparative static assumptions. This limitation is overcome only by assuming that the

DM’s preferences are observed in all possible contexts, and this is exactly the condition

under which EUP would also be revealed by preferences (i.e., when EUP has behavioral

content). EUP also rules out a number of behaviors that are normatively unappealing,

like the complete reversal of preferences or the type of preference cycles discussed in

Sagi (2006). Although its behavioral content is therefore delicate, it seems like a natural

condition to impose on a class of reference-dependent ambiguity aversion preferences.
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The second axiom I introduce on the class of preference relations can be viewed as

a translation invariance condition for comparisons across reference-point.

Axiom 11 (Reference Translation (RT)) For all r ∈ F and for all f , g, h ∈ F and all

α ∈ (0, 1),

f �r g ⇔ α f + (1 − α)h �αr+(1−α)h αg + (1 − α)h . (2.10)

Note that, if f is unambiguously preferred to g, EUP already implies the equivalence

(2.10). The motivation behind RT is that, in comparing two alternatives f and g among

which a decision maker does not have an unambiguous preference, the decision maker

with reference-point r cares in particular about how the alternatives compare relative

to the reference-point. Applying a similar transformation to f , g and r simultaneously

“should therefore” leave preference orders unaltered. Again, the motivation for this is

that changes in the reference-point only change the perspective from which ambiguity

is viewed by the decision maker and do not affect the preferences of the decision maker

otherwise. Hence, RT formalizes the idea that if the same transformation is applied

simultaneously to f , g and r, the decision maker performs essentially the same com-

parison between the transformed alternatives given the transformed reference-point as

between the initial alternatives given the initial reference-point.

Note also that RT represents a generalization of a structure that is already inherent

in MEU to a setting where preferences may be reference-dependent. Suppose r and r′

are constant acts. Then if �r satisfies preorder, non-triviality, continuity, monotonicity,

UA, WCI and r-Independence it is an MEU preference. Since αr + (1 − α)r′ is also a

constant act, �αr+(1−α)r′ is therefore also an MEU preference. Moreover, r-Independence

and WCI imply CI when r is a constant act and RT is therefore trivially satisfied when

r, r′ ∈ P. It follows that in the subclass of MEU preferences, RT is implied by CI
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and has no additional behavioral content. RT therefore imposes a structure which is

already implicitly embedded in MEU to comparisons across preference relations with

non-constant reference-points.

2.2.4 Representation

I call a preference relation satisfying Axioms 1-7 and Axiom 9 a Reference-Dependent

Maxmin Expected Utility (RMEU) preference. The following theorem provides a rep-

resentation for a class of RMEU preferences also satisfying RT and EUP.

Theorem 1 (RMEU Representation) The following statements are equivalent.

1. For all r ∈ F , �r satisfies the preorder, non-trivial, monotonicity, continuity, UA,

WCI and r-Independence axioms, and the class of preference relations (�r)r∈F

satisfies RT and EUP.

2. There exists a non-constant, mixture-linear von Neumann/Morgenstern utility in-

dex u : P → R and a weak*-closed, convex set of priors Π ⊂ ∆(S ), such that for

all r ∈ F and for all f , g ∈ F ,

f �r g ⇔ min
π∈Π

∫
S

[
u
(
f (s)

)
− u

(
r(s)

)]
π(ds) ≥ min

π∈Π

∫
S

[
u
(
g(s)

)
− u

(
r(s)

)]
π(ds) .

(2.11)

Moreover, the set of priors Π is unique and the von Neumann/Morgenstern utility index

u is unique up to positive affine transformations.

Proof. The proof is given in the Appendix.
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For a particular reference-point, each RMEU preference in a class of RMEU prefer-

ences is an example of a variational preference (Maccheroni et al., 2006). I discuss the

relation to variational preference in more detail after first providing a number of obser-

vations that relate RMEU preferences to other preferences that have been studied in the

literature.

Remark 1 Suppose that each preference relation, �r, in the class (�r)r∈F is an RMEU

preference, with a representation by way of (Πr, ur).

1. The set of priors Πr is a singleton if and only �r satisfies independence. In this

case, if (�r)r∈F satisfies EUP, each �r has a SEU representation.

2. �r has an MEU representation if only if r has constant von Neumann-Morgenstern

utility u(r(s)) on all events in Σ for which the prior probability in Πr is not unique.

3. �r is a variational preference (Maccheroni et al., 2006) with ambiguity in-

dex given by the product of the the expected utility of the reference-point,∫
S

u(r(s))π(ds), and the indicator function

δr(π) =


1 if π ∈ Πr

−∞ if π < Πr .

(2.12)

4. If (�r)r∈F satisfies EUP, the unambiguous preference relation �∗ is reference-free

and has a unanimity representation in the sense of Bewley (2002). Moreover, if r

is the status-quo, �r satisfies the Inertia assumption in Bewley (2002).

The relation to variational preferences is of particular interest. Variational prefer-

ences are characterized by Axioms 1-7 (Maccheroni et al., 2006) and are therefore a

general class of preferences that do not specify a particular perspective from which am-

biguity is viewed. For example, they include MEU preferences (where ambiguity is
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viewed from the perspective of a particular constant act) as well as the multiplier pref-

erences used in the work of Hansen and Sargent (2001) on robust control (in which

ambiguity is viewed from the perspective of a particular reference probability distribu-

tion). RMEU preferences are the generalization of MEU preferences in which ambiguity

is viewed from the perspective of a particular (but not necessarily constant) act in the

choice space. As a result, the response to ambiguity in the choice space is very sharp

around the reference-point, as suggested by the connection to the Inertia assumption of

Bewley (2002). The following example illustrates some implications of the sharp re-

sponse to ambiguity captured by RMEU preference. The example extends on Dow and

Werlang (1992) and a similar example is given in Cao et al. (2009). In the context of

Bewley’s (2002) decision model, Easley and O’Hara (2010) relate the status quo bias

illustrated in this example to the dramatic collapse in trading volumes during the 2008

financial crisis.

A portfolio inertia example

There is one risk free asset, b, with constant value 1, and one risky asset, x, with value

v ∼ N(v̂, σ2). Suppose that, in addition to knowing the distribution, the variance σ2

is known. However, the decision maker is uncertain about the mean value of the risky

asset, v̂, so that S = {v̂ ∈ <}. Acts in this setting are portfolios, (x, b), that map states in

S into distributions over final wealth. Consider a decision maker with constant absolute

risk aversion preferences and coefficient of risk aversion α, endowment (x̄, b̄) >> 0 and

priors

Π =
{
π|supp π ⊂

[
v, v̄

]
, and supp π finite

}
. (2.13)

The CARA assumption is for simplicity. The set of priors reflects the idea that the

decision maker knows that v̂ ∈ [v, v̄] but is not confident of in any particular distribution
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over this set. The utility maximization problem of the trader is

max
(x,b)

min
π∈Π

∫ v̄

v

[
Eu(x, b|v̂) − Eu(x̄, b̄|v̂)

]
π(dv̂) subject to px + b ≤ px̄ + b̄ , (2.14)

where the price of the risk-free asset is normalized to 1, p is the price of the risky asset,

and Eu(.|v̂) is the (objective) expected utility of a portfolio given a mean of v̂ for the

risky asset and Bernoulli utility u(w) = − exp−αw on wealth. With a change of variables,

the solution to this problem is equivalent to the solution to the following problem.

max
t∈<

min
π∈Π

∫ v̄

v

[
expα(v̂x̄−α2(σ2/2)x̄+αb̄) − exp−α(v̂(x̄−t)+α2(σ2/2)(x̄−t)2+αpt+αb̄)

]
π(dv̂) , (2.15)

where t = x̄ − x represents the trade of the decision maker in the risky asset.

Let δv denote the probability measure with point mass on v. For any t > 0 the arg-

min in Eq. (2.15) is δv̄, while for t < 0 the arg-min is δv. That is, if the trader decreases

his holdings in the risky asset, RMEU is determined by the highest mean value of the

risky asset, while if the trader increases holdings of the asset the RMEU is determined

by the lowest mean value. It follows that the solution to the problem in Eq. (2.15) is of

the following form:

t∗ =



ασ2 x̄+p−v̄
ασ2 if p > v̄

σ2 x̄

0 if v
σ2 x̄ < p < v̄

σ2 x̄

ασ2 x̄+p−v
ασ2 if p < v

σ2 x̄

(2.16)

The trader is a subjective expected utility maximizer if and only if v = v̄, and in this case

there is a unique price at which he does not trade (i.e., a unique price at which the the

solution is t∗ = 0). However, for an ambiguity averse trader, with v < v̄, there exists a

closed interval of prices (with non-empty interior), in which no-trade is optimal. This

comes from the status quo bias when the decision maker experiences ambiguity about
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the mean value of the risky asset. Notice also that the no-trade price interval depends

not only on the ambiguity, captured by v and v̄, but also on the initial endowment of the

risky asset, x̄, and the variance, σ2. In particular, notice that the size of the interval is

decreasing both in the initial endowment and the variance. This diminishing effect of

ambiguity aversion is due to a trade-off between ambiguity-aversion and risk-aversion.

The more risky the asset (larger σ2) or the riskier the initial position (larger x̄) the less

important ambiguity aversion becomes relative to risk aversion.

Crisp acts

The status-quo bias illustrated in the previous example is due to a “kink” in the indif-

ference curve of a RMEU preference, �r, at the reference-points, r. Such kinks exist as

long as Π is not a singleton. However, the set of acts where the family of indifference

curves exhibit kinks is not limited to the reference-point. The set of points where kinks

occur is most transparent in the special case of MEU preferences: Weak Certainty Inde-

pendence implies that if a constant act c is a reference-point of �c, then all constant acts

c′ are also reference-points of this preference relation. As a result, indifference curves

exhibit kinks at all constant acts. The following definition (suitably adapted from Ghi-

rardato et al., 2004) can be used to formalize behaviorally what is meant by “kinks”, and

to establish formally the counterpart for general RMEU preferences.

Definition 2 (Crisp acts) Let �r be a RMEU preference. An act r′ ∈ F is crisp with

respect to reference-point r if, for all f , g ∈ F and for all α ∈ (0, 1),

f �r g ⇒ α f + (1 − α)r′ �r αg + (1 − α)r′ . (2.17)

An act is therefore crisp if it cannot be used for hedging the ambiguity in other

acts. Crisp acts can be interpreted as all those acts which are ambiguity neutral from the
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perspective of the decision maker. In SEU all acts are assumed to be ambiguity neutral.

In MEU constant acts are assumed to be ambiguity neutral. For an RMEU preference

the reference-point is by definition assumed to be ambiguity neutral, but WCI and RT in

particular also imply that other alternatives in the choice space are viewed as ambiguity

neutral. The following Proposition establishes that the set of crisp acts corresponds to

the set of points from where the indifference map of a RMEU preference exhibits kinks.

Proposition 1 Suppose that (�r)r∈F is a class of RMEU preferences satisfying EUP and

RT, and represented by way of (Π, u). Let r, r′ ∈ F , then the following statements are

equivalent.

1. r′ is crisp with respect to r.

2. �r′=�r.

3. For all g ∈ F ,

g �r r′ ⇔
∫

S
u(g(s))π(ds) ≥

∫
S

u(r′(s))π(ds) ∀ π ∈ Π . (2.18)

Moreover, if there exists b ∈ R such that u(r′(s)) = u(r(s)) + b for all s ∈ S , then r′ is

crisp with respect to r.

Proof. The proof is given in the Appendix.

Proposition 1 shows that the reference-point in a RMEU preference is generally not

unique. If r′ is crisp with respect to r, then r′ is also a reference-point of the pref-

erence relation �r. This property of RMEU preferences is crucial to ensure that such

preferences contain MEU preferences as a special case, because all constant acts are

reference-points in MEU. Under RMEU, the position of crisp acts is determined by the

interaction of WCI and the reference-point. To illustrate this graphically, suppose that
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there are two states of the world, the DM has von-Neumann/Morgenstern utility index

u on P and that payoffs are given directly in terms of expected utiles. The set of crisp

acts for the reference-point r is illustrated in Figure 2.3. The set of crisp acts is on the

translation of the full-insurance line that passes through r. Note that along any other

translation of the full-insurance line indifference curves are straight lines (since payoffs

are in utiles) and parallel (because the minimization over the set of priors is not affected

by translations). The latter is a direct implication of WCI. The reference-point deter-

mines on which translation of the full-insurance line the crisp acts will lie. Figure 2.3

illustrates this for the reference-point r and an alternative reference-point r′. Note that

for either reference-point indifference curves are straight and parallel on translations of

the full-insurance line, and the reference-points then determine along which translation

the crisp acts lie (i.e., from where the DM views ambiguity). The substantive implica-

tions of the set of crisp acts are illustrated in the following example.

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

   

 

   

 

 

 

   

 

 

 

   

 

Figure 2.3: The set of crisp acts for two different reference-points r and r′ (payoffs in expected utiles).
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A diversification-bias example

There are two periods, t = 0, 1, and one consumption good to be consumed in t = 1. In

t = 0 the decision maker can trade in contingent claims on the consumption good. There

are four states of the world, S = {s1, s2, s3, s4}. Assume that the DM is confident about

the likelihood of states s1 and s2, but completely ignorant about the relative likelihood

of states s3 and s4: The DM has priors Π = {π|π1 = π2 = 0.25, π3 ∈ [0, 0.5], π4 =

0.5 − π3}. Let the Bernoulli utility of consumption be v(x) = log(x). The log utility

assumption is special because it implies that preferences are homothetic. Hence, if

r : S → X is a reference-point, λr is also a reference-point for any λ such that λr ∈

F . Suppose for this example that the decision maker has an endowment of contingent

claims e = (e1, e2, e3, e4) >> 0, and that ambiguity is viewed from the perspective of this

endowment. Denote the price of contingent claims be p = (p1, p2, p3, p4). Then the DM

solves the following utility maximization problem:

max
(x1,x2,x3,x4)≥0

min
π∈Π

4∑
s=1

πs
[
log(xs) − log(es)

]
subject to

4∑
s=1

xs ≤

4∑
s=1

es . (2.19)

With the assumption on Π and v, the maximization problem is equivalent to the follow-

ing problem:

max
(x1,x2,x3,x4)≥0

1
4

log (x1) +
1
4

log (x2) +
1
2

min
{

log
(

x3

e3

)
, log

(
x4

e4

)}
(2.20)

subject to
4∑

s=1

(1 − βs)es = 0 . (2.21)

The demand for contingent consumption is therefore:

x1(p, e) =
p · e
4p1

, x2(p, e) =
p · e
4p2

, (2.22)

x3(p, e) =
e3 p · e

2(p3e3 + p4e4)
, x4(p, e) =

e4 p · e
2(p3e3 + p4e4)

(2.23)

The events E1 := {s1, s2} and E2 := {s3, s4} are not ambiguous, and therefore the allo-

cation across these events is determined by risk preferences alone. As a result, the DM
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choose the status-quo if and only if e1 =
p·e
4p1

and e2 =
p·e
4p1

, because risk preferences

alone imply that the decision maker generally demands an allocation that is different

from the endowment. However, ambiguity always affects the allocation of contingent-

consumption across states s3 and s4. In particular, x3(p, e)/x4(p, e) = e3/e4, so even if

the DM re-allocates consumption between E1 and E2, the allocation within E2 remains

fixed. Such demand functions are inconsistent with any model of context-free prefer-

ences. For example, a SEU (or MEU) DM’s demand will depend on the endowment

only through the wealth (i.e., through the aggregate (e1 + e2 + e3 + e4)). The dependence

of demand on e3 and e4 directly is a consequence of reference-dependent ambiguity

aversion and the assumption that the endowment serves as a point of reference.

To interpret this reference-effect consider, for example, that the endowment of

contingent-claims in states 3 and 4 represents ownership of a particular asset with the

payoff structure (0, 0, z, λz). The allocation of wealth between the unambiguous events

E1 and E2 is determined entirely by risk preferences and by the relative value of the

endowment in these events, κ := (p1e1 + p2e2)/(p3e3 + p4e4). For example, if κ > 1, risk

aversion alone makes it optimal for the decision maker to transfer consumption from

states 1 and 2 to states 3 and 4. However, the DM is completely ignorant about the

relative likelihood of states 3 and 4. The DM does, however, already own an asset that

would achieve the desired re-allocation across events, and therefore simply buys more of

this asset. Such behavior is at odds with the diversification predicted by reference-free

models, but it corresponds well with observations on household investment behavior.

For example, amongst households that hold stocks directly in the US “the median num-

ber of stocks held was two until 2001, when it rose to three” (Campbell, 2006). That

is, even in the subset of households that do trade in stocks, trade is typically restricted

to only a very small number of assets. Such “under-diversification” behavior is consis-

tent with RMEU preferences under the assumption that the given asset holdings act as a
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reference-point.

Similar under-diversification puzzles have been observed in 401(k) investment de-

cisions (see, e.g., Beshears et al., 2009, and the references therein). There are two sur-

prising findings here. The first is that the decision on whether to invest in a 401(k) plan

at all seems to depend on whether non-enrollment or enrollment is the default option.

This default-effect is suggestive of a reference-effect, where the reference-point is given

by the default option. The second surprising finding is that even among households that

do enroll, the portfolio held seems to depend on the default portfolio on enrollment.

That is, many households that adjust their contributions to 401(k) plans do not adjust

the portfolio structure (and are often heavily under-diversified). Moreover, the portfolio

structure chosen is sensitive to default manipulation. Given that the stakes are high, this

type of investment behavior is consistent with the idea that the default portfolio structure

has a reference-effect and DM’s are ambiguous about trading options. As a result, even

when individuals do change the allocation between consumption and investment, their

allocation within the investment plan is affected by the default option.

Comparative Ambiguity Aversion

A RMEU preference order can be represented by a triple of primitives (Π, u, r), where

Π is the set of priors, u is the von Neumann/Morgenstern utility index, and r is the

reference-point. I have argued above that r represents the perspective from which the

decision maker views ambiguity. The decision maker’s attitude towards risk is captured

by u and can be elicited on the set P of constant acts as in the seminal paper by Yaari

(1969). Intuitively, the the size of the set of priors Π reflects the degree of ambiguity

perceived by decision maker. Ghirardato and Marinacci (2002) provide a way to formal-

ize the intuition that the size of the set Π reflects the ambiguity perceived by a decision
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maker for MEU preferences. Their procedure is motivated by the comparative notion of

risk-aversion in Yaari (1969), extended to consider preferences that reflect different at-

titudes towards ambiguity. In particular, they argue that a preference relation �1 should

be considered “more ambiguity averse” than a preference relation �2 if for every act

f ∈ F and every constant act x ∈ F ,

f �1 (�1)x ⇒ f �2 (�2)x . (2.24)

Accordingly, a preference relation is ambiguity neutral if there does not exist another

preference relation that is “less ambiguity averse”. For the special case of MEU, Ghi-

rardato et al. (2004) show that a preference relation �1 represented by (Π1, u1) is more

ambiguity averse (in the sense of Ghirardato and Marinacci, 2002) than a preference re-

lation �2 represented by (Π2, u2) if and only if u1 and u2 are in a positive affine relation

(denoted u1 � u2)12 and Π1 ⊃ Π2. Hence, an MEU preference is ambiguity neutral if

and only if it has a SEU representation. I next extend their result on comparative am-

biguity to a class of RMEU preferences. Ghirardato and Marinacci (2002) provide the

following motivation for their comparative notion of ambiguity.

“If a decision maker prefers an ambiguous act to an unambiguous one, a more am-

biguity averse one will do the same. This is natural, but it raises the obvious question

of which acts should be used as the “unambiguous” acts for this ranking. Depending on

the decision problem the DM is facing and on her information, there might be different

sets of “obviously” unambiguous acts; that is, acts that we are confident that any DM

perceives as unambiguous. It seems intuitive to us that in any well-formulated problem,

the constant acts will be in this set. Hence, we make our first primitive assumption: Con-

stant acts are the only acts that are “obviously” unambiguous in any problem, since other

12Formally, u1 � u2 if there exist (a, b) ∈ R++ × R such that u1 = au2 + b.
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acts may not be perceived as unambiguous by some DM in some state of information.”

I concur with the first sentence and therefore follow their basic procedure to define

a comparative notion of ambiguity. I also concur that while the comparative notion of

ambiguity they define is natural, it raises the obvious question of what should consti-

tute the “unambiguous” alternatives that are used for making comparisons. Needless

to say, however, I disagree that the set of constants acts should always be regarded as

unambiguous. In fact, the overriding premise of this Dissertation is that the alternatives

a decision maker regards as unambiguous should be treated as subjective. In fact, as

Ghirardato and Marinacci (2002) argue, what constitutes an unambiguous act may well

depend on the decision problem that the decision maker is facing. While constant acts

may be regarded as unambiguous by a decision maker in particular context, there seems

to be no compelling reason why, for example, a decision maker might not view their

status-quo as an unambiguous alternative. Moreover, if the status-quo is regarded as un-

ambiguous and the status-quo is itself not constant, then constant acts may well appear

ambiguous from the perspective of the decision maker. As a result, for a decision maker

who views ambiguity from the perspective of an alternative r ∈ F , the only alternative

which we can confidently say that the decision maker regards as unambiguous is r itself.

Of course, this is almost by definition true for the RMEU decision model, and I therefore

formulate a notion of reference-dependent comparative ambiguity based on this simple

primitive assumption.

Definition 3 (More ambiguity averse) The class of preference relations (�1
r )r∈F is

more ambiguity averse than the class of preference relations (�2
r )r∈F if for all r ∈ F

and for all f ∈ F

f �1
r (�1

r )r ⇒ f �2
r (�2

r )r . (2.25)

A class of preference relations is ambiguity neutral if there does not exist another class
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of preference relations that is less ambiguity averse.

The following proposition formalizes the intuition that the set of priors Π cap-

tures the degree of ambiguity perceived by a decision maker with Reference-Dependent

Maxmin Expected Utility.

Proposition 2 Suppose that (�1
r )r∈F is a class of RMEU preference relations satisfying

RT and EUP and represented by (Π1, u1). Suppose that (�2
r )r∈F is another class of RMEU

preference relations satisfying RT and EUP and represented by (Π2, u2).

• Then (�1
r )r∈F is more ambiguity averse than (�2

r )r∈F if and only if u1 � u2 and

Π1 ⊃ Π2.

• (�1
r )r∈F is ambiguity neutral if and only if Π1 is a singleton. Moreover, if (�1

r )r∈F

is ambiguity neutral, then �1
r =�

1
r′ for all r, r′ ∈ F , and all preference relations in

(�1
r )r∈F have an SEU representation with the same utility index u1 and the same

prior π1 (where {π1} = Π1).

Proof. The proof is given in the Appendix.

Proposition 2 provides formal support for comparative static analysis of RMEU pref-

erences in terms of the size of Π. In particular, it highlights that the ambiguity aversion

of the decision maker can be cleanly separated from the reference-point from which the

decision maker views ambiguity, and the the von Neumann/Morgenstern utility index u

which describes the risk-preferences of the decision maker. Equivalence of unambigu-

ous preferences is crucial for this, but I show below that the behavioral content of EUP

is not as important as it may appear: When the decision maker’s preferences on P are

unbounded either EUP or RT are redundant. Before providing this result, I first provide
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an axiomatization of a reference-dependent version of Choquet Expected Utility. The

axiomatization is also provided for unbounded preferences, but is of interest primarily

because CEU is – after MEU – perhaps the most common decision model used in prac-

tice to capture ambiguity sensitive behavior and because – unlike MEU – it is also able

to accommodate different attitudes to ambiguity (from ambiguity averse to ambiguity

loving behavior).

2.3 A Model of Reference-Dependent Choquet Expected Utility

I conclude this Chapter by studying an alternative model of reference-dependent ambi-

guity sensitive preferences, namely a reference-dependent version of Choquet Expected

Utility. When the reference-point is constant, the Choquet Expected Utility (CEU)

model of Schmeidler (1989) represents an alternative to MEU for representing a per-

ception of ambiguity. Unlike MEU, CEU accommodates different attitudes towards am-

biguity (from ambiguity aversion to ambiguity loving behavior), and a characterization

of reference-dependent CEU is therefore of interest because it provides a reference-

dependent decision model with differencing ambiguity attitudes. When preferences are

ambiguity averse, CEU is a special case of MEU and the reference-dependent CEU

model is likewise a special case of the reference-dependent MEU model of the previous

section. However, even when the focus is on ambiguity averse preferences (in the sense

of Schmeidler, 1989) the added structure of the CEU model is often used in applications

because it provides for greater tractability than the more general MEU model. Hence,

it is also of interest to know what the behavioral content of this added structure is when

ambiguity averse preferences are reference-dependent.

I provide an axiomatization of a class of Reference-Dependent Choquet Expected
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Utility (RCEU) for the special case when preferences are unbounded. To formalize this

assumption, I recall the following axiom introduced in Maccheroni et al. (2006) for their

characterization of unbounded variational preferences.

Axiom 12 (Unbounded) There exists y �r x, y, x ∈ P, such that for all α ∈ (0, 1), (1)

there exists z̄ ∈ P such that αx + (1 − α)z̄ �r y and (2) there exists z ∈ X such that

x �r αy + (1 − α)z.13

Given that preferences onP are complete, transitive and continuous, (1) is equivalent

to the assumption that these can be represented by a utility function which is unbounded

above, while (2) is equivalent to the assumption that the utility representation is un-

bounded below. Most Bernoulli utility functions defined on monetary outcomes satisfy

one or both of these conditions. Moreover, since the axiom restricts preferences only on

the set of constant alternatives it does not, in itself, restrict ambiguity attitudes in any

way. Nevertheless, the axiom clearly has some important implications. For example, it

immediately precludes a finite set of outcomes X. It is also problematic when prefer-

ences are extended outside the class of simple functions or to infinite horizon dynamic

settings. Despite this, the axiom plays an important role in the analysis of variational

preferences. In particular, together with Axioms 1-5 and Axiom 7, Axiom 12 charac-

terize the unbounded variational preferences in Maccheroni et al. (2006) for which they

provide a representation result (with stronger uniqueness properties).

The novel axiom used to characterize RCEU is reference dependent version of the

comonotonic independence axiom in Schmeidler (1989). To state the axiom, a definition

of reference-comonotone acts is required which generalizes the definition of comono-

tone acts in Schmeidler (1989).
13Maccheroni et al. (2006) only impose (1) or (2) in their axiom. It is clear from the proof of Proposition

3 that the same could be done here, but for simplicity I provide a characterization under the stronger axiom
where both (1) and (2) are required.
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Definition 4 (r-comonotonic) Given an r ∈ F , two acts f , g ∈ F are r-comonotone if

there do not exist states s, s′ ∈ S such that

1
2

f (s) +
1
2

r(s′) �r
1
2

f (s′) +
1
2

r(s) and
1
2

g(s′) +
1
2

r(s) �r
1
2

g(s) +
1
2

r(s′) (2.26)

Note that if r is a constant act and �r satisfies certainty independence (which is

implied by the comonotonic independence axiom in Schmeidler (1989)), then (2.26) is

equivalent to the condition that there never exist states s, s′ ∈ S such that

f (s) �r f (s′) and g(s′) �r g(s) (2.27)

which coincides with the definition of comonotonicity used by Schmeidler (1989). r-

comonotonicity represents a generalization of the notion of comonotonicity to prefer-

ences that do not necessarily have a constant reference-point and therefore do not nec-

essarily satisfy certainty independence. To explicate how r-comonotonicity generalizes

comonotonicity, suppose that r(s) �r r(s′) (of course, this is possible only if r is non-

constant). Then the left side of 2.26 is satisfied only if f in state s is sufficiently preferred

to f in state s′ to “compensate” for the fact that r is also preferred in state s to s′. Hence,

f must be preferred in state s over state s′ relative to how much r is preferred in state s

over s′. Acts are r-comonotonic if they both cross this “sufficiently”-preferred-to hurdle

relative to r in exactly the same states. Hence, acts are r-comonotonic if for compar-

isons across states they have a similar relation to each other relative to the reference

point r. The key axiom that characterizes a reference-dependent version of CEU is an

independence condition for r-comonotone acts.

Axiom 13 (Reference-Comonotonic Independence (RCI)) For all pairwise r-comonotonic

acts f , g, h ∈ F and for all α ∈ (0, 1),

f �r g ⇒ α f + (1 − α)h �r αg + (1 − α)h . (2.28)
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The motivation given for comonotonic independence by Schmeidler (1989) is that,

even if a decision maker finds it difficult to make the comparisons needed to justify in-

dependence for all acts, comonotone acts are sufficiently alike so that such comparisons

are less problematic. Hence, Schmeidler argues that comonotonic independence repre-

sents a reasonable weakening of the full independence condition for decision makers

that may perceive ambiguity. The generalization to r-comonotonic independence is best

viewed in a similar spirit. It states that, even when full independence may be too strong,

pairwise r-comonotone acts are sufficiently alike relative to the reference-point r so that

mixtures between such acts are more easily visualized by the decision maker (see also

the discussion on pp. 576–577 of Schmeidler, 1989).

The following proposition provides a representation for (1) a preference relation

that satisfies r-comonotonic independence, and (2) a class of preference relations that

satisfies r-comonotonic independence for every reference point r ∈ F and satisfies Ref-

erence Translation (RT). To state the Proposition, say that a set function ν : Σ → [0, 1]

is a capacity if it is (1) normalized (ν(∅) = 0 and ν(S ) = 1) and (2) monotone

(A, B ∈ Σ and A ⊂ B implies ν(A) ≤ ν(B)). A capacity is convex if for all A, B ∈ Σ,

ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B). Note that a capacity is a probability measure if and

only if the latter condition is satisfied with equality for all A, B ∈ Σ. Finally, denote for

any a ∈ B0(Σ) (where B0(Σ) denotes the set of simple, Σ-measurable functions on S 14)

the Choquet integral of a with respect to the capacity ν by
∮

adν. If ν is a probability

measure then the Choquet integral coincides with the regular expectations operator, but

for non-additive capacities the Choquet integral is a generalized expectations operator

suitable also for non-additive capacities (refer to Schmeidler, 1989, for a definition).

Theorem 2 (Reference-Dependent CEU) The following statements are equivalent:

14See the Appendix for more details.
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1. A preference relation �r (for some r ∈ F ) satisfies the preorder, monotonicity,

continuity, WCI and unboundedness axioms, and satisfies r-comonotonic inde-

pendence.

2. There exists an onto, mixture-linear von Neumann/Morgenstern utility index u :

P → R and a unique capacity ν, such that for all f , g ∈ F ,

f �r g ⇔
∮

S

[
u
(
f (s)

)
− u

(
r(s)

)]
ν(ds) ≥

∮
S

[
u
(
g(s)

)
− u

(
r(s)

)]
ν(ds) . (2.29)

Moreover, u is unique up to positive affine transformations and the capacity ν is

convex if and only if �r also satisfies UA.

Further, suppose that (�r)r∈F is a class of preference relations such that for each

r ∈ F , �r satisfies the preorder, monotonicity, continuity, WCI, unboundedness and

r-comonotonic independence axioms and is therefore represented by a pair (ur, νr) as in

Eq. 2.29. Then the class of preference relations (�r)r∈F satisfies Reference Translation

if and only if for all r, r′ ∈ F

ur � ur′ and νr = νr′ . (2.30)

Proof. The proof is given in the Appendix.

The RCEU model in (2.29) is a special case of an unbounded RMEU preference

(with the same reference-point) if and only if preferences satisfy uncertainty aversion,

i.e., if the capacity in the RCEU representation is convex. When the capacity is convex

it is well known (see, e.g., Schmeidler, 1989) that it has a non-empty core (defined as

the set of probability measures that set-wise dominate the capacity), and the Choquet

integral of a with respect to a convex capacity is then exactly the minimum expectation

of a over priors in the core of the capacity. More generally, a reference-dependent CEU

preference need not satisfy UA and RCEU can therefore capture different ambiguity
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attitudes in a decision model in which ambiguity is viewed from the perspective of a non-

constant reference-point. Finally, it is worth noting that r-comonotonic independence is

the only axiom used in the characterization of RCEU that relates preferences directly to

the the reference-point. r-independence is clearly implied by RCEU, but is redundant

when preferences satisfy r-comonotonic independence.

2.4 Unbounded Reference-Dependent Maxmin Expected Utility

It is worth noting an important difference in the revealed preference foundations of The-

orem 1 and Theorem 2. Theorem 1 provides a representation result only for a class

of preference relations. While I refer to preferences satisfying Axioms 1-WCI and r-

independence, and preferences represented by the utility functional in Eq. 2.1 inter-

changeably as RMEU preferences, Theorem 1 does not in fact prove that Axioms 1-WCI

and r-independence are sufficient for the utility representation in Eq. 2.1. Sufficient con-

ditions are provided only for each preference relation in a class of preference relations

satisfying Axioms 1-WCI and r-independence separately and EUP and RT jointly to be

represented by the utility functional in Eq. 2.1. On the other hand, Theorem 2 provides

a characterization of a single reference-dependent preference relation in terms of the

RCEU functional. However, it would be misleading to conclude from this that EUP

and RT are central to the characterization of RMEU preferences (at least, that they are

more central to the characterization of the RMEU functional than for characterization

of the ambiguity averse RCEU functional). The reason is that, unlike in Theorem 1,

the axiomatic characterization of RCEU in Theorem 2 requires that preferences be un-

bounded. The following Proposition illustrates that when unboundedness is assumed an

analog of Theorem 2 is also also true for RMEU.
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Proposition 3 (Unbounded RMEU representation) The following statements are

equivalent:

1. A preference relation �r (for some r ∈ F ) satisfies the preorder, monotonicity,

continuity, WCI, UA and unboundedness axioms, and satisfies r-Independence.

2. There exists an onto, mixture-linear von Neumann/Morgenstern utility index u :

P → R and a weak*-closed, convex set of priors Π ⊂ ∆(S ), such that for all

f , g ∈ F ,

f �r g ⇔ min
π∈Π

∫
S

[
u
(
f (s)

)
− u

(
r(s)

)]
π(ds) ≥ min

π∈Π

∫
S

[
u
(
g(s)

)
− u

(
r(s)

)]
π(ds) .

(2.31)

Moreover, the set of priors Π is unique and the von Neumann/Morgenstern utility

index u is unique up to positive affine transformations.

Further, suppose that (�r)r∈F is a class of preference relations such that for each r ∈

F , �r satisfies the preorder, monotonicity, continuity, WCI, UA, unboundedness and r-

Independence axioms and is therefore represented by a pair (ur,Πr) as in Eq. 2.31. Then

the class of preference relations (�r)r∈F satisfies Reference Translation if and only if for

all r, r′ ∈ F

ur � ur′ and Πr = Πr′ . (2.32)

Proof. The proof is given in the Appendix.

Subject to the restriction to unbounded preferences, Proposition 3 illustrates that the

only behavioral difference between the RMEU functional of Eq. (2.1) and the MEU

functional is that in the latter Independence is satisfied with respect to a constant act,

while in the former it holds with respect to the reference-point r. Put differently, un-

bounded MEU is obtained from an unbounded variational preference by assuming inde-

pendence with respect to a single constant-act, while an unbounded RMEU preference
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with a general reference-point r is obtained by assuming independence with respect to

that reference-point. Clearly, unbounded MEU is the special case of unbounded RMEU

when the reference-point is constant. Finally, it is worth noting that for a class of un-

bounded RMEU preferences, EUP and RT are, in fact, equivalent. Hence, the last part

of Proposition 3 could be restated assuming that the class of preferences satisfies EUP

instead of RT.15

2.5 Conclusion

Ambiguity is pervasive in economic decision problems, which often involve allocation

decisions under subjective uncertainty. In this Chapter, I have presented a decision

model of an ambiguity averse decision maker who views ambiguity from the perspec-

tive of an ex-ante reference-point. The decision model is motivated by identifying an im-

plicit constant reference-point assumption in the axiomatic characterization of Maxmin

Expected Utility (Gilboa and Schmeidler, 1989), and generalizing this assumption to

allow for (possibly) context-dependent preferences in which ambiguity is viewed from

the perspective of a reference-point (such as the status quo, a particular contract or a so-

cial convention). A representation theorem for Reference-Dependent Maxmin Expected

Utility preferences is given that generalizes the MEU decision model of Gilboa and

Schmeidler (1989). For the special case when preferences are unbounded a reference-

dependent version of CEU is also characterized to provide a representation result for a

15There is an interesting relation to the axiomatic representation of Vector Expected Utility (VEU) in
Siniscalchi (2009b). There is a clearly apparent relation between Reference Translation and the Com-
plementary Translation Invariance (CTI) condition (Axiom 8 in Siniscalchi, 2009b) that is used to give a
behavioral characterization of VEU. Moreover, CTI is redundant for the characterization of VEU in two
important special cases: (1) If preferences are unbounded and (2) if they satisfy Certainty Independence.
These are also the two important special cases when an RT is redundant for an RMEU preference. The
proof that RT is redundant under (1) is provided by Proposition 3, the proof that RT is redundant under
(2) follows from Proposition 1 which demonstrates that when CI is satisfied the preferences have an MEU
representation.
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decision maker who views ambiguity from the perspective of a non-constant reference-

point but may not necessarily be ambiguity averse.

The RMEU model helps to formalize an intuition that already exists in the literature

on ambiguity aversion. For example, a much cited result in Dow and Werlang (1992)

illustrates the possibility that an investor with Choquet expected utility will not trade

away from a risk-free portfolio position for a non-singleton, convex set of prices. This

result is regarded as an intuitively appealing improvement on the knife-edged predic-

tions regarding no-trade under the subjective expected utility hypothesis. However, the

condition that no-trade should depend on the trader holding an ex-ante risk-free position

is restrictive because it is, in itself, a knife-edged condition. If we consider no-trade to

be an intuitive aspect of behavior that a decision model of preferences under ambiguity

might capture, it seems unsatisfactory that the result should depend on the specific prop-

erties of the status quo. Allowing for a generalization in which no-trade is robust around

any status quo, requires that we first account for the fact that preference will somehow

be related to features of the environment; and, secondly, requires that we identify what

underlying motive of the decision maker restricts trade. The RMEU model addresses

these concerns by (1) providing a formal decision theoretic framework within which to

model a dependence between the ambiguity preferences of a DM and features of the

environment, and (2) identifying in the preferences of the decision maker a trade-off

between an insurance motive for trade (due to risk-aversion), and a hedging motive for

trade (due to ambiguity aversion). This trade-off is not emphasized by existing models

of ambiguity averse preferences in the literature. In Chapter 3 I show that this trade-off

between insurance and hedging has substantive implications for the study of markets,

by highlighting the possibility of underinsurance and market collapse when consumers

view ambiguity from the perspective of their endowments in an Arrow-Debreu exchange

economy.
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CHAPTER 3

RISK AND AMBIGUITY AVERSION IN MARKETS

3.1 Introduction

Economic models of decision making are primarily judged by their empirical implica-

tions. There are two ways to gain insights regarding the empirical implications of a deci-

sion model. The first is via an axiomatic characterization of the decision model. An ax-

iomatic characterization is useful because it makes transparent the content of a decision

model that is falsifiable in terms of behavioral data. Subjective expected utility (SEU)

provides a good illustration. Savage (1954) and Anscombe and Aumann (1963) pro-

vide axiomatic characterizations of subjective expected utility. The axioms they provide

are simple and intuitive, and are also appealing from a normative viewpoint. However, a

number of experimental findings, such as the Ellsberg (1961) paradox, challenge key ax-

ioms that characterize subjective expected utility when there is a stark contrast between

different sources of uncertainty. The behavior observed in the Ellsberg (1961) paradox

is not consistent with preferences that are both complete and satisfy the independence

axiom of Anscombe and Aumann (1963) (or the sure thing principle in the context of

Savage (1954)). It is this challenge to SEU that motivated the growing literature on am-

biguity aversion, and suggested generalizations that would be required to accommodate

Ellsberg behavior. Bewley (2002) represents one direction of accommodating Ellsberg

behavior by relaxing the completeness axiom. The Maxmin Expected Utility (MEU) and

Choquet expected utility (CEU) theories of Schmeidler (1989) and Gilboa and Schmei-

dler (1989) represent an alternative direction in which the independence axiom is weak-

ened. Hence, the axiomatic characterizations of SEU pointed the way to experimental

tests and generalizations of the decision theory that could accommodate concerns over

56



ambiguity. Likewise, the axioms in Bewley (2002) and Gilboa and Schmeidler (1989)

pointed the way to include reference-points in a model of ambiguity aversion. Moti-

vated by experimental findings that reference-effects are important for decision making

under ambiguity. Chapter 2 of this Dissertation therefore proposes a generalization of

MEU theory to accommodate reference-effects, provides an axiomatic characterization

of a reference-dependent ambiguity aversion model (Reference-Dependent Maxmin Ex-

pected Utility, or RMEU), and relates the axioms to the axioms of MEU theory and the

decision theory in Bewley (2002).

The second way to gain insights about the empirical implications of a decision model

is to use the decision model to put structure on behavior in markets or other institutions

economists care about. To this end, it is generally the utility functional that is of inter-

est, both because it is more tractable to work with and because it suggests alternative

interpretations that can be used to impose structure on a model. Again, SEU provides

a good example. Consider a simple Arrow-Debreu economy.1 Without any additional

structure, any allocation in such an economy can be rationalized as an equilibrium for

SEU investors. Hence, the axioms themselves are not restrictive. However, a key fea-

ture of the SEU functional is a separation between beliefs (represented by the prior) and

tastes (represented by the Bernoulli payoff function), and these separate components of

the SEU representation can be used to impose more structure on equilibrium analysis.

Of course, the separation in terms of beliefs and tastes is an interpretation that can not

be revealed by behavioral data (the axioms underlying SEU theory characterize all that

behavioral data can reveal), but it is an interpretation that can be used to gain further

insights about the interaction between market participants. For example, suppose that

there is no aggregate uncertainty in the economy and all investors are risk-averse. Then

an equilibrium allocation is a full insurance allocation if and only if all investors have

1By simple I mean an economy with a finite number of states and dates, one consumption good in
each state/date pair and a complete set of contingent claims.
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identical beliefs. This is a remarkably stark implication of SEU theory. It says that if

all investors agree on the likelihood of states, an equilibrium will feature full insurance

or, equivalently, any underinsurance must be due to disagreement on the likelihood of

states. The result is independent of the endowments of the investors, the particulars of

their risk preferences (i.e. their tastes for consumption in states), and the exact beliefs

that investors hold regarding the likelihood of states. Hence, application of the key fea-

tures of the SEU functional provide another way to study the empirical content of SEU;

now looking at market outcomes rather than experimental data.

A second motivation for models of decision making that account for ambiguity has

come from empirical market data that seems at odds with the implications of SEU when

cross-sectional restrictions are put on the utility representations of multiple decision

makers (DMs). For example, underinsurance, non-participation and market collapses

are well-documented features of modern asset markets that seem at odds with subjec-

tive expected utility theory. The underinsurance observed in markets would require

substantial disagreements in beliefs, non-participation is a knife-edged condition for a

SEU maximizer and market collapses are non-generic in complete market economies

with SEU DMs. The most common way to address these anomalies in the economics

literature has been to weaken the assumption of complete markets, but in recent years

there has also been growing interest in ambiguity aversion as a possible alternative ex-

planation. The uncertainty faced by investors in asset markets is clearly ambiguous and

so the question is whether ambiguity aversion is consistent with the market anomalies

observed in a way that SEU is not. Results – mostly from the application of MEU the-

ory – have been mixed. Under no aggregate uncertainty, an equilibrium allocation is

a full insurance allocation in an economy with MEU investors if and only if the set of

priors of the investors intersect (Billot et al., 2000). Hence, underinsurance requires sub-

stantial disagreement (more, one could argue, than with SEU DMs). Non-participation
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due to ambiguity aversion was first illustrated by Dow and Werlang (1992) in a partial

equilibrium setting, but requires that the initial allocation have full insurance. Exten-

sions exist (see, e.g., Epstein and Schneider, 2007) but it is not clear if they are really

decidedly more general. Moreover, when the interaction between multiple market par-

ticipants is considered, it turns out that market collapse can occur due to ambiguity

aversion (see,e.g., Billot et al., 2000), but Rigotti and Shannon (2008) demonstrate that

market collapse is still non-generic when investors have MEU preferences. In partic-

ular, it generally requires no aggregate uncertainty (which is a non-generic restriction

on endowments). Overall, it is tempting to conclude from the literature that ambiguity

aversion does little to address the empirical short-comings of SEU theory (at least in the

context of asset markets).

However, it would be wrong to conclude that ambiguity aversion is not important in

markets from the existing research. As the analysis in Chapter 1 has illustrated, MEU

does not only model a particular perception of ambiguity (via multiple priors) and a

particular attitude to ambiguity (via the minimization over the set of priors), but also

fixes a particular perspective from which the DM views ambiguity (i.e., constant acts).

In a simple investor problem, constant acts are full insurance allocations. Hence, MEU

implies that both risk aversion and ambiguity aversion provide a motive for the DM to

purchase insurance. On the other hand, the Reference-Dependent Maxmin Expected

Utility (RMEU) model introduced in Chapter 2 identifies a fundamental trade-off be-

tween an insurance motive for trade (due to risk aversion) and a hedging motive to trade

(due ambiguity aversion). This trade-off occurs whenever the set of crisp acts of an

RMEU preference does not contain all constant acts. If the set of crisp acts contains

all constant acts, the DM’s preferences have an MEU representation and risk-aversion

and ambiguity-aversion both imply a motive to trade towards full insurance. But if

the reference-point is not a constant act – e.g., if it is a non-constant endowment, de-
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fault option or status-quo – risk-aversion implies a motive to trade towards full insur-

ance while ambiguity-aversion implies a motive to trade towards the non-full-insurance

reference-point. In this Chapter, I therefore use the RMEU representation to illustrate

that ambiguity can affect market outcomes much more generally than work using the

MEU decision model suggests. In Chapter 2 the empirical implications of RMEU pref-

erences were analyzed by studying the axioms underlying the utility representation, and

the analysis in this Chapter therefore complements the analysis of Chapter 2 by looking

at the empirical implications of RMEU in the context of exchange under uncertainty.

The trade-off between insurance and hedging is essential for the analysis, and before

introducing equilibrium, I therefore provide a simple example for a single investor to

show how the separation between beliefs and tastes in the RMEU decision model can

be used to highlight a novel trade-off between hedging and insurance.

3.1.1 Examples from a simple investor choice problem

Consider a DM choosing contingent consumption, (x1, x2) ∈ R2
+, in two states of the

world, s1 and s2, given wealth w ∈ R++ and prices (p1, p2) ∈ R2
++. Figure 3.1 illustrates

the trade-off between a speculative motive for trade (due to differences in beliefs), an

insurance motive (due to risk aversion), and hedging motive (due to RMEU).
 

 

 

 

 

 

 

 

 

 

 

 
 

  
 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1: Speculation

 

 

 

 

 

 

 

 

 

 

 

 
 

  
 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2: Insurance

 

 

 

 

 

 

 

 

 

 

 

 
 

  
 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3: Hedging

Figure 3.1: Motives for trade under different decision models: (3.1.1) Speculative motive; (3.1.2) Insur-
ance motive; (3.1.3) Hedging motive.

60



In Figure 3.1.1 the DM maximizes SEU and is risk-neutral. Indifference curves are

therefore straight lines with slope π/(1 − π), where π is the subjective prior belief on

state s1. The DM has a speculative motive for trade if π/(1 − π) , p1/p2. For example,

we can interpret the condition π/(1 − π) < p1/p2 heuristically as saying that the DM

believes state 2 to be more likely than the market does. As a result, the DM uses all

wealth for consumption in the state 2 (x∗1 = 0, x∗2 = w/p2). There is no speculative

motive for trade exactly when π/(1− π) = p1/p2 and in this case the quantity demanded

can be anywhere on the budget frontier (x∗1 ∈ [0,w/p1], x∗2 = w/p2 − x∗1), otherwise the

quantity demanded is always at corner.

In Figure 3.1.2 the DM maximizes SEU but is risk averse. There is no speculative

motive for trade when π/(1− π) = p1/p2. Risk-aversion implies that better than sets are

convex and the condition π/(1−π) = p1/p2 implies that the marginal rate of substitution

is equal to the price ratio at full insurance allocations. As a result, the DM demands the

same quantity of contingent-consumption in both states, and the quantity demanded is

therefore a full insurance allocation (x∗1 = x∗2 = w/(p1 + p2)). In the special case that

the DM is risk neutral the quantity demanded can be anywhere on the budget frontier

(x1(p,w) ∈ [0,w/p1], x∗2 = w/p2 − x∗1), otherwise (for a DM who is strictly risk averse)

the quantity demanded is always at the full-insurance allocation.

In Figure 3.1.3 the DM perceives ambiguity about the likelihood of states s1 and

s2. The DM is risk neutral (so there is no insurance motive for trade due to risk aver-

sion). Also, to abstract from a speculative motive for trade, the DM entertains a set

of priors for state s1, [π, π̄] ⊂ (0, 1) with p1/p2 ∈
(
π/(1 − π), π̄/(1 − π̄)

)
. The DM has

RMEU preferences, is ambiguity averse and perceives ambiguity from the perspective

of a (possibly) non-constant reference-point (r1, r2). The quantity demanded by the DM

is the contingent-consumption allocation on the budget set that is on the straight line
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passing through (r1, r2) with slope 1 (x∗1 =
w+p2(r1−r2)

p1+p2
and x∗2 =

w+p1(r2−r1)
p1+p2

). Clearly, if

the reference-point is a full insurance allocation, r1 = r2, the DM demands a full in-

surance allocation. Hence, at the given prices, the quantity demanded by a MEU DM

corresponds to the quantity demanded by a risk-averse SEU maximizer.2 The reason is

that, for the MEU DM hedging also implies a motive to trade towards full insurance.

However, if r2 , r1, hedging implies a motive to trade towards allocations that are a

translation of the reference-point. As a result, the DM demands a quantity that is neither

at the corner nor at full insurance. Only in the special case when the DM perceives no

ambiguity (and hence, π = π̄), the quantity demanded can be anywhere on the budget

frontier (x1(p,w) ∈ [0,w/p1], x∗2 = w/p2 − x∗1). The example therefore illustrates that

the affect of ambiguity aversion on the quantity demanded by the investor is distinct

from the affect of risk aversion if and only if r1 , r2 (and utility therefore has an RMEU

representation that is not in the class of MEU representations).

3.1.2 Outline of the Chapter

In the remainder of this Chapter, I illustrate some consequences of the trade-off between

insurance and hedging in an exchange economy where multiple market participants in-

teract and prices and wealth are also determined in equilibrium. I assume throughout that

DMs have RMEU preferences with the reference-point given by the endowment. Cao

et al. (2009) also study some implications of reference-dependent ambiguity aversion in

financial markets using a representation of preferences very closely related to Eq. 2.1.

They show that RMEU is consistent with an endowment effect, limited market partici-

pation and a home equity bias, but they do not provide axiomatic foundations for their

2Note that the demand functions are different. In particular, DM with MEU preferences will demand
full insurance for a range of prices, while full insurance is demanded by a strictly risk-averse SEU maxi-
mizer only when there is no speculative motive for trade.
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representation of preferences and their analysis of exchange is restricted to a CARA-

normal framework.3 I study a general (finite dimensional) Arrow-Debreu exchange

economy and show that market collapse is a robust implication of ambiguity aversion.

I also give a number of examples to illustrate the possibility of non-participation and

underinsurance in asset markets due to reference-dependent ambiguity aversion.

3.2 The Economy

Consider a standard Arrow-Debreu economy. There are two dates 0 and 1. At date 1

one of a finite number of states of nature, s = 1, ..., S , is realized. There is a single

consumption good available at date 1; for simplicity assume there is no consumption at

date 0. At date 0 investors can trade in a complete set of Arrow securities. Denote the

price of an Arrow security paying off one unit of consumption in state s by p(s), and

the vector of prices by p ∈ ∆(S ), where ∆ denotes the standard simplex in RS
+. There

are finitely many investors indexed i = 1, ..., I. Each investor’s consumption set is RS
+,

and each investor has an endowment ei ∈ RS
++. Each investor has a binary relation �i

that describes the choices the investor will make over RS
+ and that satisfies the following

assumption.

Assumption 1 (Endowment-Dependent Ambiguity Aversion) For all i = 1, ..., I,

there exists a compact, convex set Πi ⊂ ∆++ and a C2, concave, strictly increasing

function ui : R+ → R+, satisfying u′i(c) > 0 for all c > 0 and u′i(c)→ ∞ as c→ 0; such

that for any x, y ∈ RS
+, x �i y if and only if Vi(x) ≥ Vi(y), where

Vi(x) := min
π∈Πi

S∑
s=1

π(s) (ui(xs) − ui(es)) . (3.1)

3In the economy they study, assets have normal distributions with unknown mean and all investors
have constant absolute risk aversion (CARRA).
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Unless otherwise stated, Assumption 1 will be maintained throughout. It is not

standard for preferences to depend directly on the endowment. However, it is possible

to define equilibrium and a notion of welfare in a standard way.

Definition 5 (Feasible Allocation) An allocation (x1, ..., xI) is feasible if
∑

i xi ≤
∑

i ei.

Definition 6 (Competitive Equilibrium) A feasible allocation (x1, ..., xI) and a price

vector p ∈ ∆(S ) are a competitive equilibrium if x �i xi implies p · x > p · ei for all

x ∈ RS
+ and for all i = 1, ..., I.

An economy is parameterized by (ei,Πi, ui)i∈I . Note that for any given endowment

distribution, preferences of each individual are determined, continuous and strictly con-

vex. Hence, existence of a competitive equilibrium follows directly from Debreu (1959).

Proposition 4 (Existence) Under Assumption 1, a competitive equilibrium of the econ-

omy (ei,Πi, ui)i∈I exists.

The Pareto optimality criterion usually used to analyze welfare properties of a com-

petitive equilibrium is a context-free criterion; it is defined with respect to preferences

and the total endowment of an economy and without reference to any particular distribu-

tion of the endowments. However, in the RMEU models with endowments as reference

points, preferences depend on the distribution of the endowment. It is nevertheless pos-

sible to define the core of the economy in the usual way, by first defining the notion of

a blocking coalition and then defining the core as the set of allocations not blocked by

any coalition.
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Definition 7 (Blocking coalition) A coalition C ⊂ {1, ..., I} blocks allocation (x1, ..., xI)

if there exists another allocation (x1′, ..., xI′) satisfying the following conditions:

∑
i∈C

(xi′ − ei) ≤ 0 (3.2)

xi′ �i xi for all i ∈ C, and xi′ �i xi for some i ∈ C . (3.3)

Definition 8 (Core) A feasible allocation (x1, ..., xI) is in the core of the economy if

there is no coalition C ⊂ {1, ..., I} which blocks (x1, ..., xI).

The core represents a cooperative solution to the allocation problem facing the in-

vestors I. Suppose all investors had complete information about the endowments and

preferences of all other investors, then the core represents the set of allocations that

could be attained as the result of cooperative bargaining between groups of investors. Of

course, investors do not have complete information about each other’s tastes or endow-

ments and so a cooperative procedure for reaching the core is not feasible. Competitive

equilibrium, on the other hand, is interpreted as the outcome of a decentralized process

in which each investor makes optimal choices given knowledge of their own preferences

and endowments, as well as a market price. The equilibrium problem is exactly to de-

termine at what prices the plans of investors are mutually consistent. It follows from

standard arguments that this can occur only for allocations that also happen to lie in the

core, i.e., equilibrium allocations are efficient in the sense that with perfect information

and a procedure for cooperative bargaining no subset of consumers could reach a Pareto

improving outcome relative to any competitive equilibrium in the economy.

Proposition 5 (“1st Welfare Theorem”) Under assumption 1, if (x1, ..., xI) is a com-

petitive equilibrium of the economy (ei,Πi, ui)i∈I then it is in the core of the economy.
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3.3 Market Collapse

The first result in this Chapter demonstrates that market collapse is a robust implication

of ambiguity aversion. This is not true under the MEU decision model, but is true if

DMs view ambiguity from the perspective of their initial endowments. Sporadic market

collapses are a well-documented feature of modern asset markets, and usually follow

periods of extreme uncertainty. For example, some salient features of the 2008 financial

crisis include the collapse of trade in markets for many classes of assets, abnormally

large ask-bid spreads, and widespread uncertainty about the value of assets (Easley and

O’Hara, 2010). Markets that usually witness millions of transactions and billions of

dollars of trade each week, froze almost completely overnight and in some cases it took

several months for trade to return to usual levels. Motivated by this feature of modern

asset markets, I define a market collapse in this Section as an equilibrium allocation in

which there is no trade and no unique way to value the set of Arrow securities. Theorem

3 gives necessary and sufficient conditions for this type of market collapse. A no-trade

equilibrium can occur also in an economy in which investors are not ambiguity averse,

but for SEU investors (with differentiable Bernoulli utility indexes) the equilibrium price

is always unique. A market collapse due to ambiguity aversion is therefore distinguished

by indeterminacy of the equilibrium price. With MEU investors market collapse can

occur, but is non-generic in endowments. Theorem 3 therefore also illustrates that a

market collapse is robust if ambiguity is viewed from the perspective of endowments.

Definition 9 (No-trade equilibrium) The economy (ei,Πi, ui)i∈I has a no-trade equilib-

rium if (e1, ..., eI) is the unique competitive equilibrium allocation.

Definition 10 (Market Collapse) The economy (ei,Πi, ui)i∈I has a market collapse if it

has a no-trade equilibrium and the equilibrium price is indeterminate.
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Theorem 3 gives necessary and sufficient conditions for a market collapse. It relies

on a characterization of the superdifferential of an RMEU preference relation that is of

interest in itself. To this end, define the following set for each investor i = 1, ..., I:

Πi(ei) =

{(
π1u′i(e

i
1)∑

s∈S πsu′i(ei
s)
, ...,

πS u′i(e
i
S )∑

s∈S πsu′i(ei
s)

)
|π ∈ Πi

}
. (3.4)

The set Πi(ei) contains the probability distributions in the set of priors of investor

i re-weighted by the marginal utilities of the endowment. An important feature of the

set Πi(ei) is therefore that it depends on the ambiguity perceived by the investor (i.e.,

the size of Π), as well as the risk perceived by the investor at their initial endowment

(via the weights on the marginal utilities of the endowment). Hence, the “size, shape

and location” of Πi are determined by an interaction between ambiguity attitudes, risk

attitudes and the risk inherent in the distribution of the endowment. Note also that for the

special case of SEU the set Πi(ei) is a singleton, but with multiple priors it is generally a

convex set with a non-empty interior. Rigotti and Shannon (2008) refer to each element

of the set Πi(ei) as a subjective belief at ei, highlighting that each element in this set

is a probability distribution. The following result characterizes when a market collapse

occurs, and provides sufficient conditions for a market collapse to be a robust feature of

the economy.

Theorem 3 (Market Collapse) Consider the economy (ei,Πi, ui)i∈I .

1. The economy has a no-trade equilibrium if and only if
⋂

i Πi(ei) , ∅.

2. The economy has a market collapse if and only if |
⋂

i Πi(ei)| > 1.

3. There exists an open ball B(e) ⊂ RI×S
++ such that there is a market collapse for all

e′ ∈ B(e) if int
⋂

i Πi(ei) , ∅.
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Proof. The proof is given in the Appendix.

Theorem 3 highlights the trade-off between insurance and hedging discussed in the

introduction. For the special case when there is no aggregate or idiosyncratic uncer-

tainty, Theorem 3 demonstrates that the existence of a common prior is necessary and

sufficient for a market collapse to occur. Hence, if there is no idiosyncratic uncertainty,

markets collapse if there is sufficient agreement about the likelihood of states. Since

preferences under no idiosyncratic uncertainty are equivalent to MEU preferences, this

is a special case of the result in Billot et al. (2000). However, part (3) also demonstrates

that if there is sufficient ambiguity about states, the market collapse is robust to the in-

troduction of idiosyncratic and aggregate uncertainty. Rigotti and Shannon (2008) show

that with MEU preferences market collapse is not robust to the introduction of aggregate

uncertainty, and is therefore non-generic.

However, market collapse is not ubiquitous. If the distribution of endowments is

asymmetric, risk aversion acts against ambiguity aversion and market collapse occurs

only if investors are sufficiently ambiguity averse. For example, under the Inada condi-

tion assumed on payoff functions, ei
s → 0 implies u′i(e

i
s) → ∞. As a result, unless there

is complete ignorance (Π = ∆) the condition
⋂

i∈I Πi(ei) , ∅ is necessarily violated as

the endowment for any investor in any state is sufficiently small. The economic inter-

pretation for this is that for a investor with an endowment approaching zero in one state,

the insurance motive for trade becomes sufficiently strong so that no-trade can not be

an equilibrium outcome. On the other hand, part (3) of Theorem 3 demonstrates that

market collapse is robust in the sense that (given any aggregate endowment) if investors

perceive sufficient ambiguity, the market collapses on a positive measure of endowment

distributions. Two corollaries follow immediately from Proposition 3 and further illus-

trate the point.
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The first Corollary demonstrates that for any distribution of endowments, market

collapse can occur if there is sufficient ambiguity. This requires a notion of “more

ambiguity averse” as formalized in Chapter 2: A preference relation �1 represented by

(u1,Π1) is more ambiguity averse than a preference relation �2 represented by (u2,Π2) if

u1 is a positive affine transformation of u2 and Π2 ⊂ Π1.4 It is then possible to study the

effects of increased ambiguity by holding reference-points (i.e. endowments) constant,

payoff functions (u) constant, and increasing the ambiguity by increasing the size of the

sets of priors. This leads to the following Corollary to Theorem 3.

Corollary 1 Fix any distribution of endowments e >> 0. If investors are sufficiently

ambiguity averse there is a market collapse.

Proof. The result follows directly by observing that in the extreme case of complete ig-

norance, investors have Leontief preferences and the endowment is therefore the unique

equilibrium allocation at any price. A formal proof is omitted since the result follows

directly from Theorem 3.

The second corollary gives conditions on beliefs alone for the existence of a market

collapse. Again, the contrast to the MEU model is of interest. Billot et al. (2000) show

that there is a no-trade equilibrium in an economy with MEU investors if and only if⋂
i∈I Πi is non-empty and there is no idiosyncratic uncertainty. However, as Rigotti and

Shannon (2008) show, market collapse is non-generic in an MEU economy regardless of

the degree of ambiguity, because ambiguity aversion reinforces the insurance motive for

trade, and market collapse therefore occurs only if there is no aggregate uncertainty. In-

tuitively, equilibrium indeterminacy requires that the set of crisp acts of RMEU investors

line up in a particular way. For MEU preferences, this occurs when there is no aggre-

4Note that this also corresponds to the the notion of “more ambiguity averse” defined in Ghirardato
et al. (2004).
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gate uncertainty, and the set of crisp acts is therefore perfectly aligned along the full

insurance allocations for all investors. No aggregate uncertainty is clearly not a robust

condition, because a perturbation of endowments almost surely leads to idiosyncratic

uncertainty and an economy with MEU investors then looks and behaves like an econ-

omy with risk-averse SEU investors. However, the condition that the relative interior of⋂
i∈I Πi is non-empty is sufficient when ambiguity is viewed from the endowment to en-

sure that market collapse is robust. The reason is that if investors view ambiguity from

the perspective of the endowment, comparative statics on the endowment can no longer

be performed independently of the preferences of the individuals. Perturbations of the

endowment now imply perturbations of the preferences of the investors, because they

alter the perspective from which ambiguity is viewed. As a result, the set of crisp acts

“re-aligns” itself with the new endowment profile and the possibility of market collapse

persists (see Figure 3.2.2). Corollary 2 follows exactly from this intuition.

Corollary 2 Fix the aggregate endowment of an economy and suppose that there exists

π∗ ∈ int
⋂

i∈I Πi. Then there exists an open, convex set of endowment distributions such

that there is a market collapse.

Proof. A formal proof is omitted. The result follows directly by starting with the equilib-

rium allocation of the SEU economy with common prior π∗, assigning this equilibrium

allocation as the endowment distribution of the economy and then observing that the

conditions of part (3) of Theorem 3 hold.

Corollary 2 demonstrates that market collapse is a robust implication of ambiguity

aversion even in an economy with aggregate uncertainty. A simple intuition for market

collapse can be derived by looking at the Edgeworth box economy in Figure 3.2. Fig-

ure 3.2.1 illustrates a no-trade equilibrium when investors have RMEU preferences and
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view ambiguity from the endowment. Figure 3.2.2 illustrates a market collapse. Note

that there exists an interval of prices such that no-trade is the unique equilibrium allo-

cation. Also, consider a perturbation of the endowment. With non-reference-dependent

preferences this would (almost surely) lead to a situation in which the endowment is no

longer on the “kink” for both investor; hence, even if no-trade is still an equilibrium the

price would be determined uniquely by any investor for whom the endowment is not

on the kink of an indifference curve. However, if preferences are reference-dependent a

perturbation of the endowment also implies a perturbation of the perspective from which

the investors view ambiguity. As a result, the kinks shift with the endowment and for all

endowments sufficiently close to the initial endowment there is still a market collapse.

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1: No-trade

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2: Market collapse

Figure 3.2: Implications of RMEU in an Edgeworth box economy: (3.2.1) No-trade equilibrium; (3.2.2)
(Robust) market collapse.

The complete collapse of markets highlighted by Theorem 3 seems a plausible im-

plication of ambiguity aversion in the idealized Edgeworth box economy. If there are

only two investors and two states, no-trade by one investor implies no-trade for both.

Likewise, no trade in one asset implies no-trade in both assets. Hence, it is sufficient

for one investor to consider one state as ambiguous in order for no-trade to occur. How-

ever, in a more general setting with multiple investors and multiple states a complete

collapse of all markets is clearly an idealized phenomenon. The following examples

71



therefore illustrate implications of RMEU when there is some, but limited trade. The

first example looks at market collapse for a subset of assets, the second example looks

at non-participation by a subset of investors. After these examples, I return to provide a

more careful analysis of underinsurance in an economy without aggregate uncertainty.

3.3.1 An example of market collapse with risk and ambiguity

The type of market collapse studied in Theorem 3 is reminiscent of the financial crisis

of 2008. Theorem 3 shows that market collapse can be a consequence of RMEU when

investors view ambiguity from the perspective of their status-quo, and face consider-

able uncertainty. However, even in the 2008 financial crisis, there was trade in state-

contingent consumption. The collapse of markets was restricted to assets over which

there was considerable uncertainty regarding value. The diversification bias example of

Chapter 2 is suggestive of this type of more restricted market collapse, where specula-

tive and insurance motives lead to trade in some assets but the hedging motive prevents

trade in assets with sufficient ambiguity over states.

To illustrate, consider an example of an economy in which the set of states S can

be partitioned into events R and A. The likelihood of states in R is subject only to risk,

i.e., the probability of all states in s is known (or, alternatively, there is a unique and

common subjective probability on each s ∈ S ). Event A contains ambiguous states with

unknown probabilities. For each investor i denote the linear projection of Πi on to A by

ΠA
i . For simplicity, assume that there is no aggregate uncertainty and investors have log

utility. Hence, the utility maximization problem of a investor i = 1, ..., I for any price p
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is,

max
xi≥0

min
πi∈Πi

∑
s∈R

πs

(
log xi

s − log ei
s

)
+

∑
t∈A

πi
t

(
log xi

t − log ei
t

)
(3.5)

s.t. pxi ≤ pei (3.6)

⇔ max
xi≥0

π(R)
∑
s∈R

πs

(
log xi

s

)
+ min

πi∈ΠA
i

∑
t∈A

πi
t log

(
xi

t

ei
t

)
(3.7)

s.t. pxi ≤ pei . (3.8)

The maximization problem decomposes and consumption decisions on R are not af-

fected by ambiguity, and hence are not affected by the reference-point in states R. As a

result, demand for good s ∈ R by investor i is xi
s(p, ei) =

πs pei

ps
for all i = 1, ..., S . Market

clearing then implies that ps = πs for all s ∈ R, and, hence no aggregate uncertainty

implies that, xi
s = π(R)e for all i = 1, ..., I. Hence, investors are fully-insured in the risky

states, where the insurance motive alone determines allocations. A no-trade equilibrium

is therefore knife-edge in this economy: Generally, the insurance motive alone deter-

mines the allocation of resources between events R and A, and amongst states s ∈ R.

However, a more restrictive form of market collapse is possible in the economy.

Definition 11 (No-ambiguous-trade equilibrium) The economy (ei,Πi)i=1,...,I has a

no-ambiguous-trade equilibrium if an allocation x with xi
s = π(R)e for all s ∈ R and

i = 1, ..., I, and xi
t = π(A)ei for all t ∈ A and i = 1, ..., I, is the unique competitive

equilibrium allocation.

In a no-ambiguous-trade equilibrium xi
s

xi
t

=
ei

s
ei

t
for all s, t ∈ S and for all i = 1, ..., I.

Hence, there is trade because investors trade contingent-consumption between the risky

event R and the ambiguous event A, but there is no trade across states within A. In this

sense of no-trade, there is also the possibility of a market collapse.

Definition 12 (Ambiguous Asset Market Collapse) The economy (ei,Πi)i=1,...,I has an
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ambiguous-assets market collapse if it has a unique no-ambiguous trade equilibrium

and the equilibrium price (ps)s∈A is indeterminate.

To interpret the definition of a market collapse suppose that investors have access

to a complete set of Arrow securities, as well as a single asset, b, that can allocate

consumption between events R and A. There is clearly a redundant asset, but in a no-

ambiguous-trade equilibrium it is as if investors trade only in risky-assets (Arrow se-

curities that payoff in states R, as well as the security b). Moreover, if the market for

ambiguous-assets collapses there is indeterminacy regarding their values. To charac-

terize conditions under which there is an ambiguous-assets market collapse, define the

analog for 3.4 in the present case:

ΠA
i (ei) =


 πt

ei
t∑

s∈A
πs
ei

s


s∈A

|π ∈ ΠA
i

 . (3.9)

Now observe that, given the allocations amongst risky states and events, remaining allo-

cations are determined independently of outcomes on R. The relevant utility maximiza-

tion problem for investor i is the following.

max
(xi

s)s∈A≥0
min
πi∈ΠA

i

∑
s∈A

πi
s log

(
xi

s

π(A)ei
t

)
(3.10)

s.t.
∑
s∈A

ps

π(R)

(
xi

s

)
≤

∑
s∈A

ps

π(R)

(
π(A)ei

s

)
. (3.11)

The following characterization of conditions under which there will be an ambiguous-

assets market collapse therefore follows immediately from Theorem 3.

Corollary 3 Consider the economy (ei,Πi)i=1,...,I with risky event R and ambiguous event

A.

1. The economy has a no-ambiguous-trade equilibrium if and only if
⋂

i ΠA
i

(
ei
)
, ∅.

2. The economy has a risky assets market collapse if and only if |
⋂

i ΠA
i

(
ei
)
| > 1.
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3. There exists an open ball B (e) ⊂ RI
++ × RI×S

++ such that there is an ambiguous-

assets market collapse for all e′ ∈ B (e) if int
⋂

i ΠA
i

(
ei
)
, ∅.

Proof. The proof follows immediately from Theorem 3 and is therefore omitted.

As in the market collapse identified in Theorem 3, an ambiguous-asset market col-

lapse occurs only if the motive to hedge against reference-dependent ambiguity over-

comes the motive to insure. Corollary 3 gives sufficient conditions for this to occur

that depend on the set of priors and the endowment of the investors. However, un-

like a complete market collapse, an ambiguous-assets market collapse is not due to a

status-quo bias. The status-quo of a investor i is the endowment, ei, and risk preferences

alone determine that this is generally not an equilibrium allocation. Investors do trade in

equilibrium; they just do not re-allocate contingent-consumption across the ambiguous

states in event A. As a result, the sufficient conditions given for a robust asset market

collapse in part (3) of Proposition 3 are not sufficient for a market collapse if investors

had the preferences given in Bewley (2002). If investors had incomplete preferences and

chose the endowment if and only if there is no alternative allocation that dominates the

endowment, the insurance motive for trade on events that are purely risky would lead

them to trade away from the endowment. And if investors trade away from the endow-

ment, Bewley’s decision model is indeterminate about what choices they will then make

among incomparable alternatives. In particular, an ambiguous-assets market collapse

in an economy in which investors follow Bewley’s decision rule would be non-generic

because no-trade in ambiguous assets might well be part of the equilibrium correspon-

dence but would generally not be unique.
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3.3.2 An example of non-participation

It is also interesting to study examples in which only a subset of individuals does not

participate in the market. Non-participation in financial markets is common and puz-

zling under the SEU hypothesis (see, e.g., Campbell, 2006). To illustrate the possibility

of non-participation on the part of a subset of investors, suppose now that the set of

investors I can be divided into two subsets, I = I′ ∪ I∗ with I′ ∩ I∗ = ∅. Investors

in I′ are SEU maximizers (i.e. |Πi| = 1 for all i ∈ I′). Investors in I∗ are ambiguity

averse and have RMEU preferences as in Assumption 1 with a non-singleton set of pri-

ors |Π| > 1. For simplicity, assume again that all investors have log preferences over

consumption in each state. Assume also that there is no disagreement over the likeli-

hood of states, in the sense that investors in I′ have a common prior π̂ and π̂ ∈ Πi for

all i ∈ I∗. Define a non-participation equilibrium as a competitive equilibrium price and

allocation in which all ambiguity averse investors do not participate in the market.

Definition 13 The economy ((ei, π̂)i∈I′ , (ei,Πi)i∈I∗) has a non-participation equilibrium

if there exists an equilibrium price p and a corresponding equilibrium allocation x such

that xi = ei for all i ∈ I∗.

The following characterization of conditions under which there is a non-participation

equilibrium follows immediately from Theorem 3. To simplify the exposition, we use

the following notation eI
′

:=
∑

i∈I′ ei.

Corollary 4 The economy ((ei, π̂)i∈I′ , (ei,Πi)i∈I∗) has a non-participation equilibrium if

and only if there exists π∗ ∈
⋂

i∈I∗ Πi(ei) such that

π̂seI
′

t

π̂teI
′

s
=
π∗s
π∗t

∀ s, t ∈ S (3.12)
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Proof. The proof is given in the Appendix.

Corollary 4 demonstrates that non-participation can be a robust implication of ambi-

guity aversion, even in markets where trade occurs amongst ambiguity neutral investors.

Suppose, first, that there is no idiosyncratic risk in the endowments. Then the common

prior assumption is sufficient to ensure that there is a unique no-trade equilibrium.5 This

is true also if investors in I∗ have MEU preferences. However, with RMEU prefer-

ences, non-participation is robust to the introduction of idiosyncratic and aggregate risk.

As long as there is sufficient agreement over the likelihood of states between different

market participants, RMEU investors may not participate in the market because the ex-

pected returns from investments must be calculated with too much precision in order to

justify trade.

Corollary 4 also illustrates the trade-off between hedging and insurance. For a given

sets of priors (other than complete ignorance), as the endowment of any one ambiguity

averse investor in one state converges to zero, the condition in Eq. 3.12 is clearly vio-

lated and that investor will participate in the market. Note also that there is an interesting

interaction between the ambiguity neutral and ambiguity averse investors. With suffi-

cient ambiguity, there is always a non-participation equilibrium. But if the distribution

of the aggregate endowment across ambiguity neutral and ambiguity investors is highly

asymmetric, then it requires greater ambiguity in order for ambiguity averse investors

not to participate in the market. Economic intuition for this comes from realizing that

it is the SEU investors who determine prices in a non-participation equilibrium, and the

prices they determine are affected by their share of aggregate consumption in each state.

If their share of the aggregate consumption differ drastically from those of the ambiguity

averse investors, the prices they determine are more likely to induce ambiguity averse

5Note that there is, however, no market collapse since the equilibrium price is uniquely determined by
the set of ambiguity neutral investors
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investors to enter the market.

3.4 Underinsurance

The no-trade equilibrium allocations studied in the preceding Section appear like exam-

ples of underinsurance. The direction of underinsurance is clearly correlated (perfectly

in fact) with the endowments, and so the equilibrium allocations look much like the al-

location in an economy without ambiguity aversion in which markets are (exogenously)

incomplete. Ambiguity aversion can therefore provide an alternative explanation for

market observations that are often attributed to incompleteness of markets. There is,

however, an important distinction. No-trade allocations due to ambiguity aversion are

(in an appropriate sense) efficient: There does not exist a Pareto improving allocation.

The reason is that the commodity which would make ambiguity averse DMs better off

is information that reduces the ambiguity about states; and this information is not in

the aggregate endowment. On the other hand, when there is no-trade due to incom-

plete markets, equilibrium allocations are generally inefficient. The reason is that Pareto

improving trades are possible within the given aggregate endowment, but not feasible

given the existing market structure.

As a result, underinsurance due to ambiguity aversion needs to be interpreted care-

fully. Underinsurance does not refer to inefficiency, but must instead refer to underin-

surance relative to allocations that seem like a reasonable benchmark for what insurance

“should” be in the absence of ambiguity aversion. By Proposition 2 in Chapter 2 sub-

jective expected utility is a natural benchmark for what “absence of ambiguity aversion”

could mean. In general, defining a suitable benchmark for what insurance means is not

straightforward. However, in the special case of an economy without aggregate uncer-

78



tainty a natural benchmark exists. Hence, in the following, I consider only economies

without aggregate uncertainty.

Assumption 2 (No aggregate uncertainty) There exists e ∈ R++ such that for all s ∈

S ,
∑

i ei
s = e.

The importance of assumption 2 comes from the following definition that can be

used as a benchmark for considering underinsurance: An allocation x is a full-insurance

allocation if x is feasible and for each i ∈ I and for all s, t ∈ S , xi
s = xi

t. Economies

with no aggregate uncertainty provide a natural benchmark for studying underinsurance

because a full-insurance allocation exists in an economy if and only if Assumption 2

is satisfied. Moreover, there is a natural condition for an economy with SEU investors

under which all equilibrium allocations are full-insurance allocations: If all investors

are ambiguity neutral then the equilibrium allocation is a full insurance allocation if and

only if the investors have a common prior with full support. Note that it does not matter

which prior is common (as long as the prior has full support), what the distribution of en-

dowments is, or what the risk-preferences of the investors are. In terms of the discussion

in the Introduction to this Chapter, equilibrium allocations are full insurance allocations

whenever there is no disagreement about the likelihood of states or, equivalently, there

is no speculative motive for investors to trade.

It is therefore of interest to see if – for a suitable counterpart of the condition that

there be no disagreement about the likelihood of states – ambiguity aversion can lead

equilibrium allocations to deviate from full-insurance. Two counterparts of the condi-

tion that there is no disagreement about the likelihood of states have been suggested

in the literature to study this problem. The first is a weak form of agreement about

the likelihood of states: Investors have multiple priors but there exists a common prior
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π ∈
⋂

i Πi (see, e.g., Billot et al., 2000, for motivation). The second is a stronger form

of agreement: Investors have multiple priors and all priors coincide in the sense that

Πi = Π j for all i, j ∈ I. An important special case of the latter is when investors have

CEU with a common, convex capacity (i.e., a common, non-additive prior) νi = ν j for

all i, j ∈ I (see, e.g., Chateauneuf et al., 2000).

With the conditions on agreement in mind, the most common existing models of

ambiguity aversion (MEU and CEU) suggest that ambiguity aversion does not lead to

underinsurance. For the strong sense of agreement, Chateauneuf et al. (2000) demon-

strate that in a CEU economy, a common, convex capacity is sufficient to ensure that all

equilibria of the economy have full-insurance. Billot et al. (2000) demonstrate that the

weak notion of agreement about states is both necessary and sufficient for equilibria to

be in the set of full-insurance allocations for the case of MEU. The economic intuition is

that, within the MEU decision model, ambiguity aversion and risk aversion both imply a

motive to purchase insurance. The risk-aversion motive come from the assumption that

marginal ex-post utility in each state (captured by the curvature of the Bernoulli utility

index u) is decreasing in consumption. As a result, a risk-averse investor prefers the

average of consumption in two states over different consumption in two states.6 If, in

addition, the DM has MEU with multiple priors, then full-insurance allocations serve as

reference-points and the DM will purchase insurance as long as it is optimal according

to any of the priors in the set of priors. It follows that there is not a unique price at

which the DM will purchase insurance, but rather full-insurance is utility optimizing for

a range of prices. This is the intuition for the well-known non-participation result of

Dow and Werlang (1992), and for the finding in Billot et al. (2000) that there generally

6The reason is that, starting from average consumption, an increase in consumption in one state with
a corresponding decrease in the other state (that holds average consumption equal) leads to increased
utility in the first state and decreased utility in the second. However, with decreasing marginal utility, the
increase in utility in the first state is smaller than the decrease in utility in the second state. Hence, the
motive to purchase insurance.
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exist multiple full-insurance equilibria when investors have MEU preferences.

However, when ambiguity is viewed from the perspective of endowments, ambigu-

ity aversion can (and, in fact, generally does) lead to underinsurance. Theorem 3 and

the discussion surrounding it already illustrates an important example: Endowment-

dependent ambiguity aversion can lead to robust market collapse in an economy with-

out aggregate uncertainty with both the strong and weak form of agreement. Moreover,

robust market collapse with weak agreement is “most likely” when there is no aggregate

uncertainty and, of course, if there is no aggregate uncertainty but there is idiosyncratic

uncertainty then market collapse leads to underinsurance (in the sense that equilibrium

allocations are not full insurance allocations). The intuition for this is straightforward:

Even if there is no disagreement about the likelihood of states, when there is idiosyn-

cratic risks investors do have asymmetric perspectives on ambiguity. Hence, ambiguity

aversion leads investors to be more cautious about trade (since they are not confident

about the likelihoods of states), and the resulting hedging motive is a source of disagree-

ment (not captured by differences in beliefs) about the benefits of trading. This intuition

is formalized in the following Theorem. To state the Theorem succinctly, denote for

each i ∈ I

Π̂i(ei) := arg max
π∈Πi

∫
S

u
(
ei

s

)
dπ , (3.13)

which is the set of probabilities in Πi that maximize the expected utility of the endow-

ment of investor i. Note that as for the set Πi(ei) defined in the previous Section, Π̂i(ei)

depends on “size, shape and location” of the set of multiple priors Πi, as well as on the

risk-preferences u, and the distribution of endowments ei. However, while Πi(ei) gener-

ally always has a non-empty interior (except for the trivial case of SEU), the set Π̂i(ei)

will often be a singleton. For example, most prominent examples of sets of multiple
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priors are finitely generated (i.e., have a finite number of extremal points)7 and if Πi is

finitely generated it is straightforward to see that Π̂i(ei) is generically (in endowments) a

singleton. The following Theorem relates full-insurance to agreements in the sets Π̂i(ei).

Theorem 4 (Underinsurance) Suppose that the economy (Πi, ui, ei)i∈I satisfies As-

sumption 2. Then there exists a full-insurance equilibrium allocation if and only if⋂
i∈I Π̂i(ei) , ∅.

Proof. The proof is given in the Appendix.

Theorem 4 provides both necessary and sufficient conditions for the existence of a

full-insurance equilibrium allocation in an economy without aggregate uncertainty. The-

orem 3 demonstrates that under both weak and strong agreement about the likelihood of

states, ambiguity aversion can lead to underinsurance when ambiguity is viewed from

the perspective of endowments. The following example provides a further illustration.

3.4.1 An example of underinsurance with weak agreement and two

states of the world

Consider an economy with only two states of the world, S = {s1, s2}. There is no

aggregate uncertainty, and so weak agreement about the likelihood of states would be

necessary and sufficient for all equilibrium allocations to be full-insurance allocations

if investors had MEU preferences. However, suppose that (1) all investors perceive am-

biguity about the likelihood of states (|Πi| > 1 for all i ∈ I), and (2) investors view

7See Siniscalchi (2006) for a behavioral characterization of preferences admitting an MEU represen-
tation with a finitely generated set of priors.
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ambiguity from the perspective of their initial endowments. Then the following Corol-

lary to Theorem 4 illustrates that with weak agreement about the likelihood of states

(and hence also with strong agreement), the equilibrium allocation is a full-insurance

allocation if and only if there is no idiosyncratic risk. Hence, a sunspots economy is

the special case of an economy without aggregate uncertainty in which there exists a

full-insurance equilibrium allocation.

Corollary 5 Suppose that there are two states of the world S = {s1, s2} and the economy

(Πi, ui, ei)i∈I satisfies Assumption 2. If there exists π∗ ∈ int
⋂

Πi then the following

statements are equivalent:

1. There exists a full-insurance equilibrium allocation.

2. For all i ∈ I, ei
1 = ei

2.

Proof. The proof is given in the Appendix.

Since weak agreement implies strong agreement about the likelihood of states,

Corollary 5 demonstrates that idiosyncratic risk is a source of underinsurance when in-

vestors view ambiguity from the perspective of endowments. Note that a similar result

does not hold when ambiguity aversion is modeled with the decision model in Bew-

ley (2002). In particular, if investor preferences have a unanimity representation and

choices satisfy inertia (as in Rigotti and Shannon, 2005) it is possible to construct exam-

ples in which there is underinsurance as long as the endowment is sufficiently close to

full-insurance, but as the idiosyncratic risk in the endowment increases inertia is even-

tually overcome and the equilibrium correspondence includes full-insurance equilibria.

On the other hand, with RMEU preferences, as the idiosyncratic risk in the endowment

increases there is also eventually trade (investors purchase insurance), but the hedging
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motive continues to act against the insurance motive and full-insurance is therefore not

an equilibrium outcome. A graphical illustration in an Edgeworth box economy is pro-

vided in Figure 3.3.

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1: Without ambiguity

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2: With ambiguity

Figure 3.3: Underinsurance in an Edgeworth box economy: (3.3.1) illustrates a full-insurance equilib-
rium in an economy in which investors are ambiguity neutral and have a common prior; (3.3.2) illustrates
underinsurance when the investors are ambiguity averse.

3.4.2 An example of underinsurance with strong agreement and

multiple states of the world

Consider another example in which there is an arbitrary, finite number of states (at least

two). Again, the economy has no aggregate uncertainty and there is now strong agree-

ment about the likelihood of states. In particular, I assume that each investor i ∈ I has

the following set of priors: There exists a reference probability π∗ ∈ ∆(S )++ and an

ε ∈ (0, 1) such that

Πi(π∗, ε) =
{
(1 − ε)π∗ + επ

∣∣∣ π ∈ ∆(S )
}

(3.14)

for all i. This is known as an ε-contamination (see, e.g., Epstein and Schneider, 2003) of

the baseline probability π∗. The model is popular in the literature that has applied MEU
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to the study of markets because of its easy interpretation, simple comparative statics (in

terms of ε) and tractability. Note also that the set Πi(π∗, ε) defined in (3.14) is the core of

a convex capacity, so an economy in which all investors have an ε-contamination with

common baseline probability π∗ and common ε is a special case of a CEU economy

with common convex capacities (as studied in Chateauneuf et al., 2000). The following

Corollary to Theorem 4 demonstrates that when ambiguity is captured via a common ε-

contamination, underinsurance is generic in an economy without aggregate uncertainty.

Corollary 6 Suppose that the economy (Πi(π∗, ε), ui, ei)i∈I satisfies Assumption 2. Then

the following statements are equivalent:

1. There exists a full-insurance equilibrium allocation.

2. For all i ∈ I and for all s, t ∈ S , ei
s = ei

t.

Proof. The proof is given in the Appendix.

Since the condition that e is a full-insurance allocation is non-generic, Corollary 6

demonstrates that even with strong agreement about states, reference-dependent ambi-

guity aversion generically leads to underinsurance. This underinsurance is not due to

any particular assumption about risk-preferences (all investors are risk-averse and they

can have identical or very different risk-preferences). It is also not due to disagreement

about the likelihood of states: All investors have the same beliefs over states (although

the beliefs are non-additive). It is due to asymmetric responses to ambiguity which are

determined by the asymmetric endowment allocations. Comparative statics in terms of

ε are insightful to get a better sense for the nature of underinsurance. It is straightfor-

ward to verify that as ε → 0, the equilibrium allocation converges to the full-insurance

allocation that would obtain in the SEU economy with common prior π∗. In terms of

85



the definition of comparative ambiguity aversion in Chapter 2, an increase in ε is equiv-

alent to an increase in the ambiguity perceived by investors. For any non-full-insurance

endowment e, as ε increases from 0 there exists a critical 0 < ε̄ < 1 such that there

is a market collapse (in the sense of the previous Section) for all ε ≥ ε̄. Hence, for

ε ≥ ε̄ there is a sufficient ambiguity aversion for no-trade to occur, while for ε < ε̄

there is trade for insurance purposes but not enough to lead to a full-insurance alloca-

tion. Hence, while no-trade may require substantial ambiguity about the likelihood of

states, an arbitrarily small (but strictly positive) amount of ambiguity is sufficient for

underinsurance. This illustrates the knife-edged nature of a key implication of SEU in

exchange under uncertainty, a point that is missed in the existing literature which has

focused on ambiguity aversion only when ambiguity aversion reinforces the insurance

motive for trade.

3.4.3 Underinsurance with aggregate uncertainty

In an economy without aggregate uncertainty, full-insurance is a natural benchmark

with respect to which absolute notion of underinsurance can be defined. When there

is aggregate uncertainty it is less clear what constitutes a reasonable benchmark. One

alternative is to consider a SEU economy. It is another stark implication of SEU that if

investors have a common prior (with full support), the set of Pareto optimal allocations

is independent of the prior (i.e., does not depend on what exactly the common prior is),

and depends only on the risk preferences of the investors. For any given endowment

and risk-preferences of the investors, one could therefore define the Pareto optimal set

of a common prior SEU economy as a set of “maximal” insurance allocations. This set

is well-defined since it is independent of the common prior, and the definition coincides

with the set of full-insurance allocations when there is no aggregate uncertainty. For-
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mally, the set of maximal insurance allocations is then defined as the set of allocations

x that are (1) feasible, and (2) satisfy that for all i, j ∈ I and all s, t ∈ S

u′i
(
xi

s

)
u′i

(
xi

t
) =

u′j
(
xi

s

)
u′j

(
xi

t
) . (3.15)

Using the notion of maximal insurance, Corollary 5 and Corollary 6 have natural coun-

terparts in economies with aggregate uncertainty. For example, in an economy with two

states of the world and weak agreement about the likelihood of states, there exists a

maximal insurance allocation if and only if the endowment is a maximal insurance al-

location. This is an immediate analog for Corollary 5 for economies with aggregate un-

certainty. Likewise, if priors are described by a common ε-contamination of a common

baseline prior π∗, then in an economy with multiple states and aggregate uncertainty,

there exists a maximal insurance equilibrium allocation if and only if the endowment

is a maximal insurance allocation. Compare this to the findings in Chateauneuf et al.

(2000), who show that if investors have CEU with a common, convex capacity, equilib-

rium allocations are always maximal insurance allocations. This further illustrates the

point that reference-dependent ambiguity aversion is a source of underinsurance that is

not recognized with models of ambiguity aversion in which ambiguity is perceived from

the perspective of full-insurance.

The result in Chateauneuf et al. (2000) illustrates that a particular type of strong

agreement about beliefs (common, convex capacities) is sufficient for the existence of

maximal insurance equilibria in the context of MEU preferences. However, Strazlecki

and Werning (2011) illustrate that weak agreement is generally not sufficient for the ex-

istence of maximal insurance equilibria when investors have MEU preferences. In fact,

Strazlecki and Werning (2011) provide an example that demonstrates something consid-

erably stronger. They consider an economy with with two investors and three states of

the world. One investor has MEU preferences and the other has SEU with a prior con-
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tained in the set of priors of the MEU investor. In this economy they show that the set of

interior Pareto optimal allocations does not intersect with the set of comonotonic allo-

cations. An allocation x is comonotonic (with the aggregate endowment) if for all i ∈ I

and all s, t ∈ S , es ≥ et implies xi
s ≥ xi

t. Maximal insurance allocations are comonotonic

and since the equilibria in the economy they construct are interior and Pareto optimal,

they show therefore that there does not exist a maximal insurance equilibrium. They

interpret their example as an illustration of underinsurance due to ambiguity aversion.

However, there is an important distinction between the underinsurance in their example

and the underinsurance demonstrated for RMEU preferences above. In the example in

Strazlecki and Werning (2011), there is underinsurance regardless of the endowment. In

fact, if underinsurance is interpreted to mean that investors purchase less insurance than

some given benchmark (e.g., the set of comonotonic or maximal insurance allocations),

then their example can as easily be used to demonstrate overinsurance as underinsur-

ance. On the other hand, when ambiguity is viewed by investors from the perspective

of endowments, underinsurance is directly related to lack of trade. Hence, the empiri-

cal predictions of this behavioral hypothesis are closer to the prediction of incomplete

market models.

3.5 Conclusion

Equilibrium analysis based on the Maxmin Expected Utility model suggests that ambi-

guity aversion has limited implications for asset markets. In this Chapter, I have shown

that the Reference-Dependent Maxmin Expected Utility model can be used to show that

affects of ambiguity aversion are substantially more robust. In particular, ambiguity

aversion can not only lead to underinsurance, non-participation or market collapse for a

knife-edged set of initial conditions, but generally for any distribution of endowments.
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In particular, I show that how ambiguity aversion affects markets outcomes depends

not only on how much ambiguity investors perceive, but also on the perspective from

which they view ambiguity. The analysis of this Chapter therefore complements and

extends on the existing literature on ambiguity aversion in asset markets by clarifying

that results attained under the assumption of MEU hold much more generally when

reference-dependence of ambiguity aversion is permitted.
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CHAPTER 4

RECURSIVE REFERENCE-DEPENDENT AMBIGUITY AVERSION

4.1 Introduction

In this Chapter I extend the Reference-Dependent Maxmin Expected Utility (RMEU)

decision model introduced in Chapter 2 to a dynamic setting. An extension of RMEU

preferences to dynamic choice settings is desirable because many applications to prob-

lems of choice under uncertainty – such as in finance and macroeconomics – also have

an intertemporal dimension. It is also of particular interest for any model of decision

making under uncertainty to address how decision makers learn from information re-

vealed over time. Subjective expected utility (SEU) comes equipped with an essentially

in-built theory of Bayesian learning, but the same does not hold for models that allow for

a behavioral distinction between risk and ambiguity attitudes. For example, in models of

ambiguity aversion with multiple priors it is not obvious what constitutes the appropri-

ate generalization of Bayesian updating. Prior-by-prior Bayesian updating is an obvious

candidate, but a number of alternative updating rules are also plausible. For example,

when there are multiple priors, new information can lead to updating of existing pri-

ors but could also suggest a selection from among the set of priors according to some

criterion of how well they “fit” to the information revealed. A study of the axiomatic

foundations of dynamic decision models of ambiguity averse preferences is therefore

important to shed light on the behavioral content of different updating rules.

The literature on dynamic decision models of ambiguity averse preferences also in-

dicates that variety in terms of updating rules corresponds to a particularly interesting

trade-off that arises when ambiguity aversion is accommodated in dynamic choice set-

tings. Epstein and LeBreton (1993) show that a decision model that allows for ambi-
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guity averse behavior (consistent with the Ellsberg (1961) paradox) can not simultane-

ously also satisfy consequentialism and dynamic consistency. In a decision tree, conse-

quentialism is the requirement that conditional preferences at a particular decision node

should not depend on parts of the tree that are no longer payoff relevant (i.e., the past or

parts of the tree that can no longer be reached). Dynamic consistency is the requirement

that a plan which is optimal ex-ante should also be optimal ex-post to the realization

of any non-null event (i.e., any event which the decision maker initially perceived as

possible). Since both consequentialism and dynamic consistency have considerable nor-

mative appeal in dynamic settings, this impossibility result highlights a clear trade-off

that must be addressed by any dynamic decision model that aims to integrate ambigu-

ity averse behavior. A special interest in an axiomatic analysis of dynamic models of

ambiguity aversion is therefore to highlight how different updating rules correspond to

different emphases in the trade-off between ambiguity aversion, consequentialism and

dynamic consistency.

A number of dynamic decisions models that allow for ambiguity averse behavior

have been proposed in the literature (see Siniscalchi, 2009a, for an excellent summary

of dynamic choice under ambiguity). Most build on the multiple priors (or Maxmin

Expected Utility (MEU)) model of Gilboa and Schmeidler (1989). A crucial feature of

the RMEU model introduced in Chapter 2 is that reference-effects are directly related

to the perception of and response to sources of uncertainty, and relative to MEU the

reference-effect is due solely to a change in the perspective from which the decision

maker views ambiguity. As a result, I conjecture that any one of the numerous decision

models that extend MEU to dynamic choice problems could be adapted to study the

implications of intertemporal reference-dependent ambiguity aversion. In this Chapter I

provide one important illustration by generalizing the Recursive Multiple-Priors (RMP)

model in Epstein and Schneider (2003) to characterize Recursive Reference-Dependent
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Maxmin Expected Utility (RRMEU).

Epstein and Schneider (2003) study the preferences of a decision maker in a given

decision-event tree, with conditional preferences at each date-event pair (or after every

history). The decision maker has Maxmin Expected Utility (MEU) preferences at ev-

ery decision node, so that both the initial and conditional preferences satisfy the axioms

of Gilboa and Schmeidler (1989). To provide a recursive representation, Epstein and

Schneider (2003) then impose a connection between the conditional preferences at dif-

ferent histories. In particular, they assume that preferences satisfy consequentialism and

that they are dynamically consistent with respect to the given decision tree. Hence, they

state the following objective of their dynamic extension of the MEU model.

“We view intertemporal utility as a summary of dynamic behavior in settings where

complete commitment to a future course of action is not possible. Accordingly, foun-

dations are provided by axioms imposed on the entire utility (or preference) process,

rather than merely on initial utility. Importantly, axioms do not simply apply to con-

ditional preference after each history separately. To ensure that dynamic behavior is

completely determined by preferences, a connection between conditional preferences is

needed. This connection is provided by dynamic consistency.”

The axioms provided by Epstein and Schneider (2003) characterize a recursive ver-

sion of the MEU model. Preferences at each decision node have an MEU representation

and the decision maker updates priors in the set of priors by applying Bayes rule prior-

by-prior. In addition to the usual conditions on the set of priors (e.g., convexity), priors

also satisfy a dynamic condition that is defined with respect to the given decision tree.

This condition – called rectangularity – implies that preferences have a recursive struc-

ture. However, rectangularity is satisfied with respect to a given decision tree only and

the same set of priors need not be rectangular with respect to an alternative decision
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tree. Hence, the same preferences will generally not be dynamically consistent with

respect to an alternative structure on the resolution of uncertainty. This is the cost of ac-

commodating ambiguity aversion in their setting. They retain full consequentialism, but

study preferences that are dynamically consistent only with respect to a given decision

tree. The latter condition is a reflected in a restriction on the ambiguity perceived by

the decision maker ex-ante, namely the requirement that the set of priors be rectangular.

Nevertheless, their framework provides a recursive model of ambiguity averse behavior

that is both flexible (in terms of modeling ambiguity attitudes) and tractable (in terms of

its dynamic properties).1

In applications of a decision model to dynamic choice settings, a recursive structure

is often crucial in order to keep the analysis tractable. Moreover, despite the existence of

sensible alternatives, prior-by-prior Bayesian updating remains perhaps the most natural

starting point for a theory of learning in decision models with multiple priors. The RMP

model therefore seems to strike a sensible balance given the trade-offs highlighted by

Epstein and Wang (1994). As a result, I follow the framework of Epstein and Schneider

(2003) in this Chapter to provide an extension of the RMEU model to dynamic choice

settings. I provide an axiomatic characterization of a Recursive Reference-Dependent

Maxmin Expected Utility (RRMEU) model which represents the natural generalization

of the RMP model to reference-dependent perceptions of ambiguity. I then illustrate

the potential for applications of RRMEU by extending the intertemporal asset pricing

model in Epstein and Wang (1994) to the case when ambiguity is viewed from the

perspective of the endowment process. In the context of the RMP model, Epstein and

Wang (1994) demonstrate that ambiguity aversion can lead to excess price volatility in

an intertemporal asset pricing model, but it remains unclear from their analysis how

1Epstein and Schneider (2003) also provide a number of examples to illustrate the rich potential for
modeling ambiguity averse behavior within their approach that are easily extended to the RRMEU model
introduce in this Chapter.
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frequent and economically relevant the price indeterminacy they identify is. Using the

RRMEU model, I provide a more complete characterization of the price process in an

intertemporal asset pricing model with an ambiguity averse investor, and illustrate that

price indeterminacy is ubiquitous when ambiguity is viewed from the perspective of the

endowment process.

4.2 A Dynamic Decision Problem

The decision making environment is as in Epstein and Schneider (2003), but I adapt

their notation to make it consistent with the remainder of the Dissertation. I concentrate

on the infinite horizon case, but it should be clear that the method of proof is easily

adapted to a finite case (requiring somewhat less structure as in Epstein and Schneider

(2003)).

Time is discrete and varies over T = {0, 1, ...,∞}. Information about the state space

S is represented by a filtration {Gt}
∞
t=0, where for each finite t, Gt corresponds to a finite

partition and Gt(s) denotes the the part containing state s ∈ S . Hence, if s is the true

state, the decision maker (DM) knows Gt(s) at time t. Assume that G∞ is the σ-algebra

generated by
⋃∞

0 Gt. The set of outcomes in each time period is denoted X ⊂ R and the

set of lotteries over X having finite support is denoted P. Hence, the objects of choice

are acts f = ( ft) ∈ F , where ft : S → P is Gt measurable for all t = 1, ...,∞. Note that

F is a mixture space under the usual point-wise mixture operation. Denote by P∞ the

set of constant acts (i.e., acts for which the outcome depends on time and the realization

of objective randomization, but not on the state of the world s).

The DM has preferences on F at each time-event pair (t, s) ∈ T × S , and for each

reference-point r ∈ F . The reference-point affects preferences ex-ante and I therefore
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assume that the reference-point is given at time 0 and does not change. A crucial axiom

that leads to the recursive utility is dynamic consistency. Given dynamic consistency,

it would be equivalent to assume that the reference-point in (t + 1, s) is the continua-

tion of the plan formed at (t, s) for (t + 1, s), since dynamic consistency is exactly the

requirement that ex-ante optimal plans should also be ex-post optimal. Hence, I avoid

the unnecessary notational complications that would arise from allowing for this type

of endogenous evolution of the reference-point because observationally the two models

are equivalent. Formally, therefore, given an ex-ante reference point r ∈ F , the DM

has preferences �r
t,s at the time event pair (t, s). Axioms are imposed on the collection

of preferences {�r
t,s}(t,s)∈T×S for a given reference-point r ∈ F , and on the collection of

these collections for each reference-point:
(
{�r

t,s}(t,s)∈T×S

)
r∈F

. As in the static decision

model, the restriction on the collection of preferences given different reference-points

can be viewed as a comparative statics assumptions. However, in the dynamic model

these Axioms also have substantive implications. In particular, the observational equiv-

alence of a model with a fixed reference-point, and one in which the reference-point

changes with the optimal plan, does not necessarily hold when the dynamic counterpart

of the equivalence of unambiguous preferences (EUP) is not imposed. For simplicity, I

concentrate only on preferences for which a suitably adapted version of EUP holds.

4.2.1 Axioms

The following axioms will be satisfied for all reference-points r ∈ F .

Axiom 14 (Conditional Preference (CP)) 1. �r
t,s coincides with �r

t,s′ if Gt(s) =

Gt(s′).

2. If fτ(s′) = f ′τ (s′) for all τ ≥ t and s′ ∈ Gt(s), then f ∼r
t,s f ′.
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Axiom 14 is a form of consequentialism. It states that conditional preferences de-

pend only on uncertainty that has not yet been resolved, and on continuation acts. Con-

sequentialism has considerable normative appeal in dynamic choice settings, and is cru-

cial for a recursive structure. Of course, the impossibility result of Epstein and LeBreton

(1993) demonstrates that for decision making under ambiguity consequentialism can be

problematic because of a trade-off with dynamic consistency. As in Epstein and Schnei-

der (2003), I only study preferences that satisfy CP (i.e., consequentialism) and restric-

tions are imposed on the dynamic consistency of preferences. An alternative model

of dynamic ambiguity averse behavior (also extending on the atemporal MEU decision

model of Gilboa and Schmeidler (1989)) that is fully dynamically consistent but violates

consequentialism is presented by Hanany and Klibanoff (2007).2

The main result in this Chapter provides an axiomatization of Recursive RMEU pref-

erences. For any reference-point r ∈ F the following axiom therefore simply imposes

that conditional preference at any given time-event pair are RMEU preferences given

the reference-point r. The interpretation of the axiom is analogous to the interpretation

in the static case presented in Chapter 2 and I therefore refer to the discussion in that

Chapter for more details.

Axiom 15 (Reference-Dependent Maxmin Expected Utility (RMEU)) The following

holds for all (t, s) ∈ T × S .

1. �r
t,s is complete and transitive.

2. For all f , f ′ ∈ F and x, x′ ∈ P∞, and for all α ∈ (0, 1), if α f + (1 − α)x �r
t,s

α f ′ + (1 − α)x then α f + (1 − α)x′ �r
t,s α f ′ + (1 − α)x′.

2I conjecture that the set up in Hanany and Klibanoff (2007) can also be extended to study fully
dynamically consistent RMEU, but analysis of this conjecture is left for future research.
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3. For all f , f ′, f ′′ ∈ F , the sets {α ∈ [0, 1]|α f + (1 − α) f ′ �r
t,s f ′′} and {α ∈

[0, 1]| f ′′ �r
t,s α f + (1 − α) f ′} are closed.

4. For all f , f ′ ∈ F , if ( f0(s′), ..., f∞(s′)) �r
t,s ( f ′0(s′), ..., h′∞(s′)) for all s′ ∈ S , then

f ′ �r
t,s f .

5. For all f , f ′ ∈ F , if f ∼r
t,s f ′, then α f + (1 − α) f ′ �r

t,s f for all α ∈ (0, 1).

6. For all f , f ′ ∈ F , f �r
t,s f ′ if and only if α f + (1 − α)r �r

t,s α f ′ + (1 − α)r for all

α ∈ (0, 1).

The remaining axioms are more directly related to the dynamic structure of the de-

cision problem. The following axiom imposes restrictions only on preferences on the

subset of constant act, and is therefore not central to the issue of ambiguity that is the

main purpose of the axiomatic characterization. The axiom, which is introduced in Ep-

stein and Schneider (2003), is responsible primarily for the additive separation over time

that is familiar from dynamic models of SEU.

Axiom 16 (Risk Preference (RP)) For any y ∈ P∞ and all x, x′, x′′, x′′′ ∈ P, if

y−{τ,τ+1},x,x′ �
r
t,s y−{τ,τ+1},x′′,x′′′

holds for some (t, s) ∈ T × S and some τ ≥ t, then it holds for all (t, s) ∈ T × S and all

τ ≥ t.

For simplicity, I assume that all events are nonnull at time 0. This axiom is without

loss of generality because if some component of the partition defined by some Gt were

null according to time 0 preferences, it could be discarded and all axioms applied to the

(suitably adjusted) smaller state space (refer to Epstein and Schneider, 2003). To state
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the axiom, define nullity in the standard way: For any τ > t, say that the event A is Gt is

�r
t,s-null if

h′(.) = h(.) on Ac ⇒ h′ ∼t,s h . (4.1)

Axiom 17 (Full Support (FS)) Each non-empty event in
⋃∞

t=0Gt is �r
0,s-nonnull.

The crucial axiom that ties together the conditional preferences of a decision maker

at different time-event pairs for a given reference point is dynamic consistency. This

axiom is discussed at length in Epstein and Schneider (2003), who provide normative

and analytic justifications for the axiom. It states (essentially) that a plan that is optimal

ex-ante should be optimal also from the point of view of conditional preferences ex-

post. The axiom provides the crucial additional structure on preferences required for a

recursive representation, but the motivation for the axiom is analogous to the motivation

given for the RMP model and I therefore defer to Epstein and Schneider (2003) for more

details.3

Axiom 18 (Dynamic Consistency (DC)) For all (t, s) ∈ T × S and for all f , f ′ ∈ F , if

fτ = f ′τ for all τ ≤ t and h �r
t+1,s′ f ′ for all s′ ∈ S , then f �r

t,s f ′; and the latter ranking

is strict if the former ranking is strict at every s′ in a �r
t,s-nonnull event.

Finally, two axioms are required given any reference-point r ∈ F to deal with tech-

nical difficulties that arise because the range of an act f : T × S → P need not be finite.

The first imposes the existence of a best and worst lottery, while the second requires a

3It is worth noting, however, that in the context of the reference-dependent decision model, dynamic
consistency also imposes consistency conditions across reference-points and the axiom therefore has ad-
ditional bight in the current setting. These consistency conditions across reference points are apparent in
the proof of the representation result.
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form of impatience. Together these axioms impose that the utility profiles from con-

stant acts are bounded. They would not be required for a model of recursive RMEU

preferences with some finite time horizon 1 < T < ∞.4

Axiom 19 (Best and Worst (BW)) For each (t, s) ∈ T ×S , there exist lotteries x∗, x∗∗ ∈

P such that

(x∗∗)∞0 �
r
t,s (x)∞0 �

r
t,s (x∗)∞0 (4.2)

for all x ∈ P.

Axiom 20 (Impatience (IMP)) For all (t, s) ∈ T × S , x ∈ P and acts f , f ′, f ′′ ∈ F , if

f ′′ �r
t,s f �r

t,s f ′ and f n = ( f0, ..., fn, x, x, ...), then f ′′ �r
t,s f n �r

t,s f ′ for all sufficiently

large n.

In addition to the axioms given a particular reference point, two axiom are also

introduced to tie together the collection of preference relations given different ex-ante

reference-points. To this end, define again an unambiguous preference relation: If, for

all f ′′ ∈ F and for all α ∈ (0, 1), α f + (1 − α) f ′′ �r
t,s α f ′ + (1 − α) f ′′, write f �∗rt,s

f ′ and say that f is unambiguously preferred at time-event pair (t, s) to f ′. I impose

only that unambiguous preferences be equivalent at time 0. This axiom is sufficient

to ensure that endogenous evolution of reference-points does not introduce issues of

dynamic inconsistency arising from an individual “switching” between the collections

of internally dynamically consistent preferences given a particular reference point. It

therefore has the same appeal in an axiomatic study of dynamic choice as dynamic

consistency within a collection of dynamic preferences (for a given reference point),

which is discussed at length in Epstein and Schneider (2003).
4Note that a proof of the finite version of Recursive RMEU preferences can also be obtained by

following Maccheroni et al. (2006), because of the relation between RMEU preferences and variational
preferences. Following their method requires an unboundedness axiom which clearly violates the Best
and Worst axiom stated below. Details are left to the interested reader.
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Axiom 21 (Equivalent Unambiguous Preferences (EUP)) For all r1, r2 ∈ F , for all

s ∈ S , and for all f , f ′ ∈ F , f �∗r1
0,s f ′ if and only if f �∗r2

0,s f ′.

Finally, the Reference-Translation (RT) axiom discussed already in Chapter 1 is also

introduced. The motivation is as for the atemporal model, but in a dynamic setting the

axiom is assumed to hold at all date-event pairs.

Axiom 22 (Reference Translation (RT)) For all r ∈ F , for all f , g ∈ F , for all (t, s) ∈

T × S , and for all x ∈ P∞, and all α ∈ (0, 1),

f �r
t,s g ⇔ α f + (1 − α)x �αr+(1−α)x

t,s αg + (1 − α)x (4.3)

4.2.2 Representation

To state the representation theorem, let ∆(S ,Gt) denote the set of probability measures

on the Σ-algebra Gt. Measures in ∆(S ,G∞) are restricted to be finitely additive, and

∆(S ,Gt) is equipped with the weak topology induced by the set of all bounded measur-

able real-valued functions. A measure π ∈ ∆(S ,Gt) has full local support if π(A) > 0 for

every ∅ , A ∈
⋃∞

t=0Gt. Let Π be a set of priors on (S ,F∞). Then for each s, define the

set of Bayesian of updates of Π by

Πt(s) = {π(·|Gt)(s)|π ∈ Π} . (4.4)

Denote by π+1(·|Gt)(s) the restriction of π(·|Gt)(s) to Gt+1, and define the set of one-step-

ahead measures by

Π+1
t =

{
π+1(·|Gt)(s)|π ∈ Π

}
. (4.5)

100



Definition 14 (Rectangularity) A set of priors Π is {Gt}-rectangular if for all t and s,

Πt(s) =

{∫
πt+1(s′)(·)dm(s′)|πt+1(s′) ∈ Πt(s′)∀s′ m ∈ Π+1

t (s)
}
. (4.6)

Rectangularity is a restriction on the set of priors in the RRMEU model character-

ized by the preceding axioms. As Epstein and Schneider (2003) argue, rectangular-

ity requires that the set of initial priors be “sufficiently large” in the following sense.

Begin with any collection of one-step-correspondences, defined as correspondences

P+
t : S → ∆(S ,Gt+1) where P+

t is Gt-measurable for each t. Each measure in P+
t (s)

can be viewed as a one-step-ahead measure describing beliefs about how uncertainty

will resolve in the next period. Then there exists a unique set of priors Π whose 1-

step-ahead-conditionals exactly correspond to the P+
t , and that set can be constructed

by backward induction. The set Π then satisfies rectangularity and is the smallest rect-

angular set to imply the one-step ahead conditionals P+
t . Hence, it is observationally

equivalent to model the evolution of beliefs using an arbitrary collection of one-step-

ahead-correspondences, or to model the evolution of beliefs in terms of the constructed

rectangular set of priors they imply, and then apply Bayes rule prior-by-prior for updat-

ing. Hence, rectangularity is not particularly restrictive in terms of modeling ambiguity

attitudes per se. The restriction comes from the fact that the definition of a rectangular

set of priors is given with respect to the particular filtration Gt. The same set of priors

need not be rectangular given a different filtration, which corresponds precisely to the

fact that dynamic consistency is required only with respect to the given filtration. This

is the cost of accommodating ambiguity, consequentialism and dynamic consistency in

the RMP model of Epstein and Schneider (2003), and explains how the recursive RMEU

model is also able to escape the impossibility result in Epstein and LeBreton (1993).

The following theorem (essentially) shows that if a collection of preferences at each

time-event pair is an RMEU preference, then it satisfies dynamic consistency if and
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only if the collection of sets of priors is rectangular and obtained from the period 0

set of priors by prior-by-prior Bayesian updating. It therefore gives a recursive model of

dynamic RMEU preferences, with an intuitive model of learning that preserves maximal

ambiguity (in the sense that there is no endogenous selection among priors).

Theorem 5 (Recursive RMEU) The following statements are equivalent:

1.
((
�r

t,s

)
(t,s)∈T×S

)
r∈F

satisfies CP, RMEU, RP, FS, DC, BW, IMP, EUP and RT.

2. There exists a weak*-closed, convex and Gt-rectangular set of priors Π, with all

measures in Π having full local support; a 0 < β < 1 and a mixture-linear, non-

constant u : P → R, where maxP u and minP u exist, such that for all r ∈ F and

for every t and s, �r
t,s is represented on F by Vr

t (·, s), where

Vr
t ( f , s) = min

m∈Πt(s)

∫ ∑
τ≥t

βτ−t [u( ft) − u(rt)
]
dm . (4.7)

Moreover, β is unique, Π is unique on
⋃∞

1 Gt, and u is unique up to a positive affine

transformations.

Proof. The proof is given in the Appendix.

Note that the RMP model is the special case of the RRMEU model when the ref-

erence point r ∈ P∞, and a dynamic SEU representation is characterized by extending

independence from reference-independence to all acts in F . Perhaps the most important

aspect of the RMEU decision model is the sense in which it is dynamically consistent.

In fact, dynamic consistency clearly restricts the behavior that can be implied by ambi-

guity in the recursive representation of dynamic RMEU preferences. These restrictions

are embodied in the rectangularity condition, and they are the price that must be paid for

the tractability of a recursive structure. However, the advantage of a recursive structure
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is obvious. To provide an illustration, I study a simple intertemporal asset pricing model

in the following Section and show that ambiguity aversion can lead to ubiquitous price

indeterminacy. Epstein and Wang (1994) study dynamic asset pricing using the RMP

model and illustrate the possibility of price indeterminacy due to ambiguity aversion.

However, as they themselves note, it is difficult to judge how frequent or economically

relevant the price indeterminacy in their setting is. Moreover, price indeterminacy can

result also from a model with a representative consumer who has SEU preferences when

the felicity function of the SEU functional is non-differentiable. Although Epstein and

Wang (1994) discuss conceptional differences between the latter source of price indeter-

minacy and the price indeterminacy implied by ambiguity aversion, the differences are

not empirical in nature. Both models imply price indeterminacy when the consumption

process happens to coincide with kinks in the utility functional describing preferences.

Since these kinks are fixed independent of the consumption process, price indeterminacy

is somewhat coincidental. Hence, it is easy to conclude that the excess price volatility

due to ambiguity aversion is not empirically relevant. However, as I show in the fol-

lowing, if ambiguity is viewed by the representative agent from the perspective of the

endowment process, price indeterminacy is ubiquitous. The following application of

RRMEU preferences therefore illustrates that ambiguity aversion can provide a robust

explanation for excess price volatility and complements the static analysis of the impli-

cations of reference-dependent ambiguity aversion in Chapter 3.

4.3 An Intertemporal Asset Pricing Model

The framework and results in this Section build closely on Epstein and Wang (1994),

which is itself a natural extension of the classic Lucas (1978) representative agent pure

exchange economy to accommodate for ambiguity averse behavior. The example il-
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lustrates that RRMEU preferences are sufficiently tractable to lead to new economic

insights regarding the affects of ambiguity aversion on decision making under uncer-

tainty when there is also an intertemporal dimension to the decision problem. Where

possible I follow the notation in Epstein and Wang (1994), and make adjustments only

to make the exposition consistent with the remainder of the Dissertation.

4.3.1 The economy

There is one representative agent. The agent has RRMEU preferences described in

further detail below. Time is infinite and discrete and varies over t = 1, ....,∞. In each

period there is a set of states of the world S , assumed to be a compact metric space

with Borel σ-algebra B(S ). At each date t a state of the world st ∈ S is realized and,

hence, the evolution of states in the economy lies in the underlying measurable space

denoted S∞ with the product Borel σ-algebra B(S∞). For a given state of the economy

s ∈ S∞, the history of states up to (and including) some time period t ≥ 1 is denoted

st = (s1, ..., st), and the collection of such partial histories up to (and including) time t

is denoted S t. A real valued process {Xt} defined on S∞, Xt : S∞ → R for each t, is

adapted if Xt is B(S t)-measurable for all t, and continuous if Xt is continuous for all t.

The adapted process X = {Xt} is Markovian if for each t and st ∈ S , Xt(·, st) is constant

on S t−1 and time-homogeneous if, in addition, there exists X̄ : S → R such that Xt = X̄

for all t. I refer to a real valued process that is adapted, continuous, Markovian and

time-homogeneous as a basic process.

In the economy there is a single perishable consumption good at each date and

in each state. Denote by D the set of all adapted consumption processes c = {ct}

such that (1) c is continues, adapted and positive valued for all t, and (2) ||c|| =
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supt supst |ct(st)|/bt < ∞, for some b ≥ 1. The constant real value b in condition (2)

provides a bound on the average rate of consumption growth given the consumption

process c. Also, for a consumption process c, denote by ct+(st−1) the continuation con-

sumption process given the history st−1 at time t, i.e., ct+(st−1) := {cτ(st−1, ·)}∞τ=t.

Preferences are defined on the adapted consumption processes in D. Utility has

four primitives, the first three are as in Epstein and Wang (1994) and the last is the

reference-point which is novel. The first primitive used to define utility is a probabil-

ity kernel correspondence that describes the evolution of beliefs of the agent in terms

of one-step-ahead correspondences. Beliefs evolve according to a time-homogeneous

Markov structure in which the beliefs over S at t + 1 are described at date t by the corre-

spondence Π : S → ∆(S ), where ∆(S ) denotes the set of Borel probability measures on

S .5 The probability kernel correspondence Π is assumed to be non-empty, continuous,

compact-valued, convex-valued and to have full support (in the sense that each mea-

sure in Π has full support on S ). Recall from the discussion preceding Theorem 5 that

such a probability kernel correspondence implies a unique rectangular set of priors that

generates Π via prior-by-prior Bayesian updating. Hence, the probability kernel corre-

spondence Π represents a convenient and appropriate way to capture ambiguous beliefs

corresponding to the recursive RMEU decision model. In particular, any class of pref-

erence relations satisfying the Axioms 14-22 in the previous Section can be represented

by way of a discount factor 0 < β < 1 a felicity function u and either (1) a rectangular

set of priors Π0 or (2) a set of one-step-ahead correspondences Πt. For the following, the

representation of beliefs in terms of one-step-ahead correspondences is both natural and

convenient. Ambiguity neutrality corresponds to the case when Π is a (unique valued)

probability kernel. This description of beliefs of the agent also corresponds exactly to

the one given in Epstein and Wang (1994), and they provide a number of examples of

5Note that under the weak convergence topology, ∆(S ) is a compact metric space.
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probability kernels correspondences that correspond to interesting specifications of sets

of priors (see Section 2.3 of Epstein and Wang, 1994).

The second primitive is a discount factor β ∈ (0, 1), and assumed to satisfy the

condition that βb < 1 (recall that b is a bound on the rate of growth of consumption

process in D). This condition ensures that utility exists given that a counterpart to

the Best/Worst act axiom will not be invoked (since this rules out a number of felicity

functions that are commonly applied in the literature). The third primitive is a felicity

function u : R+ → R+ that describes instantaneous utility in each time period and

each state, and that is assumed to be continuous, twice continuously differentiable on

R++, increasing, concave, and to satisfy the normalization u(0) = 0, as well as the

Inada condition limc→0 u′(c) = ∞, and the following growth condition: There exist

constant real values k1, k2 > 0 such that u(x) ≤ k1 + k2x for all x ∈ R+. As with

the Assumption bβ < 1, the latter condition is required to ensure that utility exists.

In the characterization of RRMEU this is ensured by the existence of best and worst

alternatives, but this assumption seems overly restrictive in an equilibrium model. A

slight deviation from the decision model characterized in the previous Section seems

appropriate here to allow for easier comparisons with results derived in the absence of

ambiguity aversion.

The total supply of the consumption good available at each date and in each state

is described by a basic endowment process e = {et} ∈ D. In particular, assume that

there exists an e∗ : S → R++ such that et(st) = e∗(st) for all t ≥ 1 and all st ∈ S t. The

endowment process is the reference-point of the agent. Hence, for each consumption

process in D, the agent’s preferences are described by a utility process Vt(c) satisfying

the following recursive relation: For all t ≥ 1 and all st ∈ S t,

Vt(c; st) =
[
u(ct(st) − u(et(st))

]
+ β min

π∈Π(st)

{∫
Vt+1(c; st, ·)dπ

}
(4.8)
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It is straightforward to adapt the contraction mapping argument in Epstein and Wang

(1994) to show that there exists a unique V(c) ∈ D satisfying Eq. 4.8, and that for all

c ∈ D, t ≥ 1 and st ∈ S t,

Vt(c; st) = V1(ct+(st−1; st)) (4.9)

The recursive structure in (4.8) and (4.9) is exactly the appeal of the recursive RMEU

model. Moreover, the dynamic structure implies that the time subscript on initial utility

is irrelevant and it is therefore appropriate and convenient to denote V1 simply by V .

Epstein and Wang (1994) also show that for each s ∈ S , V(·; s) is strictly increasing and

concave on D; and that V(c; s) is jointly continuous on D × S , and their proof extends

directly to the utility specification presented here.

In addition to the endowment process there is a finite number N of securities, avail-

able in zero net-supply in each period t and each state of the world st. Each security

k ∈ {1, ....,N} provides a dividend process dk = {dk,t} ∈ D, and is traded in each period

at a competitive price denoted pk,t. Consumption in each period is the numeraire and

pt := (p1,t, ..., pN,t) denotes the vector of period t security prices, and p ∈ DN denotes

the complete price process of all securities.

4.3.2 Equilibrium analysis

I study a competitive equilibria of the representative agent economy outlined above. An

equilibrium is a price process that ensures that the consumers’ excess demand at every

date-history pair corresponds exactly to the endowment process. Hence, a competi-

tive equilibrium is similar to the rational expectations equilibrium introduced in Lucas

(1978), suitably reinterpreted to allow for ambiguous beliefs.
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Definition of equilibrium

A plan for the consumer consists of a pair (c, θ), where c ∈ D is a consumption process

and θ = {θt} is a continuous process with θt = (θ1,t, ..., θN,t) representing the portfolio

plan for period t. Given a price process p, a plan (c, θ) is feasible for a time-history pair

(t, st) if for all τ ≥ t (1) the plan satisfies the following budget constraint: pτ · θτ + cτ =

θτ−1 ·
[
pτ + dτ

]
+ eτ, (2) prior asset holdings are zero, θt−1(st−1) ≡ 0, and (3) the plan

satisfies the following short-sale constraint infk,τ,sτ θk,τ(sτ) > −∞. The plan is optimal at

the time history-pair (t, st) if it is feasible and V
(
ct+(st−1); st

)
≥ V

(
ĉt+(st−1); st

)
for all

other plans (ĉ, θ̂) that are feasible at (t, st). Modulo the differences in how preferences

are defined, the following is the definition of equilibrium in Lucas (1978).

Definition 15 (Equilibrium) An equilibrium is a price process p ∈ DN such that the

plan {(eτ, 0)}∞τ=1 is optimal for all t ≥ 1 and st ∈ S t.

Hence, an equilibrium is a price process such that zero excess demand for all securi-

ties is optimal at all time periods and in all states, given the agent’s (ambiguous) beliefs

about the evolution of states. Epstein and Wang (1994) note that, given the assumption

that Π has full-support, it would be equivalent to define equilibrium requiring only that

{(eτ, 0)}∞τ=1 is optimal at the time-history pair (1, s1). This is due precisely to dynamic

consistency of the utility process.

Characterization of equilibrium

When the agent is ambiguity neutral, i.e., Π is a probability kernel, there exists a unique

equilibrium price process of the economy outlined above. This result follows directly

from Lucas (1978) who (for the special case of an ambiguity neutral representative
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agent) studies a slightly more general economy than the one outlined above, demon-

strates existence and characterizes equilibrium in terms of Euler equations. However,

due to ambiguity aversion, the price process when Π is not a probability kernel is gen-

erally not unique. Moreover, whenever the equilibrium price is not unique there is an

uncountable infinity of equilibrium prices and therefore, following standard nomencla-

ture, the equilibrium price is said to be indeterminate. The following Proposition pro-

vides a characterization of the set of all equilibrium price processes of the economy and

indicates that indeterminacy is a common feature of the economy. As a result, RRMEU

provides an intuitive explanation for the excess price volatility puzzle (see, e.g., Shiller,

1981) on the basis that ambiguity leads to difficulties in determining unique values for

assets.

Proposition 6 (Characterization of Equilibrium) • There exists an equilibrium

price process p ∈ DN .

• The price process p ∈ DN is an equilibrium if and only if there exists a continuous

selection {πt} from Π (i.e., a sequence of probability kernels {πt} with πt(st, ·) ∈

Π(st) for all t and all st ∈ S ) such that

pk,t = β

∫ [
u′(et+1)
u′(et)

(
p̄k,t+1 + dk,t+1

)]
dπt(st, ·) (4.10)

for all t ≥ 1, st ∈ S and k = 1, ...,N.

Proof. The proof is given in the Appendix.

Since Π is a continuous correspondence it generally admits multiple continuous se-

lections. Moreover, since Π is convex and compact-valued, there are in fact generally an

infinity of continuous selections. Proposition 6 shows that for each continuous selection

there is a unique corresponding equilibrium price process. Moreover, if any of these

109



prices process differ, there is a continuum of price process (i.e., the equilibrium price is

indeterminate).6 Since it is quite coincidental for all selections to imply the same price

process, Proposition 6 therefore demonstrates that ambiguity can lead to excess price

volatility for any basic endowment process.

Epstein and Wang (1994) also provide a characterization of equilibrium prices in

the context of the RMP decision model, which corresponds to the decision model used

above when the reference-point is constant over time and states. They obtain a simi-

lar condition to (4.10) for their characterization of prices, but restricted to continuous

selections from

Q(s) :=
{
π ∈ Π(s)|

∫
V̂(e; s)dπ = min

π∈Π(s)
V̂(e; s)dπ

}
, (4.11)

where V̂ corresponds to the functional V evaluated at a constant reference-point. When e

is non-constant, Q(s) may frequently be unique valued and it is therefore not clear how

frequent or economically relevant the price indeterminacy they identify is. However,

when the reference-point is given by the endowment process e, Π(s) replaces for the

Q(s) in Epstein and Wang (1994) since for all s ∈ S

Q(s) :=
{
π ∈ Π(s)|

∫
V(e; s)dπ = min

π∈Π(s)
V(e; s)dπ

}
= Π(s) , (4.12)

by the fact that V(e; s) is constant for all s. Hence, when e is the reference-point and

Π is not single-valued (reflecting ambiguity aversion), Π will admit multiple continu-

ous selections each of which implies a unique equilibrium price. Since it can be only

coincidental, i.e., for very special dividend processes, that all of these equilibrium price

processes coincide, part (b) of Proposition 6 illustrates that price indeterminacy is sub-

stantially more prevalent when ambiguity is viewed from the perspective of the endow-

ment than when it is viewed from the perspective of a constant reference-point. Hence,
6It is straightforward to adapt the proof of Theorem 3(a) in Epstein and Wang (1994) to show that the

set of equilibrium prices is a closed and connected subset ofDN , and hence if there are multiple equilibria
the equilibrium is, in fact, indeterminate.
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one could summarize the contribution of Proposition 6 as follows. Epstein and Wang

(1994) identify sources of price indeterminacy that can be related directly to ambiguity

aversion. However, indeterminacy in the context of the RMP decision model arises only

when there is a very special (knife-edge) relationship between the endowment process

and the dividend processes of the securities. It is therefore difficult to say with much

confidence whether ambiguity aversion as captured by the RMP model is really consis-

tent with the excess price volatility observed in asset markets. On the other hand, the

equilibrium price is determinate in the context of the RRMEU decision model (with the

endowment as a reference-point) only if there is a very special (knife-edge) relation-

ship between the endowment process and the dividend process of the securities. Hence,

while price indeterminacy remains an exception with the RMP decision model, it is the

norm if the agent views ambiguity from the endowment process. There is considerable

experimental and empirical evidence to suggest that individuals have a status-quo bias

(see, e.g., Samuelson and Zeckhauser, 1988; Campbell, 2006), and the hypothesis that

this is a reflection of ambiguity aversion is at least plausible. The result summarized

in Proposition 6 further illustrates that if investors view ambiguity from the perspective

of a status-quo consumption process, ambiguity aversion generally leads to price inde-

terminacy and is therefore consistent with the excess price volatility observed in asset

markets.

4.4 Conclusion

The main result of this Chapter gives an extension of the Reference-Dependent Maxmin

Expected Utility model to dynamic settings. The Recursive RMEU decision model gen-

eralizes the Bayesian learning inherent in subjective expected utility to the case when

there are multiple priors (as in Epstein and Schneider, 2003) and has appealing ax-
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iomatic foundations. In particular, it satisfies consequentialism and dynamic consis-

tency (at least within a given decision problem). Moreover, an application to a dynamic

asset pricing model (extending on Epstein and Wang, 1994) illustrates that the Recur-

sive Reference-Dependent Maxmin Expected Utility model can allow for a more gen-

eral perspective on the influence of ambiguity aversion in markets than the Recursive

Multiple Priors model of Epstein and Schneider (2003) would suggest. I illustrate that

price indeterminacy is a robust implication of ambiguity aversion in asset markets when

investors view ambiguity from the perspective of their status-quo, an assumption that

corresponds well with data on individual investment behavior and leads to implications

that are consistent with the excess price volatility observed in market prices. How the

trade-off between insurance and hedging inherent in the Reference-Dependent Maxmin

Expected Utility model affects individual behavior and market outcomes in other dy-

namic settings – such as dynamic labor choices, saving and investment decisions, or

dynamic social interaction models – should be a topic of considerable interest for future

research.
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APPENDIX A

PROOFS FOR THE RESULTS IN THE TEXT

A.1 Proofs for results in Chapter 2

A.1.1 Mathematical notation

I use the following notation in some proofs. Let B(Σ) be the set of bounded, Σ-

measurable functions on S , and B0(Σ) be the set of all real valued, simple, Σ-measurable

functions on S . If f ∈ F and u : P → R then u ◦ f is the element of B0(Σ) de-

fined by u ◦ f = u( f (s)) for all s ∈ S . Denote by ba(Σ) the set of all finitely ad-

ditive and bounded set-functions on S . A nonnegative element of ba(Σ) that assigns

value 1 to S is called a probability, and it is typically denoted by π. Since ba(Σ)

is (isometrically isomorphic to) the norm dual of B0(Σ)1 all of its subsets inherit a

weak* topology. Finally, given a non-singleton interval K ⊂ R, denote by B0(Σ,K)

the subset of functions in B0(Σ) taking values in K. Note that for any mixture-linear

u : P → R, u(F ) := {u ◦ f | f ∈ F } = B0(Σ, u(P)), where u(P) is the convex hull of

u(X) = {y ∈ R|y = u(x) for some x ∈ P}. Suppose that u, v : P → R and there exist

a ∈ R++ and b ∈ R such that u = av + b, then v is a postive affine transformation of

u and I write u � v. If for some f , g ∈ F u( f (s)) = u(g(s)) for all s ∈ S , then I write

u ◦ f ≡ u ◦ g.
1Provided ba(Σ) is endowed with the total variation norm and B0(Σ) is endowed with the sup-norm.
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A.1.2 Proofs

Proof of Theorem 1. First show that (2) implies (1). If �r has an RMEU representation

for some r ∈ F , it is trivial to see that the relation is a non-trivial, continuous and

monotone preorder. To verify UA let f , g ∈ F , f ∼r g and α ∈ (0, 1). Then

min
π∈Π

∫
S

[
(αu( f (s)) + (1 − α)u(g(s))) − u(r(s))

]
dπ

= min
π∈Π

[
α

∫
S
[u( f (s)) − u(r(s))]dπ + (1 − α)

∫
S
[u(g(s)) − u(r(s))] dπ

]
(A.1)

≥

[
min
π∈Π

α

∫
S
[u( f (s)) − u(r(s))]dπ

]
+

[
min
π∈Π

(1 − α)
∫

S
[u(g(s)) − u(r(s))] dπ

]
(A.2)

= min
π∈Π

∫
S
[u( f (s)) − u(r(s))]dπ . (A.3)

To verify RI with respect to r, let α ∈ (0, 1) and f , g ∈ F . Then,

min
π∈Π

∫
S
(u( f (s)) − u(r(s))) dπ

≥ min
π∈Π

∫
S
(u(g(s)) − u(r(s))) dπ (A.4)

⇔ αmin
π∈Π

∫
S
(u( f (s)) − u(r(s))) dπ

≥ αmin
π∈Π

∫
S
(u(g(s)) − u(r(s))) dπ (A.5)

⇔ min
π∈Π

∫
S
[(αu( f (s)) − (1 − α)u(r(s))) − u(r(s))] dπ

≥ min
π∈Π

∫
S
[(αu(g(s)) − (1 − α)u(r(s))) − u(r(s))] dπ . (A.6)
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To verify WCI, let f , g ∈ F, c1, c2 ∈ P and α ∈ (0, 1). Then,

min
π∈Π

∫
S
[(αu( f (s)) + (1 − α)u(c1)) − u(r(s))] dπ

≥ min
π∈Π

∫
S
[(αu(g(s)) + (1 − α)u(c1)) − u(r(s))] dπ (A.7)

⇔

[
min
π∈Π

∫
S
[αu( f (s)) − u(r(s))] dπ

]
+ (1 − α)u(c2)

≥

[
min
π∈Π

∫
S
[αu(g(s)) − u(r(s))] dπ

]
+ (1 − α)u(c2) (A.8)

⇔ min
π∈Π

∫
S
[(αu( f (s)) + (1 − α)u(c2)) − u(r(s))] dπ

≥ min
π∈Π

∫
S
[(αu(g(s)) + (1 − α)u(c2)) − u(r(s))] dπ . (A.9)

To verify EUP for a class of RMEU preference relations, let f , g ∈ F and define f �′ g

if and only if
∫

S
u( f (s))dπ ≥

∫
S

u(g(s))dπ for all π ∈ Π. For any r ∈ F , for all f , h ∈ F

and all α ∈ (0, 1), define the non-empty set

π f
r (h, α) = arg min

π∈Π

∫
S
([αu( f (s)) + (1 − α)u(h(s))] − u(r(s))) dπ (A.10)

Now observe that for all f , g ∈ F , f �′ g implies that for all h ∈ F and α ∈ (0, 1),

min
π∈Π

∫
S
([αu( f (s)) + (1 − α)u(h(s))] − u(r(s))) dπ

=

∫
S
([αu( f (s)) + (1 − α)u(h(s))] − u(r(s))) dπ̂ ∀π̂ ∈ π f

r (h, α) (A.11)

≥

∫
S
([αu(g(s)) + (1 − α)u(h(s))] − u(r(s))) dπ̂ ∀π̂ ∈ π f

r (h, α) (A.12)

≥ min
π∈Π

∫
S
([αu(g(s)) + (1 − α)u(h(s))] − u(r(s))) dπ (A.13)

Let f , g ∈ F and suppose that there exists α ∈ (0, 1) and h ∈ F such that

min
π∈Π

∫
S
([αu( f (s)) + (1 − α)u(h(s))] − u(r(s))) dπ (A.14)

≥ min
π∈Π

∫
S
([αu(g(s)) + (1 − α)u(h(s))] − u(r(s))) dπ . (A.15)
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Then, ∫
S
([αu( f (s)) + (1 − α)u(h(s))] − u(r(s))) dπ̂

≥

∫
S
([αu(g(s)) + (1 − α)u(h(s))] − u(r(s))) dπ̂ ∀π̂ ∈ πg

r (h, α) . (A.16)

Hence, ∫
S

u( f (s)) dπ̂ ≥
∫

S
u(g(s)) dπ̂ ∀π̂ ∈ πg

r (h, α) . (A.17)

So not g �′ f . Consequently, for any r ∈ F , f �′ g if and only if for all h ∈ F and

all α ∈ (0, 1), α f + (1 − α)h �r αg + (1 − α)h. Conclude that �′ is the unambiguous

preference relation given r and observe that �′ depends only on Π and u (hence not r).

Hence, the class of preference relations satisfies EUP. Finally, to verify RT for a class of

RMEU preferences simply observe that for α ∈ (0, 1) and x ∈ P

min
π∈Π

∫ [
u( f (s)) − u(r(s))

]
dπ ≥ min

π∈Π

∫ [
u(g(s)) − u(r(s))

]
dπ (A.18)

⇔ αmin
π∈Π

∫ [
u( f (s)) − u(r(s))

]
dπ ≥ αmin

π∈Π

∫ [
u( f (s)) − u(r(s))

]
dπ (A.19)

⇔ min
π∈Π

∫ [(
αu( f (s)) + (1 − α)u(x)

)
−

(
αu(r(s)) + (1 − α)u(x)

)]
dπ ≥

min
π∈Π

∫ [(
αu(g(s)) + (1 − α)u(x)

)
−

(
αu(r(s)) + (1 − α)u(x)

)]
dπ (A.20)

To prove (1) implies (2) assume that �r satisfies preorder, non-triviality, monotonic-

ity, continuity, UA, WCI and RI with respect to r for all r ∈ F , and that the class (�r)r∈F

satisfies EUP and RT. For clarity, the proof is divided into a number of lemmas. The

following lemma uses the fact that �r is a variational preference in the sense of Mac-

cheroni et al. (2006). A function V defined on B0(Σ) is said to be supperadditive if for

all ρ, φ ∈ B0(Σ) and all λ ∈ (0, 1), V(λρ + (1 − λ)φ) ≥ λV(ρ) + (1 − λ)V(φ) and constant

additive if for all ρ ∈ B0(Σ), for all α ∈ [0, 1] and for all constants x ∈ R,

V[αρ + (1 − α)x] = V(αρ) + (1 − α)x . (A.21)

116



Lemma 1 (Variational preference) For all r ∈ F there exists a non-constant, mixture

linear von Neumann/Morgenstern utility index u : P → R with 0 ∈ u(P), and a supper-

additive, constant additive, real valued, functional Vr defined on B0(Σ, u(X)) such that

for all f , g ∈ F , f �r g if and only if Vr(u ◦ f ) ≥ Vr(u ◦ g).

Proof. The proof follows directly from Maccheroni et al. (2006). The fact that u is inde-

pendent of r follows from the fact that preferences onP are unambiguous and therefore u

does not depend on r by EUP. In fact, a weaker version of WCI would be sufficient to de-

rive a variational representation. Specifically, it is enough to require that there exist one

α ∈ (0, 1) such that for all f , g ∈ F, and for all c1, c2 ∈ P, α f + (1−α)c1 �r αg+ (1−α)c1

if and only if α f + (1 − α)c2 �r αg + αg + (1 − α)c2. The following proof (given for

completeness) establishes that this condition implies WCI when preferences satisfy RI.

Hence, suppose only that the weaker version of WCI holds, then(
αγ

1 − α + αγ

)
f +

(
1 − α

1 − α + αγ

)
c1

�r

(
αγ

1 − α + αγ

)
g +

(
1 − α

1 − α + αγ

)
c1 (A.22)

⇔ (1 − α + αγ)
[(

αγ

1 − α + αγ

)
f +

(
1 − α

1 − α + αγ

)
c1

]
+ α(1 − γ)r

�r (1 − α + αγ)
[(

αγ

1 − α + αγ

)
g +

(
1 − α

1 − α + αγ

)
c1

]
+ α(1 − γ)r (A.23)

⇔ (αγ) f + (1 − α)c1 + α(1 − γ)r �r (αγ)g + (1 − α)c1 + α(1 − γ)r (A.24)

⇔ α
[
γ f + (1 − γ)r

]
+ (1 − α)c1 �r α

[
γg + (1 − γ)r

]
+ (1 − α)c1 (A.25)

⇔ α
[
γ f + (1 − γ)r

]
+ (1 − α)c2 �r α

[
γg + (1 − γ)r

]
+ (1 − α)c2 (A.26)

⇔ (αγ) f + (1 − α)c2 + α(1 − γ)r �r (αγ)g + (1 − α)c2 + α(1 − γ)r (A.27)

⇔ (1 − α + αγ)
[(

αγ

1 − α + αγ

)
f +

(
1 − α

1 − α + αγ

)
c2

]
+ α(1 − γ)r

�r (1 − α + αγ)
[(

αγ

1 − α + αγ

)
g +

(
1 − α

1 − α + αγ

)
c2

]
+ α(1 − γ)r (A.28)
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⇔

(
αγ

1 − α + αγ

)
f +

(
1 − α

1 − α + αγ

)
c2

�r

(
αγ

1 − α + αγ

)
g +

(
1 − α

1 − α + αγ

)
c2 (A.29)

for all c1, c2 ∈ P. Note that for α = 1/2, (1 − α)/(1 − α + αγ) = 1/(1 + γ) is strictly

monotone, continuous and onto [1/2, 1] as a function of γ ∈ [0, 1]. Hence, for all

β ∈ [0, 1/2] and for all f , g ∈ F , β f + (1 − β)c1 �r βg + (1 − β)c1 if and only if

β f + (1 − β)c2 �r βg + (1 − β)c2 for all c1, c2 ∈ P. Now note that x, y ∈ P and

α ∈ [0, 1] implies αx + (1 − α)y ∈ P. It follows that for any α ∈ [0, 1] and any f , g ∈ F ,

α f + (1 − α)c1 �r αg + (1 − α)c1 if and only if α f + (1 − α)c2 �r αg + αg + (1 − α)c2

for all c1, c2 ∈ P. Hence, �r satisfies WCI.

The next lemma is a result in the spirit of Bewley (2002) who provided a unanim-

ity representation for an incomplete preference relation satisfying independence. The

lemma stated here is the extension of Bewley’s due to Gilboa et al. (2010, see also

Ghirardato et al. (2004)).

Lemma 2 There exists a unique, weak*-closed, convex set of priors Π ⊂ ∆(S ) and a

unique (up to positive affine transformations), non-constant, mixture linear von Neu-

mann/Morgenstern index u : P → R, such that for all f , g ∈ F , f �∗ g if and only

if ∫
S

u( f (s))dπ ≥
∫

S
u(g(s))dπ ∀ π ∈ Π . (A.30)

Proof. For the unanimity representation Gilboa et al. (2010) require that �∗ satisfy

independence, certainty-completeness, Archimeadian continuity, non-triviality, transi-

tivity and monotonicity. Certainty-completeness follows from the the variational repre-

sentation of preferences stated above and monotonicity of �r, independence follows by

definition of �∗ and the other properties follow directly from the corresponding property
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of �r. The proof then follows directly from Gilboa et al. (2010) (see, also, the proof in

Ghirardato et al., 2004).

Since the representation of preferences on P via u is unique up to positive affine

transformations, completeness of �∗ on P implies that (subject to a suitable normal-

ization) the von Neumann/Morgenstern utility index in the variational representation of

preferences and in the unanimity representation of Eq. A.30 coincide. The next lemma

states that as a completion of �∗, the preference relation �r satisfies Bewley’s (2002)

inertia condition for all r ∈ F .

Lemma 3 (Inertia) For all r ∈ F and for all f ∈ F

f �∗ r ⇔ f �r r . (A.31)

Proof. First show that the representation Vr satisfies that for all f ∈ F and all α ∈ (0, 1),

Vr(αu ◦ r + (1 − α)u ◦ f ) = αVr(u ◦ r) + (1 − α)Vr(u ◦ f ). Note that Axioms 1-3 imply

that every f ∈ F has a certainty equivalent c f ∈ P satisfying that c f ∼r f (see, e.g.,

Maccheroni et al., 2006). It follows from RI that r ∼r cr implies r ∼r αr + (1 − α)cr.

Hence,

Vr(u ◦ r) = Vr[αu ◦ r + (1 − α)u ◦ cr] (A.32)

= Vr[αu ◦ r] + (1 − α)u ◦ cr (A.33)

= Vr[αu ◦ r] + (1 − α)Vr(u ◦ r) . (A.34)

So Vr(αu◦ r) = αVr(u◦ r). For all f ∈ F RI implies that αr + (1−α) f ∼r αr + (1−α)c f .

Hence,

Vr[αu ◦ r + (1 − α)u ◦ f ] = Vr[αu ◦ r + (1 − α)u ◦ c f ] (A.35)

= Vr[αu ◦ r] + (1 − α)u ◦ c f (A.36)

= αVr(u ◦ r) + (1 − α)Vr(u ◦ f ) , (A.37)
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where the last equality follows from the construction of Vr in the proof of Lemma 28 in

Maccheroni et al. (2006).

Now let r, f ∈ F with f �r r and let g ∈ F and λ ∈ (0, 1). Then

Vr[λu ◦ f + (1 − λ)u ◦ g] ≥ λVr(u ◦ f ) + (1 − λ)V(u ◦ g) (A.38)

≥ λVr[u ◦ r] + (1 − λ)Vr[u ◦ g] (A.39)

= Vr(λu ◦ r + (1 − λ)u ◦ g) . (A.40)

Hence, since the choice of g and α were arbitrary, f �r r implies f �∗ r. Clearly the

converse holds, so this establishes the equivalence, and the inertia condition follows.

The following observations will be useful in the remainder of the proof (for each

observation fix some arbitrary r ∈ F ):

Obs (1): Suppose that for f , g ∈ F and for all π ∈ Π∫
u ◦ f dπ >

∫
u ◦ gdπ . (A.41)

Let x, y ∈ P with x �r y. Then there exists an α ∈ (0, 1) such that

αmin
π∈Π

∫
[u ◦ f − u ◦ g]dπ = (1 − α)[u(x) − u(y)] (A.42)

Hence, for all π ∈ Π∫
u ◦ (α f + (1 − α)y)dπ ≥

∫
u ◦ (αg + (1 − α)x)dπ (A.43)

and therefore α f + (1 − α)y �∗ αg + (1 − α)x and thereby α f + (1 − α)y �αr+(1−α)x

αg + (1 − α)x. By monotonicity α f + (1 − α)x �αr+(1−α)x α f + (1 − α)y and hence

by transitivity α f + (1 − α)x �αr+(1−α)x αg + (1 − α)x. Hence, by RT, f �r g. The

contrapositive is that if g �r f then there exists at least one π ∈ Π such that the

expected utility of g under π is greater than/equal to the expected utility of f .
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Obs (2): Suppose that for some f ∈ F , f �r r. Let x, y ∈ P with x �r y. By RT α f + (1 −

α)x �αr+(1−α)x αr + (1− α)x for all α ∈ (0, 1). For any α ∈ (0, 1), by monotonicity,

for all β ∈ (0, 1), α f + (1−α)x �αr+(1−α)x α f + (1−α)[βx+ (1−β)y]. Moreover, for

α = 0, β = 0, αr + (1−α)x �αr+(1−α)x α f + (1−α)[βx + (1− β)y]; while for α = 1,

β = 1 the reverse is true. It follows by continuity, that there exist α, β ∈ (0, 1) such

that α f + (1−α)[βx + (1−β)y] ∼αr+(1−α)x αr + (1−α)x. Hence, by straightforward

algebra manipulations, for all π ∈ Π∫
u ◦ f dπ >

∫
u ◦ rdπ . (A.44)

Moreover, there exist α ∈ (0, 1) and x, y ∈ P with x �r y such that α f + (1 −

α)y ∼αr+(1−α)x αr + (1 − α)x.

Obs (3): Suppose that for some f ∈ F , f ∼r r. Then it follows from RT that for any

α ∈ (0, 1) and x ∈ P α f + (1 − α)x ∼αr+(1−α)x αr + (1 − α)x.

Obs (4): Suppose that for some f ∈ F , r �r f . Let x, y ∈ P with x �r y. Then there exists

a unique α ∈ (0, 1) such that

αmin
π∈Π

∫
[u ◦ f − u ◦ r]dπ + (1 − α)[u(x) − u(y)] = 0 . (A.45)

Then for all π ∈ Π,∫
u ◦ [α f + (1 − α)x]dπ ≥

∫
u ◦ [αr + (1 − α)y]dπ (A.46)

and there is equality for at least one π ∈ Π. The former implies α f +

(1 − α)x �αr+(1−α)y αr + (1 − α)y. By Obs (2), the latter then implies that

α f + (1 − α)x ∼αr+(1−α)y αr + (1 − α)y.

The next lemma gives a characterization of the preference relation �r as a completion

of �∗ for a particular reference-point r ∈ F .
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Lemma 4 For all r ∈ F and for all f , g ∈ F the following are equivalent:

1. f �r g

2. There exist α ∈ (0, 1) and x, y ∈ P such that α f + (1 − α)x �∗ αr + (1 − α)y and

not αg + (1 − α)x �∗ αr + (1 − α)y (denoted f �r g).

Proof. First suppose that f �r g. Clearly, α f +(1−α)x �αr+(1−α)y αr+(1−α)y. Also, by

inertia, αr+(1−α)y �αr+(1−α)y αg+(1−α)x. Hence, by transitivity, α f +(1−α)x �αr+(1−α)y

αg + (1 − α)x, and by WCI, α f + (1 − α)y �αr+(1−α)y αg + (1 − α)y. It then follows from

RT that f �r g. This proves one implication.

To prove the converse, suppose that f �r g for some f , g ∈ F . We consider three

cases. First, consider the case f �r r. By Obs (2) there exist α ∈ (0, 1) and x, y ∈ P with

x �r y such that α f + (1 − α)y ∼αr+(1−α)x αr + (1 − α)x. Since f �r g, RT implies that

α f +(1−α)x �αr+(1−α)x αg+(1−α)x. Hence, by WCI, α f +(1−α)y �αr+(1−α)y αg+(1−α)y.

By inertia we have α f + (1 − α)y �∗ αr + (1 − α)x and by transitivity we have that

αr + (1−α)x �αr+(1−α)y αg+ (1−α)y, hence not αg+ (1−α)y �∗ αr + (1−α)x. Therefore

f �r g.

Now consider the case f ∼r r. Then by RT there exists α ∈ (0, 1) and x ∈ P such

that α f + (1 − α)x ∼αr+(1−α)x αr + (1 − α)x. The remaining steps to show f �r g then

follow essentially as for the first case. Finally, suppose that r �r f . Then by Obs (4)

there exist α ∈ (0, 1) and x, y ∈ P such that α f + (1−α)x ∼αr+(1−α)y αr + (1−α)y. Again,

the remaining steps then parallel the first case, and we obtain for all cases that f �r g.

Hence, the equivalence follows.

The next Lemma provides a characterization of�r for a given reference point r ∈ F .

Lemma 5 Let (u,Π) represent �∗. Then for all r ∈ F and for all f , g ∈ F , the following
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statements are equivalent:

1. f �r g

2. minπ∈Π
∫

S
[u ◦ f − u ◦ r]dπ > minπ∈Π

∫
S
[u ◦ f − u ◦ r]dπ

Proof. Let f �r g. Then there exist x, y ∈ P and α ∈ (0, 1) such that α f + (1 − α)x �∗

αr + (1 − α)y and not αg + (1 − α)x �∗ αr + (1 − αr)y. Hence,

α

∫
S

u( f (s))dπ + (1 − α)u(x) ≥ α
∫

S
u(r(s))dπ + (1 − α)u(y) (A.47)

for all π ∈ Π, and there exists π̂ ∈ Π such that

α

∫
S

u(g(s))dπ̂ + (1 − α)u(x) < α
∫

S
u(r(s))dπ̂ + (1 − α)u(y) . (A.48)

Consequently, for all π ∈ Π,∫
S

[
u( f (s)) − u(r(s))

]
dπ ≥

1 − α
α

[
u(y) − u(x)

]
, (A.49)

and, for some π̂ ∈ Π,∫
S

[
u(g(s)) − u(r(s))

]
dπ <

1 − α
α

[
u(y) − u(x)

]
. (A.50)

It follows that

min
π∈Π

∫
S

[
u( f (s)) − u(r(s))

]
dπ ≥

1 − α
α

[
u(y) − u(x)

]
, (A.51)

and

min
π∈Π

∫
S

[
u(g(s)) − u(r(s))

]
dπ <

1 − α
α

[
u(y) − u(x)

]
. (A.52)

and, hence,

min
π∈Π

∫
S

[
u( f (s)) − u(r(s))

]
dπ > min

π∈Π

∫
S

[
u(g(s)) − u(r(s))

]
dπ. (A.53)
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Now, suppose that

min
π∈Π

∫
S

[
u ◦ f (s) − u ◦ r(s)

]
dπ > min

π∈Π

∫
S

[
u ◦ g(s) − u ◦ r(s)

]
dπ. (A.54)

Then, there exist x, y ∈ P and α ∈ (0, 1) such that

min
π∈Π

∫
S

[
u( f (s)) − u(r(s))

]
dπ ≥

1 − α
α

[
u(y) − u(x)

]
>

min
π∈Π

∫
S

[
u(g(s)) − u(r(s))

]
dπ. (A.55)

Hence, for all π ∈ Π,

α

∫
S

u( f (s))dπ + (1 − α)u(x) ≥ α
∫

S
u(r(s))dπ + (1 − α)u(y) , (A.56)

and for some π̂ ∈ Π,

α

∫
S

u(g(s))dπ̂ + (1 − α)u(x) < α
∫

S
u(r(s))dπ̂ + (1 − α)u(y) . (A.57)

Hence, there exist x, y ∈ P such that α f +(1−α)x �∗ αr+(1−α)y and not αg+(1−α)x �∗

αr + (1 − α)y, so f �r g. The required equivalence therefore follows.

Observe that �r is asymmetric and negatively transitive and that �r is therefore its

unique transitive completion. The preceding Lemma establishes that the unique tran-

sitive completion of �r is exactly given by the desired representation. This therefore

completes the proof of the representation for any given r ∈ F . Finally, observe that it

follows directly from EUP that (u,Π) in Lemma 3 are unique and independent of the

reference point, and hence in the RMEU representation derived above (u,Π) are inde-

pendent of the choice of r ∈ F . This therefore completes the proof.

Proposition 1. If r′ is crisp with respect to r, then r′ and r are interchangeable in the

RI axiom of �r, hence using either as the reference-point imposes the same structure

on the preference relation, so (1) implies (2). (2) implies (1) follows from observing

that if �r=�r′ then �r must satisfy RI with respect to r′, and hence r′ is by definition
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crisp with respect to r. (2) implies (3) follows by observing that the value of the RMEU

functional is 0 at r. For (3) implies (1) argue as follows. Suppose that �′ F × F is a

preference relation that is transitive, complete on P, non-trivial, continuous, monotonic

and satisfies independence. For any r ∈ F define the relation .r as in the proof of

Theorem 1. Let �r be the transitive completion of .r. Observe that from the proof

of Theorem 1 �′ has a unanimity representation via (Π, u) (Π unique, u unique up to

positive affine transformations) and �r has an RMEU representation with respect to the

same (Π, u). Moreover, the unambiguous preference relation defined by �r is �′. If

g �r r′ ⇔
∫

S
u(g(s))π(ds) ≥

∫
S

u(r′(s))π(ds) ∀ π ∈ Π, then g �r r′ if and only if g �∗ r′,

hence . can be define also in terms of r′ and this implies the same RMEU preference.

For the last statement of the Proposition observe that if u(r′(s)) = u(r(s))+b, the constant

−b is an ordinal transformation of the RMEU functional.

Proof of Proposition 2. Suppose that (�1
r )r∈F is a class of RMEU preference relations

satisfying RT and EUP and represented by (Π1, u1). Suppose that (�2
r )r∈F is another

class of RMEU preference relations satisfying RT and EUP and represented by (Π2, u2).

Denote the unambiguous preference relation of the class (�1
r )r∈F by �∗1 and note that this

preference relation has a unanimity representation in terms of (Π1, u1). Likewise, denote

the unambiguous preference relation of the class (�2
r )r∈F by �∗2.

First show that the following statements are equivalent:

1. The class (�1
r )r∈F is more ambiguity averse than the class (�2

r )r∈F .

2. For all f , g ∈ F , f �∗1 g⇒ f �∗2 g.

First show that (1) implies (2). Fix any f , g ∈ F with f �∗1 g. Then it follows that

f �1
g g. By (1) f �2

g g. Hence by Lemma 3 f �∗2 g. Now show that (2) implies (1). Fix

any r ∈ F and any f ∈ F such that f �1
r r. Then by Lemma 3 it follows that f �∗1 r. By
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(2) it follows that f �∗2 r, so f �2
r r. Since r and f were arbitrary, it follows that (1) and

(2) are equivalent.

By Proposition 6 in Ghirardato et al. (2004) (2) is equivalent to the condition that

u1 � u2 and Π1 ⊃ Π2. Hence, this establishes the first part of the Proposition. The second

part follows trivially from the first, and the fact that the von Neumann/Morgenstern

utility index in the SEU functional is unique only up to positive affine transformations.

I prove Proposition 3 before providing the proof for Theorem 2.

Proof of Proposition 3. Start with the first part of the proof which provides a rep-

resentation theorem for a preference relation �r for some r ∈ F . The proof that (2)

implies (1) follows as in the proof of Theorem 1. That u is onto implies unbounded-

ness follows from Maccheroni et al. (2006). To prove (1) implies (2), fix some r ∈ F

as a reference-point and first proceed as in the previous proof to establish a variational

representation, (u,Vr), of �r and a unanimity representation, (u,Π), for �∗r . Observe

again that (with an appropriate renormalization) the von-Neumann/Morgenstern index

u in both representations coincides. Moreover, Maccheroni et al. (2006) show that u is

onto.

Write u◦ f ≡ u◦g if u( f (s)) = u(g(s)) for all s ∈ S . Denote by Rr := {r′ ∈ F |u(r′) ≡

u(r) + kr′ for some kr′ ∈ R}. Note that Rr is a mixture space: Let r1, r2 ∈ Rr, then there

exist k1, k2 ∈ R such that u ◦ r1 ≡ u ◦ r + k1 and u ◦ r2 ≡ u ◦ r + k2. Let α ∈ [0, 1], then

u ◦ (αr1 + (1 − α)r2) ≡ αu ◦ r1 + (1 − α)u ◦ r2 (A.58)

≡ α(u ◦ r + k1) + (1 − α)(u ◦ r + k2) (A.59)

≡ u ◦ r + (αk1 + (1 − α)k2) (A.60)

Hence, there exists k3 ∈ R such that for r3 := αr1 + (1− α)r2 we have u ◦ r3 ≡ u ◦ r + k3.
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Now consider any f ∈ F . Since f is simple, u onto implies that there exist r̄, r ∈ Rr

such that r̄ �r f �r r. By continuity there exists α ∈ (0, 1) such that f ∼r αr̄ + (1 − α)r.

Since Rr is a mixture space, αr̄ + (1−α)r ∈ Rr. Hence, for all f ∈ F there exists r f ∈ Rr

such that f ∼r r f .

Now suppose that r′ ∈ Rr. Fix any α ∈ (0, 1), then it follows from RI and constant-

additivity of Vr (an implication of WCI) that

f �r g ⇔ α f + (1 − α)r �r αg + (1 − α)r (A.61)

⇔ Vr(αu ◦ f + (1 − α)u ◦ r) + (1 − α)kr′ ≥ Vr(αu ◦ g + (1 − α)u ◦ r) + (1 − α)kr′ (A.62)

⇔ Vr(αu ◦ f + (1 − α)[u ◦ r + kr′ ]) ≥ Vr(αu ◦ g + (1 − α)[u ◦ r + kr′ ]) (A.63)

⇔ Vr(αu ◦ f + (1 − α)u ◦ r′) ≥ Vr(αu ◦ g + (1 − α)u ◦ r′) (A.64)

⇔ α f + (1 − α)r′ �r αg + (1 − α)r′ (A.65)

Since α was arbitrary and r′ ∈ Rr was arbitrary, it follows that for all r′ ∈ Rr �r sat-

isfies r′-Independence with respect to r′. Since RI is the only axiom defined specifically

with respect to r, all properties that �r satisfies relative to r are also satisfied relative to

r′. In particular, inertia holds relative to any r′ ∈ F : f �r r′ if and only if f �∗r r′. This

leads immediately to the following analog of Lemma 4.

Lemma 6 For all r ∈ F and for all f , g ∈ F the following are equivalent:

1. f �r g

2. There exist r′ ∈ Rr such that f �∗r r′ and not g �∗r r′ (denoted f �r g with the

obvious abuse of notation).

Proof. Suppose f �r g. Then r f �r rg. Since f �r r f it follows by inertia that f �∗r r f .

Since r f �r g it follows immediately that not g �∗r r f Hence, (1) implies (2). Now
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suppose that there exists r′ ∈ Rr such that f �∗r r′ and not g �∗r r′. By inertia, not g �∗r r′

implies r′ �r g. Clearly, f �∗r r′ implies f �r r′. Hence, by transitivity, f �r g.

Finally, provide a characterization of�r as in Theorem 1.

Lemma 7 Let (u,Π) represent �∗r . Then for all f , g ∈ F , the following statements are

equivalent:

1. f �r g

2. minπ∈Π
∫

S
[u ◦ f − u ◦ r]dπ > minπ∈Π

∫
S
[u ◦ f − u ◦ r]dπ

Proof. Let f �r g. Then there exist r′ ∈ Rr such that f �∗r r′ and not g �∗r r′. Hence,∫
S

u( f (s))dπ ≥
∫

S
u(r′(s))dπ =

∫
S

u(r(s))dπ + kr′ (A.66)

for all π ∈ Π, and there exists π̂ ∈ Π such that∫
S

u(g(s))dπ̂ <
∫

S
u(r′(s))dπ̂ + kr′ . (A.67)

Consequently, for all π ∈ Π, ∫
S

[
u( f (s)) − u(r(s))

]
dπ ≥ kr′ , (A.68)

and, for some π̂ ∈ Π, ∫
S

[
u(g(s)) − u(r(s))

]
dπ < kr′ . (A.69)

It follows that

min
π∈Π

∫
S

[
u( f (s)) − u(r(s))

]
dπ ≥ kr′ , (A.70)

and

min
π∈Π

∫
S

[
u(g(s)) − u(r(s))

]
dπ < kr′ . (A.71)
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and, hence,

min
π∈Π

∫
S

[
u( f (s)) − u(r(s))

]
dπ > min

π∈Π

∫
S

[
u(g(s)) − u(r(s))

]
dπ . (A.72)

Now, suppose that

min
π∈Π

∫
S

[
u ◦ f (s) − u ◦ r(s)

]
dπ > min

π∈Π

∫
S

[
u ◦ g(s) − u ◦ r(s)

]
dπ. (A.73)

Then, there exist r′ ∈ Rr such that

min
π∈Π

∫
S

[
u( f (s)) − u(r(s))

]
dπ ≥ kr′ > min

π∈Π

∫
S

[
u(g(s)) − u(r(s))

]
dπ. (A.74)

Hence, for all π ∈ Π,∫
S

u( f (s))dπ ≥
∫

S
u(r(s))dπ + kr′ =

∫
S

u(r′(s))dπ , (A.75)

and for some π̂ ∈ Π,

α

∫
S

u(g(s))dπ̂ <
∫

S
u(r(s))dπ̂ + kr′ =

∫
S

u(r′(s))dπ̂ . (A.76)

Hence, there exist r′ ∈ Rr such that f �∗r r′ and not g �∗r r′, so f �r g. The required

equivalence therefore follows.

By the same observations at the end of the proof of Theorem 1, this therefore com-

pletes the proof of the first part of the theorem. It remains to show that every preference

relation in the class (�r)r∈F has an RMEU representation via (ur,Πr), then the class

satisfies RT if and only if for all r, r′ ∈ F (1) ur � ur′ and (2) Πr = Πr′ .

First show that if the class satisfies RT, then (1) holds. For any r ∈ F , x, y ∈ P we

have that x �r y if and only if

min
π∈Πr

∫
S

ur(x(s)) − ur(r(s))dπ ≥ min
π∈Πr

∫
S

ur(y(s)) − ur(r(s))dπ (A.77)

⇔ ur(x) −max
π∈Πr

∫
S

ur(r(s))dπ ≥ ur(y) −max
π∈Πr

∫
S

ur(r(s))dπ (A.78)

⇔ ur(x) ≥ ur(y) (A.79)
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where ur(x) denotes ur(x(s)) for any s ∈ S (which is well-defined since x, y ∈ P). Now

let r, r′ ∈ F , x, y ∈ F , and denote (1/2)r + (1/2)r′ =: r̄. Then

1
2

x +
1
2

r′ �r̄
1
2

y +
1
2

r′ (A.80)

⇔ min
π∈Πr̄

∫
S

[
1
2

ur̄(x) +
1
2

ur̄(r′(s)) −
(
1
2

ur̄(r(s)) +
1
2

ur̄′(r(s))
)]

dπ ≥ (A.81)

min
π∈Πr̄

∫
S

[
1
2

ur̄(y) +
1
2

ur̄(r′(s)) −
(
1
2

ur̄(r(s)) +
1
2

ur̄′(r(s))
)]

dπ (A.82)

⇔ ur̄(x) −max
π∈Πr̄

∫
S

ur̄(r(s))dπ ≥ ur̄(y) −max
π∈Πr̄

∫
S

ur̄(r(s))dπ (A.83)

⇔ ur̄(x) ≥ ur̄(y) (A.84)

Hence, for any r, r′ ∈ F (with (1/2)r + (1/2)r′ =: r̄) and for any x, y ∈ P we have that

ur(x) ≥ ur(y) iff x �r y. By RT this is equivalent to (1/2)x + (1/2)r′ �r̄ (1/2)y + (1/2)r′,

which is equivalent to ur̄(x) ≥ ur̄(y), which in turn is equivalent to (1/2)x + (1/2)r �r̄

(1/2)y + (1/2)r. By RT, the latter is equivalent to x �r′ y, which is equivalent to ur′(x) ≥

ur′(y). Since the representation of preferences on P via ur is unique up to positive affine

transformations given the reference-point r, and the representation of preferences on

P via ur′ is unique up to positive affine transformations given the reference-point r′, it

follows that ur � ur′ .

Next show that if the class satisfies RT (2) also holds. Let r, r′ ∈ F and denote by

r̄ := (1/2)r + (1/2)r′. Let �r, �r′ and �r̄ be represented by (ur,Πr), (ur′ ,Πr′) and (ur̄,Πr̄),

respectively. By (1) it is without loss of generality to assume ur = ur′ = ur̄ = u. We have

by the first part of the proposition that for all f , g ∈ F

f �r g ⇔ min
π∈Πr

∫
S

u( f (s)) − u(r(s))dπ ≥ min
π∈Πr

∫
S

u(g(s)) − u(r(s))dπ (A.85)

By RT f �r g iff (1/2) f + (1/2)r′ �r̄ (1/2)g + (1/2)r′, and by the first part of the
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proposition this is equivalent to

min
π∈Πr̄

∫
S

[(
1
2

u( f (s)) +
1
2

u(r′(s))
)
−

(
1
2

u(r(s)) +
1
2

u(r′(s))
)]

dπ ≥ (A.86)

min
π∈Πr̄

∫
S

[(
1
2

u(g(s)) +
1
2

u(r′(s))
)
−

(
1
2

u(r(s)) +
1
2

u(r′(s))
)]

dπ (A.87)

⇔ min
π∈Πr̄

∫
S

u( f (s)) − u(r(s))dπ ≥ min
π∈Πr̄

∫
S

u(g(s)) − u(r(s))dπ . (A.88)

Hence, f �r g iff (A.88) holds. Hence, (u,Πr̄) is an alternative representation of �r. It

follows by the uniqueness of Πr in the first part of the theorem that Πr = Πr̄. Likewise,

we can show that Πr′ = Πr̄, so Πr = Πr′ .

Finally, show that if (1) and (2) hold, then the class satisfies RT. Suppose (1) and

(2) hold, then the class of preference relations (�r)r∈F can be represented by (u,Π). Let

r ∈ F , f , g, h ∈ F and α ∈ (0, 1). Then

f �r g (A.89)

⇔ min
π∈Π

∫
S

u( f (s)) − u(r(s))dπ ≥ min
π∈Π

∫
S

u(g(s)) − u(r(s))dπ (A.90)

⇔ min
π∈Π

∫
S
αu( f (s)) − αu(r(s))dπ ≥ min

π∈Π

∫
S
αu(g(s)) − αu(r(s))dπ (A.91)

⇔ min
π∈Π

∫
S

[
(αu( f (s)) + (1 − α)u(h(s))) − (αu(r(s)) + (1 − α)u(h(s)))

]
dπ ≥ (A.92)

min
π∈Π

∫
S

[
(αu(g(s)) + (1 − α)u(h(s))) − (αu(r(s)) + (1 − α)u(h(s)))

]
dπ (A.93)

⇔ α f + (1 − α)h �αr+(1−α)h αg + (1 − α)h . (A.94)

Since, r, r′, f , g, h, α were arbitrary, (1) and (2) therefore imply that the class of prefer-

ences satisfies RT. This completes the proof.

Proof of Theorem 2. Start with the first part of the Theorem which provides a rep-

resentation for a preference relation for a given r ∈ F . To show that (1) implies (2)

assume that �r satisfies Axioms 1-4, Axiom 7, Axiom 12 and Axiom 13 with respect to
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r ∈ F . Following the first step in the proof of Lemma 28 in Maccheroni et al. (2006)

there exists an onto, mixture-linear von Neumann/Morgenstern utility index u : P → R

such that preferences on P are represented by u. Define Rr as in the proof of Proposition

3 and note that, by unboundedness, for all f ∈ F there exists r f ∈ Rr such that f ∼r r f .

Moreover, by unboundedness, there exists xr
f ∈ P such that u(xr

f ) = kr f . Now define

a function U : F → R by U( f ) = u(xr
f ) for all f ∈ F . x f

r is not unique, but u(x f
r ) is

unique by monotonicity, hence U is well-defined. Now observe that f �r g if and only if

r f �r rg by transitivity. Since, by definition u◦r f ≡ u◦r +u(xr
f ) and u◦rg ≡ u◦r +u(xr

g),

it follows from monotonicity that r f �r rg if and only if u(xr
f ) ≥ u(xr

g). Hence, U

represents �r.

By unboundedness, {φ ∈ B0(Σ,R)|∃ f ∈ F s.t. φ ≡ u ◦ f − u ◦ r} = B0(Σ,R). Hence,

define a functional I : B0(Σ,R) → R by I(u( f ) − u(r)) = U( f ) for all f ∈ F . Observe

three properties of this functional.

1. If 1S denotes the indicator function on S and k ∈ R, by unboundedness there exists

r′ ∈ Rr such that u ◦ r′ − u ◦ r ≡ k. Hence, I(k1S ) = I(u ◦ r′ − u ◦ r) = U(r′) = k.

2. Suppose φ, γ ∈ B0(Σ,R), then there exist f , g ∈ F such that φ ≡ u ◦ f − u ◦ r

and γ ≡ u ◦ g − u ◦ r. Now suppose that φ and γ are pairwise comonotonic. Then

there do not exist states s and s′ such that φ(s) > φ(s′) and γ(s′) > γ(s). Hence,

there do not exist states s and s′ such that u( f (s)) − u(r(s)) > u( f (s′)) − u(r(s′))

and u(g(s′)) − u(r(s′)) > u(g(s)) − u(r(s)), so there do not exist states s and s′

such that 0.5u( f (s)) + 0.5u(r(s′)) > 0.5u( f (s′)) + 0.5u(r(s)) and 0.5u(g(s′)) +

0.5u(r(s)) > 0.5u(g(s)) + 0.5u(r(s′)). It follows that f and g are r-comonotonic.

Now suppose that there exist pairwise comonotonic φ f , φg, φh ∈ B0(Σ,R) with the

obvious corresponding f , g, h ∈ F . Suppose α ∈ (0, 1) and I(φ f ) > I(φg). Then

I(u ◦ f − u ◦ r) > I(u ◦ g − u ◦ r), which implies U( f ) > U(g) and therefore f �r
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g. Since f , g and h are pairwise r-comonotonic, r-comonotonic independence

implies that α f + (1 − α)h �r αg + (1 − α)h, which implies U(α f + (1 − α)h) >

U(αg+(1−α)h) and therefore I(u◦[α f +(1−α)h]−u◦r) > I(u◦[αg+(1−α)h]−u◦).

This is equivalent to I(α[u ◦ f − u ◦ (r)] + (1 − α)[u ◦ h − u ◦ r]) > I(α[u ◦ g − u ◦

(r)] + (1 − α)[u ◦ h − u ◦ r]). Hence, I(αφ f + (1 − α)φh) > I(αφg + (1 − α)φh).

3. Finally, suppose that φ f ≥ φg. Then u( f (s)) − u(r(s)) ≥ u(g(s)) − u(r(s)), and

therefore u( f (s)) ≥ u(g(s)), for all s ∈ S . Hence, it follows from monotonicity

that f �r g, hence U( f ) ≥ U(g), so I(u ◦ f − u ◦ r) ≥ I(u ◦ g − u ◦ r). As a result,

I(φ f ) ≥ I(φg).

It follows from Corollary 3 and the remark following it in Schmeidler (1986) that there

exists a unique capacity, ν, such that for all φ f and φg in B0(Σ,R), I(φ f ) ≥ I(φg) if and

only if
∮
φ f dν ≥

∮
φgdν. Hence,

f �r g ⇔
∮

S
u( f (s)) − u(r(s))dν ≥

∮
S

u(g(s)) − u(r(s))dν (A.95)

The proof that (2) implies (1) follows directly from the proof in Schmeidler (1986),

using that φ f and φg pairwise comonotonic implies that f and g are pairwise r-

comonotonic. The uniqueness properties of u follows from Maccheroni et al. (2006),

and the uniqueness of ν follows directly from the proof of Theorem 1 in Schmeidler

(1989). Likewise the proof that ν is convex if and only if �r satisfies UA is analogous

to the proof in Schmeidler (1989). This therefore completes the proof of the first part of

the theorem.

It remains to show that if every preference relation in the class (�r)r∈F has an RCEU

representation via (ur, νr), then the class satisfies RT if and only if for all r, r′ ∈ F (1)

ur � ur′ and (2) νr = νr′ . Suppose first that the class of preference relations satisfies RT

and let r, r′ ∈ F . Using constant additivity of the Choquet integral the proof that ur � ur′
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is analogous to the proof that RT implies (1) in the proof of Proposition 3. To show that

RT implies (2) as well, let r, r′ ∈ F and denote by r̄ := (1/2)r + (1/2)r′. Let �r, �r′ and

�r̄ be represented by (ur, νr), (ur′ , νr′) and (ur̄, νr̄), respectively. By (1) it is without loss

of generality to assume ur = ur′ = ur̄ = u. We have by the first part of the proposition

that for all f , g ∈ F

f �r g ⇔
∮

S
u( f (s)) − u(r(s))dνr ≥

∮
S

u(g(s)) − u(r(s))dνr (A.96)

By RT f �r g iff (1/2) f + (1/2)r′ �r̄ (1/2)g + (1/2)r′, and by the first part of the

proposition this is equivalent to∮
S

[(
1
2

u( f (s)) +
1
2

u(r′(s))
)
−

(
1
2

u(r(s)) +
1
2

u(r′(s))
)]

dνr̄ ≥ (A.97)∮
S

[(
1
2

u(g(s)) +
1
2

u(r′(s))
)
−

(
1
2

u(r(s)) +
1
2

u(r′(s))
)]

dνr̄ (A.98)

⇔

∮
S

u( f (s)) − u(r(s))dνr̄ ≥

∮
S

u(g(s)) − u(r(s))dνr̄ . (A.99)

Hence, f �r g iff (A.99) holds. Hence, (u, νr̄) is an alternative representation of �r. It

follows by the uniqueness of νr in the first part of the theorem that νr = νr̄. Likewise,

we can show that νr′ = νr̄, so νr = νr′ .

Finally, show that if (1) and (2) hold, then the class satisfies RT. Suppose (1) and

(2) hold, then the class of preference relations (�r)r∈F can be represented by (u, ν). Let

r ∈ F , f , g, h ∈ F and α ∈ (0, 1). Then

f �r g (A.100)

⇔

∮
S

u( f (s)) − u(r(s))dν ≥

∮
S

u(g(s)) − u(r(s))dν (A.101)

⇔

∮
S
αu( f (s)) − αu(r(s))dν ≥

∮
S
αu(g(s)) − αu(r(s))dν (A.102)

⇔

∮
S

[
(αu( f (s)) + (1 − α)u(h(s))) − (αu(r(s)) + (1 − α)u(h(s)))

]
dν ≥∮

S

[
(αu(g(s)) + (1 − α)u(h(s))) − (αu(r(s)) + (1 − α)u(h(s)))

]
dν (A.103)
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⇔ α f + (1 − α)h �αr+(1−α)h αg + (1 − α)h . (A.104)

Since, r, r′, f , g, h, α were arbitrary, (1) and (2) therefore imply that the class of prefer-

ences satisfies RT. This completes the proof.

A.2 Proofs of results in Chapter 3

A.2.1 Superdifferential

The proofs use a characterization of the superdifferential of an RMEU preference, de-

rived from the relation to the variational preference model in Maccheroni et al. (2006).

Let I : B0(Σ) → R, then given any f ∈ B0(Σ) the directional derivative of V at f is the

functional I′( f , ·) : B0(Σ)→ R defined by

I′( f , h) = lim
t↓0

V( f + ht) − V( f )
t

∀h ∈ B0(Σ) . (A.105)

The superdifferential of a concave functional I : B0 → R at f ∈ B0(Σ) is the set ∂I( f ) of

all linear and supnorm continuous functionals L : B0(Σ)→ R such that

I′( f , h) ≤ L(h) ∀h ∈ B0(Σ) . (A.106)

Every L ∈ ∂I( f ) is a supergradient of I at f .

Lemma 8 Let V : F → R be the RMEU representation defined by Eq. 2.11. For all

f ∈ F ,

∂V( f ) =

{
u′( f ) dm

∣∣∣ m ∈ arg min
π∈Π

∫
S

(
u
(
f (s)

)
− u

(
r(s)

)
π(ds)

)}
. (A.107)

Proof. The RMEU preference relation is a variational preference. As a result, the proof

follows directly from Maccheroni et al. (2006).
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When S is finite every supergradient is an element of RS . The normalized superdif-

ferential of I at f consists of all supergradients L of I at f renormalized so that L ∈ ∆(S ).

For a concave function the normalized superdifferential exists and is a convex, bounded

set at every f in the interior of the domain of I. Denote the normalized superdiffer-

ential by ∂̂I. Corollary 7 follows immediately from the general characterization of the

superdifferential for RMEU preferences.

Corollary 7 Suppose that there is a finite number of states, s = 1, ...., S , then the nor-

malized superdifferential of V at f is

∂̂V( f ) =


 π̂1u′( f (1))∑S

s=1 π̂su′( f (s))
, ...,

π̂S u′( f (S ))∑S
s=1 π̂su′( f (s))

 ∣∣∣ π̂ ∈ arg min
π∈Π

S∑
s=1

πs
(
u
(
f (s)

)
− u

(
r(s)

)) . (A.108)

A.2.2 Characterization of a competitive equilibrium

I first provide an elementary characterization of a competitive equilibrium of the econ-

omy (ei,Πi, ui)i∈I . In the following, ∂Vi(x) denotes the supperdifferential of Vi at x for

all x ∈ RS
+ and all i ∈ I, and ∂̂Vi(x) denotes the normalized superdifferential x for all

x ∈ RS
+ and all i ∈ I.

Theorem 6 (Characterization of CE) A price and allocation (p∗, x∗) ∈ ∆(S )×RIS
+ is a

competitive equilibrium of (ei,Πi, ui)i∈I if and only if (1) (p∗, x∗) >> 0, (2) p∗ ∈ ∂̂Vi

(
xi∗

)
for all i ∈ I, (3) p∗xi∗ = p∗ei∗ for all i ∈ I, and (4)

∑
i∈I xi∗

s =
∑

i∈I ei
s for all s ∈ S .

Proof. Suppose that (p∗, x∗) is a competitive equilibrium. p∗ >> 0 follows from strongly

monotone preferences by standard arguments. Since ei >> 0 for all i ∈ I and prefer-

ences are strongly monotone, it follows from p∗ >> 0 and standard arguments that

p∗xi∗ = p∗ei for all i ∈ I. Now suppose that xi∗
s = 0 for some i ∈ I and some s ∈ S . By
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p∗xi∗ = p∗ei there exists xi∗
t > 0. Consider the alternative allocation xi with xi

s = ε/p∗s

for some ε > 0, xi
t − ε/p∗t , and xi

k = xi∗
k for all k , s, t. For ε > 0 sufficiently small

xi
t > 0 and p∗xi = p∗ei, hence xi is feasible. Moreover, by the Inada condition on ui,

for all π ∈ Πi there exists ε > 0 sufficiently small such that Eπ
ui

(xi) > Eπ
ui

(xi∗) (where

Eπ
ui

(x) denotes the expected utility of x given Bernoulli utility ui and prior π). Hence,

xi∗ can not be optimal for consumer i at price p∗. It follows that x∗ >> 0. Condition

(4) is a market clearing condition satisfied by definition of a competitive equilibrium.

Finally, since (p∗, x∗) is a competitive equilibrium, xi∗ is optimal on {x|p∗x ≤ p∗ei} for

each consumer i ∈ I. Since Vi is strictly concave, xi∗ >> 0 and pxi∗ = pei it follows

from the generalized Kuhn-Tucker first order conditions that there exists λ > 0 such that

0 ∈ ∂Vi(xi∗) − λp∗; hence λp∗ ∈ ∂Vi(xi∗). Since p∗ ∈ ∆(S )++, the latter condition is

equivalent to p∗ ∈ ∂̂Vi(xi∗) so condition (2) is satisfied.

Now suppose that conditions (1)-(4) are satisfied for some (p∗, x∗) ∈ ∆(S ) × RIS
+ .

By condition (4) market clearing is satisfied. By conditions (1) and (3) all allocations

are feasible for each consumer i ∈ I. To show that xi∗ is optimal in the budget of

any consumer i ∈ I, suppose that there exists an alternative allocation xi ≥ 0 with

pxi ≤ pei. By condition (2) there exists λ > 0 such that λp∗ ∈ ∂Vi(xi∗) and hence

Vi(xi) − V(xi∗) ≤ λp∗(xi − xi∗). Since pxi∗ = pei, it follows that λp∗(xi − xi∗) ≤ 0, hence

Vi(xi) ≤ V(xi∗), so xi∗ is optimal on {x|p∗x ≤ p∗ei} for each i ∈ I. Hence, (p∗, x∗) is a

competitive equilibrium.

A.2.3 Proofs

Proof of Theorem 3. Start with (1). By Theorem 6 (x, p) is an equilibrium of the

economy if and only if (x, p) >> 0, pxi = pei, p ∈ ∂̂Vi(xi) for all i = 1, ..., I, and
∑

i xi =
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∑
i ei. By Corollary 7, if

⋂
i Πi(ei) , ∅ there exists p∗ ∈

⋂
i ∂̂Vi(ei) and hence (p∗, e) is

a competitive equilibrium. Now suppose that (x′, p′) is also a competitive equilibrium,

but with trade. By the strict convexity of preferences xi′ �i ei for all i = 1, ..., I for whom

xi′ , ei. Hence, p∗xi′ > p∗ei′ and therefore p∗(
∑

i(xi′ − ei)) > 0, a contradiction. As a

result,
⋂

i Πi(ei) , ∅ implies that ei is the unique competitive equilibrium allocation. To

show the converse, suppose that
⋂

i ∂Πi(ei) = ∅. Then by Corollary 7 there does not

exist a p ∈
⋂
∂̂Vi(ei); hence by Theorem 6 the initial endowment ei is not an equilibrium

allocation.

Next show (2). Suppose that |
⋂

i Πi(ei)| > 1. Then there exist p1, p2 ∈
⋂

i Πi(ei) with

p1 , p2. Observe that Πi convex implies Πi(ei) convex, and hence
⋂

i Πi(ei) convex. As

a result, αp1 + (1 − α)p2 =: pα ∈
⋂

i Πi(ei) for all α ∈ [0, 1]. By the same argument as

above, (pα, e) is a competitive equilibrium for all α ∈ (0, 1) and, hence, there is a market

collapse. To show the converse, observe that if |
⋂

i Πi(ei)| ≤ 1, then either |
⋂

i Πi(ei)| = 1

or |
⋂

i Πi(ei)| = 0. From (1) we know that |
⋂

i Πi(ei)| = 0 implies that there is trade in

equilibrium (hence no market collapse). From (2) we conclude the existence of a unique

p∗ ∈
⋂

i Πi(ei) and, hence, the existence of a unique no-trade equilibrium (p∗, e). As a

result, there is no market collapse.

Finally show (3). Suppose that int
⋂

i Πi(ei) , ∅ and let p∗ ∈ int
⋂

i Πi(ei). Since

ui ∈ C1, for all ε > 0 there exists δi > 0 such that |ei′ − ei| < δi implies

∣∣∣∣  p∗1u′i(e
i′
1 )∑

s p∗u′i(ei′
s )
, ...,

p∗S u′i(e
i′
S )∑

s p∗u′i(ei′
s )

 − (
p∗1u′i(e

i
1)∑

s p∗su
′
i(ei

s)
, ...,

p∗S u′i(e
i
S )∑

s p∗su
′
i(ei

s)

) ∣∣∣∣ < ε

2
. (A.109)

Moreover, by linearity, for all ε > 0 there exists δ′ > 0 such that |p′ − p∗| < δ′ implies,

∣∣∣∣ ( p∗1u′i(e
i
1)∑

s p∗u′i(ei
s)
, ...,

p′S u′i(e
i
S )∑

s p∗su
′
i(ei

s)

)
−

(
p′1u′i(e

i
1)∑

s p′su
′
i(ei

s)
, ...,

p′S u′i(e
i
S )∑

s p′su
′
i(ei

s)

) ∣∣∣∣ < ε

2
. (A.110)
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Let δ = mini{δi}, then |ei − ei′ | < δ for all i = 1, ..., I and |p′ − p∗| < δ′ implies that

∣∣∣∣ ( p∗1u′i(e
i
1)∑

s p∗u′i(ei
s)
, ...,

p∗S u′i(e
i
S )∑

s p∗su
′
i(ei

s)

)
−

 p′1u′i(e
i′
1 )∑

s p′su
′
i(ei′

s )
, ...,

p′S u′i(e
i′
S )∑

s p′su
′
i(ei′

s )

 ∣∣∣∣
≤

∣∣∣∣  p∗1u′i(e
i′
1 )∑

s p∗u′i(ei′
s )
, ...,

p∗S u′i(e
i′
S )∑

s p∗u′i(ei′
s )

 − (
p∗1u′i(e

i
1)∑

s p∗su
′
i(ei

s)
, ...,

p∗S u′i(e
i
S )∑

s p∗su
′
i(ei

s)

) ∣∣∣∣ (A.111)

+
∣∣∣∣ ( p∗1u′i(e

i
1)∑

s p∗u′i(ei
s)
, ...,

p′S u′i(e
i
S )∑

s p∗su
′
i(ei

s)

)
−

(
p′1u′i(e

i
1)∑

s p′su
′
i(ei

s)
, ...,

p′S u′i(e
i
S )∑

s p′su
′
i(ei

s)

) ∣∣∣∣ (A.112)

≤
ε

2
+
ε

2
= ε , (A.113)

for all i = 1, ..., I. Since, p∗ ∈ int
⋂

i Πi(ei) there exists some δ̄ > 0 such that |p′′− p∗| < δ̄

implies p′′ ∈ int
⋂

i Πi(ei). Hence, if e′ is in the open ball centered at e with radius δ,

Bδ(e) and 0 < |p′ − p∗| < min{δ′, δ̄}, then p′ ∈ int
⋂

i Πi(ei′). It follows by part (2) that

there is a market collapse for all e′ ∈ Bδ(e). This concludes the proof.

Proof of Corollary 4. Consider first the economy (ei, π̂)i∈I′ . It follows by standard

arguments that this economy has a unique competitive equilibrium with equilibrium

price p∗ satisfying
p∗s
p∗t

=
π̂seI

′

t

π̂teI
′

s
. (A.114)

It follows immediately that in any non-participation equilibrium p∗ must be the equilib-

rium price. Moreover, it follows directly from Corollary 7 that any investors i ∈ I∗ does

not trade at the price p∗ if and only if p∗ ∈ Πi(ei). Hence, there exists a non-participation

equilibrium if and only if p∗ ∈
⋂

i∈I∗ Πi(ei). Hence, Condition 3.12 is necessary and suf-

ficient for the existence of a non-participation equilibrium.

Proof of Theorem 4. First note that, by Corollary 7, at any full-insurance allocation xi
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the normalized superdifferential of investor i is given by

∂̂Vi(xi) =


 π̂1u′(xi)∑S

s=1 π̂su′(xi)
, ...,

π̂S u′(xi)∑S
s=1 π̂su′(xi)

 ∣∣∣ π̂ ∈ arg min
π∈Πi

S∑
s=1

πs

(
u
(
xi) − u

(
ei(s)

)) (A.115)

=

π̂∣∣∣ π̂ ∈ arg min
π∈Πi

S∑
s=1

πs

(
u
(
xi) − u

(
ei(s)

)) (A.116)

=

π̂∣∣∣ π̂ ∈ arg max
π∈Πi

S∑
s=1

πsu
(
ei(s)

) (A.117)

= Π̂i(ei) (A.118)

Now suppose that (p, x) ∈ ∆(S ) × RIS
+ is a full-insurance equilibrium allocation. Then

by Theorem 6 p ∈ ∂̂Vi(xi) for all i ∈ I; hence,
⋂

i∈I Π̂i(ei) , ∅. To show the converse,

suppose that
⋂

i∈I Π̂i(ei) , ∅ and, in particular, let p∗ ∈
⋂

i∈I Π̂i(ei). Then p∗ ∈ ∆(S )++.

Consider the (SEU) economy with common prior p∗, (p∗, ui, ei)i∈I. By standard argu-

ments there exists a full insurance allocation x∗ >> 0 such that (p∗, x∗) is a compet-

itive equilibrium of the economy (p∗, ui, ei)i∈I. Now observe that (1) (p∗, x∗) >> 0,

(2) p∗ ∈ Π̂i(ei) = ∂̂Vi

(
xi∗

)
for all i ∈ I, (3) p∗xi∗ = p∗ei∗ for all i ∈ I, and (4)∑

i∈I xi∗
s =

∑
i∈I ei

s for all s ∈ S . Conditions (3) and (4) follow from the fact that x∗ is an

equilibrium allocation in (p∗, ui, ei)i∈I. Hence, by Theorem 6, (p∗, x∗) is a full-insurance,

competitive equilibrium allocation.

Proof of Corollary 5. From Theorem 4 there exists a full-insurance equilibrium if and

only if
⋂

i∈I Π̂i(ei) , ∅. Now suppose that for all i ∈ I ei
1 = ei

2. Then Π̂i(ei) = Π1 for all i,

and hence it follows from Billot et al. (2000) that there exists a full insurance equilibrium

if (and only if) there is weak agreement about the likelihood of states. To prove the

converse, consider the contrapositive and suppose that e is not a full-insurance insurance

allocation. For sake of contradiction suppose that (p, x) is a competitive equilibrium of

the economy (ei, ui,Πi)i∈I in which x is a full-insurance allocation. Since e is not a full-

insurance allocation, it follows that for at least one j ∈ I e j
1 < x j

1, and hence e j
2 > x j

2.

As a result, (by the market clearing condition) there must be at least one k ∈ I for

whom ek
1 > xk

1 and ek
2 < xk

2. Let π∗ ∈ int
⋂

i∈IΠi (such a distribution exists by the
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weak agreement assumption). It follows from u j(x j
1) − u j(e

j
1) > 0 > u(x j

2) − u(e j
2) that

the argument π(x j) that solves minπ∈Π j π1(u j(x j
1) − u j(e

j
1)) + π2(u(x j

2) − u(e j
2)) is unique

and π1(x j) < π∗1. Likewise, the argument π(xk) that solves minπ∈Πk π1(u j(xk
1) − u j(ek

1)) +

π2(u(xk
2) − u(ek

2)) is unique and π1(xk) > π∗1. Hence,
⋂

i∈I Π̂i(ei) = ∅ and by Theorem

6 there is no full-insurance equilibrium allocation; a contradiction. It follows that if e

is not a full-insurance allocation then there can be no equilibrium allocation with full-

insurance.

Proof of Corollary 6. It is straightforward to show that given the assumption on priors

max
π∈Πi(π∗,ε)

∑
s

πsui

(
ei

s

)
= (1 − ε)

∑
S

π∗sui

(
ei

s

)
+ ε max

s∈S

{
u
(
ei

s

)}
(A.119)

for all i ∈ I (see, e.g., Epstein and Schneider, 2003). Given the particular endowment

distribution e, define for each investor i S i(ei) := arg maxs∈S

{
u
(
ei

s

)}
. Then for all i ∈ I

Π̂i(ei) =
{
π ∈ ∆(S )

∣∣∣ πs = (1 − ε)π∗s ∀ s ∈ S − S i(ei) , (A.120)

πt = γtε + (1 − ε)π∗t ∀ t ∈ S i(ei) for some γ ∈ ∆(S i(ei))
}
. (A.121)

Now suppose that for all i ∈ I and for all s, t ∈ S , ei
s = ei

t. Then S i(ei) = S for all i ∈ S

and therefore

Π̂i(ei) =
{
π ∈ ∆(S )

∣∣∣ πt = γt + (1 − ε)π∗t ∀ t ∈ S i(ei) for some γ ∈ ∆(S )
}
. (A.122)

In particular, π∗ ∈ Πi(ei) for all i ∈ I. Hence, by Theorem 4 there exists a full-insurance

equilibrium.

To show the converse, suppose that there exists some investor h for whom eh
t > eh

k

for two states t, k ∈ S . It then follows that for this investor S h(eh) , S . Moreover, by

Assumption 2, for every state s′ ∈ S h(eh) there exists another investor j , h for whom

s′ < S j(e j) (otherwise
∑

i ei
t >

∑
i ei

s′). Now suppose for sake of contradiction that there

exists p∗ ∈
⋂

i Π̂i(ei). From the previous argument we have that p∗s′ = (1 − ε)π∗s′ for all
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s′ ∈ S h(eh). However, by (A.120)
∑

s′∈S h(eh) p∗s′ = (1− ε)
∑

s′∈S h(eh) π
∗
s′ + ε; a contradiction

for all ε > 0. Hence,
⋂

i Π̂i(ei) = ∅ and by Theorem 4 there does not exist a full-

insurance equilibrium. Since, this is the contrapositive, it follows that existence of a

full-insurance equilibrium implies that e is a full insurance allocation.

A.3 Proofs of results in Chapter 4

Proof of Theorem 5. To prove (1) implies (2), assume that the collection
(
�r

t,ω

)
(t,ω)∈T×Ω

satisfies CP, RMEU, RP, FS, DC, BW and IMP, and that the collection
((
�r

t,ω

)
(t,ω)∈T×Ω

)
r∈R

satisfies EUP and RT. For each r ∈ F , identify for each f ∈ F a u( f )−u(r) = ϑr ∈ B0(Σ).

Define the relation �r on B0(Σ) such that f �r g if and only ϑ f �r ϑg. Note that �r

satisfies Axioms A1-A6 in Gilboa and Schmeidler (1989) (just observe that the RMEU

representation in Theorem 1 is the unique superadditive, homogeneous of degree one,

monotonic and constant-additive functional I : B0(Σ)→ R such that f �r g iff and only

if I(u ◦ f − u ◦ r) ≥ I(u ◦ g− u ◦ r)). Since B0(Σ) is a norm dense subspace of B(Σ) (with

respect to the sup-norm), there exists a unique continuous extension of I to B(Σ) that

is also super-additive, homogeneous of degree one, monotonic and constant-additive

(Lemma 3.4 in Gilboa and Schmeidler (1989)). Hence, using BW as in Proposition 4.1

of Gilboa and Schmeidler (1989), define the extension of �r (also denoted �r) from

B0(Σ) to B(Σ) by ϑ f �r ϑg if and only if I(u( f ) − u(r)) ≥ I(u(g) − u(r)). Then �r

satisfies Axioms A1-A6 in Gilboa and Schmeidler (1989) and �r on B(Σ) is therefore

the unique monotonic extension of �r on B0(Σ) (Gilboa and Schmeidler, 1989, see

also Epstein and Schneider (2003)). It follows that for any r ∈ F , �r
t,s has an RMEU

representation at every (t, s) ∈ T × S .

Now consider the case r ∈ P∞. For r constant, �r
t,s satisfies the Axioms in Epstein
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and Schneider (2003) at every (t, s) ∈ T × S . As a result, Theorem B.1 in Epstein

and Schneider (2003) implies that
(
�r

t,s

)
(t,s)∈T×S

has a recursive multiple priors repre-

sentation, Vr
t ( f , s) = minm∈Πt(s)

∫ ∑
τ≥t β

τ−tu( ft)dm with a weak*-closed, convex and Gt-

rectangular set of priors Π, with all measures in Π having full local support; a 0 < β < 1

and a mixture-linear, non-constant u : P → R, where maxP u and minP u exist. Denote

the implied (t, s) unambiguous preference relations �∗t,s. It is straightforward to show that

�∗t,s inherits CP, FS and DC from �r
t,s, and that �∗t,s has a unanimity representation with

respect to u, β and the Gt-rectangular set of priors Π. Hence, for the constant reference-

point, the set of priors in the unanimity representation is updated prior-by-prior from the

Gt-rectangular set of priors Π.

Observe that by EUP, �∗0,s does not depend on r, hence is the same for all r ∈ F .

As a result, it follows from Theorem 1 and the earlier observations that for all r ∈ F ,

that �r
0,s has an RMEU representation, minm∈Π

∫ ∑
t β

t[u( ft) − u(rt)]dm, with a weak*-

closed, convex and Gt-rectangular set of priors Π, with all measures in Π having full

local support; a 0 < β < 1 and a mixture-linear, non-constant u : P → R, where maxP u

and minP u exist; and where β, Π and u correspond (up to renormalization of u) to the

respective counterparts obtained for a constant act. Now define for each f , f ′ ∈ F the

act

fGt(s) f ′ =


( f0(s′), f1(s′), ...) if s′ ∈ Gt(s)

( f0(s′), f1(s′), ..., ft(s′), f ′t+1(s′), f ′t+2(s′), ...) if s′ < Gt(s)
(A.123)

Note that DC and independence of �∗ imply that for all r ∈ F , if f �∗t+1,s f ′ for all

s′ ∈ Gt(s) then fGt(s)h �∗t,s fGt(s)h for all h ∈ F , and for all (t, s)T × S . Moreover, CP

and independence imply that if fGt(s)h �∗t,s fGt(s)h then f �∗t+1,s f ′ for all s′ ∈ Gt(s), for

all (s, t) ∈ T × S . Hence, by standard arguments, the set of priors in the unanimity

representation of �∗t,s is updated by applying Bayes rule prior-by-prior for all (s, t) ∈

T × S and for all r ∈ F . It follows that the unambiguous preference relation �∗t,s
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is independent of the reference point for all (t, s) ∈ T × S , since it corresponds for

each time-event pair and for each reference-point r ∈ F to the unambiguous preference

relation for the recursive multiple priors representation for a constant reference-point.

As a result, by Theorem 1, for any reference-point r ∈ F , the collection
(
�r

t,s

)
(t,s)∈T×S

has a recursive RMEU representation Vr
t ( f , s) = minm∈Π

∫ ∑
t β

t[u( ft) − u(rt)]dm, with a

weak*-closed, convex and Gt-rectangular set of priors Π, with all measures in Π having

full local support; a 0 < β < 1 and a mixture-linear, non-constant u : P → R, where

maxP u and minP u exist. The uniqueness properties follow from Epstein and Schneider

(2003). The proof that (2) implies (1) is standard, that (2) implies IMP is shown in

Epstein and Schneider (2003). This therefore concludes the proof.

Proof of Proposition 6.

In general, V is not differentiable. However, since V is concave it does have a well-

defined superdifferential. It will be sufficient to study the superdifferential for a basic

consumption process c with ct(st) = c∗(st), and to focus on the one-period-ahead su-

perdifferential. Let c be a basic consumption process, and denote by H := R × C(S )

the set of real-valued, continuous processes h = {ht}
∞
t=1 with ht ≡ 0 for all t , 1, 2

(where C(S ) denotes the set of continuous real-valued functions on S ). Then call V ′ a

one-period-ahead supergradient of V(·, s) at c if V ′ is a continuous linear functional on

R ×C(S ) satisfying

V(c + h; s) − V(c; s) ≤ V ′(h1, h2) (A.124)

for all (h1, h2) ∈ H such that c + h ∈ D. The one-period-ahead superdifferential ∂V(c; s)

of V at c in state s is the set of all one-period-ahead supergradients of V at c given s.

Epstein and Wang (1994) provide a characterization of the supperdifferential of V at

a basic consumption process c for the special case when e is a constant process. For

the sequel it is sufficient to consider only the one-period-ahead superdifferential of V at
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the general basic endowment process e, which follows immediately from Lemma 1 in

Epstein and Wang (1994):

Lemma 9 The superdifferential of V at e given s, denoted ∂V(e; s), can be viewed as a

subset of R+ × ∆+(S ) given by

∂V(e; s) =
{(

u′(e∗(s)), π
)
|π ∈ ∆+(S ), ∃ π̂ ∈ Π(s) s.t. dπ = u′(e∗)dπ̂

}
(A.125)

Proof. The proof follows directly from Lemma 1 of Epstein and Wang (1994) and the

observation that
∫

V(e; s)dπ̂ = minπ∈Π(s)

∫
V(c; s)dπ for all π̂ ∈ Π(s).

Given Lemma 9, the proof of Theorem 2(a) in Epstein and Wang (1994) demon-

strates that if {πt} is a continuous selection from Π, there exists a unique price process

p ∈ DN that satisfies Equations (4.10), and that this price process is an equilibrium price.

Existence of equilibrium then follows since Π(s) is compact-valued, convex-valued and

continuous, and by Lemma 1B in Epstein and Wang (1994) adapted from Theorem 3.2

in Michael (1956) therefore admits a continuous selection. As a result, an equilibrium

exists for each continuous selection from Π, at least one such continuous selection ex-

ists, and any continuous selection leads to a unique price process satisfying 4.10 which

is necessary for equilibrium. This therefore completes the proof of both parts of the

proposition.
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