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The nonlinear dynamics of coupled liquid droplets and bridges are examined. By

restricting droplet and bridge shapes to equilibrium states, the quasi-static dy-

namics of such systems may be studied using ordinary differential equations, and

the techniques of nonlinear dynamics may be applied. For example, liquid droplets

are restricted to spherical-caps, whose shapes may be deduced solely from their

volume.

Networks of liquid droplets are first considered. Static solutions are grouped

into families, each with some p droplets large and some q = n− p small. The two-

droplet system is modeled as a conservative second-order oscillator and fixed points

undergo a pitchfork bifurcation as the total volume is increased; furthermore, when

subjected to periodic forcing, chaotic dynamics are possible. Bounds for chaotic

dynamics are investigated by using Melnikov’s method and calculating Lyapunov

exponents. Results are compared qualitatively with experimental results, thereby

confirming the existence of chaotic motions.

The two-droplet model is then extended to a n-droplet frictionless Sn symmet-

ric model that consists of n − 1 second-order differential equations. Symmetry

of the system is fundamental. In particular, independent of the equations, fixed-

points may be grouped into families by the number of small and large droplets.

Within the families, stability is invariant and hence significantly reduces the num-

ber of equilibria to be considered. All equilibria, and their associated stability, are



calculated analytically for an arbitrary number of droplets.

For three droplets, the system is fourth order and thus trajectories are (in

general) quasi-periodic or chaotic. Because the equations are S3 symmetric, tra-

jectories may also possess S3, or one of the three flip symmetries. Since there is

no dissipation there are no asymptotically stable attractors. As such, trajectories

of interest are away from equilibrium. In particular, trajectories with no initial

velocity are analyzed to ascertain their symmetry as well as their dynamic nature.

Both these determinations may be done in an automated fashion through the use

of symmetry detectives and Lyapunov exponents, respectively. For this system, the

results of these two methods reflect a strong correlation between symmetry and

nonlinear dynamics; chaotic trajectories are S3 symmetric while quasi-periodic

trajectories possess one of the three flip symmetries.

Next, a non-smooth switching bridge-droplet system is considered. The system

has two states: droplet-droplet and bridge-droplet. The switching system can be

obtained from the two droplet system by introducing a planar substrate below one

of the droplets. As the system oscillates, it may transition between states if the

droplet impacts the wall or the liquid bridge breaks. The two transitions occur

at different places in state space which results in a region for which the system is

multiply defined. In addition, transitions are assumed to be instantaneous with

no loss of velocity. The two states are first analyzed separately. The bridge-

droplet state undergoes a cusp bifurcation in a two parameter expansion. Boundary

equilibrium bifurcations also occur when an equilibrium point collides with a non-

smooth boundary. If the bridge-droplet and droplet-droplet states are combined, a

two parameter bifurcation diagram for the switching system is realized. Switching

trajectories are of particular interest because each switching cycle dampens the

system until it no longer switches. These trajectories are mapped into a semi-



infinite cylindrical space in which long-term behavior can be described solely by

the dynamics in the multiply defined region.

In the final chapter models for pull-off adhesive failure are considered. Rec-

ognizing engineering applications (i.e. a capillary adhesion device) as well as a

phenomenon found in nature (i.e. defense mechanism of palm beetle), models for

pull-off adhesive failure are developed for different loading conditions and compared

with available observations. In particular, array geometry and the relationship of

adhesive failure to the instabilities of a single liquid bridge are emphasized.
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CHAPTER 1

INTRODUCTION

A capillary surface is a liquid-gas (or liquid) interface whose shape is determined

primarily by surface tension[3]. Since force due to surface tension scales with

surface area, capillary surfaces occur (for typical liquids such as water) on the

millimeter or smaller scale where the ratio of surface area to volume is high. A

coupled set of capillary surfaces is a capillary system; these systems often exhibit

highly complex dynamics. It is important to note that, in such a system, the

surfaces must be small but they may be part of a larger system (e.g. the veins of a

leaf in a tree). Examining the nonlinear dynamics of microfluidic capillary systems

is the objective of this dissertation. In particular, the focus of study is motion of

coupled liquid droplets and bridges.

When a capillary system is set in motion, inertia and/or viscous forces may (in

addition to surface tension) influence the shape of liquid-gas interfaces as well as

the overall system’s motion. In general, when analyzing the system, the dynamics

are found via solving the Navier-Stokes equations for the underlying flow. As these

are partial differential equations, their solutions reside in an infinite dimensional

space, in which it is often difficult to apply the methods of nonlinear dynamics.

In many cases, the dynamics “shadow” trajectories of static equilibrium shapes –

a phenomena referred to as ‘quasi-static dynamics.’ In such quasi-static systems,

each element is in equilibrium with a fixed pressure. However, different elements

may have different pressures so that the system is out of equilibrium even though

each element is in equilibrium. In this way, a good approximation of a system may

be obtained by limiting capillary surfaces to one-dimensional families of static

equilibrium shapes. Such an approximation has the advantage that systems may
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be modeled with ordinary differential equations rather than partial differential

equations.

In this work, the shapes of individual capillary surfaces in ‘capillary-inertia’

models are restricted to static equilibrium states. Liquid viscosity and other

sources of dissipation are assumed to be either negligible or small whereas liq-

uid inertia and capillary pressure are influential due to their tendency to distort

and restore deviations from equilibrium shapes. It has been shown that water

droplets in air (on earth) are well approximated by their static equilibrium shapes

on scales ranging from a few millimeters to tens of microns[4]. Note that a low-

gravity environment (e.g. the space station) considerably expands the range of

appropriate sizes. As such, examination of capillary-inertia models at these length

scales is justified.

For example, consider a millimeter-size droplet resting on a flat plate. A liq-

uid droplet is in static equilibrium when surface tension (due to curvature of the

surface) balances the pressure difference across its interface. This balance is given

by the Young-Laplace equation

∆P = γ

(
1

R1

+
1

R2

)
(1.1)

where ∆P is the pressure difference, γ surface tension, and R1 and R2 the in-

terface’s principal radii of curvature. Since the droplet has fixed volume, the

Young-Laplace equation must be solved subject to a volume constraint. The re-

sulting spherical-cap shape persists if volume is changed quasi-statically. Note

that a spherical-cap is S1 symmetric; it then follows that a family of spherical-cap

droplets is one-dimensional. Hence, the family may be parametrized in terms of

droplet volume, height, or center-of-mass, knowing any of which yields the droplet

shape.
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Figure 1.1: Pressure-height diagram for a single droplet with height scaled
by droplet radius. For any pressure, two droplet static equilibria
corresponds to droplets with height h and 1/h.

Under the quasi-static assumption, a fixed volume droplet cannot oscillate.

Therefore, in order to achieve oscillation two coupled droplets are required. For

example, consider two droplets pinned at the ends of a cylindrical tube so that

volume may exchange between them. The droplets’ static equilibrium shapes are

spherical caps, which implies the entire system is symmetric about the center line

and, as such, may be modeled by tracking the center of mass axially. Using New-

ton’s second law results in a second order ODE with two parameters: total volume

and tube length[1]. In this manner, an infinite dimensional problem (PDE) is re-

duced to finite dimensions (ODE) where stability may be calculated analytically

and methods of nonlinear dynamics may be applied.

For any number of coupled droplets, the criterion for static equilibrium is that

they share a common pressure difference ∆P across their respective interfaces.

When viewing ∆P in the context of the Young-Laplace equation (1.1), coupled

with the fact that a spherical-cap has a single radius of curvature, we know R1 = R2

and hence all droplets have equal radius of curvature. Plotting the spherical-cap

pressure against its height (Figure 1.1) shows that for any given pressure a droplet
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may be in one of two states: ‘small’ or ‘large’. Since any of the droplets may

assume either state, there are 2n equilibrium configurations, consisting of p small

droplets and q large for all p and q such that p+ q = n[5].

The two droplet system is considered in greater detail in Chapter 2 in which

the system, subject to small forcing and dampening, is analyzed. Under these con-

ditions, the system may exhibit chaotic dynamics. Bounds for chaos are obtained

through the use of Melnikov’s method and the computation of Lyapunov expo-

nents. Although the model has been reduced to two dimensions, it remains highly

nonlinear and convoluted. As such, analytic results are obtained when possible

and numeric techniques are used when appropriate. Predictions obtained from the

model are compared with experiments for water droplets of millimeter size. Such

comparisons also exist for the unforced droplet-droplet oscillator[1] and reaffirm

the validity of the models.

If an arbitrary but substantial number of droplets, n, are coupled through a

central chamber (or reservoir of sufficient size), the system may be thought of as

Sn symmetric (Chapter 3). Due to symmetry the ordering of droplets is arbitrary.

The symmetry of the system is two-fold; the spherical-cap assumption allows a

2n − 2 degree ordinary differential model, while the symmetric network plays a

fundamental role in the structure of equilibria and the dynamics of trajectories.

Since ordering of droplets is arbitrary, of the 2n equilibria, only n + 1 need be

considered. In other other words, instead of examining all equilibria with p large

and q small, only one in the equivalence class need be considered. Equilibrium

branches, bifurcation points and stability of equilibria are calculated analytically

for a network of arbitrary size.

All equilibria from the frictionless model presented in Chapter 3 are centers
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Figure 1.2: Pressure-volume diagram for liquid bridge with pinned contact
at one end and fixed contact angle 90◦ at the other.

and saddle-points, implying there are no traditional stable attractors. Thus, when

examining trajectory dynamics, solutions away from equilibria are of most interest.

The three droplet four dimensional system is discussed in Chapter 4. In this

system, trajectories are quasi-periodic or chaotic, but also may possess symmetry.

For trajectories starting from rest, Lyapunov exponents are calculated to ascertain

if a solution is chaotic and the method of symmetry detectives is employed to

determine possible symmetry. Both methods can be applied in an automated

fashion on a grid of initial conditions. Note that this use of symmetry detectives

differs from its traditional use (symmetries of attractors). With respect to the

three droplet model, there is a strong correlation between symmetry and nonlinear

dynamics; chaotic trajectories are found to be S3 symmetric while quasi-periodic

trajectories possess one of the three possible flip symmetries (Z2).

Thus far, only considered one type of capillary surface – a liquid droplet – is
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considered. Chapter 5 incorporates a second class of capillary surfaces, namely

liquid bridges with a pinned circular contact line at one end and a fixed contact

angle of 90◦ at the other. For such bridges, the static equilibrium shapes are,

as with liquid droplets, determined by solving the Young-Laplace equation (1.1).

Equilibrium shapes are axisymmetric and may be written in terms of incomplete

elliptic integrals[6]; however, in this study, it is more convenient to solve the Young-

Laplace equation numerically. The family of equilibrium shapes is one dimensional

(like with the droplet), and may be parameterized in terms of the bridge volume.

Note that while multiple bridge equilibria may occur at a single bridge volume,

only one is stable.

The family of bridge equilibria differs from that of the droplet since it has both

a maximum and minimum admissible volume (Figure 1.2). Upon reaching either

the maximum V + or minimum V −, the bridge breaks. At V +, the bridge blows out,

whereas at V − it breaks and reforms as a liquid droplet. Let us now reconsider the

two droplet system. If a substrate is introduced, in the course of oscillation, one of

the droplets may impact and form a liquid bridge. The system is then in a bridge-

droplet state and will continue to oscillate; a second transition may occur if the

liquid bridge breaks. These transitions are treated as non-smooth instantaneous

events. Furthermore, these transitions occur at different places in phase space,

resulting in a region where the system is multiply defined. A model for this non-

smooth switching system is formulated and analyzed in Chapter 5. The bridge-

droplet state is discussed first and a two parameter bifurcation diagram is obtained.

The bridge-droplet and droplet-droplet states are then joined in a switching model.

Bifurcation structure and the behavior of trajectories are discussed.

Motivation for this study of droplets and bridges arises from practical applica-
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tions such as liquid lenses and capillary adhesion devices. For a traditional hard

lens the focal length is changed by mechanically moving it. In contrast, a liquid

lens has the advantage that focal length may be altered by varying its shape. In

the context of liquid lenses, regular oscillations are desirable. As such, the bounds

obtained are used to avoid chaotic dynamics. The two droplet system studied in

Chapter 2 has successfully been used as a liquid lens[7, 8].

The second application is development of capillary adhesion devices. Such a

device consists of an array of some large number of liquid droplets coupled via a

central reservoir. If a substrate is pressed against the droplets they, will switch to

bridges, causing the array to adhere to the surface by capillary adhesion. The study

of capillary adhesion is inspired by the defensive abilities of the palm beetle. The

beetle adheres to a surface by manipulating a multitude of tiny oil liquid bridges

between its feet and a surface[9, 10]. This adhesion is remarkable because the beetle

can attach and detach repeatedly in a fraction of a second and withstand being

pulled on by a force of up to sixty times its own weight. Naturally, in an attempt to

achieve reversible adhesion on the scale of permanent bonding adhesives, there is

continued interest in duplication of the beetle’s attributes[2]; this can be achieved

by the use of arrays of liquid droplets[11]. Models for pull off adhesive failure for

both a capillary adhesion device and the beetle are posed in Chapter 6. Results

are discussed relative to available experimental observations. The effect of varied

array geometry and the relationship between adhesive failure and the instability

of a single liquid bridge is discussed.

Historically, the study of liquid droplets and bridges has focused primarily on

the determination of static equilibrium states and their stability[12, 13, 14, 15].

More recently, scavenging models for networks of droplets has been studied, where
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liquid flows between droplets due to pressure differences[16, 5]. In such models, the

rate of change of droplet volumes are determined entirely by pressure differences.

In contrast, in this work Newton’s second law is used to to model the center-of-

mass of the system. This results in models that include both the force due to

the pressure differences and the effect of inertia due to the velocity of the flow.

Such ‘capillary-inertia’ models describe both the position and the velocity of the

center-of-mass of the system. Prior to this dissertation, a model for two coupled

droplets was proposed by Theisen et. al[1], and serves as a base case for the systems

described here.

The ‘capillary-inertia’ models obtained in this dissertation consist of ordinary

differential equations. This is ideal as the techniques of nonlinear dynamics may

be applied, allowing equilibrium states, bifurcations and transitions to chaos to

be described in clear and understandable ways. In contrast, using the Navier-

Stokes equations to model the fluid flow involves the analysis of partial differential

equations[17, 18] where the methods of nonlinear dynamics are far more compli-

cated. In Chapter 2 as well as in Theisen et. al[1] it can be seen that experiments

are well approximated by ordinary differential equation models on length scales of

interest.

This dissertation is structured as follows. In Chapter 2 the chaotic motions of

the two droplet system are studied. Bounds for chaotic dynamics are obtained and

compared with experiments. The two-droplet model is extended to any number

of Sn symmetric droplets in Chapter 3. Analytic bifurcation and stability results

are obtained for a system of arbitrary size. Chapter 4 explores the dynamics of

three frictionless S3 symmetric droplets. Solutions are classified as chaotic or quasi-

periodic through the use of Lyapunov exponents and their symmetry is determined
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using symmetry detectives. In Chapter 4, the class of capillary surfaces is extended

to include liquid bridges. In particular, a switching non-smooth bridge-droplet

model is considered. Bifurcation results are obtained and the dynamics of switching

trajectories are discussed. In Chapter 6, models for pull-off adhesive failure are

discussed for various loading conditions and geometries. Finally, in Chapter 7

future work is discussed.
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CHAPTER 2

CHAOTIC MOTIONS OF A FORCED DROPLET-DROPLET

OSCILLATOR1

Abstract

A model for the motion of two coupled spherical-cap droplets subject to periodic

forcing is studied. The inviscid unforced model is a conservative second-order

system, similar to Duffing’s equation. Surface tension resists the inertia of defor-

mations from the spherical shape. Steady-states of the system are parameterized

by the total combined volume of the two droplet caps. The family of equilibria

exhibits a classical pitchfork bifurcation, where a single lens-like symmetric steady

state bifurcates into two droplet-like asymmetric states. The existence of homo-

clinic orbits in the unforced system suggests the possibility of chaotic dynamics in

a forced, damped system. The forced damped extension is investigated for chaotic

dynamics using Melnikov’s method and by calculating Lyapunov exponents. Ob-

servations are compared qualitatively with experimental results, confirming the

existence of chaotic motions.

2.1 Introduction

With the recent advances in microfluidics, the dynamics of small liquid droplets

has increased in interest. At such scales, where surface tension often dominates,

a liquid droplet will tend to a spherical shape under the action of capillarity. A

1D.M. Slater, C. A. López, A. H. Hirsa, P. H. Steen, Chaotic motions of a forced droplet-droplet
oscillator, Physics of Fluids, 20 (2008), p. 092107 Reprinted with permission.
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classic example of capillary dynamics is the Rayleigh vibration of a sphere where

surface tension tends to restore shape deviations due to liquid inertia[19]. The

system we consider is a variation on the Rayleigh problem.

Consider two spherical droplets each pinned to opposite ends of a cylindrical

tube of length 2L (Figure 2.1). Liquid is allowed to flow through the tube from

droplet to droplet. By restricting to spherical-cap deformations, the dynamics

of this system can be modeled as a second-order nonlinear dynamical system.

Theisen et al. explored the dynamics of the unforced (conservative) model of this

coupled droplet oscillator [1]. The steady-states are parameterized by the total

droplet volume, V1 + V2. As V1 + V2 is increases a pitchfork bifurcation occurs,

whereby a symmetric steady state (lens-like), corresponding to two symmetric caps,

bifurcates into two mirror-symmetric steady states (droplet-like), corresponding to

one large and one small cap. Figure 2.1 shows typical lens-like and droplet-like

configurations.

In this paper, we study the system subjected to sinusoidal forcing of amplitude

γ and frequency ω, where a viscous resistance δ is also included. In experiment, this

forcing might be supplied by ambient pressure oscillations on one side relative to

the other. The unforced model is of second order; the addition of small amplitude

sinusoidal forcing adds a third degree of freedom, allowing for the appearance

of chaotic dynamics. We use the theory of nonlinear dynamics to explore the

existence of chaos. The unforced model has homoclinic orbits for volumes past the

bifurcation point. As a result, if the small forcing causes the stable and unstable

manifolds of the saddle point to intersect, chaos is possible.

We employ two different approaches in our analysis. The first is Melnikov’s

method, which gives lower bounds for chaotic behavior. The second involves cal-

11



Figure 2.1: (a) Schematic of coupled droplets pinned at the ends of a tube
of radius r. V1 and V2 are the volumes of the droplets. Typical
equilibrium positions for droplets are a) lens-like for V1 + V2 <
(4/3)πr3 and b) droplet-like for V1 + V2 > (4/3)πr3. (b) Di-
mensional vibration frequency for linear theory (solid line) and
experiments (symbols)[1].

culating Lyapunov exponents for a grid of two parameters, which allows us to

further characterize the chaotic regions of (γ/δ, ω) parameter space. To our knowl-

edge, this second approach has not been used to study the dynamics of coupled

droplets or bubbles. Combined, results from these two methods provide a guide

to experiments. The goal is to predict where chaotic behavior might be expected

in parameter space for a system of two coupled micro-droplets.

The approach of this study is inspired by similarities of the oscillator model

to Duffing’s equation. Duffing’s equation provides a simple model for the forced

vibrations of a cantilever beam in the presence of two magnets[20], among others.

Owing to the simplicity of the model, an explicit lower bound for chaos using Mel-

nikov’s method is obtained [20]. Additionally, Lyapunov exponents for Duffing’s

equation are calculated for a grid of forcing amplitudes and frequencies [21]. This

further characterizes the chaotic parameter regime. For vibrations of the cantilever
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beam, a sequence of experiments shows the existence of a strange attractor[22, 23].

These studies derive an experimental criterion for chaotic oscillations and thereby

test the validity of Duffing’s equation as a model for this mechanical system [24].

Techniques of nonlinear dynamics have been applied to bubble and droplet

problems for several decades now. A review of such work up until 1997 is available

[25]. Bifurcation diagrams and Poincaré maps, primarily, are used to illustrate the

existence of chaotic dynamics, as well as to find bounds for cavitation of bubbles.

Smereka et. al. use Poincaré maps to explore the vibrations of a single bubble un-

der periodic forcing as well as the transition to chaotic dynamics using bifurcation

diagrams[26]. Oh et al. examine chaotic bubble oscillations under the influence

of electric fields using bifurcation diagrams and Poincaré maps [27]. Parlitz et al.

use bifurcation diagrams to examine the period-doubling cascade to chaos for a

driven spherical gas bubble in water [28]. Macdonald and Gomatam perform a

bifurcation study of coupled free gas bubbles [29]. Simon et al. compute Poincaré

maps and bifurcation diagrams to investigate an acoustically driven air bubble in

water [30]. Szeri and Leal apply Melnikov’s method to numerically compute lower

bounds for spherical bubbles in an incompressible liquid under single and multiple

forcing frequencies [31]. Chang and Chen use Melnikov’s method to estimate the

cavitation pressure of a spherical gas bubble [32].

Motivation for this study draws from a variety of applications. In a micro

gravity environment, surface tension determines the shape of liquid/gas interfaces

up to 1 meter length scales. Small fluctuations in the gravity level can give rise

to forcing known as g-jitter [33]. These small fluctuations are often modeled as

forcing perturbations. In earth’s gravity, the shape of static droplets smaller than

about a millimeter is nearly spherical. These droplets can be driven by external

13



forcing, such as ambient sound waves as in the experiments described below, or

by internal forcing as by a periodically driven electro-osmotic pump placed in the

tube between the droplets [11]. In the driven electro-osmotic switch, the pump

is a porous material and, consequently, viscous effects tend to be more dominant

in this application. Another application is liquid lenses. Droplets can be used as

liquid lens, which have the advantage that focal length can be changed in real time

by controlling the interface curvature [34]. In all of these cases, it is advantageous

to have an understanding of when chaotic oscillations might occur, whether one

wants to avoid chaos or to exploit chaotic dynamics to some benefit.

2.2 Conservative Oscillator Model

2.2.1 Model formulation

A dynamical model for the center-of-mass motions of two coupled spherical-cap

droplets is first presented by Theisen et al [1]. The spherical caps of heights h1

and h2 are connected by a cylindrical tube of length 2L and radius r (Figure

2.1). Let V1 and V2 be the protruding volumes of the droplets. By symmetry, the

center-of-mass of the system moves along the z-axis. Furthermore, the spherical-

cap restriction means that deformation is characterized by one degree-of-freedom,

V1 − V2, say.

Let Zcm be the center of mass of the total volume. Assuming, for now, that

viscous resistance is negligible, Newton’s second law can be written,

ρ
d2

dt2
((V1 + V2 + 2πLr2)Zcm) = F1 − F2. (2.1)
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The capillary pressure gives rise to a force acting from the bottom droplet up-

wards, F1 = (πr2)2σ/R1, and one acting from the top droplet downwards,

F2 = (πr2)2σ/R2, where R1 and R2 are the radii of curvature of the respective

droplets.

As outlined in [1], a variety of variables can be chosen to characterize this

system. A convenient choice is (θ, λ) ≡ (V1−V2, V1 +V2) where volumes are scaled

with (4/3)πr3. Total volume corresponds to λ so that volume is conserved for λ

constant. Furthermore, θ = 0 is always an equilibrium solution in this coordinate

system. Writing (2.1) in terms of (θ, λ), and scaling lengths with r and time by√
ρr3/σ, one obtains the nonlinear oscillator equation,

d

dt
(A(θ, λ)

dθ

dt
) + C(θ, λ) = 0, (2.2)

where

A(θ, λ) = h1 + h2 + 3` (2.3)

C(θ, λ) = 9
(h1 − h2)(1− h1h2)

(h2
1 + 1)(h2

2 + 1)
. (2.4)

Here h1 and h2, non dimensional but using the same notation as previous dimen-

sional quantities, are given implicitly as Vi(hi) = 1/8hi(3 + h2
i ) and ` ≡ L/r is the

scaled half-length of the tube.

2.2.2 Equilibria and phase-plane dynamics

The oscillator equation is a conservative second-order ordinary differential equa-

tion. Figure 2.2(a) shows the bifurcation diagram for this system with correspond-

ing typical steady shapes. For each λ < 1, equilibria consist of the unique lens-like

state. At λ = 1, a pitchfork bifurcation occurs, resulting in two symmetric sta-

ble branches (anti-symmetric configurations) and one unstable branch (symmetric
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Figure 2.2: (a) Bifurcation diagram with typical equilibrium shapes sketched.
Typical phase-plane solution for (b) λ < 1(λ = 0.75) and (c)
λ > 1(λ = 1.6) (Adapted from [1]).

configuration). The two stable branches have one large droplet and one small

droplet, while the unstable branch corresponds to two large droplets. This pitch-

fork bifurcation was confirmed in experiment in the context of the electro-osmotic

switch [11] and pressure-activated switch [34]. For λ < 1, the dynamics consists of

periodic orbits while for λ > 1 two families of periodic orbits surround the stable

states. These periodic orbits are separated from a family of ‘looping’ orbits by

two homoclinic orbits, spawned at the bifurcation. These homoclinic orbits, when

perturbed by forcing and damping, can give rise to chaotic oscillations through a

homoclinic tangle.

2.3 Weakly-damped Oscillator with Forcing

The conservative oscillator model is an idealization. For any experiment where

liquid contacts a solid boundary, viscosity will play some role. For the theory, dis-

sipation plays an important role in breaking the homoclinic orbits to form a tan-
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gle. Viscous effects are characterized by a Reynolds number, Re ≡ (rσ/ρ)1/2(ρ/µ),

where µ is the liquid viscosity. Equation (2.2) has been generalized to include

viscous damping [1],

d

dt
(A(θ, λ)

dθ

dt
+ C(θ, λ) = −18Re−1`f∗

dθ

dt
(2.5)

where the damping coefficient f∗ ∼ 3.4 has been estimated from transient decay

experiments at conditions (λ, `) = (1.2, 1.1) and has been shown to give predictions

consistent with observation at other parameter values. For water and a tube

diameter of 2r = 1.66 mm, one estimates Re ∼ 240 from which the order of the

viscous effects in equation (2.5) is immediate. Theisen et. al. discuss the range of

Reynold’s numbers for which the model is valid. The validity criterion is that the

dampening term is small relative to the inertial term. For the range of λ values

considered, this translates to the requirement Re� 13[1]. Thus for water and our

tube size, the viscous effects are small, but non-negligible.

In experiment, forcing amplitude is controlled so as to be on the order of the

damping. A forcing term εγcos(ωt) is added to the eqn(2.5) where γ is the scaled

forcing amplitude. The smallness of damping and forcing relative to inertia are

characterized by ε = 18Re−1 and, since εδ ≡ 18Re−1`f∗, damping relative to

forcing is given by δ = `f∗, so that equation (2.5) with forcing can be written,

d

dt
(A(θ, λ)

dθ

dt
) + C(θ, λ) = ε(γcos(ωt)− δdθ

dt
). (2.6)

Here, for water and ` = 1.1, ε ∼ .075 and δ ∼ 3.73.

Equation (2.6) is the equation studied in this paper. Fixing the forcing ampli-

tude and frequency in experiment fixes the point (γ/δ, ω) in the parameter-plane.
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Note that the parameter with greatest experimental uncertainty is f∗ and that f∗

occurs only in δ. Hence, any change in f∗ would result in a vertical shift of the

point (γ/δ, ω).

If A = 1 and C = −θ(a − 2bθ2) for a, b > 0, rather than the A and C given

by equations (2.3) and (2.4), respectively, then putting θ(t) = x(t), equation (2.6)

becomes the forced Duffing equation,

d2x

dt2
− ax+ 2bx3 = ε(γcosωt− δdx

dt
). (2.7)

This equation has been analyzed extensively for its chaotic dynamics, as outlined

in the Introduction. Two approaches are standard. Melnikov’s method delivers a

curve in the parameter-plane, above which chaos is possible. That is, sign changes

in the Melnikov function imply the existence of a homoclinic tangle via the Smale-

Birkhoff theorem; this in turn implies the existence of a horseshoe which may be

stable or unstable. If stable, a strange attractor exists and chaos can be expected

in experiment. Otherwise, the long-time solution need not be chaotic [21]. The

second approach is to compute Lyapunov exponents along a trajectory in phase-

space. Points in the parameter-plane are labeled as chaotic or not, depending

on the behavior of the Lyapunov exponents, as judged by computation [21]. For

equation (2.7), much is known about where chaos occurs in the (γ/δ, ω) plane.

Ideally, a transformation between the orbit structure of the forced-Duffing (2.7)

and that of equation (2.6) would be available. In particular, a transformation

that preserves chaotic attractors would allow regions of chaos in one system to

be mapped over to the other system. Unfortunately, such a transformation is not

available, as far as we are aware.

Nevertheless, we proceed in the spirit of the ideal situation to obtain the results

of the next section. First, the Melnikov approach is formulated and, for reference,
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analytic expressions for the homoclinic orbit and the Melnikov bound for equation

(2.7) are written down. Analogous analytic expressions for equation (2.6) are not

available for arbitrary λ > 1, so attention is first restricted to 0 < λ − 1 � 1. In

this neighborhood, the homoclinic orbit is local to the origin of the phase-plane

and a Taylor expansion in θ is productive. In this limit, an analytic expression

for the homoclinic orbit is obtained and then inserted into the Melnikov function.

Numerical integration then delivers a local approximation to the bound. Alterna-

tively, for arbitrary λ, the homoclinic orbit is obtained computationally, inserted

into the Melnikov function and numerically integrated. All approximations are

restricted to the forced Duffing case as a check on the computational accuracy.

Finally, to flesh out the Melnikov results, Lyapunov exponents are computed over

a grid in the (γ/δ, ω) plane.

2.4 Results of the Melnikov approach

The Melnikov function (e.g. [20]) is defined as

∆(τ) =

∫ ∞
−∞

θ′o(t− τ)(γcos(ωt)− δθ′o(t− τ))dt (2.8)

where θo is an unperturbed homoclinic orbit and prime denotes derivative along

an orbit. Here ∆(τ) represents the distance between the perturbed stable and

unstable manifolds of the saddle point as a function of time τ along the orbit.

If ∆(τ) changes sign, then the manifolds intersect to O(ε2) and there exists a

homoclinic tangle.

For the Duffing equation (2.7), the homoclinic orbits are

xo(t) = ± 2ae
√
at

1 + abe2
√
at
, (2.9)
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from which the Melnikov function can be obtained as,

∆D(τ) =

√
2

b
π γ ω sech

π ω

2
√
a

sinωτ +
4a3/2

3b
δ. (2.10)

Solving ∆D(τ) = 0 for the first zero yields the Melnikov bound for chaos in equation

(2.7),

γ

δ
≥

2
√

2a3/2 cosh πω
2
√
a

3
√
bπω

. (2.11)

One would like to proceed analogously for equation (2.6); however, in general,

finding ∆(τ) explicitly is not tractable. The difficulty arises already with finding θ0

explicitly. Normally, one would put E = 0 and solve for θ
′
0 using the first integral,

1

2
(A(θ, λ)

dθ

dt
)2 +

∫ θ

0

A(s, λ)C(s, λ)ds = E. (2.12)

However, this integral has no known solution for the homoclinic orbit. Instead we

turn to numerical evaluation.

2.4.1 Local analysis near λ = 1

For 0 < λ− 1� 1, the homoclinic orbits become local to the saddle point (θ, θ̇) =

(0, 0). In this case, we expand expand (2.12) for E = 0 using Taylor expansions

about θ = θ0 = 0 and λ = 1 to approximate to order θ6 the homoclinic orbit by

1

2
θ′(t)2 + c1θ(t)

2 + c2θ(t)
4 + c3θ(t)

6 +O(θ(t)8) = 0 (2.13)

where to order (λ− 1),

c1(λ) = −0.38(λ− 1) (2.14)

c2(λ) = 0.17− 0.57(λ− 1) (2.15)

c3(λ) = 0.08− 0.37(λ− 1). (2.16)
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For θ sufficiently small, we can neglect the c3 term and (2.13) becomes the exact

first integral for Duffing’s equation, with the identification a = c1(λ), b = c2(λ).

Thus, for (λ− 1)� 1, we can approximate the first-integral using Duffing’s equa-

tion, which yields (2.11) as the necessary condition for chaos.

What is meant by ‘sufficiently small’ can be estimated by comparing the maxi-

mum value of the c2θ(t)
4 term along the homoclinic orbit against the maximum of

value of the c3θ(t)
6 term. We find that as λ increases, the θ(t)6 term quickly grows

to be comparable to the θ(t)4 term. Indeed, we find that the Duffing approxima-

tion satisfies this consistency requirement for λ − 1 < 0.01, which is too small to

be observed at the current scale of the experiment.

On the other hand, equation (2.13) to 6th order is sufficient for the neglected

terms to be an order of magnitude smaller than those retained for our experimental

range, λ − 1 < 0.55. Using (2.13) as an approximation to the first integral of the

homoclinic orbit, we extract the specific homoclinic orbit as

θ0(t) = ± 2c1e
√
c1t√

(1 + c1c2e2
√
c1t)2 + 4c3

1c3e4
√
c1t
. (2.17)

As expected, for c3 = 0 we recover equation (2.9). Efforts to solve (2.8) with equa-

tion (2.17) have yet to be successful. On the other hand, numerical integration of

(2.8) using (2.17) for fixed λ gives an approximate Melnikov curve in the parameter

space (γ/δ, ω). As we are interested in this parameter space, we fix λ at values

relative to experiment and only expand in θ. This yields exact c1, c2, and c3 values

in (2.13). Example curves are given in figure 2.3.
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Figure 2.3: Melnikov Curves for various volumes λ, and (δ, `) = (3.73, 1.1).
Above each curve chaotic oscillations are possible.

2.4.2 Numerical approximation of the seperatrix

For arbitrary λ > 1, we approximate the homoclinic orbit by numerically solving

(2.2) for εδ = .65, ` = .55 with initial conditions near the saddle point. This solu-

tion is then used to numerically integrate (2.8) for a variety of τ values. Confidence

in this numerical scheme is obtained by applying it to Duffing’s equation and com-

paring the results to the known exact solution (2.11). A similar approach has been

implemented elsewhere[31]. Sample curves for varying λ values are given in Figure

2.3. As λ increases, the parameter range where chaos is possible increases for high

frequency but decreases for low amplitude forcings. Furthermore, the bound on

chaos is sensitive to volume perturbations near λ = 1. For 1 < λ < 1.5, this

method yields nearly identical curves to the approximation obtained in Section

4.1.
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Figure 2.4: Lyapunov exponents for various values of λ computed on a rectangular
grid in the parameter plane. Dots represent a positive Lyapunov
exponent. Solid curves are the corresponding Melnikov bounds.

2.5 Lyapunov exponents approach

Lyapunov exponents measure the stretching of phase space and are computed

numerically [35]. Consider two initial conditions, initially separated by a distance

εo. Their separation grows on average as

ε(t) = εoe
νt (2.18)

where ν is the largest Lyapunov exponent. For ν positive, solutions are exponen-

tially separating and for ν negative, exponentially contracting. A positive Lya-

punov exponent implies either chaotic behavior or escape to infinity (the latter

case cannot occur in our system).

We rewrite (2.6) as ẋ = f(x, t) and numerically solve this equation and the

first variational equation ξ̇ = Df(θ0(t), t)ξ simultaneously. The largest Lyapunov

exponent is then approximated by

ν =
1

t
ln |ξ(t)| (2.19)
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Figure 2.5: (a) Experimental setup for droplet system with applied sinusoidal
pressure in upper chamber. (b), (c) Sample images depicting
the asymmetric steady states for λ > 1 of the unforced system
(Adapted from [1]).

for large t. Figure 2.4 shows grids of positive Lyapunov exponents for different

λ values as well as the corresponding Melnikov curves. As expected, positive

Lyapunov exponents occur only above the Melnikov curves. In each case, there

is a band of periodic solutions, surrounded by predominantly chaotic behavior.

Also, periodic behavior tends to prevail close to the Melnikov boundary. This is

in contrast with the result for Duffing’s equation, where two chaotic bands are

surrounded by predominantly periodic dynamics [21].

2.6 Qualitative comparison with experiments

A loud-speaker is used to create pressure-driven oscillations in a system of two

coupled water droplets. Images are recorded using a high-speed camera to capture

the dynamics of the system. Image analysis with edge detection gives the droplet

volumes, from which θ and λ are easily retrieved. For details of the experimental
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Figure 2.6: Selected experimental time series. The first shows intermittent chaotic
oscillations, while the second shows a purely chaotic signal. These
time series coorespond to the sixth and seventh experiments listed in
Table 1.

set-up, see [36].

Figure 2.6 shows sample time series for two chaotic experiments. Chaos is con-

firmed based on a time-series analysis using a standard tool [37]. Both Lyapunov

exponents and correlation dimension indicate chaos. Periodic motions are also

observed, as well as periodic non-axisymmetric precessing-like motions.

Quantitative comparison with experiments is complicated by a number of fac-

tors. First, there can be deviations from the assumptions of the model including

non-spherical-cap shapes, non-axisymmetry, contact-lines which break from circu-

lar and, at large driving amplitudes, complete blow-out of the liquid. All these

have been seen in experiment. The foremost complication, perhaps, occurs be-

cause of the inherent competition between the need for a lengthy time-series to

confidently ascertain chaotic behavior and evaporation that diminishes the system

volume continuously with time. The smaller the droplets, the greater effect the

evaporation. Hence, in experiment, λ is slowly varying with time. Table 1 gives

selected experimental observations where the selection is based on the extent to

which λ measured at the beginning of a time series remains close to that measured

at the end. Column 1 shows that the driving frequency has been varied by about a
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Table 2.1: Experimental Data.

Forcing Frequency (Hz) Forcing Amplitude (Pa) γ/δ ω λ Type of Motion

60 37.7 1.15 1.07 .9 Periodic

60 87.9 2.69 1.07 1.1 Periodic

60 82.8 2.54 1.07 1.1 Periodic

90 19.5 0.59 1.56 1.1 Periodic

45 12.4 0.38 0.82 1.2 Chaotic

60 37.7 1.15 1.07 1.2 Chaotic

60 75.4 2.30 1.07 1.3 Chaotic

42 13.5 0.36 0.41 1.5 Chaotic

factor of two, from 42 to 90 Hz. Column 2 indicates the corresponding forcing am-

plitudes, which vary by a factor of about 6. Column 3 gives the measured (average)

total volume (scaled). Although it is difficult to prescribe λ beforehand in exper-

iment, λ can be measured with reasonable accuracy. Note that the computations

presented in the five panels of Figure 2.4 correspond closely to the five different

λ reported in Table 1 for λ > 1. These data have not been plotted on Figure 2.4

since at most 2 points would appear on each panel. In summary, a quantitative

test of the model is not reported in view of the limited range of experiments. A

redesign of the experimental apparatus would be required to make such a test.

2.7 Discussion and Summary

A two-droplet oscillator operating under inviscid conditions is considered. Pro-

vided that droplet shapes are restricted to spherical-caps, the inviscid dynamics

are described in the phase-plane by the behavior of a conservative oscillator. Total
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volume of the droplet system is a parameter that tunes the depth and separation

of the two energy wells. For small enough volume, there is a single well only while,

for λ > 1, there are two stable states that yield bi-stable behavior. For λ > 1,

dynamical trajectories about the stable states are limit cycles which, for increasing

amplitude, have longer and longer periods. These limit cycles eventually coalesce

to homoclinic orbits. For larger amplitudes yet, the dynamics is a single ‘loop-

ing’ orbit that encloses both stable states. For decreasing amplitudes, the looping

orbits have increasing periods until they coalesce to the same homoclinic orbits.

In view of the similarity of the phase-plane of the un-forced droplet-droplet

oscillator to the un-forced Duffing oscillator, one may anticipate that the droplet

system, weakly-forced by a periodic pressure pulse of controlled amplitude and

frequency and weakly-damped by viscosity, will exhibit chaos since the Duffing

system does so under similar conditions. We report that, indeed, this is the case.

Although we are unable to establish a strict homotopy between orbits of the

forced Duffing and droplet oscillators for all λ > 1, we can identify the two systems

in the limit λ→ 1. That is, all the literature results for chaos in the forced Duffing,

including the Melnikov bounds, apply for λ just super-critical.

For larger λ, we may expect a qualitative similarity between the systems to con-

tinue. Computational bounds using Melnikov’s method shows that this is indeed

the case. The calculation of Lyapunov exponents shows that chaotic trajectories

actually do exist in the region where the Melnikov necessary condition is satisfied.

On the other hand, the pattern of amplitudes and frequencies where the Lyapunov

exponents give chaos (figure 4) is quite different from that for the Duffing, even

for λ within 5% of critical. These qualitative differences are important, of course,

if one would like to use the predictions as a guide to finding chaotic behavior in
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the laboratory.

A number of approximations lead to the model whose dynamics are analyzed.

Most prominent among these is that the droplet shapes are pieces of spheres.

This condition is most favored for drops smaller than a few millimeters in size.

Previous experiments have demonstrated that this condition is compatible with

inviscid oscillations. The difficulty with identifying chaos is that long time series

are required and mitigating against this is evaporation that is enhanced by the

heat from lighting needed for quality images and the larger surface area to volume

ratio of smaller droplets. The end effect is that the control parameter λ is a slowly-

varying function of time which substantially complicates the interpretation of the

observations relative to the prediction, at least from a quantitative viewpoint.

Nevertheless, it can be concluded that chaos is observed in regions where the

Melnikov theory predicts that it can occur and it is never observed where the

theory predicts it cannot occur. Finally, the limited observations are consistent

with the predictions of the Lyapunov exponent computations.
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CHAPTER 3

BIFURCATION AND STABILITY OF N COUPLED DROPLET

OSCILLATORS WITH SN SYMMETRY1

Abstract

Two inviscid coupled spherical-cap droplets oscillate. This paper considers a net-

work of n spherical-cap droplet oscillators coupled via a central reservoir such that

the system has Sn symmetry. Owing to a constant-volume constraint, the sys-

tem reduces to a set of n − 1 second-order differential equations. Surface tension

(capillarity) resists deformations from the spherical shape. The symmetry of the

system is important. In particular, independent of the equations, equilibrium so-

lutions can be grouped into families, each with some p large and some q = n − p

small droplets. Within each family stability is invariant, which greatly reduces

the number of cases to consider. Equilibrium curves and their stability are cal-

culated analytically for an arbitrary number of droplets in a preferred coordinate

space. For small volumes, the only equilibrium state is stable and corresponds

to all identical droplets. For larger volumes, a multitude of equilibrium states

exist, each having the property that all droplets have equal radius of curvature.

Nearly all these equilibria are unstable, the only stable configuration being one

droplet large and the rest small. Results of simulations for three droplets that

show quasi-periodic and chaotic motions are also presented.

1D.M. Slater and P. H. Steen, Bifurcation and Stability of n Coupled Droplet Oscillators
with Sn Symmetry, SIAM Journal of Applied Mathematics, To Appear (2011), Reprinted with
permission.
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3.1 Introduction

Coupled oscillators arise in a wide variety of scientific disciplines such as biology,

electronics, and physics. Here the focus is on an Sn symmetric system where

surface tension dominates other forces. Small-scale systems have grown in interest

in recent years due to advances in nanotechnology and miniaturization. Viscous

resistance can be negligible compared to inertia even at small scales[4], which

we shall assume. The system studied is a network of n liquid droplets under a

constant-volume constraint. In such systems, liquid droplets tend to spherical

shapes under the action of capillarity. Droplet shapes are assumed to be spherical

caps, making their center of mass motions one-dimensional. We consider the case

where all the droplets exert the same force on all others, yielding a Sn symmetric

model equivariant under reordering of droplets. Analytic stability and bifurcation

results are obtained for a network of arbitrary size, including equilibrium branches,

bifurcation points, and stability of equilibria.

The condition for mechanical equilibrium of a system of n coupled droplets is

that they share a common pressure. From the volume-pressure response for a single

droplet, Figure 3.1, each droplet can be in one of two equilibrium states, which we

shall refer to as ‘small’ (sub-hemispherical) and ‘large’ (super-hemispherical), for

convenience. Since pressure is inversely proportional to radius-of-curvature by the

Young-Laplace condition, the n-system is in equilibrium when all droplets have

the same radius-of-curvature. As droplets with heights h and 1/h have the same

radius-of-curvature, the equilibrium states consists of some p droplets with height

h and some q droplets with height 1/h and are Sp × Sq symmetric.

The stability of equilibria can be anticipated by physical arguments in many

cases. Consider n = 2, for which there are four equilibrium states: large-large;
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Figure 3.1: P-V diagram for a single droplet with volume scaled by 4/3π. The

two droplets shown share the same pressure and have heights h and

1/h.

small-small; large-small; and small-large. Consider the large-large equilibrium

state. If volume is added to one drop, making it slightly bigger, the radius in-

creases and pressure decreases while, by conservation of volume, the same volume

must be removed from the other making it slightly smaller, which increases its pres-

sure. With the smaller drop having higher pressure, fluid will flow from smaller

to bigger and the disturbance will amplify. Therefore, two coupled large drops are

unstable. A similar “thought experiment” predicts that two small drops are sta-

ble. The large-small case is more subtle since the outcome depends on the different

slopes of the response at the two volumes, but it can be seen similarly that the

large-small state (and its twin, by symmetry) is always stable. Finally, for p > 1

large drops and q = n− p small drops, large drops can be considered pairwise for

which the above argument applies and we can conclude that these states have an

unstable direction – they are saddle points.

Several comments are in order. The arguments of the previous paragraph did

not depend on the type of underlying flow – viscous or inviscid. Indeed, they hold

for both cases provided we interpret stability as ‘Lyapunov stability’ for inviscid
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coupling and as ‘asymptotic stability’ for viscous flow (e.g. [5, 16]). In contrast,

the conclusion of the previous paragraph depends crucially on the shape of the

response curve. That is, if the droplet is replaced by an elastic membrane, the

constitutive response changes, and the stability results are likely to change[38].

The study of capillary oscillations of droplets has its roots in the work of Lord

Rayleigh. In 1879 he studied the vibrations of a sphere, where surface tension

restores shape deviations due to liquid inertia [19]. More recently, equilibria of

coupled droplets were studied by Wente in 1999 [39]. He examined the case of two

and three droplets from a catastrophe theory point of view. His main results are

universal unfoldings for the two droplet (cusp) and three droplet (elliptic umbilic)

systems. He also proves, from an energy point of view, that any equilibrium with

two or more large droplets must be unstable, recovered as a sub-case of this work.

This work is an extension of a dynamical model for two coupled droplets[1] and

reduces to their model for n = 2.

Motivation for this study comes from practical applications. Two pressure-

coupled droplets have a double-well surface energy landscape. With a mechanism

to trigger from one well to another, such as an electro-osmotic pump placed in

the tube in between droplets [11], the system becomes an active ‘switch’. Large

systems can have multiple stable equilibria. For example, two droplets coupled

through one liquid bridge can have up to five stable equilibria [40]. A number of

applications exploit capillary bi-stability and active switch toggling between stable

states. These include optical microlens devices [7, 8] and electronically-controlled

adhesion devices [11, 2]. In this paper, we generalize to n-coupled droplets and

study the phase-space dynamics of solutions to the inviscid governing equations.

The remainder of the paper is organized as follows. In Section 2 we discuss the
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role symmetry plays in the problem with a particular emphasis on conclusions that

can be made prior to precise formulation of the model in Section 3. In Sections

4 and 5 the cases of two and three droplets are analyzed. In section 6 analytic

equilibria and stability results are obtained for the general case (arbitrarily many

droplets). A discussion of the results and suggestions for further study can be

found in Section 7.

3.2 Model-Independent Symmetry Results

We wish to model the dynamics of a Sn symmetric system of n coupled spherical-

cap droplets. The assumption of Sn symmetry yields some basic information prior

to formulating the problem precisely. As the droplets are spherical-caps we can

describe a droplet’s state with a single variable, e.g. height, volume or center-of-

mass. Choosing volumes, suppose we can write the system as

ẋ = f(x;λ) (3.1)

where x = (V, V̇) ∈ R2(n−1) is a vector of volumes and rates-of-change of volumes,

f : R2(n−1)×R→ R2(n−1) and λ is the total volume of the droplets. Since the total

volume of the system is conserved only n− 1 motions are independent.

Sn symmetry means f(γx, λ) = γf(x, λ) for all γ ∈ Sn, x ∈ R2(n−1). The

advantage of symmetry is that if f(x̄, λ) = 0, then f(γx̄, λ) = γf(x̄, λ) = γ0 = 0.

This implies that if x̄ is an equilibrium solution, so are all members of its group

orbit Snx̄ = {γx̄ : γ ∈ Sn} [41]. Equivariance also implies that the identical

solution must be an equilibrium state [41].

The Equivariant Branching Lemma provides a mechanism to find more equi-
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librium states. It states that if a bifurcation from the identical state occurs, then

for each axial subgroup Σ of Sn there exists a unique branch of solutions whose

symmetry is Σ [41]. Axial subgroups are those with one-dimensional fixed point

spaces. Since the total energy of the system must be conserved, it is easy to check

that, up to conjugacy, the axial subgroups of Sn acting on our state space are

Sp × Sq where p + q = n and 1 ≤ p ≤ bn/2c. Each of these subgroups separate

the droplets into two sets. Without loss of generality we assume the first and

last droplet are in different sets. Thus, the first set consists of droplets each with

volume V1 and the second of droplets each with volume Vn = (λ− pv)/q. Defining

θ ≡ V1 − Vn, (3.2)

a general two-dimensional bifurcation diagram can be constructed with the total

volume λ as the bifurcation parameter.

Without explicitly formulating the dynamical system, symmetry alone implies

that if a bifurcation occurs, bn/2c + 1 types of equilibrium branches exist, each

with a corresponding symmetry group Sp × Sq. The group Sp × Sq has order(
n
q

)
so we expect a total of

∑bn/2c
p=0

(
n
p

)
equilibrium branches. Furthermore, due to

equivariance, stability must be invariant within each type of branch and one needs

only calculate stability once for each family. Later we show that the equilibrium

states can be easily separated by the number of small and large droplets. Symmetry

does not rule out the existence of other equilibria, but, in our case, proof by

inspection of the specific equations of motion will show that no others exist.
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Figure 3.2: Left: A schematic of the three droplet system. Right: 12 droplets

positioned on the sides of a dodecahedron

3.3 Oscillator-Model Formulation

Consider an object with n equally sized holes connected via tubes to a reservoir

in the center (Fig 3.2). The holes are filled with liquid until droplets protrude.

Assuming surface tension dominates other forces, the droplets may be assumed to

be spherical caps, implying that each droplet’s center-of-mass moves along a line.

Let the total volume of the system be conserved, and let hi be the height, Vi the

volume, zi the center of mass, L the tube centerline length, and Ri be the radius

of curvature of droplet i. Volume conservation implies that n − 1 of the droplets

have independent motions.

Each droplet is a deformable region of fixed density ρ and variable volume Vi,

whose linear momentum equation can be written down in terms of its center-of-

mass zi (e.g. [42] Section 5.15)

ρ
d2

dt2
[Vizi] + F

(cap)
i = F

(sys)
i , for i = 1, . . . , n (3.3)

where F
(cap)
i is the capillary force due to surface tension on droplet i and is evalu-
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ated by the Young-Laplace relationship for a spherical shape

F
(cap)
i = 2πσr2(1/Ri). (3.4)

The coupling term F
(sys)
i acts like a reaction force and depends on all droplets in

the system. As we assume Sn symmetry, each droplet affects all others in the same

way and

F
(sys)
i = F

(sys)
j ≡ F (sys), ∀ i, j. (3.5)

For n ≤ 4 this relationship can be derived based on the mechanics of a symmetric

system of drops, while for n ≥ 5 it is an assumption about the network. For exam-

ple, in the case of three droplets the symmetry required corresponds to aligning the

droplets at the vertices of an equilateral triangle (Figure 3.2). See appendix 3.9.1

for the ‘mechanics’ derivation of equation (3.3) and a discussion of the coupling

term.

Subtracting equation (3.3) for the nth droplet from each of the other equations,

nondimensionalizing by rescaling volumes by (4/3)πr3, lengths by r and time by

ρr3σ and rearranging yields

d2

dt2
[Vizi − Vnzn] =

3

2

[
1

Rn

− 1

Ri

]
, i = 1, 2, . . . , n− 1, (3.6)

where

Ri =
1

2

(
hi +

1

hi

)
, (3.7)

zi = `+ hi
2 + h2

i

6 + 2h2
i

, (3.8)

Vi =
1

8
hi(3 + h2

i ), (3.9)

and the total volume is

λ ≡
n∑
i=1

Vi. (3.10)
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Equations (3.7-3.9) follow from trigonometry, ` ≡ L/r is the scaled tube length

and all other quantities are non-dimensional but use the same notation as previous

dimensional quantities. Equation (3.10) allows us to write the properties of the

nth droplet as functions of the first n− 1 droplets.

As outlined in Theisen et al.[1], a variety of coordinate systems can be chosen

to characterize this system (volumes, heights, centers of mass, etc). Nonlinear

invertible mappings exist between the coordinate representations allowing us to

switch between representations freely. For example if we choose volumes, Ri, zi

and hi can all be written as functions of Vi.

At equilibrium the droplets are organized into two sets, with droplets identical

within each. Then θ as defined in equation (3.2) is the natural coordinate system

for equilibrium calculations, as all equilibrium curves in each family collapse and

a 2D bifurcation diagram is obtained with the total volume λ as the bifurcation

parameter. In (θ, λ) space the identical solution is the null solution θ = 0 and is

an equilibrium state for all volumes (a typical assumption in bifurcation theory

[20]). For stability calculations volumes are chosen as the dependent variables but

calculations are often done using droplet heights, for convenience.

3.4 Two-Droplet Case

The model studied in this work is an extension of a model proposed by Theisen et.

al[1] for two coupled spherical-cap droplets. It reduces to their model for n = 2.

In that work, they find in the (θ, λ) = (V1 − V2, V1 + V2) coordinate system, a

pitchfork bifurcation occurs at λ = 1, when the droplets are hemispherical. The

zero solution (identical droplets) is stable for λ < 1 and unstable for λ > 1. The
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symmetric pitchfork branch, on which one droplet is small and the other large is

stable and parameterized as

θ(λ) = ±
(
λ2 − 3

4
λ2/3 − 1

4

)1/2

. (3.11)

By inspection (3.11) exists only for λ ≥ 1. The stability of the branches is eas-

ily found by calculating the eigenvalues of the Jacobian. The fact that (3.11) is

symmetric about the θ = 0 axis results from the differential equation having Z2

symmetry in θ, which implies there must be a pitchfork bifurcation [43].

3.5 Three-Droplet Case

For three coupled spherical-cap droplets under a constant-volume constraint the

governing equations are

d2

dt2
[Vizi − V3z3] =

3

2

[
1

R3

− 1

Ri

]
, i = 1, 2. (3.12)

It is easy to see that the system is at equilibrium if and only if R1 = R2 = R3.

Equal radii of curvature will also be the defining feature of equilibrium in the

general case. Since Ri satisfies Ri(h) = Ri(1/h), the system is in equilibrium if

all the droplets have either the same height or the reciprocal of the height of the

first droplet. In symmetry terms this means the equilibrium states consist of the

group orbits of h1 = h2 = h3 and h1 = h2 = 1/h3. For clarity, the group orbit of

the first case is the single given element, as its symmetry group is the trivial group

1, while the orbit of the second case has three elements since its symmetry group

is S2 × S1. For future reference, we will call a branch with all equal heights an

identical branch and a branch with all but one droplet identical a near-identical

branch. We will see in the case of n droplets these two types of branches have the

only stable equilibria.
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Let us consider a near-identical branch, characterized by the relationships h1 =

h2 and h1h3 = 1. Let θ = V1− V3. In order to obtain explicit stability of branches

in this coordinate system, we let (a, b) ≡ (h1 + h3, h1 − h3) and write

θ = V1 − V3 =
1

32
b(12 + 3a2 + b2), (3.13)

λ = V1 + V2 + V3 = 2V1 + V3 =
1

64
(36a+ 3a3 + 12b+ 3a2b+ 9ab2 + b3). (3.14)

Now h1h3 = 1 implies a2 − b2 = 4. Using this identity, we simplify to

θ =
1

8
b
(
6 + b2

)
, (3.15)

λ =
3

16
a3 +

1

16
b
(
6 + b2

)
. (3.16)

Solving (3.15) for b and a2 − b2 = 4 for a yields

λ(θ) =
1

2
θ +

3

16
a3 (3.17)

as the equation of the equilibrium branch,where

a3 =

4 +

(
−22/3 + 21/3(2θ +

√
2 + 4θ2)2/3

(2θ +
√

2 + 4θ2)1/3

)2
3/2

. (3.18)

Setting θ = 0 in (3.17) yields a transcritical bifurcation at λ = 1.5. This agrees

with Wente’s equilibrium analysis. Wente showed, using energy methods, that a

bifurcation happens in the three droplet system when the three symmetric droplets

reach a hemispherical state [39]. This occurs when the height of the droplet equals

the radius of the droplet (scaled to one). Thus, at this point, Vi = 1
8
∗1(3+1) = 1

2
,

which implies λ = 3∗ 1
2

= 1.5. A saddle node bifurcation also occurs at λ ≈ 1.4355,

found by setting λ(θ) = 0. The rational (exact) value of this turning point is found

explicitly in the next section.

Equation (3.17) represents three branches in the full space, lying in the planes

V1 = V2, V2 = V3, and V1 = V3 respectively. The equations in volume space can
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be obtained by letting θ = V1 − V2, V1 − V3, and V2 − V3 respectively. Figure 3.3

shows (3.17) along with the null solution plotted in the (θ, λ) plane as well as the

linear frequencies found in the next section.

3.5.1 Stability of Equilibria for Three Droplets

To find the Lyapunov stability of the equilibrium solutions, we first expand out

the derivatives in (3.6) using V̇1 + V̇2 + V̇3 = 0

2

3

[
V̈1(h1 + h3 + 3`) + V̈2

(
h3 +

3

2
`

)
+
dh1

dV1

V̇ 2
1 −

dh3

dV3

(V̇1 + V̇2)2

]
=

3

2

[
1

R3

− 1

R1

]
.

(3.19)

For three droplets, there are two equations of this form and the system can be

written as h1 + h3 + 3` h3 + 3
2
`

h3 + 3
2
` h2 + h3 + 3`


 V̈1

V̈2

 =

 9
4

[
1
R3
− 1

R1

]
− dh1

dV1
V̇ 2

1 + dh3
dV3

(V̇1 + V̇2)2

9
4

[
1
R3
− 1

R2

]
− dh2

dV2
V̇ 2

2 + dh3
dV3

(V̇1 + V̇2)2

 .

(3.20)

The inverse of the first matrix is easy to calculate and thus the model can be

expressed as a system of four first-order differential equations.

First consider the identical case (h1 = h2 = h3 = h), which corresponds to the

zero solution in θ space. The Jacobian is

df =

 0 I2

f(h)I2 0

 , (3.21)

where

f(h) ≡ 24(h2 − 1)

(2h+ 3`) (1 + h2)3
. (3.22)
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Figure 3.3: Left: Bifurcation diagram for three droplets in (θ, λ) space. A small
drop is labeled s and a large drop is labeled l. The θ = 0 solution
is stable for λ < 1.5 and unstable for λ > 1.5. The saddle node
branch is stable above the limit point and unstable below. Right: Non
dimensional vibration frequencies. Solid lines indicate frequencies for
stable equilibria, dotted lines unstable

Eigenvalues of df are easily computed to be ν1 = ±
√
f(h). f(h) is negative for

h < 1 and positive for h > 1 and thus the identical branch is a Lyapunov stable

center for h < 1 (λ < 1.5) and a four-dimensional saddle for h > 1.

Next consider a near-identical branch (h1 = h2 = h;h3 = 1/h), with Jacobian

df =



0 0 1 0

0 0 0 1

θ φ 0 0

φ θ 0 0


, (3.23)

where

φ ≡ −f(h)
h4ξ − ξ − 1

ξ + 2
, ψ ≡ −f(h)

1 + h4ξ

ξ + 2
, ξ ≡ h(3`+ 2h)

2 + 3`h
. (3.24)

The eigenvalues ν2 and ν3 are given by

ν2
2 = φ− ψ = f(h), (3.25)

ν2
3 = φ+ ψ =

ξ

ξ + 2
(1− 2h4)f(h). (3.26)
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This leads to the curves being stable for h < 2−1/4and unstable for h > 2−1/4.

Note that when h = 2−1/4, λ = 1/2(21/4 + 23/4) gives the saddle-node bifurcation

point. The other two curves in the group orbit share the same stability results.

The computed eigenvalues also provide the linear frequencies of oscillation about

the equilibrium states and are plotted in Figure 3.3.

3.6 Equilibria for n Droplets

Consider now the case of n > 3 droplets. As with the case n = 3, equilibrium

states are characterized by equal radii-of-curvature. This allows one to classify

equilibrium states by their symmetry group. Suppose the first p droplets have

height h1 and the last q = n − p droplets have height hn = 1/h1. By symmetry,

there are
(
n
p

)
= n!/(p!q!) equilibrium curves of this type, one for each element of

Sp × Sq.

At equilibrium the droplets can be classified into two categories, within which

the droplets are identical up to a permutation. Consequently, a natural coordinate

system is the difference in volume between these two group θ, defined in equation

(3.2). In this space, a single equilibrium curve is representative of all those with

the same symmetry.

Suppose there are p droplets of type V1 and q of type Vn. In this case θ =

V1 − Vn and λ = pV1 + qVn. To find the equilibrium curve in the (θ, λ) space let

(a, b) = (h1 + hn, h1 − hn) and note that h1hn = 1 implies a2 − b2 = 4. θ(a, b) and

λ(a, b) simplify to
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θ =
1

8
b(6 + b2), (3.27)

λ =
1

16
(p+ q)a3 +

1

16
(p− q)b

(
6 + b2

)
. (3.28)

Using (3.27) in (3.28), we obtain

λ =
n

16
a3 +

p− q
2

θ, (3.29)

where a3 is given by (3.18). When θ = 0, all branches intersect the trivial branch

at λ = n/2. This is precisely when all the drops are hemispherical, as expected,

since each hemispherical drop has scaled volume 1/2. Next, if n is even and p = q,

λ(θ) is symmetric about the θ = 0 axis. For this special case, similar calculations

yield θ as a function of λ:

θ(λ) = ±

(
4

n2
λ2 − 3

4

(
2λ

n

)2/3

− 1

4

)1/2

,

which recovers (3.11) for n = 2.

In summary, the identical branch exists for all n. For n odd there are (n−1)/2

families of nontrivial asymmetric equilibrium branches, while for n even there are

(n− 2)/2 families of asymmetric and 1 family of symmetric nontrivial equilibrium

branches. Figure 3.4 shows a generic bifurcation diagram in (θ, λ) space as well as

linear frequencies for n = 14.

3.6.1 Stability of Equilibria for n droplets

To compute Lyapunov stability of the equilibrium curves for n coupled droplets

one needs to first expand out derivatives and write the system in a form from
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Figure 3.4: Left: Generic bifurcation diagrams. All curves intersect the θ = 0
axis at λ = n/2 All nonzero branches are unstable except the left-
most branch above the saddle node point. Right: Linear stability for
the identical and near-identical branches for 14 droplets. Solid lines
indicate stable solutions, dotted unstable.

which the Jacobian can be computed. Expanding out the derivatives in (3.6) for

arbitrary n yields[
V̈1(h1 + hn + 3`) +

n−1∑
i=2

V̈i

(
hn +

3

2
`

)]
=

9

4

(
1

Rn

− 1

R1

)
−

dhi
dVi

V̇ 2
i −

dhn
dVn

(
n−1∑
j=1

V̇j

)2
 .

(3.30)

We can then write our system in matrix form as AV̈ = G, where

(A)i,j =

 hi + hn + 3` if i = j,

hn + 3
2
` if i 6= j,

(3.31)

Gi =
9

4

(
1

Rn

− 1

R1

)
−

dhi
dVi

V̇ 2
i −

dhn
dVn

(
n∑
j=1

V̇j

)2
 , (3.32)

V = (V1, V2, . . . , Vn−1). (3.33)

Matrix A is clearly invertible (hi > 0 is assumed) and we can write V̈ = A−1G.

Since G = 0 at equilibrium, the Jacobian is 0 In−1

A−1DG 0

 , (3.34)
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where

(DG)i,j =

 g(hi) + g(hn) if i = j,

g(hn) if i 6= j,
(3.35)

and g(h) = 12(h2 − 1)/(1 + h2)3. For clarity we break the stability analysis into

three cases.

Case 1: Identical Branch

On the identical branch, all the droplets are of the same type. Let all drops have

height h; then the Jacobian is

df =

 0 In−1

f(h)In−1 0

 . (3.36)

The eigenvalues of df are given by ν2
1 = f(h), and thus the identical branch is

a stable center when h < 1 (λ < n/2), and an n-dimensional saddle if h > 1

(λ > n/2). In other words, the branch is Lyapunov stable for small volumes and

unstable for large volumes. Note that we use the notation as for n = 3 as the

eigenvalues agree in this case.

Case 2: Near-Identical Branch

On the near-identical branches, all but one droplet are identical. Because of sym-

metry, without loss of generality we may assume the first n− 1 drops have height

h and the last drop has height 1/h. After computing A−1 (see appendix 3.9.2)
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A−1DG is given by

(D)i,j =
(
A−1DGi,j

)
=

 φ if i = j,

ψ if i 6= j,
(3.37)

φ ≡ −f(h)
h4ξ − ξ − (n− 2)

ξ + (n− 1)
, (3.38)

ψ ≡ −f(h)
1 + h4ξ

ξ + (n− 1)
, (3.39)

where ξ is given by (3.24). Matrix D is a circulant matrix, whose eigenvalues are

found by evaluating u(x) ≡ φ+ ψ(x+ x2 + x3 + . . .+ xn−2) at the (n− 1)th roots

of unity [44]. The first root of unity is x = 1:

u(1) = φ+ (n− 2)ψ. (3.40)

For x 6= 1,

u(x) = φ− ψ
(
xn − x2

1− x2

)
, (3.41)

from which it follows that

u(e
k2πi
n−1 ) = φ− ψ

(
en

k2πin
n−1 − e2 k2πi

n−1

e
k2πi
n−1 − e2 k2πi

n−1

)
= φ− ψ (k = 1, . . . , n− 2), (3.42)

since en
k2πi
n−1 = e

k2πi
n−1 . Thus the eigenvalues of the Jacobian are given by

ν2
2 = φ− ψ = f(h), (3.43)

ν2
3 = φ+ (n− 2)ψ =

ξ

ξ + (n− 1)

(
1− (n− 1)h4

)
f(h). (3.44)

Simple calculations show the near-identical branch is a stable center for h < (n−

1)−1/4 (one large drop) and a saddle for h > (n−1)1/4 (one small drop). In terms of

the total volume λ this change of stability corresponds to a saddle-node bifurcation

at

λ =
1

2

(
(n− 1)1/4 + (n− 1)3/4

)
. (3.45)

Note that, for n = 3, (3.45) recovers the value reported in section 5.1.
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Case 3: All Other Branches p > 0, q > 1

Without loss of generality, suppose the first p droplets have height h and the last

q = n− p droplets height 1/h. After computing A−1 and calculating A−1DG (see

appendix 3.9.2) the Jacobian for the general case is

df =


0 In−1

D 0

E F
0


n−1×n−1

, (3.46)

where

(D)i,j =

 φp,q if i = j,

ψp,q if i 6= j,
, (3.47)

E ≡ 1(
1
h

+ 3
2
`
)

(p+ qξ)

(
ξg

(
1

h

)
− g(h)

)
1q−1×p, (3.48)

F ≡
g( 1

h
)

1
h

+ 3
2
`
Iq−1, (3.49)

θp,q ≡ −f(h)
h4ξ − qξ − p+ 1

p+ qξ
, (3.50)

φp,q ≡ −f(h)
1 + h4ξ

p+ qξ
(3.51)

By observation, the eigenvalues are simply plus and minus the eigenvalues of D

and F . As F is a constant multiple of the identity and D is a circulant matrix,

the eigenvalues of df are given by

µ2
1 =

g(1/h)
1
h

+ 3
2
`

= f

(
1

h

)
, (3.52)

µ2
2 = θp,q − φp,q = f(h), (3.53)

µ2
3 = θp,q + (p− 1)φp,q =

ξ

p+ qξ

(
q − h4p

)
f(h). (3.54)

As f changes sign when h = 1, it is easy to see that µ1 is purely imaginary only if

h < 1 while ν2 is purely imaginary only if h > 1. Thus, as long as p, q > 1, both
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D and F exist and there is always one unstable eigenvalue; hence any equilibrium

with two or more large drops must be unstable. The calculated eigenvalues give

the linear frequencies of vibration about the near-identical branches as well as the

identical branch. For example, Figure 3.4 shows frequencies for n = 14.

Equation (3.46) is the Jacobian for all branches. The identical branch cor-

responds to p = 0, q = n. In this case the lower left block is just D and the

eigenvalues are f(1/h), which agrees with section 6.1.1 since the droplets labeled

q have height 1/h. For the near identical branches, p = n − 1, q = 1. and the

lower left block is just F . The eigenvalues are µ2 and µ3 which equal ν2 and ν3,

calculated in section 6.1.2.

3.7 Discussion

A network of droplet oscillators with Sn symmetry subject to a constant-volume

constraint is considered. Assuming the droplets are spherical-caps coupled through

inviscid flow, the system behaves as a conservative oscillator. Using the total vol-

ume of the droplets as a parameter, families of equilibrium states and their stability

are investigated with an emphasis on exploiting the symmetry of the system. In

total,
∑bn/2c

j=0

(
n
j

)
equilibrium branches are observed, all of which intersect trans-

versely at λ = n/2. These are split into bn/2c + 1 families, each with Sp × Sq

symmetry, where there are p droplets with height h and q droplets with height

1/h. All branches where both p and q are greater than 1 are always unstable. In

other words, any equilibrium state with more than one large droplet is unstable. In

contrast, the identical branch is stable for small volumes (λ < n/2) and unstable

for large volumes (λ > n/2), while the near-identical branches are stable above
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Figure 3.5: Grids of Lyapunov exponents, for ` = 1.1 and λ = 1.26, 1.46, and
1.56 respectively. The darker the dot at each point the largest the
Lyapunov exponent. White dots indicate quasiperiodic behavoir and
gray dots indicate chaotic behavoir.

and unstable below their saddle-node bifurcations at (3.45).

In the case of two droplets the nature of trajectories is easily understood in

the phase-plane as previously reported in [1]. There are three types of behavior:

fixed points, periodic orbits and homoclinic orbits. For λ < 1 there is a single

stable equilibrium point surrounded by a family of periodic orbits. For λ > 1 two

families of the periodic orbits surround the stable states, and are separated from a

family of looping periodic orbits by homoclinic orbits originating at the unstable

equilibrium point. This is similar to the Duffing equation, a classic example in

nonlinear dynamics. Furthermore, for λ near 1, truncated Taylor expansion about

θ = 0 of (3.6) yields the Duffing equation[45].

For n ≥ 3, the nonlinear behavior of the system is more complex. Consider the

case of three droplets where movement is confined to the plane. In this case, the

phase space is four-dimensional and one expects complicated dynamics. Numerical

exploration reveals two general forms of behavior: quasi-periodic behavior confined

to a torus and chaotic phase-space-filling dynamics, with a rapid transition between

the two.
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To distinguish between a chaotic and a quasi-periodic solution one can calculate

the largest Lyapunov exponent for a trajectory, with positive indicating chaotic

behavior and a zero exponent quasi-periodic[46]. As the full phase space is four

dimensional, displaying the whole space is not practical. Instead, we consider the

slice of trajectories starting at rest (V̇i(0) = 0) with positive initial volumes for all

droplets (Vi(0) > 0). Defining coordinates {x, y} = {
√

3/2(V2−V3), V1−(1/2)(V2+

V3)}, this slice is triangular in shape and possesses S3 symmetry, manifesting as

reflections and rotations of an equilateral triangle. As such, we need consider only

1/6 of the space, generating the rest by group actions.

To compute the largest Lyapunov exponent, we employ the Wolf algorithm[35]

as detailed by Rand[21]. Lyapunov exponents are calculated on a 0.007 sized grid,

providing a graphical representation of where the different types of behavior occur.

Sample grids for ` = 1.1 and λ = 1.26, 1.46, and 1.56 are given in Figure 3.5. We

take 0.01 to be our critical boundary for chaotic behavior, and plot all points with

Lyapunov exponent greater than than 0.01 in gray-scale. Behavior is as might

be anticipated. Prior to bifurcation, the only equilibrium is the stable center

at the origin, which has a basin of quasi-periodicity represented by white pixels.

Between bifurcations there are four stable centers, each with a basin of quasi-

periodicity. Curiously, there are also other satellite regions of quasi-periodicity.

Post bifurcation, the three stable centers each have a basin of quasi-periodicity.

For λ near 1.5, these regions are small and as λ increases they grow in size. Again,

there are also satellite regions of stability.

The bifurcation and stability results are highly dependent on the symmetry

of the system, and thus we ask what happens if the symmetry of the system is

broken. The model considered here has Sn symmetry because it was assumed
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that the force felt by each droplet is the arithmetic average of force induced by

the others. Suppose we perturb this average slightly so it is no longer perfectly

symmetric. More precisely, suppose our symmetry assumption (3.5) is replaced by

F
(sys)
i ≡ 1

n− 1

n∑
j=1,j 6=i

(1 + εi,j)F
(sys)
j , (3.55)

where |εi,j| � 1. Golubitsky and Stewart[43] explain that under such perturba-

tions, the equilibrium points will move and as such one does not expect transcritical

bifurcations all at a single point. However the conclusion drawn from the analysis

will not change under such perturbations. More generally, normal hyperbolicity

guarantees that equilibria move continuously if the system is perturbed [43]. That

is, there will still be equilibria with p large droplets and q small droplets, the dif-

ference being that droplets within the classes will no longer be identical and the

stability of branches must be considered separately.

A natural area of further study is to consider external driving forces as well

as small viscous resistance. The two-droplet system subject to sinusoidal forcing

and small dampening is studied in [45], using Melnikov’s method and Lyapunov

exponents to explore the phase space for chaotic dynamics. In higher-order systems

similar techniques as well as symmetry methods could be used. An exploration of

the symmetries of chaotic attractors for the system may also be revealing.
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Figure 3.6: Left: Schematic of a single droplet connected to a tube. Right: Three
droplet schematic

3.9 Appendix

3.9.1 Momentum Equation Derivation

Consider a spherical cap droplet Ω with boundary δΩ = δΩ1 ∪ δΩ2, where δΩ1 is

acted on by surface tension and where across boundary δΩ2 fluid is free to flow

owing to the tube it is connected to (Figure 3.6). The droplet control-volume has

variable mass (volume). Assuming inviscid flow and an absence of body forces, the

balance of linear momentum for droplet i can be written in terms of the pressure

forces f
(p)
i exerted as (e.g. [42] Section 5.15)

Miz̈i = f
(p)
i − ρ

∫
S

n · (v − w) (v − żi) dS − ρ
d

dt

∫
S

n · (v − w)(c(s)− zi)dS.

(3.56)

Here v is the velocity at which liquid leaves the control volume, w is the velocity of

the interface and c(s) is the surface coordinate of the boundary. As no fluid flows

across δΩ1, v = w there, while the liquid/liquid boundary δΩ2 does not move, so

w = 0 there. Assuming a spatially uniform flow rate, constant density ρ and that
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δΩ2 is connected to a tube with centerline length L to the origin, (3.56) takes the

form

Miz̈i = f
(p)
i − ρ

∫
δΩ2

n · v (v − żi)− ρ
d

dt

∫
δΩ2

n · v(c(s)− zi)dS (3.57)

= f
(p)
i + Ṁi

(
Ṁi

ρπr2
− żi

)
+
d

dt

[
Ṁi (L− zi)

]
. (3.58)

Let f
(p)
i = F

(cap)
i + fi where the first term is the pressure drop over δΩ1 and the

second over δΩ2. Simplifying (3.58) yields

ρ
d2

dt2
[Vizi] + F

(cap)
i = fi +

ρ

πr2
V̇ 2
i + LρV̈i ≡ F

(sys)
i (3.59)

which is equation (3.3). The right-hand-side F
(sys)
i is the coupling term which

includes both pressure force and rate of change of fluid momentum. Computing

the center-of-mass equations for the tubes allows us to derive relationships between

the F
(sys)
i terms. In order for the system to be Sn symmetric, the tubes must be in

an n− 1 dimensional space with the droplets at the vertexes of a (n− 1)-simplex

(for n ≤ 4 this is realizable in physical space of dimension d = n − 1, while for

n > 4 it is a network assumption). Take, for example, the case of three droplets

positioned at the vertexes of a right triangle (Figure 3.6). Treating the tubes as

a control volume with boundary δΩ3 lying in the plane, we apply (3.56) in vector

form to obtain

~0 = F
(sys)
1 ~a1 + F

(sys)
2 ~a2 + F

(sys)
3 ~a3 (3.60)

where ~a1 = (1, 0), ~a2 = (−1,
√

3)/2 and ~a3 = (−1,
√

3)/2. The rest of the terms

are zero because z0(t) = 0 for all time. Equation (3.60) implies that F
(sys)
1 = F

(sys)
2

and F
(sys)
1 = F

(sys)
3 and hence they must all be equal.
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3.9.2 Jacobian for n Droplets

To compute the Jacobian for an arbitrary number of drops we need the inverse of

An×n. Without loss of generality assume the first p drops have height h the other

q = n− p drops have height 1/h. Then

A =

(
1

h
+

3

2
`

) yIp + 1p×p 1p×q−1

1q−1×p Iq−1 + 1q−1×q−1

 (3.61)

whose inverse is

A−1 =
1

( 1
h

+ 3
2
`)(p+ qξ)

 Mp×p −1p×q−1

−1q−1×p Nq−1×q−1

 , (3.62)

where

M ≡ (
p

ξ
+ q)Ip×p −

1

ξ
1p×p, (3.63)

N ≡ (p+ qξ)Ip×p − ξ1p×p. (3.64)

Note that on the near-identical branch, p = n− 1, q = 1 and A−1 is just

2h

(2 + 3h`)(ξ + n− 1)
Mn−1×n−1. (3.65)

Next, we compute the Jacobian of the right hand side DG

DG =

 G1 g(1/h)1p×q−1

g(1/h)1q−1 × p G2

 , (3.66)

G1 ≡ g(h)Ip×p + g(1/h)1p×p, (3.67)

G2 ≡ g(1/h)(Ip×p + 1p×p). (3.68)

Putting it together, now,

A−1DG =
1

p+ qh2

 Mp×p −1p×q−1

−1q−1×p Nq−1×q−1

 ,

 G1 g(1/h)1p×q−1

g(1/h)1q−1×p G2

 ,

(3.69)
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which when multiplied out yields the lower left-hand block of (3.46).
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CHAPTER 4

DETECTING SYMMETRY IN THE MOTIONS OF THREE

COUPLED DROPLET OSCILLATORS

Abstract

Symmetry detectives offer an automated method to classify the symmetries of solutions

to dynamical systems. In this paper, symmetry detectives are applied to conservative

motions of coupled-droplet oscillators. Previous application of detectives has been for the

determination of symmetries of attractors as well as the detection of symmetry-changing

bifurcations. We analyze the trajectories of a fourth-order S3 symmetric model of three

coupled liquid droplets, where motions are assumed frictionless. Since there is no dissipa-

tion in the model, there are no asymptotically stable attractors, only centers. Solutions

away from equilibrium are the focus. In particular, we examine trajectories starting

with no initial velocity. Detection of symmetry is achieved by mapping a trajectory

into an appropriate representation space and where distances to fixed-point subspaces

of subgroups are computed. Results of the symmetry-detective approach are contrasted

to the more conventional computation of the largest Lyapunov exponent as a signal of

chaotic or quasi-periodic dynamics. Both methods can be applied to a grid of initial con-

ditions in an automated fashion. Our results demonstrate a strong correlation between

symmetries and nonlinear dynamics.

4.1 Introduction

Symmetry is often an important structural component of dynamical systems. For

example, changes in symmetry often coincide with drastic changes in dynamics.
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For a dynamical system that is Γ-equivariant, individual trajectories have their own

symmetries which are typically subgroups of Γ. Determining how the symmetries

of the trajectories of three S3 coupled droplets change as the initial conditions vary

is the goal of this work.

When surface tension dominates other forces, liquid droplets tend to spheri-

cal shapes. We consider a network of three such droplets, constrained to circular

contact-lines and coupled via a central chamber such that the system is S3 sym-

metric. Slater and Steen[47] derived a frictionless model of center-of-mass mo-

tions for n droplets, extending a two droplet model[1]. Here, we restrict to the

case of three droplets in which the phase space is four dimensional and chaotic

and quasi-periodic dynamics occur. Furthermore, we assume frictionless motions,

which implies there are no Lyapunov stable solutions. As such, there are no clas-

sical attracting sets to analyze. Instead, we focus on chaotic and quasi-periodic

trajectories away from equilibrium.

We utilize two metrics to classify solutions. First, the largest Lyapunov expo-

nent is used to distinguish between quasi-periodic and chaotic dynamics. Second,

symmetry detectives are used to classify the set-wise symmetries of trajectories.

Both these methods are employed on grids of initial conditions with fixed total

volumes. We find that chaotic trajectories have S3 symmetry, while quasi-periodic

trajectories have one of the three flip symmetries.

The method of symmetry detectives was introduced by Barany et al.[48] in 1993.

The general idea is to map a trajectory to a point in an appropriate representation

space where determining symmetry reduces to calculating distances to fixed point

subspaces. The typical application of detectives is the determination of how the

symmetries of attractors change as parameters are varied [49] [50]. They also have
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been applied to experimentally-determined attractors[51, 52]. In contrast, we are

interested in the symmetries of trajectories rather those of attractors.

The paper is setup as follows. First the model is introduced and the equi-

libria, their stability and the bifurcation diagram are discussed. Then Lyapunov

exponents are calculated on grids of initial conditions, separating trajectories into

regions of quasi-periodicity and regions of chaotic dynamics. After that, an intro-

duction to the method of detectives is given and the particular detective employed

and its corresponding representation space are discussed. The method of detec-

tives is then used on a grid of initial conditions and the results are compared with

the Lyapunov exponents calculated. Complications of the method due to small

oscillations are discussed and a solution is given.

4.2 Oscillator Model

The motion of a deformable liquid mass depends on the nature of the liquid (New-

tonian or non-Newtonian), the geometry of constraint, boundary conditions and

the driving force, in general. Under all circumstances, the center-of-mass (c-o-m)

is governed by Newton’s laws. When the surface tension is sufficiently strong a

droplet pinned on a circular contact-line will tend to retain its spherical shape and

deform as a spherical cap. Spherical-cap deformations comprise a one-parameter

family, an important class of deformations. Suppose three droplets, connected via

a central chamber, have co-planar symmetry axes such that the angle between

each is 2π/3 (Figure 4.1). Restricting to spherical caps, it is clear that the c-o-m

of each droplet moves along its axis and that the three-droplet system com moves

in the plane. Let Z ∈ R2 be the center-of-mass of the system and VT be the total
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Figure 4.1: (Left) Schematic of the S3 symmetric three droplet system. (Right)

Bifurcation diagram for the three droplet system where θ = Vi−Vj for

some i and j while λ = V1 +V2 +V3. The zero branch (all identical) is

stable for λ < 1.5 and unstable for λ > 1.5. The saddle-node branch

(two identical) is stable above the limit point and unstable below.

volume. Then Newton’s second law is

ρ
d2

dt2
(VTZ) = F. (4.1)

where the net force acting F is the net pressure force arising from surface tension

σ through the radius of curvature Ri of each droplet i, as given by the Young-

Laplace law. The driving force felt at the base of each drop is 2πr2σ/Ri, and the

net force on the c-o-m of each drop consists of the driving force and a resisting

force due to the other two drops. For the symmetric arrangement shown in Figure

4.1, each drop experiences an identical resisting force which can be eliminated by

pair-wise subtraction of Newton’s law applied to each drop. Details are provided

in [47] where the model for Sn symmetric coupled spherical-cap droplets, n > 2 is

derived.

Using the standard basis in R2 and nondimensionalizing by rescaling volumes
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by (4/3)πr3, lengths by r and time by ρr3σ, (4.1) may be written as

d2

dt2
[V2z2 − V3z3] =

3

2

[
1

R3

− 1

R2

]
(4.2)

d2

dt2

[
V1z1 −

1

2
(V2z2 + V3z3)

]
=

3

4

[
1

R2

+
1

R3

− 2

R1

]
. (4.3)

Here, Ri ≡ (1/2)(hi + 1/hi), zi = (` + hi(2 + h2
i )(6 + 2h2

i ), ` is the scaled tube

length, and hi is given implicitly by Vi = (hi/8)(3 +h2
i ). Let λ be the total volume

of the three droplets defined as

λ = V1 + V2 + V3. (4.4)

Since λ is constant, one of the volumes in (4.2)-(4.3) may be replaced by λ. If V3

is replaced a well defined dynamical system is obtained with independent variables

V1 and V2 and parameters λ and `.

The system is in equilibrium when all three droplets have the same radius of

curvature. As R(h) = R(1/h), this occurs when all the droplets have height h

or two have height h and the third 1/h. The second case can happen in three

different ways, each with a different pair of droplets identical. Let θ = Vi − Vj be

the difference in volume between droplets i and j. Then a 2D bifurcation diagram

in (θ, λ) is obtained in Figure 4.1. The identical case (h, h, h) is a stable center

for λ < 1.5 and an unstable saddle for λ > 1.5. This change in stability happens

when all three droplets are hemispherical. The saddle-node branch represents three

branches in the full space and corresponds to any two droplets having height h and

the third height 1/h (h, h, 1/h). This branch consists of stable centers when one

droplet is sufficiently large and unstable saddle points otherwise.

We are interested in the symmetries of trajectories of this S3 equivariant dy-

namical system. The system has no dissipation which implies all stable equilibrium

points are centers. Furthermore, solutions lie in R4 and hence can be quasi-periodic
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Figure 4.2: (a) Equilibrium points and lines of symmetry for λ = 1.54 and ` =

1.1. Red squares are centers and black circles are saddle-points. (b) A

fully symmetric chaotic trajectory projected into (k1, k2) space. The

solution is symmetric with respect to reflections about the three lines

of symmetry AA′, BB′ and CC ′ as well as rotations that map the

lines to each other. The plotted triangle bounds points where all

three droplets have positive volume.

or chaotic. As the phase space is four dimensional, quantification of it in its entirety

is not tractable. Instead we restrict to initial conditions with zero initial velocity

and positive initial volumes. We explore how the symmetries and dynamics change

as the initial conditions are varied.

For visual inspection, trajectories are projected onto R2 using the coordinates

k1 =

√
3

2
(V2 − V3) (4.5)

k2 = V1 −
1

2
(V2 + V3) . (4.6)

In this space, the S3 symmetry of the system manifests as the symmetries of a

right triangle. A sample plot of a fully symmetric chaotic trajectory is shown in

Figure 4.2b. As a set, this solution is symmetric with respect to reflections along

the lines AA′, BB′ and CC ′ and rotations that map these lines to each other.
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The triangular boundary is the set of points with positive volume. The nature of

solutions starting in this triangular are explored as the total volume of the system

changes. Symmetry detectives allow us to explore such initial conditions in an

automated fashion. The question to answer is then:

Starting from rest, what sorts of trajectories do we expected? What symmetries

do they have and are they chaotic or quasi-periodic?

4.2.1 Lyapunov Exponents

Let

ẋ = f(x, t) (4.7)

be our equations of motion. The question of chaotic or quasi-periodic is answered

through the calculation of the largest Lyapunov exponent. Lyapunov exponents

measure the stretching of phase space and can be computed numerically [35]. Let

x̄1 and x̄2 be two solutions of equation (4.7) such that |x̄1(0) − x̄2(0)| = δ0 � 1.

On average, they will separate with speed

ε(t) = δ0e
νt, (4.8)

where ν is the largest Lyapunov exponent. If ν is positive the solutions are sepa-

rating with exponential speed, a hallmark of chaotic behavior. For quasi-periodic

dynamics ν will be zero; hence, the largest Lyapunov exponent can be used to

distinguish between chaotic and quasi-periodic dynamics [46].

To calculate ν we use the Wolff algorithm as described in [21]. Solving equation
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Figure 4.3: Bifurcation Diagram showing the three regions of parameter space.

Sketches of equilibrium positions in (k1, k2) space are also shown with

red squares indicating centers and black circles saddle points.

(4.7) and the first variational equation ξ̇ = (Df)[x(t), t)]ξ simultaneously yields

ν = lim
T→∞

1

T
ln |ξ(T )| (4.9)

as the largest Lyapunov exponent.

As the system has S3 symmetry solving for 1/6 of the initial conditions is

sufficient, as behavior of the rest may be generated by group actions[47]. There

are three distinct regions of parameter space as depicted in Figure 4.3. In region

I there is only one equilibrium point and it is a fully symmetric stable center. In

region II, there are four stable centers and three saddle points, while for region

III the fully symmetric equilibrium point has lost its stability and there are four

saddles and three centers. All equilibrium points lie on one of the three symmetry

manifolds (AA′, BB′ and CC ′ in Figure 4.2a) where at least two of the droplets

are identical.
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Figure 4.4: Grids of Lyapunov exponents for ` = 1.1 and λ = 1.26, 1.46 and

1.56 for trajectories with positive initial volumes (bounding triangle)

and zero initial velocity. The darker the dot the larger the Lyapunov

exponent. White dots indicate quasi-periodic dynamics while gray

dots indicate chaotic dynamics.

Lyapunov exponents calculated on a 0.007 spaced triangular grid for T = 8000

and ` = 1.1 are shown in Figure 4.4. In these three plots, white indicates quasi-

periodic dynamics (ν < 0.01) while gray points are chaotic (ν > 0.01). In region I,

the fully symmetric equilibrium point has a basin of quasi-periodicity, indicated by

white points on the graph. As λ increases, this region shrinks until it disappears

at λ = 1.5. In region II, all four stable equilibrium have basins of quasi-periodicity,

while in region III the fully symmetric equilibrium point has gone unstable and

we are left with three stable centers each with its own basin of quasi-periodicity.

Curiously, as λ varies, satellite regions of quasi-periodicity appear and disappear.

Understanding these satellite regions is a driving force for the exploration of sym-

metries using detectives.
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4.3 Symmetry Detectives

Symmetry detectives were introduced in 1993 by Barany et al. [48]. Here we

give a brief introduction, roughly following Kroon and Stewart [49], to define the

needed terminology and state the necessary results. The idea is to take a trajectory

and map it into an appropriate representation space where determining symmetry

requires computation of distances to fixed point subspaces of subgroups.

Let Γ be a finite group and let f : Rn → Rn be Γ equivariant. In other words,

for each γ ∈ Γ, f(γx) = γf(x). Let x̄(t) be some solution to ẋ = f(x) and define

A = {x̄(t) ∀ t > 0}. We are interested in the setwise symmetries of A. That is, A

is γ symmetric if γA = A (in contrast pointwise symmetry requires x(γt) = x(t) ∀

t).

Definition 1 An observable is a C∞ Γ equivariant mapping φ : Rn → W where

W is some (finite-dimensional) representation space of Γ. For an open set A ⊂ Rn,

an observation is

Kφ(A) =

∫
A

φdµ (4.10)

where µ is Lebesgue measure.

Suppose A is an open bounded subset of Rn which satisfies γA = A or γA ∩ A =

∅. Then it has been proven that there exists a representation W of Γ and an

observation φ : Rn → W such that γKφ(A) = Kφ(A) if and only if γA = A. Such

an observation φ is called a detective. Note that Kφ(A) is a vector in a finite

dimensional representation space, and thus it is γ symmetric if lies in the fixed

point subspace of γ.

65



An appropriate representative space must distinguish all subgroups of Γ. Recall

the fixed point subspace of Σ ∈ Γ is Fix(Σ) ≡ {x ∈ Rn : σx = x ∀σ ∈ Σ}.

Definition 2 A representation space distinguishes all subgroups of Γ if for all

subgroups ∆,Σ such that ∆ ⊂ Σ ⊂ Γ and ∆ 6= Σ,

dim FixW (∆) > dim FixW (Σ).

Once we have a detective and an appropriate representation space calculating

the symmetries is mostly routine. We need just enumerate the subgroups of Γ and

calculate the distance from the observation of A to the fixed point subspace of

each. If this distance is small we say that A has that symmetry.

There is an issue we have glossed over so far. As discussed in [49], if a trajectory

x̄(t) is chaotic it requires an infinite amount of information to describe A exactly.

Furthermore, A need not be an open set. This is typically dealt with in one

of two ways. The first is to thicken A to an open set B by covering it with

a finite number of open balls of radius ε. If the balls are sufficiently small the

symmetry is unchanged. Unfortunately, the distance calculated depends on ε,

adding a parameter to the method. The second method is to use the ergodic sum

KE
φ (A) = lim

N→∞

1

N

∫ N

0

φ(x(t))dt. (4.11)

When calculating the symmetries of an attractor, the dependence of (4.11) on x(0)

can be problematic. It turns out that that this is not an issue for this work as we

are interested in the symmetries of trajectories rather than attractors. We choose

to use the ergodic sum approach as it removes the need to specify a ball size ε and

can be nicely adapted to numerical solutions.
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4.3.1 A S3 Detective and the Left Regular Representation

We adapt an observable proven to be a detective by Tchistiakov [50]. This detective

maps into the left regular representation RS3
∼= R6 of S3 consisting of all real-valued

functions on S3. The left regular representation distinguishes all subgroups for any

finite group. The action of γ ∈ S3 on σ ∈ RS3 is induced by multiplication with

the inverse on the left

(γ ◦ σ)(δ) = σ(γ−1δ) ∀δ ∈ VS3 . (4.12)

Theorem 4.3.1 Let φ : R3 → VS3 be

φ(x) =
(
x1x

2
2, x2x

2
1, x3x

2
2, x1x

2
3, x3x

2
1, x2x

2
3

)
. (4.13)

Then φ is a detective for S3.

For the coupled droplet system x ≡ {V1, V2, V3}. Clearly if a solution is sym-

metric with respect to volumes it must also be symmetric with respect to veloc-

ities. Tchistiakov proved a more general form of a detective for Sn, a result we

now state here for completeness. Let p : Rn → R be the polynomial mapping

p(x1, . . . , xn) = x1x
2
2 · · ·xn−1

n−1.

Theorem 4.3.2 Let RSn be the left regular representation of Sn and let ψ : Rn →

RSn be

ψ(x)[γ] ≡ p(γ−1x).

Then ψ is a detective for Sn.
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For S3 symmetry, p(x) = x1x
2
2 and

ψ(x) = {(e)−1, (12)−1, (13)−1, (23)−1, (123)−1, (132)−1}x1x
2
2 (4.14)

=
(
x1x

2
2, x2x

2
1, x3x

2
2, x1x

2
3, x3x

2
1, x2x

2
3

)
= φ(x). (4.15)

In order to compute the distances to the fixed point subspaces of each subgroup

of S3 the matrix representations of the group actions on RS3 are needed. As an

example, consider the flip (12) action. Ordering the elements as in the detective,

the action of (12) can be written as

(12)−1 {e (12) (13) (23) (123) (132)} (4.16)

= {(12) e (123) (132) (13) (23)} , (4.17)

which corresponds to the 6× 6 matrix

P(12) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0


. (4.18)

The eigenvectors of P(12) are v1 = {1, 1, 0, 0, 0, 0} , v2 = {0, 0, 0, 1, 0, 1}, and v3 =

{0, 0, 1, 0, 1, 0} . To determine if a vector x ∈ RS3
∼= R6 is (12) symmetric, compute

the distance from x to the subspaces spanned by v1, v2, and v3

D(12)(x) =
√

(x1 − x2)2 + (x3 − x5)2 + (x4 − x6)2. (4.19)
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Similar calculations for the other three subspaces yield the distances to the other

fixed point subspaces

D13(x) =

√
(x1 − x3)2 + (x2 − x6)2 + (y4 − y5)2 (4.20)

D23(x) =

√
(x1 − x4)2 + (x3 − x6)2 + (y2 − y5)2 (4.21)

Drot(x) =

√√√√2

3

[(
6∑
j=1

x2
j

)
− (x2x3 + x2x4 + x5x6 + x1x5 + x1x6)

]
. (4.22)

To summarize, in order to calculate the symmetries of a trajectory x̄(t), one first

computes the observation of φ(x̄(t)) using the ergodic sum to obtain a point y =

KE
φ (x̄(t)) in the representation space. Then one calculates the distance from y

to the fixed point subspace of each subgroup. If this distance is close to zero the

solution has the symmetry. The final question is how to determine when a small

number is ‘close enough’ to zero. A method for determining this is given in the

next section.

4.3.2 Numerical Results

To compute the symmetries of trajectories equations (4.2) and (4.3) are rewritten

as a system of four first order equations and solved numerically with a variable

step size solver. This yields a numerical solution {Vi, V̇i} ∈ R6 with variable step

size ∆ti for 0 ≤ t ≤ T . The ergodic sum is then approximated using a Riemann

sum

KE
φ (V (0)) =

1

T

T∑
j=1

φ(Vj)∆tj (4.23)

The typical approach is to slowly vary a parameter and look for jumps in the

distance functions. An example of this is shown in Figure 4.5, where analogously

69



Figure 4.5: Distances to the four subgroups of S3 for solutions starting with no ini-

tial velocity, λ = 1.56, and V1(0) = 0.891. The distances for (12), (13)

and the flip jump from nonzero to near zero at V2(0)− V3(0) = 0.21.

This indicates solutions with V2(0)−V3(0) < 0.21 are (23) symmetric

while those with V2(0)− V3(0) > 0.21 are S3 symmetric.

the initial conditions are slowly varied. In this plot, λ = 1.56, V1(0) = 0.891,

and the difference between V2(0) and V3(0) is varied from 0 to 0.672. To insure

convergence of the ergodic sum we solve for T = 8000, which corresponds to be-

tween 20,000 and 100,000 steps depending on the nature of the trajectory. For

V2(0)− V3(0) < 0.21, D23 is small compared to the other distances, implying tra-

jectories are (23) symmetry. In contrast, for V2(0)− V3(0) > 0.21 all distances are

small implying trajectories are S3 symmetric.

Next we consider a grid of initial conditions with zero initial velocity and pos-

itive initial volumes for each droplet. On this grid solutions exhibit a variety of

behaviors. For most points, calculating the ergodic sum as (4.23) works well. How-

ever, a difficulty arises for small oscillations near the fully symmetric equilibrium

point. For λ < 1.5 this equilibrium point is a center and solutions starting near it

stay near it for all time. This is a problem as we will now show.
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Figure 4.6: A small oscillation about the fully symmetric equilibrium point (k1 =

k2 = 0) for which all the distances are small relative to other trajec-

tories.

Let x̄(t) = (x̄1, x̄2, x̄3) be a trajectory and let ε1(t) = x̄1−x̄2 and ε2(t) = x̄1−x̄3.

Then x̄(t) may be written in terms of ε1(t), ε2(t) and λ as

x̄(t) = (α(t), α(t) + ε1(t), α(t) + ε2(t)) (4.24)

where α(t) = (1/3)(λ− ε1(t)− ε2(t)). Let

ε = max
t∈(0,T )

(|x̄1 − x̄2|, |x̄2 − x̄3|, |x̄1 − x̄3|) (4.25)

be the maximum difference in volume of the three droplets. Now suppose ε � 1

and λ is O(1). Noting that |ε1(t) + ε2(t)| < ε, the distance D12(φ(x̄(t)) satisfies

D12(φ(x̄(t))) =

√
1

2
(x̄1 − x̄2)2 (x̄2

1x̄
2
2 + (x̄1 + x̄2)2x̄2

3 + x̄4
3) (4.26)

<

√
1

2
ε2O(α(t)4) = O(ελ4) = O(ε) (4.27)

since λ is order 1. This is a problem, for regardless of the behavior of the trajectory

the calculated distance for the flip (12) turns out to be small (similar calculations

show the same behavior for the other subgroups).

For example if λ = 1.3, V1(0) = 0.4, and V2(0) = 0.5 the maximal difference in

volumes over the trajectory is 0.11 and the four distances are given in row 2 of table
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Symmetry (12) (13) (23) (flip)
Distance without scaling 3.77× 10−3 3.23× 10−5 3.74× 10−3 4.34× 10−3

Distance with scaling 3.455 0.030 3.426 3.973

Table 4.1: Distances for each subgroup for a small oscillation about the fully

symmetric equilibrium point with and without applying the scaling

map s(x). After scaling, only the (13) distance is small, correctly

indicating the trajectory is (13) symmetric

4.1. These distances are all small compared to those of other trajectories. Figure

4.6 shows the trajectory which is clearly only (13) symmetric. Closer examination

of the distances reveals the method has detected the (13) distance to be two orders

of magnitude smaller than the others,

The issue with small oscillations is readily fixed by introducing a scaling map

s(x), applied prior to calculating the observation. We choose to scale so that the

maximal difference in volume over the trajectory ε is unity

s(x) ≡ x/ε. (4.28)

This scaling map s(x) is S3 symmetric and will not change the symmetries of

trajectories. Calculating the observation of s(x(t)) instead of x(t) normalizes the

dependence on the maximal differences in volumes of a trajectory. For the tra-

jectory, above the distances after scaling are given on the third row of table 4.1.

They now correctly identify the trajectory as (13) symmetric.

Most solutions on our grid have O(1) distances, so the scaling has little effect.

The scaling map also allows us to recognize small oscillations that possess no

symmetry. Note, a naive solution would have been to scale four distances by the

largest distance, to determine which distance is orders of magnitude smaller. This

would fail to distinguish between trajectories with no symmetry and those with
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Figure 4.7: (Left) Scaled distances for a 0.007 grid of initial conditions with zero

initial velocity and positive initial volume for 1/6 of the triangular

phase-space. Each plot is sorted from shortest to longest distance

to illustrate the jump from near zero to nonzero. Near zero distances

indicate that trajectory had that symmetry. (Right) The grid of initial

conditions plotted with their calculated symmetries.

full symmetry, an important difference as shown in the next section.

4.3.3 Symmetry Calculations

Symmetry detectives are employed for initial conditions on a 0.007 sized grid and

the equations are solved for 0 ≤ t ≤ T = 8000. For each point four distances are

calculated, corresponding to the three flip and the rotational symmetry subgroups.

There are three possibilities: one of the four distances is small, all are small, or none

are small. To determine symmetry, the following process is applied to each point.

If any single distance is two orders of magnitude smaller than the rest, normalize

all four by the largest distance. This brings the three nonzero distances to near 1

and leaves the other small, resulting in a nice dichotomy between the nonzero and

zero distances for points with a flip or rotational symmetry. If all four distances

are within two orders of magnitude the values are left alone. These points either
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Figure 4.8: Grids of symmetries for ` = 1.1 and λ = 1.26, 1.46, and 1.56 calcu-

lated using the symmetry detective method. Each color represents a

different symmetry. In each case, between 30,000 and 40,000 initial

conditions are displayed.

posses full symmetry or no symmetry. For example sorted distances for λ = 1.56

are given in figure 4.7. There are a few points that are mildly ambiguous with

distances between .1 and .2, but this corresponds to roughly five points out of

100,000. For each plot, the distances have been sorted from smallest to largest to

show the clear jump between small and non-zero. The symmetries of the various

initial conditions are also shown in Figure 4.7, where we use a cutoff of 0.1 for

having a particular symmetry. For this section of parameter space there are no

points with (13) symmetry.

As noted above, regions I, II, and III are distinguished by different behaviors

there are three different areas of parameter space. Figure 4.8 shows sample trian-

gular sets for each region, corresponding to λ = 1.26, 1.46, and 1.56 respectively. In

each plot between 30,000 and 40,000 initial conditions are displayed, First, note the

similarities between Figures 4.4 and 4.8. Fully symmetric trajectories are chaotic,

while those with flip symmetries are quasi-periodic. This correspondence carries

over for all λ values calculated (1 ≤ λ ≤ 1.7). Furthermore, the satellite regions

of quasi-periodicity have different symmetries than their adjacent larger basins of
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quasi-periodicity.

In the first two plots there is a small region near the fully symmetric equilibrium

point where the method has detected no symmetry. Small oscillations about this

stable equilibrium point are in fact quasi-periodic with two frequencies; however,

as the initial conditions approach the equilibrium point, one of the frequencies

goes to infinity. This means, as we move towards the equilibrium point, that we

need to solve for longer and longer time to detect the symmetry of these points.

An example is shown in Figure 4.9, where λ = 1.3, V1(0) = 0.45, V2(0) = .42.

Two plots are shown, one for T = 8000 and the other for T = 150, 000. For this

trajectory, the slow frequency is 150,000 time units, well beyond our stopping time

of T = 8000. Figure 4.9 also shows the convergence of the four distances which is

even slower.

As λ varies a multitude of arrangements of symmetries are observed. Sample

plots are shown in Figure 4.11. In each case, Lyapunov exponents have also been

calculated, with the correspondence that all with flip symmetries are quasi-periodic

and all with S3 symmetry are chaotic. As noted previously, for sufficiently small

small oscillations no determination can be made because of the solving time issue

just discussed. Such points are labeled white in the plots. Furthermore, the sym-

metries of satellite regions do not change as λ varies. More specifically, regardless

of the size and shape of the satellite region, its symmetry depends only on which

third of the triangle it lies in. In terms of initial volumes, a satellite region is

symmetric with respect to whichever two initial volumes are the largest.
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Figure 4.9: (Left): Trajectory for λ = 1.3, (V1(0), V2(0)) = (.45, .42) for T =

8000 showing that the trajectory has not finished one pass through

its complete trajectory and currently has no symmetry. (Middle) The

same trajectory for T = 150000, showing it has finished a pass through

its trajectory and is (23) symmetric. (Right) Convergence of the four

distances for the trajectory. The solution is (23) symmetric, but the

distance converges very slowly.

4.3.4 Concluding Remarks

The use of symmetry detectives allows for automated determination of symmetries

of solutions of differential equations. Here we have used a detective to obtain a

second metric to classifying trajectories of a system of three symmetric coupled

droplets. We find that, for this system, chaotic solutions have S3 symmetry while

quasi-periodic and periodic solutions have one of the three flip symmetries. Fur-

thermore, the satellite regions seen in the Lyapunov exponent plots posses different

symmetries than the large basins. In these satellite regions the two large droplets

exchange places, while in the larger basins two small droplets exchange. Figure

4.10a shows a trajectory from the large red basin in Figure 4.8III where droplet

one stays large and droplets two and three oscillate symmetrically. Figure 4.10b

is from one of the smaller blue regions and shows droplets one and two becoming

large and droplet three staying small.
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Figure 4.10: Quasi-periodic Trajectories for λ = 1.56. (a) An initial condition in

the large red basin where droplet 1 stays large and droplets 2 and 3

switch back and forth. (b) An initial condition in the blue satellite

region where droplet 3 stays small and droplets 1 and 2 oscillate

back and forth.

The symmetry detective method presented here can be applied to most any

other symmetric dynamical system. All finite subgroups of O(n) have a left regu-

lar representation and it always distinguishes all subgroups. This means if Γ is a

finite group, the detective we employ may be used for any Γ-equivariant dynamical

system. Calculating symmetries is also fast compared to Lyapunov exponents as

it only requires numerically solving the model equations, whereas Lyapunov ex-

ponents involves simultaneously solving the first variational equation. It is also

well known that when computing Lyapunov exponents that solutions to the varia-

tional equations grow exponentially and have overflow issues[21]. Our intent is to

illustrate the utility of symmetry attractors and their usefulness in a nonattractor

setting.
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Figure 4.11: Symmetries of solutions starting with zero initial velocity and

nonzero initial droplet volumes for various values of λ. In each case,

black dots indicate S3 symmetry, blue dots (12) symmetry, red dots

(23) symmetry, green dots (13) symmetry and white dots no sym-

metry. Roman numerals indicate which region of parameter space

each slice is from.
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CHAPTER 5

NON-SMOOTH DYNAMICS OF A SWITCHING CAPILLARY

DROPLET-BRIDGE SYSTEM

Abstract

A non-smooth model for a switching capillary system is studied. The system has alterna-

tive configuration-types: ‘droplet-droplet’, which consists of two spherical-cap droplets

and ‘bridge-droplet’ which consists of an axisymmetric liquid bridge and a spherical-cap

droplet where the bridge extends from the droplet holder to a nearby plate.). Total liq-

uid volume and plate stand-off distance are the two scaled parameters that principally

characterize the system. Surface tension is assumed to dominate throughout, keeping

the shapes axisymmetric and thereby allowing the system to be modeled with ordinary

differential equations. The limits of these assumptions are noted. Transitions between

bridge and drop configurations are non-smooth. Moreover, these transitions occur at

different places in phase space, resulting in a region in which the system is multiply-

defined with consequent non-reversible dynamics. Each configuration-type is examined

individually first to obtain two-parameter families of bifurcation diagrams. Oscillations

within each configuration class, correspond to periodic orbits. The two configuration-

types are then joined under the assumption that transitions are instantaneous with no

loss of velocity across the joining transition. A two-parameter family of bifurcation di-

agrams for the bridge-drop switching system is then reported. Finally, the dynamics

of configuration-switching trajectories are discussed. Hysteresis in transitions generates

trajectories that lose energy in each cycle and dampen into periodic orbits within one of

the two configuration types. By mapping to a semi-infinite cylindrical space it is shown

that such trajectories may be understood solely by considering the region of space where

the system is multiply defined.
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5.1 Introduction

A ‘capillary surface’ is a liquid-gas interface whose shape is determined primarily

by surface tension[3]. For typical liquids (e.g. water) in air, capillary surfaces occur

on the millimeter or smaller scale where gravity has little influence on the shape.

On these scales, the ratio of surface area to volume is high and many small surfaces

may be coupled into a larger system (e.g. the veins of a leaf as part of a tree).

That is, a capillary system is comprised of two or more coupled capillary surfaces.

When the system can undergo a non-smooth transition, such as a breaking event,

there can be complicated dynamics even if the dynamics within each configuration

class exhibits only classical phase-plane behavior. The dripping faucet is an exam-

ple and was an early system to be shown to be a chaotic system[53]. We examine

a system consisting of two coupled capillary interfaces: a droplet and a surface

that alternates between a bridge and a droplet. The droplet-droplet system and

the drop-bridge system are each conservative phase-plane systems. However, when

switching between configurations is allowed, complicated dynamics becomes pos-

sible. This system is a 2D system whose complexity arises from non-smoothness.

If each part (subsystem) of a capillary system exhibits more than one equilib-

rium state, then the number of equilibrium states for the full system scales non-

linearly. For example, a drop of water protruding from a hole under fixed pressure

can exhibit one of two equilibrium states – a small droplet (sub-hemispherical) or a

large drop (super-hemispherical). If n-droplets are coupled into a system where the

system equilibrium is defined by a common pressure, the system will have 2n equi-

librium configurations, in general (2n−1 if the system is incompressible)[5]. From

an energy perspective, such systems have a landscape with many energy wells. We

are interested in dynamics that includes transitions where two or more of these
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landscapes are stitched together. In this paper, a droplet-droplet landscape is

glued to a droplet-bridge landscape.

A capillary system put into motion necessarily involves the flow of liquid un-

derneath the liquid/gas surfaces. That is, inertia and/or viscous forces arising

from the underlying fluid motion may influence the shape of individual elements

and thereby the system. Our interest is in ‘capillary-inertia’ systems. These are

frictionless – is assumed negligible. Liquid inertia tends to distort while surface

tension tends to restore. Furthermore, we shall assume that the capillary surfaces

individually and instantaneously will take equilibrium shape except for at the

non-smooth jump-transitions, while system dynamics will be driven by pressure

imbalances between capillary surface parts. This is referred to as the ‘quasi-static

assumption.’ Finally, we shall track only the center-of-mass (COM) of the system.

The governing model-equation can be written down from Newton’s second law of

the COM. In particular, we do not solve for the inviscid motions of the underlying

liquid. As a consequence, we study ode systems. This allows us to focus on the

non-smooth behavior and how it influences the global dynamics.

Our interest here is in dynamical-system aspects of model predictions. How-

ever, it should be noted that capillary-inertia systems exhibiting dynamics consis-

tent with the above assumptions are observed. Capillary surfaces occur on length

scales r where distortion due to gravity g is negligible relative to that due to sur-

face tension σ,ρr2g/σ � 1 (small Bond number), where ρ is liquid density. Effects

due to viscosity µ on the motion are negligible relative to liquid inertia (away

from solid boundaries) provided the Reynolds number based on capillary velocity

scale u = (σ/ρr)1/2 is large, corresponding to µ/(ρσr)1/2 � 1 (small Ohnesorge

number). Finally, the quasi-static assumption is favored when the capillary time
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Figure 5.1: Schematic of cycling bridge-droplet system. As liquid flows from the

bridge to the top droplet, the bridge shrinks until it breaks and tran-

sitions to a liquid bridge. If liquid then flows back to the bottom

droplet it may grow until it impacts the substrate and reforms the

liquid bridge.

scale is much shorter than the time scale for pressures to equilibrate between

any two parts of the system. The latter depends on the height of energy barri-

ers which, in this paper, varies with total liquid volume and stand-off distance,

as will be made precise below. An example where these assumptions hold rea-

sonably is the unforced drop-drop oscillator[1] and the forced-damped oscillator

where chaotic motions are observed[45]. Comparisons of model predictions against

experiment are made in both cases. Of course, the assumption of inviscid motion

suffers the classical deficiency that weak damping occurs due to boundary layer

effects near solid boundaries and thereby periodic motions of the model turn into

under-damped oscillations in experiment. Here, the appropriate metric of compar-

ison is the frequency of the oscillation – which compares well in the above studies.

(Circumstances where viscosity dominates the flow between capillary surfaces, oth-

erwise modeled similarly, have been studied [11, 5].)

Consider two coupled capillary-surfaces, formed by overfilling a cylindrical

tube, the drop holder, with liquid so that droplets protrude from both ends, Fig-
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ure 5.1(right). The system can oscillate between big-drop up and big-drop down via

exchange of volume through the tube or vibrate about one of the two equilibria[1].

Now suppose a planar substrate with fixed stand-off distance is introduced below

the tube. Depending on the stand-off, total system volume and initial conditions,

the lower droplet may touch the plate and form a liquid bridge Figure 5.1(left).

Since fat and thin bridges are possible, there can be oscillations within the drop-

bridge configuration. If, during an oscillation, the bridge becomes slender enough

to break, the system transitions back to a droplet-droplet configuration. In this

way, one can anticipate a number of kinds of oscillations: drop-drop; drop-bridge;

drop-bridge-drop; bridge-drop-bridge and so forth. We shall find that only certain

of these oscillations can occur, however. Droplets and bridges are pinned on the

circular tube edge, by assumption. Furthermore, the bridges are assumed to have

a fixed contact-angle (taken to equal to pi/2, for simplicity). We shall refer to this

as the ‘fixed-angle’ condition and label such bridges as ‘pinned/angle’ bridges.

The idea that coupled capillary surfaces, each pinned on the ends of a holder

tube (Figure 5.1(right)), give rise to a bistable system has been known at least

since the time of CV Boys [54]. Studies of the multiple equilibria that can arise

from coupling various discrete capillary surfaces are motivated by low-gravity ap-

plications [55, 15], including a ‘bucket with a hole, catastrophe theory classification

for three droplets [39], biophysical studies of release from vesicles [56] and capillary

switch applications [5, 34] which include a bridge and two droplets [40], where as

many as 5 stable equibria can be arranged, and n-droplets [5] (with n > 2) where

there are typically n stable equilibria. Studies of the inviscid dynamics of two or

more coupled interfaces which resolve underlying inviscid motions include sloshing

in a tube [57] and a spherical-drop pinned on a latitudinal circle [58]. An additional

study that does not resolve the underlying inviscid motions (i.e. that is based on
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COM motions) – in addition to those mentioned above – considers n droplet oscil-

lators [47]. Finally, a preliminary experimental study examined the pressure ‘kick’

needed to switch between drop-drop and drop-bridge configurations; that is, the

pressure pulse needed to impart to the top drop, Figure 5.1(right), to achieve the

bridge below, Figure 5.1(left) [59, 60, 61].

Applied motivation for this study is the development of capillary adhesion de-

vices. Drawing inspiration from the adhesion abilities of a leaf beetle found in

nature, a switchable adhesion device has been engineered. The device combines

two concepts: the surface tension force from a large number of small liquid bridges

can be significant (capillarity-based adhesion) and these contacts can be quickly

made or broken with electronic control (switchable). The device grabs or releases

a substrate in a fraction of a second via a low-voltage pulse that drives electroos-

motic flow. Notably, the device maintains the integrity of an array of hundreds

to thousands of distinct interfaces during active reconfiguration from droplets to

bridges and back, despite the natural tendency of the liquid toward coalescence.

The device features compact size, no solid moving parts, and is made of common

materials.[11, 2].

We are interested in the dynamics of transitions that can occur abruptly due

to a breaking or joining of capillary elements. In between the breaking or joining

events the system is conservative. At the instant of the event, the dynamics are

non-smooth due to a change in the definition of the dynamical system.

The two non-smooth changes we shall consider are shown in Figure 5.2, denoted

by ‘grab’ and ‘release.’ The terminology arises from the grab-release application

that motivates this study. This pV response diagram shows drop (upper branch)

and bridge (lower branch) equlibrium shapes. The arrows indicate instantaneous
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Figure 5.2: Non-smooth transitions of the capillary pressure in a bridge-droplet

cycle. When the droplet volume reaches D+ it impacts the wall and

transitions to a liquid bridge, thereby decreasing capillary pressure.

Then, if the bridge shrinks until point V − it will break and transition

back to a droplet.

non-equilibrium transitions. When the droplet impacts the substrate (‘grab’) at

volume D+, the pressure jumps to a lower value, whereas if the bridge volume

reaches V − it jumps to a higher pressure. The instantaneous nature of the tran-

sitions manifest as non-smoothness in the governing equations. Volume D+ is set

by the plate stand-off distance while volume V − marks the turning point in the

bridge response. This is the point of instability to constant-volume disturbances.

It is important to note that grab and release occur at different volumes; between

V − and D+ bridges and droplets coexist with the same volume. This can be

thought of as hysteresis in the system response diagram. The system may also

undergo other transitions. The first is a bifurcation to non-axysymmetric bridge

shapes and marks a maximum-volume limit of the bridge. This type of bifurcation

is either a sub- or super-critical bifurcations and has been documented[15]. The

second occurs when a droplet reaches an negative hemispherical shape – beyond

which the shape would intersect the tube wall. This marks a limit of physical
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reasonableness; in experiment depinning of the contact-line would likely ensue.

When varying parameters, the system may also undergo a ‘boundary equilib-

rium bifurcation’ (BEB). This occurs when an equilibrium point reaches a non-

smooth boundary and disappears[62]. The non-smoothness of the system also

results in interesting non-reversible dynamics, primarily due to hysteresis in the

state diagram. The system is multiply-defined between V − and D+ in Figure 5.2.

This differs from many classic examples in non-smooth dynamical systems. In typ-

ical second-order non-smooth systems reported in the literature, the boundary is

a line in phase space[63]. Drop-bridge hysteresis produces trajectories that spiral

down to a periodic orbit in one of the two phase planes corresponding to the two

configurations. Furthermore, in the context of a semi-infinite cylindrical space, the

long term behavior can be described solely by the dynamics in the region where the

system is multiply-defined.

The remainder of the paper is organized as follows. In section two the bridge-

drop system is considered. A non-smooth dynamic model is formulated and ana-

lyzed. Bifurcation diagrams are constructed using the total volume and stand-off

distance (bridge length) as parameters and the dynamics are discussed. In sec-

tion three the non-smooth switching system is considered by combining the model

from section two with an equivalent model of two coupled spherical-cap droplets.

Bifurcation diagrams are constructed and the dynamics are discussed.
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Figure 5.3: Schematics of the bridge-droplet system showing both rotund and

slender bridges.

5.2 Bridge-Drop System

5.2.1 Model Formulation

Consider a cylindrical tube of length 2L and radius r filled to overflow with liquid

so that droplets protrude. If a planar substrate is introduced close enough below

the tube, for a partially-wetting liquid/substrate combination, the lower droplet

will ‘grab’ the substrate and form a liquid bridge. Droplet and bridge are confined

to axisymmetric static equilibrium shapes. For droplets, these are spherical-caps.

As a result, the center-of-mass zc of liquid volume VT = V0 + Vt + Vb is axial.

Here, Vt and Vb are bridge and droplet volumes (top and bottom), ` the ‘stand-off’

distance (gap length), and σ surface tension. Then, under the capillary-inertia

assumption, Newton’s second law for the COM can be written,

d

dt

(
ρVT

dzc
dt

)
= Fb − Ft (5.1)

where Fb = πσr2pb and Ft = πσr2pt are capillary pressure forces resulting from

curvature of the bridge and droplet, respectively. The spherical-cap droplet of
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radius Rt has capillary pressure pt = 2σ/Rt by Young-Laplace, whereas the bridge

pressure pb = pb(Vb, `) and is found by solving numerically for bridge equilibria

using AUTO[64] (see section 5.2.2).

It is convenient to non-dimensionalize by scaling lengths with r, volumes with

(4/3)πr3 and time with
√
ρr3/σ. Using these scalings and substituting the forces

into equation (5.1) yields

d2

dt2
(ρVT zc) =

3

4

(
pb(Vb, `)−

2

Rt

)
(5.2)

in which all quantities are non-dimensional, yet employ the same notation as pre-

vious dimensional quantities.

Taking the origin to be the midpoint of the tube, the spherical-cap droplet’s

volume, center-of-mass and radius-of-curvature may all be written in terms of its

height. The (non-dimensional) volume is given by Vt = (1/8)ht(3 + h2
t ), center-of-

mass by zt = (1/2)ht(2+h2
t )/(3+h2

t ) and radius of curvature by 2Rt = (ht+1/ht).

Overall center-of-mass zc is related to droplet and bridge centers-of-mass by zcVT =

(L + zt)Vt − (L + zb)Vb, where zb = zb(Vb, `) is the bridge center-of-mass relative

to the bottom of the tube and is found numerically in the next section. Then

equation (5.2) may be written

d2

dt2
[(L+ zt)Vt − (L+ zb)Vb] =

3

4

(
pb(Vb, `)−

2

Rt

)
. (5.3)

In addition, by inverting the cubic expression for Vt above, the droplet height ht

can be expressed as function of its volume ht = h(Vt). Furthermore, the fact that

the combined bridge and droplet volume λ = Vb + Vt is fixed may be exploited

by replacing Vt by λ − Vb. Now, all quantities may be written as functions of

the independent variable Vb and the parameters λ, L and `. In summary, if ht =
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Figure 5.4: Definition sketch: liquid bridge has fixed (scaled) radius x = 1
at top and fixed contact angle of pi/2 at bottom.

h(Vt) ≡ H(Vb, λ) and Rt ≡ R(Vb, λ) similarly, equation (5.3) becomes

d

dt

([
2

3
H + 2L+ zb

]
V̇b + żbVb

)
=

3

4

(
2

R
− pb

)
. (5.4)

5.2.2 Liquid-Bridge Shapes

Liquid bridge static equilibrium shapes are obtained by solving the Young-Laplace

equation, pb = σκ, where σ is surface tension and κ mean curvature. The Young-

Laplace equation can be written in terms of arclength-angle coordinates (τ, α) as

defined in Figure 5.4. Scale as in section 5.2.1. In particular, the Young-Laplace

equation for a liquid bridge with pinned radius at the top (x = 1) and fixed contact

angle of pi/2 degrees at the bottom, respectively, takes the form of the two-point

boundary-value problem:

dα/dt = (sinα)/x− p, α(0) = pi/2 (5.5a)

dx/dt = − cosα, x(s) = 1 (5.5b)

dz/dt = sinα, z(0) = 0. (5.5c)
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Figure 5.5: (pV ) diagrams for pinned/angle (pi/2) bridges of length ` = 0.5 (a)

and ` = 1.25 (b). V + are maximum bridge limits (rotund), V − min-

imum volume limits and breaking points. Dots A and B represents

cylindrical bridges (pb = 1) and the catenoid (pb = 0) respectively.

The total arclength s is defined by the condition ` =
∫ s

0
x′dt, the bridge volume

by V = (3/4)
∫ s

0
x2z′dt and the center-of-mass by zb = `− (3/4V )

∫ s
0
x2zz′dt (tak-

ing the system origin to midpoint of the tube as in Section 5.2.1). Solving this

boundary value problem is a standard calculation[14]; AUTO is used and results

are displayed in pV diagrams for various fixed lengths `.

5.2.3 Phase-plane Boundaries

Consider the pV diagram for ` = 0.5 and 1.25 (Figure 5.5a and b). First, observe

that there is both a maximum V + and a minimum V − admissible volume. If

the bridge volume reaches V −, the bridge pinches off leaving a bottom droplet

on the holder. However, if the bridge-volume reaches V +, a bifurcation to non-
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axisymmetric shapes occurs.

Depending on where in parameter space they occur, these bifurcations may

lead to non-axisymmetric shapes or to broken bridges[15]. The admissible region

of bridge volumes (V − ≤ V ≤ V +) is plotted as a function of length ` in Figure

5.6 (left), where V − is the solid line and V + the dashed line. The maximum length

V + limit occurs at the ‘rotund limit’ (contact angle π), while V − is the volume

turning point. Point A is the cylindrical bridge where pressure pb = 1; point B is

the catenoid where pb = 0.

Note that in solutions to equation (5.4) there is another bound for Vb that

relates to droplet volume Vt. For physically relevant shapes, the lower bound for

the droplet volume is a negative hemisphere within the tube. This corresponds to

Vt = −0.5 or Vb = λ+ 0.5. Thus, the system maximum volume V ∗ is defined as

V ∗ = min
[
V +, λ+ 0.5

]
, (5.6)

and for a fixed total volume λ and length ` the system is defined for Vb ∈ (V −, V ∗) .

The focus of study will be restricted additionally to bridges with ` > 0.5 (i.e.

half the radius) since very short bridges are unstable to nonaxisymmetric per-

turbations before reaching V −. The family of bridges considered here is related

closely to pinned/pinned bridges (e.g. x(0) = x(1) = 1) because a pinned/angle

bridge may be generated from the top-half of a pinned/pinned bridge symmet-

ric about the midplane. In other words, a family of equilibrium shapes for the

pinned/pinned case can be obtained from a family of pinned/angle by doubling

volume and length while holding pressure constant. If the pinned/angle bridge is

replaced by the pinned/pinned bridge, a similar bifurcation structure is observed

(Appendix 5.5.1).
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Figure 5.6: (a) Admissible bridge volumes: solid boundary is V − while dashed

boundary is V +. (b) Admissible bridge pressures: the kink occurs

when the maximum pressure changes from a pressure turning point

to the minimum bridge length V −.

5.2.4 Bifurcation and Stability

The bridge-droplet system is in equilibrium when the capillary pressures of the

spherical-cap droplet and the liquid bridge are equal (i.e. pb = pt = p). For

example, consider a droplet and a bridge with ` = 1.25, whose pV diagrams are

superimposed in Figure 5.7. For a pressure p = 1.4 (dot-dashed line), there are

four pairs of equilibria: (d1, b1), (d1, b2), (d2, b1) and (d2, b2). Using these equilbria

of the bridge and drop in pV response, the system pV response can be constructed.

However, for our purposes, traditional bifurcation diagrams present the equilibrium

structure in a more convenient format.

Sample bifurcation diagrams in (λ, Vb) space for different bridge lengths are

shown in Figure 5.8. Solid lines indicate ‘centers’, dashed lines ‘saddle points’,

and × symbols ‘boundary equilibrium bifurcations’ (BEB). BEB occur when the

bridge reaches either its minimum V − or maximum V + volume and the bifurcation
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Figure 5.7: Superimposed pressure-volume diagrams for a spherical-cap droplet

and pinned/angle bridge of length 1.25. The system is in equilibrium

for bridge and droplet points on the same vertical line (e.g. pairs

(d1, b1), (d1, b2), (d2, b1) and (d2, b2)).

curve ends. Dots indicate locus of shapes shown.

For short bridges there is a single curve of stable centers (Figure 5.8A). Such

a curve originates when a BEB occurs at a nonzero λ value (point a) with bridge

volume V −. As λ increases, the bridge volume grows until it reaches a maximum

(point b) such that the bridge and droplet have p = 2; note that p = 2 is the

greatest shared pressure for such short bridges. Figure 5.6b shows max and min

bridge pressure as a function of stand-off distance ` while Figure 5.7 indicates

the droplet has maximum pressure of two. As λ is further increased, the droplet

assumes the majority of the volume; consequently, the branch approaches a zero

pressure bridge asymptote since pt → 0 as Vt →∞.

If the length of the bridge is increased, a saddle-node bifurcation occurs and a

second branch is born (Figure 5.8B). This new branch begins and ends at Vb = V +

(point e) and consists of an upper branch of centers and lower branch of saddle
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Figure 5.8: Bifurcation diagrams for varied bridge lengths. A cusp bifurcation

occurs between ` = 0.685 and ` = 0.7. Solid lines denote centers while

dashed lines denote saddle points. Boundary equilibrium bifurcation

points are labeled with ×.

points. The appearance of this branch causes the number of equilibria to change

as follows λ increases: one – three – two – one. A slight increase in length forces

the two curves of equilibrium points to intersect and exchange branches. Figure

5.8C shows the system just after the exchange. For a brief parameter window the

system still exhibits three equilibrium points near the intersection point, but as `

increases, the two curves of equilibrium points quickly separate, leaving a region

with no equilibria between them (Figure 5.8D). Thus, as λ grows, (at these lengths)

the number of equilibria evolves as one – zero – two – one.

As the bridge length is increased significantly, another branch of saddle points

appears, for which the bridge volume is very small (Figure 5.8E). At the same

time, the saddle-node curve moves to the right until it vanishes from the param-

eter window (Figure 5.8F). Observe that if the parameter window were expanded
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to include larger λ values, the lowest two branches would join in a saddle-node bi-

furcation and disappear (e.g. for ` = 1.0 this occurs when λ = 21.4). Additionally,

note that in each plot, two equilibrium points on a horizontal line correspond to

the same bridge volume and droplets with reciprocal heights (i.e. they are pieces

of the same sphere). Examples of such pairs are (j, k), (m,n) and (p, q).

5.2.5 Phase-Plane Dynamics: Two-Parameter Family

The exchange of branches shown in Figure 5.8 is the hallmark of a cusp bifurcation.

Figure 5.9 shows a two parameter bifurcation diagram (λ and `) where such a cusp

occurs at (λ, `) = (1.528, 0.687). The cusp manifests on a curve of saddle-node

bifurcations (solid line in the figure). However, there are other lines of BEBs; these

lines correspond to the bridge attaining either its maximum (V +) or minimum

(V −) volume. Dashed lines indicate the bridge reaching V + while dot-dashed lines

indicate a bridge reaching V −. Each region is labeled by its types of equilibria,

ordered by increasing bridge volume. For example, in the region labeled (C, S),

the bridge volume for the center is less than that of the saddle point (e.g. λ = 4

in Figure 5.8E), while in the region labeled (S,C) the bridge has more volume at

the saddle point than the center (e.g. λ = 4 in Figure 5.8F).

Another future shown in Figure 5.9 is the phase-plane dynamics. The phase-

plane trajectories consist of: closed orbits, equilibrium points, homoclinic orbits,

and solutions that begin and end at one of the two boundaries. In each plot, bridge

volumes are bounded on the left by V − and on the right by the maximum system

volume V ∗ defined in equation (5.6). A trajectory that reaches V ∗ is considered to

go ‘out-of-bounds’, while reaching V − is understood to imply the system ‘switches’

to the droplet-droplet state considered later.
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Figure 5.9: Bridge-drop two-parameter bifurcation diagram: total volume λ and

bridge length `. Each region is categorized by its types of equilibria,

ordered by increasing bridge volume. Centers are labeled C and saddle

points S. Phase-planes (Vb, V̇b) for various points are also shown, where

the left and right boundaries are the breaking point V − and out-of-

bounds limit V ∗ respectively.

In general, moving upwards on the bifurcation diagram shifts the right bound-

ary V ∗ from V + to λ + .5. After this change, the right boundary will no longer

move to the right. For example, movement from A→ B shifts the right boundary,

whereas from B → C does not. Moving from C → D → E → F forces the center

to move to the right until it reaches the right boundary and disappears in a BEB.

Also of note is that for points E and F , the saddle point remains very close to the

boundary V −.

Consider point F . If the length of the bridge is decreased (F → G), then
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a saddle-node bifurcation results in a region with a center separating two saddle

points. Decreasing the bridge length further causes the larger saddle point and, in

turn, the center to disappear.

In the center of the plot (0) there is a region with no equilibrium points where

a BEB has destroyed the center and the saddle node bifurcation has not occurred.

Following the saddle-node bifurcation (point H), there is a center and a saddle

point. Furthermore, moving downward and to the left (toward the cusp), results

in the phase-space shrinking. For example, point I has three equilibrium points

that are nearly indistinguishable from a single equilibria.

Of particular interest are trajectories that reach one or both boundaries. In

the next section we will view the bridge-droplet joined to a droplet-droplet model

to create a system that can switch between configurations. In that case, when the

bridge breaks at the left boundary (V −) it reforms as a droplet.

5.3 Combined Bridge-Drop Configuration-Switching Sys-

tem

In order to observe noteworthy dynamics, it is desirable to explore a part of phase

space in which trajectories that begin at the left boundary V − do not in general

terminate at the right boundary V ∗; the aim is to have switching oscillations that

do not go ‘out-of-bounds’ (i.e. reach V ∗). A brief examination of the phase spaces

presented in Figure 5.9 indicates that the most promising region is near points B

and C. That is, consider ` ∈ (1, 1.5) and λ ≈ 1.

As the bridge-droplet system oscillates the bridge may reach its minimum vol-
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Figure 5.10: Droplet-droplet (a) schematic and (b) bifurcation diagram with typi-

cal equilibrium shapes. Solid lines indicate centers and dashed saddle

points.

ume V − and release from the substrate. When this occurs, the bridge pinches off

at the substrate and transitions to a spherical-cap droplet. We shall assume that

no drop remains on the substrate, for simplicity. That is, all the liquid from the

broken bridge ends up in the bottom droplet After release, the system is two cou-

pled spherical-cap droplets; this configuration has been studied previously[1, 45].

For the bottom drop in the holder, let Vb, zb, hb and Rb be the volume, center-of-

mass, height and radius of curvature of the bottom droplet, that is, the droplet

adjacent to the substrate, respectively (Figure 5.10a). Then, scaling as in section

5.2.1, these quantities may be written similarly. Thus, Newton’s second law may

be written

d2

dt2
[Vtzt − Vbzb] =

3

2

[
1

Rb

− 1

Rt

]
. (5.7)

The two droplets can return to the bridge-droplet state if the droplet hits the

substrate; this occurs when hb = `. Upon impact, the droplet re-transitions to a

liquid bridge. We will treat transitions between states as instantaneous.
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We can now specify the configuration-switching bridge-droplet system in terms

of a discontinuous dynamical system using the piecewise definition

d2

dt2
[Vtzt − Vbzb] =


(

3
4
pb − 3

2R

)
if bridge-droplet(

3
2Rb
− 3

2R

)
if droplet-droplet

(5.8)

Note that here the subscript b refers to the either the bottom droplet or the bridge

depending on the current configuration.

The transition from bridge-droplet to droplet-droplet occurs when Vb = V −,

while the transition from droplet-droplet to bridge-droplet occurs when the height

of the droplet is equal to the gap length `. Let Vb = D+ when hb = `. Note

that, by assumption, in this model, no velocity is lost during these transitions.

Simple calculations show that V − < D+ for gap lengths greater than 0.5, which

corresponds to the the bridge lengths of interest. In other words, for the class

of bridges studied, the bridge always breaks at a volume less than the maximum

droplet volume. Consequently, the system exhibits hysteresis in transition, due to

the system being multiply-defined for Vb between V − and D+. As we will see, this

characteristic is fundamental to trajectory dynamics.

5.3.1 Drop-Drop System Recapitulation

A bifurcation diagram for the configuration-switching system requires combining

the diagrams of the bridge-droplet (Figure 9) and droplet-droplet (Figure 5.11)

subsystems. To that end, we now consider the droplet-droplet state defined in

(5.7); it is in equilibrium when the radius of curvature of both droplets are equal.

The (hb, λ) bifurcation diagram is easily constructed using the relationships defined

in Section 5.2.1 (Figure 5.10b) since R(h) = 1/2(h + 1/h) which occurs when the
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Figure 5.11: Droplet-droplet two-parameter bifurcation diagram. Solid lines indi-

cate pitchfork bifurcations while dashed indicate boundary equilib-

rium bifurcations. In each region the types of equilibria are listed: s

indicates sub-hemispherical (small) and l super-hemispherical (large)

. Phase planes (Vb, V̇b) for various labeled points are also shown,

where the right boundary is the impacting point D+.

two droplets have the same height (ht = hb) or reciprocal heights (hthb = 1).

When λ < 1, there is a single stable center such that the droplets are identical and

sub-hemispherical (s, s). At λ = 1 a pitchfork bifurcation occurs, resulting in the

loss of stability of the identical solution and in two pitchfork branches being born,

consisting of stable centers. On the pitchfork branches, one droplet is large and

the other is small (l, s or s, l); the identical state is now a saddle point with both

droplets large (l, l).

When a substrate is introduced, the bottom droplet has a maximum height of

`. Thus for any fixed stand-off distance `, the number of equilibrium points as a

function of λ is the number of points below hb = ` in Figure 5.10. This corresponds
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to the two-parameter bifurcation diagram shown in Figure 5.11, in which the solid

line and the dashed lines are curves of pitchfork and boundary equilibrium bifur-

cations respectively. For λ < 1, if the stand-off is greater than the dot-dashed

curve, there is a single equilibrium point labeled (s, s) (e.g. points B and C) and

no equilibrium points otherwise (e.g. point A). At λ = 1 a pitchfork bifurcation oc-

curs, though the number of equilibrium points is dependent on ` (i.e. there can be

zero, one, two, or three equilibrium points). If there are three equilibrium points,

they manifest as two centers separated by saddle and are labeled accordingly as

(hb, ht) = (l, s), (s, l), (l, l) (e.g. point D). As ` decreases (or λ increases) the top

curve disappears (hb large and ht small) in which case there are two equilibrium

points labeled (l, l) and (s, l) (e.g. point E). Continuing to lower ` makes the (l, l)

saddle-point point vanish (e.g. points F, G, H and I). Finally, for very short gaps

the (s, l) center will disappear, leaving no equilibrium points.

5.3.2 Configuration-switching system: equilibria

A two parameter bifurcation diagram for the combined switching system can now

be constructed by combining the diagrams for the bridge-droplet (Figure 5.9) and

droplet-droplet (Figure 5.11), resulting in a (λ, `) bifurcation diagram for the com-

bined system (Figure 5.12). In the diagram, thin and long-dashed lines are drop-

drop pitchfork and BEB bifurcation lines, while the thick and short-dashed lines

are saddle-node and BEB lines for the bridge-drop configuration.

The parameter space is sectioned into 13 regions, each with a different equi-

librium structure. Droplet equilibria are referred to as (hb, ht) = (s, s), (l, l), (s, l),

or (l, s) and reflect the droplet heights. The bridge-droplet equilibria are ordered

left-to-right by increasing bridge volume and classified by C, a stable center, and
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S, a saddle point. Note that for the region of most interest (` ∈ (1, 1.5), λ ≈ 1)

there is a single bridge-drop equilibria (center) while there may be anywhere from

zero to three drop-drop equilibria.

5.3.3 Configuration-switching system: Dynamics

When considering the dynamics of the switching system, the most interesting tra-

jectories are those that cross one or more of the switching boundaries (V − and

D+), but do not reach the system maximum volume (V ∗). As stated previously,

the most promising parameter range is λ ≈ 1 and ` ∈ (1, 1.5). Outside this region,

nearly all trajectories that start at V − will reach V ∗ and go out-of-bounds. Thus,

for the remainder of this section, we consider only trajectories that do not reach

the boundary V ∗. Henceforth, references to ‘all’ trajectories means ‘all trajectories

that do not reach this boundary’.

Two examples of a switching trajectory are shown in Figure 5.13 for λ = 1.1,

` = 1.1 and initial conditions (Vb(0), V̇b(0)) = (1,−0.85) and (0.9,−0.865). For

these parameters, there is one bridge-drop equilibria (center) and two drop-drop

equilibria (center and saddle). In the plots, solid lines indicate bridge-droplet

states while dashed lines indicate droplet-droplet states. The three dotted vertical

lines are the minimum bridge (V −), maximum droplet (D+) and system maximum

(V ∗) volumes. As previously discussed, during a trajectory the system can assume

either the droplet-droplet or bridge-droplet state between V − and D+. The most

striking characteristic of these trajectories is the ‘dampening’ down to a periodic

orbit confined to one of the two states, despite the lack of active dissipation in

the model. This behavior is to be a result of hysteresis during transitions between

configurations (cf Figure 5.2).
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Figure 5.12: Configuration-switching two-parameter bifurcation diagram. Thick-

solid and short-dashed lines are the boundaries in the bridge-droplet

configuration; thin-solid and long-dashed lines are the boundaries

for the droplet-droplet configurations. Each region is labeled and

classified by the types of equilibria there. Sample phase portraits

are also shown with solid lines indicating bridge-drop configurations

and dashed lines drop-drop.

In each configuration, the system is a second-order conservative oscillator. As

such, if the system switched at a vertical line in (Vb, V̇b) space, it would follow that

the entire system would be conservative. To clarify, recall that when a second-order

conservative oscillator crosses a vertical line at a point (V1, V̇1) in (Vb, V̇b) space, it

necessarily crosses the same line at (V1,−V̇1). Since this is true on both sides of

the switching line, it must also be true on the line. This implies that the system

is conservative everywhere and all solutions must be fixed points, periodic orbits,

homoclinc orbits or hetereoclinic orbits.
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Figure 5.13: Switching trajectories for λ = 1.1 and ` = 1.1 with initial conditions

(a) (Vb(0), V̇b(0)) = (1,−0.85) and (b) (Vb(0), V̇b(0)) = (0.9,−0.865).

Solid parts of the trajectory are bridge-droplets and dashed parts

droplet-droplet. The dotted lines are the switching boundaries V −

(minimum bridge volume), D+ (maximum droplet volume) and the

‘out-of-bounds’ boundary V ∗.

In our system, the transition occurs at two different lines, namely Vb = V −

and Vb = D+. Consequently, the result is a region where the system is multiply-

defined. The dynamics of all trajectories can be explained solely by considered only

how they behave in the region between these two lines; this follows because if the

trajectory leaves the region at (Vb, V̇b) it returns at (Vb,−V̇b). Thus, to determine

the long-term behavior, only the behavior between V − and D+ are of import.

Further, we can map into a semi-infinite cylindrical space by first confining the

study to droplet-droplet configurations for V̇ > 0 and bridge-droplet configurations

for V̇ < 0 and then joining the upper and lower-half planes via rotating the bottom

half plane 180 degrees and moving it to the right of the top half half plane. This

will now be illustrated with an example.

Consider the region (V −, D+) with the trajectory from Figure 5.13a. If only

droplet-droplet configurations bridge-droplet configurations are plotted for V̇ > 0

and V̇ < 0 respectively, Figure 5.14a is obtained; outside of this region, the system
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Figure 5.14: (a) trajectory from Figure 5.13a restricted to Vb ∈ (V −, D+). Drop-

drop points are plotted for V̇b > 0 while bridge-drop are plotted for

V̇b < 0. Outside the region the trajectory is conservative and thus

returns with the same speed. The trajectory shown spirals inward

until it reaches a periodic orbit represented by the repeating line

segment p2p1. (b) The trajectory from (a) mapped into a semi-

infinite cylindrical space. Left and right edges are identified and the

bottom edge represents escape to a periodic orbit.

is conservative. The trajectory returns to either boundary with the same speed as

it left, allowing us to disregard the external dynamics. The shown trajectory spirals

inward until it hits the V̇b axis at p1. Subsequently, it repeats its last oscillation

(the line segment p2p1), which represents a bridge-droplet periodic orbit.

The trajectory can also be translated to a semi-infinite cylindrical space by

cutting along the Vb axes and rotating the lower-half up and then positioning it

to the right of the upper-half (Figure 5.14b). The left half of the space is bridge-

droplet while the right droplet-droplet. Observe that the system is non-smooth at

the mid-line as well as at the left- and right-edges which are identified with each

other. If a trajectory reaches the bottom line, it enters a periodic orbit confined

to one of the two configurations, which, in our figure, corresponds to its last line

segment repeating indefinitely. One could alternatively view the bottom boundary
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as escape from the cylindrical space to a non-switching periodic orbit.

For the parameter ranges considered, all trajectories calculated dampen down

to a periodic orbit. Such behavior can be explained in the context of the phase

portraits of the the bridge-droplet (Figure 5.9) and of the droplet-droplet (Figure

5.11) near their respective switching boundaries V − and D+. For the bridge-

droplet, the magnitude of the velocity always decreases when approaching V −.

In contrast, for the bridge-bridge, the magnitude of velocity may increase as the

trajectory approaches D+, but we find that such an increase is insufficient for a

net increase over one revolution in the cylindrical space.
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5.4 Concluding Remarks

The model studied characterizes a capillary system that switches between bridge-

droplet and droplet-droplet states. This system is noteworthy due to both its engi-

neering applications (such as capillary adhesion) as well as its inherent mathemati-

cal complexity. The switching process involves breaking liquid bridges and droplets

impacting on substrates, both of which are complicated non-smooth events. How-

ever, the system can be simplified by restricting bridges and droplets to static

equilibrium shapes and assuming the transitions happen instantaneously so that an

ordinary differential equation model may be obtained that captures a variety of in-

teresting behavior. The non-smooth model is a piecewise second order-conservative

oscillator that is multiply defined for a nonzero range of droplet values.

The bridge-droplet configuration is complicated due to a rich bifurcation struc-

ture. This structure is characterized in a two parameter bifurcation diagram (total

volume λ and stand-off distance `). Depending on parameter values, the number

of equilibrium points varies from zero to three. Since liquid bridges have both a

maximum and minimum volume, numerous lines of boundary equilibrium bifurca-

tions (BEB) are computed. In addition, lines of saddle-node bifrucations are found

and are shown to merge at a cusp bifurcation. The lines of BEBs and saddle-nodes

intersect multiple times and give rise to nine different regions in the bifurcation

diagram.

Once the bridge-droplet bifurcation structure is well understood, attention is

turned to the switching system. Its bifurcation structure is obtained by combining

the bridge-droplet diagram with a similar diagram for the droplet-droplet config-

uration. The result is a complicated two parameter bifurcation diagram that is

partitioned into thirteen regions by the number, type and ordering of equilibria.
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In these regions, bridge-droplet and droplet-droplet equilibria coexist and often

reside in the region in which the system is multiply defined. The boundaries of

the regions are lines of BEB, saddle-node (bridge-droplet) and pitchfork (droplet-

droplet) bifurcations.

Finally, the dynamics of trajectories are studied. Since the system behaves

as a typical second-order oscillator away from the non-smooth boundaries, the

trajectories of interest are those that intersect one of the switching boundaries. We

show that such switching trajectories ‘relax’ into periodic orbits that are confined

to one of the two configuration spaces. Furthermore, by mapping trajectories to a

semi-infinite cylindrical space it is shown that this relaxation is due to the behavior

in the multiply-defined region. In other words, long term behavior can be obtained

by considering only a slice of the phase space.

Further work is possible in a number of directions. One such extension is

to explore other classes of bridges, for which the bifurcation structure will vary.

For example, Appendix 5.5.1 explores the related family of pinned/pinned bridges.

One complication to consider when examining other families is that, in general, the

bridge pinches off at a place away from the substrate, resulting in two droplets (e.g.

pinned/pinned bridges symmetric about a mid-plane pinch off at the midpoint).

Thus, when the bridge breaks some volume will be left at the substrate. An

additional modeling enhancement may account for how is that volume left may

depend behind on the substrate may depends on the fluid velocity.

Other possible extensions include considering a system in which chaotic oscil-

lations are possible (e.g. weakly dampened forced model) as well as incorporating

the dynamics of impact and spreading into the model. With respect to the latter

extension, as the droplet impacts the substrate, it spreads rapidly to form a liquid
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Figure 5.15: (a) Pinned-pinned bridge definition sketch. (b) (pV ) diagram for a

pinned-pinned bridge of length ` = 1.0. V + and V − are the max-

imum and minimum bridge limits respectively. A is a cylindrical

bridge with pb = 1 and B is a catenoid with pb = 0

bridge. In the model considered here, this spreading is assumed to be instanta-

neous with no loss of velocity. In future work, the transition may be treated as fast

when compared to the time scale of oscillation, resulting in a non-smooth multiple

time-scale dynamical system.

5.5 Appendix

5.5.1 Pinned-Pinned Bridge System

The pinned-fixed-angle (90◦) family of bridges is closely related to bridges that are

pinned at both ends, a case we will now examine. Consider a bridge with radius
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Figure 5.16: Pinned-pinned bridge-droplet bifurcation diagrams for different

bridge lengths. Behavior of interest: cusp bifurcation between B

and C; two saddle-node bifurcations in B. Solid lines denote cen-

ters while dashed lines denote saddle points. Boundary equilibrium

bifurcation points are labeled with ×.

r at both ends (Figure 5.15a). Observe that equilibria are symmetric about the

z axis as well as the midline. Further, at the midline, the contact angle is 90◦

which implies the top half of a pinned-pinned bridge is a pinned-fixed-angle bridge

with half the height and half the volume. Moreover, since pressure is the same for

full and half bridges, the results from Section 5.2.2 regarding pinned-fixed-angle

bridges may be converted to pinned-pinned bridges by doubling length and volume

while holding pressure constant. For example, Figures 5.4a and 5.15b show pV

diagrams for a pinned-fixed-angle bridge with ` = 0.5 and a pinned-pinned bridge

with ` = 1.0, respectively. These diagrams reflect that the families have the same

pressures pb while the pinned-pinned bridge has twice the volume.

For a pinned-pinned bridge, the bridge-droplet model may be formulated as in
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Figure 5.17: Two parameter bifurcation diagram for the bridge-droplet system

with a pinned-pinned bridge. Each region is categorized by its types

of equilibria, ordered by increasing bridge volume. Centers are la-

beled C and saddle points S.

Section 5.2.1. Using the same notation and recognizing that center of mass (for a

pinned-pinned bridge) is fixed at zb = L+ `/2, the center-of-mass equation is

d

dt

([
2

3
H + 2L+

1

2
`

]
V̇b

)
=

3

4

(
2

R
− pb

)
. (5.9)

This system is in equilibrium when bridge and droplet have equal capillary

pressure. Bifurcation diagrams for various bridge lengths are shown in Figure

5.16. As bridge length increases, two equilibria curves exchange branches via a

cusp bifurcation. As λ increases, the bifurcation diagram progression is similar to

the pinned-fixed-angle case, the primary difference being the turnover of the lower
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curve of equilibria prior to the cusp bifurcation; this results in a second saddle-

node bifurcation (e.g. Figure 5.16B). In this case, as λ increases, the number of

equilibria goes from 1 – 3 – 1 – 3 – 2 – 1. This progression can also be observed in

the two parameter bifurcation diagram (Figure 5.17).

In the two parameter bifurcation diagram (λ, `), three types of bifurcation

curves exist: saddle-node (solid line), boundary equilibrium for Vb = V + (dashed

line), and boundary equilibrium for Vb = V − (dot-dashed line). These curves sep-

arate parameter space into 9 regions, each with zero, one, two, or three equilibria.

The equlibria are centers (C) and saddle-points (S) and are ordered by increasing

bridge volume.
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CHAPTER 6

BEETLE-INSPIRED ADHESION BY CAPILLARY-BRIDGE

ARRAYS: PULL-OFF DETACHMENT1

This chapter represents a collaboration with contributions from Michael J.

Vogel, Ashley M. Macner and Paul H. Steen. The SECAD design, development

and construction was by MJV with guidance from PHS. PHS contributed Section

6.4 on hard- and soft-loading. The model for prying detachment (Section 6.5)

originated with MJV. AMM contributed the measurements of the pinned-pinned

liquid bridge (Figure 6.6). PHS guided the overall paper content and writing.

Abstract

Adhesion by capillarity (‘wet’ adhesion) depends on the surface tension of an array of

many small liquid bridges acting in parallel against a substrate. A particular leaf beetle

has been previously shown to defend itself using wet adhesion, and a man-made de-

vice, inspired by this beetle, has previously been demonstrated to exhibit electronically-

controlled switchable wet adhesion. In both cases, measurements of detachment under

load have been reported as pull-off strengths. In this paper, we pose models for pull-off

adhesive failure and discuss the predictions of these models in relationship to available

observations. The focus is on the role of array geometry and how net adhesive failure

relates to the instability of a single liquid bridge.

1D.M. Slater, M. J. Vogel, A. M. Macner, P. H. Steen, Beetle-inspired ahdesion by capillary-
bridge arrays: pull-off detachment, Journal of Adhesion Science, To Appear (2011).
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Figure 6.1: Capillary bridge array adhesion: idealized arrangement of liquid
contacts between beetle tarsal bristles and substrate.

6.1 Introduction

Hemisphaerota Cyanea, a beetle native to the southeastern United States, exhibits

extra-ordinary adhesion in defending itself by ‘hunkering down’ to its preferred

substrate, the palm leaf (serenoa frond), with an adhesive strength of up to 100

times its body weight [9, 65]. Surface tension of a single liquid droplet contact of

micron scale, amplified by parallel action of 120,000 contacts, is responsible (figure

6.1). A small drop of oil [10] is positioned at the tip of each bristle on the beetle’s

tarsi, which we will refer to as ‘feet’ henceforth. Each of these contacts can be

thought of as a switch that is ‘on’ for adhesive contact or ‘off’ for no-contact.

The beetle reconfigures the array in less than a second, switching 120,000 contacts

‘on’ or ‘off’. Although nature abounds with other creatures who use both wet

[66, 67, 68, 69, 70] and dry [71, 72] adhesion strategies, the beetle demonstrates

the remarkable combination of strength and reversibility.

A ‘switchable electroosmotic capillary adhesion device’ (SECAD), inspired by

H. Cyanea, has recently been demonstrated[2]. The SECAD is like the beetle in

its strategy of parallel action and its ability to quickly switch on/off a vast array
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of small liquid contacts, though the overall device structure and switching control

differs from the beetle. The SECAD is a credit-card-thin rigid plate that uses a

sub-second low-power voltage pulse to drive electroosmostic flow [11] within the

device to push out or pull in small droplets, thus making or breaking contacts

between the device and a substrate. It is estimated that a one square centimeter

device with micron-sized contacts can adhere to a substrate against a 1 kg mass,

while enjoying the benefits of electronically-controlled reversibility in a device made

of common materials and with no moving parts.

The maximum adhesion of both SECAD and beetle scale with number of con-

tacts N and surface tension σ. Maximum adhesion can also be expected to depend

on the yield force of a single liquid bridge. For an axisymmetric bridge, the force

on any cross-section fb has two contributions, one proportional to perimeter and

the other to sectional area. For a liquid/substrate contact of diameter ε, these

contributions take the form

fb = πε σsinα0 − (πε2/4) σκ. (6.1)

Here α0 is the contact-angle and κ is the sum of the principal curvatures, a property

of the shape. It is convenient to refer to these two terms as the ‘perimeter’ and

‘shape’ contributions to the adhesive force. The perimeter contribution always

pulls the substrate upward - it is always adhesive - while the shape contribution

can pull or push depending on the shape.

To emphasize the difference between perimeter and shape adhesion, consider

the commonplace experience of trying to pull apart two glass plates which have a

droplet of water trapped between them. The pull of surface tension is especially

strong if the scale of the contact-line radius is large relative to that of the separation

of the plates. In this case, the pull is due to the shape contribution since the mean
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curvature (negative) scales inversely with the plate separation. That is, shape

dominates perimeter in fb. In contrast, the bridges controlled in the SECAD

have lengths comparable to their diameters, in which case the perimeter force can

dominate. This can be demonstrated for the SECAD, as reviewed in section 6.2.

To the extent that it is true for the beetle has not been established, even though

a perimeter-packing explanation has often been invoked [73, 74, 2].

There are a number of complications involved with modeling beetle pull-off

detachment measured in vivo. The force of adhesion must be transmitted through

the beetle exoskeleton, perhaps through ‘muscles’, through the array of liquid

bridges and finally to the substrate. Videos of the beetle being attacked by the

enemy ant suggest a real-time feedback control system that the beetle uses to

maintain its hunkered-down position [75]. In summary, a detailed understanding

of beetle pull-off detachment likely involves many influences that are challenging

to identify and quantify.

The goal of this paper is to bring into focus some of these issues, especially

regarding the mechanics of pull-off detachment. We do this by posing and solv-

ing some simple models for pull-off detachment under different loading scenarios

and comparing the predictions against available measurements on the beetle. A

secondary goal is to improve the design of the SECAD [2]. The main premise of

this paper is that adhesive failure, for both SECAD and beetle, ultimately involves

breaking of liquid bridges. And, to the extent that the breaking of a single bridge

is the result of instability, failure will be mediated by single-bridge instability.

We first discuss the benefit of contact perimeter-packing in section 6.2, fol-

lowed by a discussion of the response of a single liquid bridge and its stability in

section 6.3. The loading scenarios that lead to pull-off detachment are specified
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in section 6.4, followed by one-dimensional and two-dimensional models in sec-

tions 6.5 and 6.6. A discussion of the results and suggestions for further study can

be found in section 6.7.

6.2 Perimeter-packing adhesion: SECAD

In perimeter-based estimates of beetle adhesion (‘nominal’ capacity), a static, uni-

form array of liquid contacts is assumed and the perimeter contributions of the

wetted contacts are summed to estimate the net force. This simplified analysis

is consistent with laboratory measurements [9]. The beetle deploys N ≈ 105 oil

contacts of ε ≈ 2 µm, with greatest measured capacity Fσ/g ≈ 3 g where g is the

acceleration of gravity.

To see the advantage that perimeter-packing conveys on the beetle, consider

that beetle ‘feet’ project a total net area (i.e., including dry area between contacts)

of Anet ≈ 2 mm2. The net perimeter force is Fp = Nσπε sinα. By introducing a

contact packing density φ ≡ Nπε2/4Anet, we find how adhesive force scales with

contact size. Using φ to eliminate N yields the nominal scaled force for capillary

bridge arrays as

Fp
Anet

=
4φσ sinα

ε
, (6.2)

showing that Fp ∝ 1/ε for fixed Anet. The benefit of packing a large number of

small contacts into a fixed net area is evident from the amplification of adhesive

force with 1/ε.

Amplification of the adhesion force as the inverse of liquid contact size has

been demonstrated by the SECAD shown in figure 2A [2]. For our purposes,
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Figure 6.2: Switchable Electronically-Controlled Capillary Adhesion Device
(SECAD), schematic and scaling of adhesion strength. (A) Main
components in cutaway (not to scale for clarity). Primary layers
are labeled to the right. (B) Adhesion strength F/Ameas versus
contact size εmeas , using normalized values. Solid line corre-
sponds to model given in Eq. 6.2. Figures are adapted from [2];
see reference for details.

important features of the SECAD are number and size of the droplet holes, and

the spacer which plays a role in preventing coalescence of contacts. The data in

figure 2B represents a series of adhesive force measurements of the SECAD taken

with a force transducer centered over the capillary bridge array (‘pulling’). For

the experiments, liquid bridges were all internally connected to each other and to

atmospheric pressure, suggesting that bridge shapes were pieces of catenoids (κ =

0). The adhesion strengths in figure 6.2B therefore correspond to nominal values

of adhesive force, and compare favorably to the simple scaling argument. The data

represent a variety of experimental conditions: device fabrication methods include

photolithography as well as traditional machining; contact diameters range from

150 µm to 900 µm, with N ranging from 100 to almost 5000; bridge length, hole

packing density, and other parameters are also varied (see [2] for details). Despite

these variations, the scaled adhesion strength agrees well with the nominal adhesion

strength model.

118



Figure 6.3: Single liquid bridge definition sketch.

Although measured adhesion capacity is modest for initial testing of SECADs,

as contact size is scaled down to the micron range, predicted adhesion strengths

approach those of synthetic bio-inspired tapes or commercial adhesives, with the

advantage of controlled grab/release.

6.3 Single bridge force-length response

Capillarity-based or ‘wet’ adhesion relies on the force fb transmitted by a single

liquid bridge (figure 6.3). We model the contact with the beetle foot at top as

pinned and with the substrate at bottom as making a fixed wetting-angle α0. At

equilibrium, the force on every axial section is the same, so one may evaluate on

any section, at one’s convenience. In terms of section radius r and the angle α, the

angle the surface-tangent makes to the horizontal, measured through the liquid,

the force is

fb = 2πr σsinα− πr2 σκ. (6.3)
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In the absence of distortion by gravity, static liquid bridges are shapes of constant

mean-curvature (κ/2 =const). That is, κ is independent of z so that, in equa-

tion 6.3, only r and α vary with z. This means that the split between perimeter

and shape contributions to fb depends on axial position. Hence, for a fair compar-

ison of shape and perimeter contributions between different bridges, a convention

on an axial position is needed, say z = 0. This has been implicit in our discussion

above. Note that, since ε = 2r(0) and α(0) = α0, putting z = 0 in equation 6.3

recovers equation 6.1.

6.3.1 Equilibrium shapes

The mechanical response of a single liquid bridge is obtained by solving the local

Young-Lapace equation, p = σκ, for the bridge equilibrium shape. It is conve-

nient to use arclength-angle coordinates (t, α) as defined in the definition sketch

of figure 6.3. In what follows, fb is scaled by σR, length l by R and volume

V by R3 where R is the bristle radius. We shall retain the notation fb and l for

scaled quantities. The scaled Young-Laplace equation takes the form of a two-point

boundary-value problem,

dα/dt = sinα/r − p, α(0) =α0 (6.4a)

dr/dt = − cosα, r(s) =R (6.4b)

dz/dt = sinα, z(0) =0. (6.4c)

Here s is the total arclength, defined by the condition l =
∫ s

0
z′dt. The solution

(r(t), α(t)) – note that the z equation decouples – is subject to the constraint of

constant bridge-volume V = π
∫ s

0
r2z′dt and is a standard calculation [13]. The plot

of fb against length l, shown in figure 6.4, is referred to as the force-length (FL)
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Figure 6.4: FL- response diagram for single bridge (α0 = 30◦ and V = 1.00).
Insets show corresponding shapes. Catenoidal shapes (κ = 0) are
marked with an ‘X’.

response. The pressure-volume (pV ) response is more commonly encountered [14].

Alternatively, the FV response is sometime reported [76]. Note that equation 6.3

can be obtained as a first-integral of the system equation 6.4a [6].

In the bridge response, figure 6.4, negative force corresponds to a net push.

Note that this only occurs for very short bridges (l < 0.21) where the shapes

are sufficiently less slender than the catenoidal shape a), defined by κ = 0. For

these shapes to the left of a), the push of the shape overcomes the pull of the

perimeter. Between the catenoid shapes a) and d) the shape acts in concert with

the perimeter pull. The maximum in net force fb at about l = 0.265 results

from a maximum in shape pull which dominates the change in perimeter pull that

decreases monotonically from a) to d) due to a decreasing contact-radius.

For the beetle, the typical volume of oil deployed on a single foot can be es-

timated based on photos of ‘footprints’ left behind[9], although considerable vari-

ability might be expected. The value V = 1.00 corresponds to about one-quarter

of a spherical-volume based on the bristle radius R. For the SECAD, a broader
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range of volumes is relevant, as these are controlled.

The FL-response of figure 6.4 varies with volume as seen in figure 6.5a. On

decreasing volume from V = 1.5, the shapes become more curvaceous and the

shape-pull maximum increases, and shifts to lower l, resulting in an increase in

the force maximum. In contrast, the length-maximum decreases. The length

maximum is akin to a Plateau-Rayleigh instability[77, 19] and corresponds to a

volume turning-point in a pV -response (not shown, but summarized by the V L

stability envelope [6]), the context in which it is most easily understood.

For the SECAD, contact-angles near neutral-wetting, α0 = 90◦, are relevant

while, for the beetle, angles closer to complete wetting are of interest, α0 < 30◦.

Figure 6.5b shows, for contact-angles away from complete-wetting, α0 > 30◦, that

both force and length maxima decrease with increasing contact-angle. For contact-

angles near complete-wetting, α0 < 30◦, figure 6.5c shows that the force maxima

decreases, as near neutral-wetting, yet the length maximum increases with increas-

ing contact-angle. These plots indicate the sensitivity of the turning points to the

parameters.

6.3.2 Stability and turning points

The force and length maxima are the key features of the FL-responses. As is

well-known from the behavior of elastic materials, such maxima in a stress-strain

response are responsible for instabilities when the body is loaded [78]. For an ex-

tension experiment under controlled strain (hard-loading), the maximum in l will

cause instability. In contrast, under controlled stress (soft-loading), the maximum

in fb causes instability. The very different behaviors that occur under these dif-
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Figure 6.5: FL-response diagrams. Variation in a) volume for α0 = 30◦ and
contact-angle for V = 1.0 for b) α0 > 30◦ and c) α0 < 30◦.

ferent loading conditions are well-documented [79]. For liquid bridges, analogous

instabilities occur at turning points in pressure and volume in the pV response [14].

The bridge breaks as a result of these instabilities [15]. The predictive theory of

instability based on turning points in a response diagram finds application broadly

[80] and has a long history that can be traced back to Poincaré [81]. That dif-

ferent loading scenarios lead to different instabilities is because of the different

class of disturbances that are admissible under the different loading constraints.

In summary, on increasing the load under soft-loading conditions, the bridge goes

unstable at the maximum in fb. Alternatively, while increasing the extension,

under hard-loading, the bridge will reach longer lengths and go unstable at the

maximum in l. For the conditions of figure 6.4, for the two different scenarios, this

means an eleven-fold difference in ‘yield stress’ and a nearly four-fold difference in

‘yield length.’
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Figure 6.6: Experimental FL-response for a pinned-pinned water bridge un-
der hard-loading, starting at A and increasing l to E, where
the bridge breaks. Insets are photos of corresponding bridges.
2R = 2.8mm; 1.7 < V < 2.3 (experimental work of AM Macner)

To illustrate the predictive ability of the response diagram, figure 6.6 shows

measurements from our laboratory of a single pinned-pinned water bridge subject

to hard-loading. The experiment begins at left, photo A, and proceeds by quasi-

statically increasing the length until the bridge breaks at photo E. Lengths (along

with volumes and shapes) of the bridges are extracted from the images and force

is measured by a digital balance (AND HR-200). These are the data labeled as

‘experiment.’ Because of the small scale of the bridge (R = 1.4 mm), there is

evaporation, and the volumes vary considerably over the duration of the experi-

ment (from 6.5 to 4.8 µl). There is also a detectable influence of gravity on the

shapes. For these reasons, the model takes account of volume variation and shape-

deflection by gravity and hence is plotted as symbols rather than a curve. Finally,

for convenience in comparing to the previous response diagrams, we have reported

l as half-length (and V as half-volume), since a pinned-pinned experiment, at least

in theory, gives a force corresponding to that of a half-bridge that has contact-angle

90◦ at the mid-plane, based on its symmetry about the mid-plane. The point of

this figure is to illustrate the extent of agreement between experiment and theory

124



Figure 6.7: Detachment mechanisms.

for a hard-loaded single bridge.

6.4 Scenarios for pull-off loading

Beetle detachment can be voluntary or involuntary. Voluntary detachment is be-

lieved to proceed by a ‘divide and conquer’ strategy. The beetle peels off contact-

by-contact (or row-by-row) using a rolling action [9]. However, involuntary de-

tachment, or prevention thereof, is equally important to the beetle’s survival. We

shall limit our scope to involuntary detachment, in part, because measurements

exist only for this case [9]. We consider various loading configurations, explained

in the following paragraphs and illustrated in figure 6.7.

In the laboratory [9], detachment under duress occurs by pulling from the center
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of the beetle’s shell via dental wax. In the actual measurements, the substrate is

pulled down while the beetle is attached above to a force transducer[65]. The

beetle’s resisting normal force is recorded as a function of time on an oscilloscope

display. We refer to this as the ‘pulling’ detachment.

In nature, attacking ants try to pry up the shell of the hunkered-down beetle

in order to render it defenseless and carry it back to the ant colony for processing

[75]. Hence, the ant applies a force at the shell edge, creating a moment about the

pivot at the opposite edge. This is what we call the ‘prying’ detachment location.

As described earlier, we shall further distinguish between ‘hard-’ and ‘soft-

loading’ in the sense used in solid mechanics when describing the stress-strain

response and yield of elastic materials. That is, in hard-loading, a displacement is

controlled whereas, in soft-loading, the force is controlled. In summary, pull-off by

pulling and prying under soft- and hard-loading will be modeled. For purposes of

definiteness, the reader should think of these as arising from different single-bridge

stability limits discussed in Section 6.3, although it is possible to relate these to

physical models of beetle anatomical control.

6.5 1-D Pad Modeling

There are many differences between the beetle and a man-made adhesion device.

For this study, we utilize an idealized adhesion pad that lies between the two. In

particular, we consider the adhesion pad (including the beetle’s shell, body, feet,

etc.) to be perfectly rigid; the liquid bridge contacts are isolated from one another

(i.e., scavenging time in the SECAD are long relative to detachment dynamics

timescale [16]); the liquid bridges have fixed volumes, fixed contact angles at bot-
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Figure 6.8: Capillary-bridge linear array model; detachment by prying. As
right side is pulled up against left-side pivot, bridges are stretched
and eventually break.

tom, pinned contact lines at top, and constant surface tension; and the dynamics

are quasi-static.

While the beetle’s nominal (static, perimeter-based) adhesive force provides an

estimate of capacity, we are interested in modeling the dynamics of detachment.

For the case of ‘pulling’ detachment, we assume the beetle and substrate remain

parallel. The liquid bridges therefore change shape in unison, and the dynamic

behavior can be readily computed from the single-bridge response diagram up to

the transition to instability when the bridges break. But for ‘prying’ detachment,

the bridges are stretched at non-uniform rates. One would expect the adhesion

strength to increase initially as the bridges are stretched, according to the response

diagram. Subsequently the bridges begin to break, starting at the higher prying

edge.

Figure 6.8 shows this ‘prying’ detachment for a one-dimensional array of capil-

lary bridge adhesion. A plate of length xt pivots about a hinge and in the absence

of duress is held a distance `s from the substrate by solid spacers on right and left
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(rest state, sketch i). Note that solid spacers are used in the SECAD; the shell may

play a role as spacer/pivot for the beetle. Adhesion occurs by a number N liquid

droplets that bridge between the plate and substrate. Under duress, an applied

force F or height ` is increased and nearby bridges lengthen (sketch ii-iii). Once

a bridge’s length exceeds a critical length `c, the bridge breaks and its contribu-

tion to the net attachment force is lost (sketch iv). Full detachment corresponds

to all bridges being broken (sketch v). Note that figure 6.8 is not drawn to a

scale consistent with beetle or SECAD adhesion. In the computations, we assume

the angle between the plate and substrate is always small, so that bridges remain

axisymmetric.

Suppose a plate with pad length xt has been pried until the height of the prying

point is a distance ` above the substrate. Then the height of the pad H(x, `) at

position x is given implicitly by xt(H(x, `)− `s) = x(`− `s), via similar triangles.

Bridges become unstable and break at the critical bridge length `c correspond-

ing to the length turning point for hard-loading and the force turning point for

soft-loading from the single bridge FL diagram (figure 6.4), respectively. The

critical length occurs at x = xc, where

xc =


xt if ` ≤ `c

xt ∗ `c−`s`−`s if ` > `c.

(6.5)

Note that we consider bridges to break instantly and the dynamics of the break-up

process are not considered in the present quasi-static model.

Let Fσ be the equivalent force of all the bridges applied at the centroid xσ.

Then if x = 0 corresponds to the pivot point, φ the bridge packing, and F the
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average force of all the bridges, then

Fσ(`) =
N∑
i=1

(fb)i = (φxc)F = φ

∫ xc

0

fb(H(x, `))dx. (6.6)

Here we assume a continuum smearing of the bridges (N → ∞ as ε → 0). The

centroid is located at

xσ(`) =
1

xcF

∫ xc

0

sfb(H(s, `)dx. (6.7)

A simple balance of forces relates the applied force F with Fσ and xσ:

F(`) = Fσ
xσ
xt

= φ

∫ xc

0

fb(H(s, `))ds. (6.8)

This expression for ‘prying’ can be contrasted with ‘pulling’ hard- and soft-loading

where Fpull(l) is

Fpull(`) = φxtfb(`) for ` ≤ `c. (6.9)

That is, since all bridges act in unison, the total force in pulling is proportional to

the single-bridge response curve.

It should be noted that the perimeter-packing scaling F ∝ 1/ε is masked by the

nondimensionalization of the equations. For the two-dimensional case (discussed in

the next section), the force and area are scaled by factors of ε and ε2, respectively,

resulting in the expected 1/ε dependence. However, in the one-dimensional case

(one row of bridges) there is no benefit to adhesion strength in scaling down ε.

The model computations are shown as pseudo-dynamic traces of the force ap-

plied at the pulling point over time. The dependence on time is meant as a loose

interpretation of what one might observe in a real experiment. Specifically, we

show the force increasing linearly with time from t = 0 to 0.2 (a pre-loading period
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where the reaction force due to the right spacer is transferred to the pulling mech-

anism), and then l increases linearly with time for t > 0.2 (so force is controlled

in such a way that yields linear increase in l over time). Also, we use a value of

φ = 1 for convenience in the computations despite a theoretical maximum value

of φ = 0.907 for a hexagonal packing arrangement. A value of xt = 10 is used in

the calculations. Note that in all detachment scenarios F scales linearly with xt.

Computations of release dynamics presented here are for single values of initial

spacer length `s, bridge volume V , and contact angle α0. Since FL response

diagrams are qualitatively similar (figure 6.5), we expect the release dynamics to

also be qualitatively similar for different values of V and α0. For the computations

we have chosen a value of V = 1 based on beetle footprints and α0 = 30◦ as

a representative value between the beetle and SECAD cases. Also, since the FL

curves are essentially linear in the starting region (the region of greatest influence),

we don’t expect significant changes in the curves as `s is varied from the presently-

used value `s = 0.21.

The force versus time system response for the one-dimensional model are shown

in figure 6.9 for the four detachment mechanisms. The two pulling-release curves

are identical up to the peak in force (t = 0.33), but the pulling-soft-loading curve

exhibits an immediate drop to zero as all the bridges break at the force turning

point. The pulling-hard-loading curve gradually falls to a lower value of force that

corresponds to the length-turning point in the response diagram where all bridges

uniformly break and the force then abruptly drops to zero (t = 1.2).

The two ‘prying’-release curves are also identical at early time. The magnitude

of F is roughly half of that for ‘pulling’-release due to the reaction at the pivot.

Soft- versus hard-loading is similar to those of the pulling curves, except for general
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Figure 6.9: One-dimensional release dynamics for several detachment mecha-
nisms. Inset shows experimental trace of force over time (oscillo-
scope) for soft-pulling experiment with beetle. Inset reproduced
with permission from Thomas Eisner and Daniel Aneshansley,
Cornell University.

smoothing of the curves due to the bridges not being stretched uniformly. So the

prying-soft-loading curve begins to fall before the peak since the right-most bridges

begin to break earlier (c.f. figure 6.8 iii), and the drop in F is more gradual as the

plate is pried up. Both prying curves asymptote to zero due to the assumption of a

continuum of bridges. As we assume the bridge diameter ε is small relative to the

pad width, the angle remains small until a negligible number of bridges remain.

The curve for pulling-soft-loading (figure 6.9, thick red) should be compared

to the oscilloscope trace in figure 6.9, inset, which is reproduced from the work

of Eisner and Aneshansley [9]. The curves demonstrate sensitivity of the model

to soft- and hard-loading protocols but, most importantly, note the remarkable

qualitative resemblance of the prediction to the measurement, suggesting that the

model has captured key features of the physics, despite its simplicity.
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6.6 2-D Pad Modeling

The active adhesion area of the beetle is limited to the six feet, which total only

about 10% of the beetle’s body area. Further, these feet are spread asymmetrically

about the beetle’s body, with a centroid closer to the beetle’s ‘head’. The 1D

model can be extended to two dimensions where one must also consider the beetle

geometry. Here, we focus on prying-release, and for simplicity we assume the two

dimensional beetle is pulled uniformly from one side so it rises like a rigid hinge.

Let y(x) be the width of the beetle at position x. Then the equivalent force of

all the bridges Fσ and the centroid are simply:

Fσ = N ∗ F = φ

(∫ xc

0

y(s)ds

)
F = φAF (6.10)

xσ =

∫ xc
0
sfb(H(s, `))y(s)ds∫ xc

0
fb(H(s, `))y(s)ds

=
1

FA

∫ xc

0

sf(H(s, `))y(s)ds, (6.11)

where A is total area connected. The applied force is then

F(l) = Fσ
xσ
xt

= φAF ∗ 1

FAxt

∫ xc

0

fb(H(s, l))y(s)ds (6.12)

=
φ

xt

∫ xc

0

sfb(H(s, l))y(s)ds. (6.13)

Note that if y(x) = constant this reduces to the 1D model, scaled by fixed

width. In this way one can think of the 1D model as corresponding to a square

beetle.

The beetle may be modeled by treating it as an ellipse with aspect ratio 5:4. It

has six round feet as shown in figure 6.10, inset, that are closer to the head than

the tail. Of particular interest is the applied force required to pry the beetle at

its head, tail and one of its sides. This is shown in figure 6.10, where the three

curves are scaled by the prying force peak for a beetle with the same number of
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Figure 6.10: Release dyanmics for prying-hard-loading from prying positions
a), b) and c). Results are scaled by the force peak for a beetle
with a uniform distribution of contacts.

contacts uniformly distributed over its body. Here we see that prying the beetle

from the side is roughly the same as the force required to remove the beetle if it

had contacts uniformly distributed. Furthermore, it requires roughly 1.5 times the

force to pry the beetle from its head versus its tail. The results suggest that the

beetle is most vulnerable when the ant pries from the rear, where leverage is the

greatest. Because the beetle sets down a defense, it cannot turn to fact the ant.

That is, the ant is mobile but the beetle is not.

In terms of designing a capillary adhesion device we can use the beetle as a

guide. The beetle is weaker from the tail because it has fewer connections near

that side. If one is optimizing a device we would like to eliminate any potential

weak points. To do so one should maximize symmetry of contact distribution. As

it turns out, circular and square symmetry are virtually identical in their adhesion

strength (including pulling a square from a corner). In figure 6.11 the applied force

for any of these ‘symmetric’ configurations is compared with placing all contacts

near the prying or the pivot point (fixed N , adjusting φ as necessary). The force
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Figure 6.11: Release dynamics for a hard-loaded square SECAD device being
pryed from one side (black dot). The dashed and dot-dashed
curves are for a device with all its contacts on one side while the
thick curve is for a device with its contacts uniformly distributed
(same N for all curves). Results are scaled by the force peak of
the uniformly distributed case.

peak of the uniform-distribution case is about half that of the prying case where

bridges are packed in at the prying edge. However, when the bridges are all located

at the pivot edge, very little force is required to remove the device. Furthermore,

bridge distribution in the symmetric case has little effect on the applied force. That

is, positioning bridges uniformly around all four edges with a bridge-free region in

the center gives an essentially identical response to the uniform-distribution case.

This could be useful from a fabrication perspective if, say, some region of the

SECAD had to be void of contacts in order to serve some purpose such as device

assembly.
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6.7 Discussion

Both the beetle and the SECAD use parallel action of a large number N of liquid

bridges to amplify the adhesive force due to surface tension σ of a single bridge. For

the beetle, σ ∼ 30 mN/m, appropriate for an oil with a composition close to the

beetle’s tarsal oil (in-house measurement), while for the SECAD, σ ∼ 55 mN/m,

appropriate for water that has been in contact with plastic tubes and rubber

syringes[2]. In the case of the beetle, the number N of deployed bridges and the

scale ε of a typical contact must be estimated while, for the SECAD, N is counted

and ε is measured. For the beetle, under the assumption of full deployment, N ∼

120, 000, and based on F ∼ N(2πε)σ, an estimate of net adhesion strength matches

the measurement to an order-of-magnitude.

For the SECAD, the more precise estimate of net adhesion strength, F =

Nfb, can be tested, where fb is given by equation 6.1. Contact diameter ε is

varied six-fold down to ε = 150 µm and number of bridges N is varied fifty-

fold up to N ∼ 5000. Moreover, for the SECAD bridges, there is significant

control over the shape. This occurs by uniformly removing or adding water to all

the bridges simultaneously using a non-scavenging electro-osmotic pump. By this

means, bridges with κ ≈ 0 are achieved, in which case, F ∼ σ/ε is observed, as

anticipated, since Nε2 ∼ const over the range of variation. This amplification of

adhesion occurs truly by ‘perimeter-packing’ since only the perimeter contributes

to fb when κ ∼ 0, according to equation 6.1. Note that α0 ≈ 68◦ for our water

against a Plexiglas substrate[2].

Eisner and Aneshansley[9] test the beetle in vivo against four substrates. They

observe a measurable decrease in strength from serenoa to glass to parafilm to

aluminum. They point out that this decrease from maximum strength against
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the beetle’s natural substrate serenoa indicates that the beetle clings by adhesion.

Accepting this, one may ask whether beetle adhesion is predominately by perimeter

or shape effect. To try to answer this, we have obtained measurements of the

wetting angle of the tarsal oil proxy against the four substrates[82] and find, ordered

by decreasing wettability, α0 < 5◦ for serenoa and aluminum foil, α0 ∼ 10◦ for glass

and α0 ∼ 33◦ for parafilm. According to single bridge theory, figure 6.5c, for a

soft-loading failure, the fb should decrease with decreasing wettability. This would

order serenoa and aluminum as comparable in strengths with a decrease in strength

to glass and a further decrease to parafilm. Hence, apart from aluminum, the order

measured is consistent with the order predicted. Details of the experiments are not

available, so it is difficult to explain the anomalous results for aluminum, though

a number of explanations (aside from inaccurate data) are possible. For example,

electrostatics in the electrically conducting foil could play some role, or perhaps

there is some dynamic response not accounted for in our model. One may note

that, to reconcile figure 6.5c with equation 6.1 in the limit of α0 → 0◦, the wetted

diameter ε→∞, consistent with complete wetting [83]. In any case, it seems likely

that the shape contribution plays some role in beetle adhesion. How the beetle

exerts control over the shape, if any, though, remains an open question.

What is known is that, for detachment, the oil contacts must break. What is

also known, from the mechanics of liquid bridges, is that bridges break owing to

instability. Furthermore, different loading conditions give different constraints and

different instabilities. Consequently, breaking occurs at force- or length-turning-

points in the bridge’s response diagram depending on soft- or hard-loading. As

stability is a matter of bridge physics, independent of the beetle anatomy and

control, one might expect to observe differences without detailed knowledge of the

anatomy and control.
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In this spirit, a simple 1D model of a linear array of bridges, along with two

loading geometries and two instability hypotheses, has been posed. The idea is to

predict the time-course of force during pull-off detachment. The predictions, sum-

marized in figure 6.9, show four significantly different responses. Under pulling,

the force at detachment for soft-loading is 11-fold greater than that for hard-loading

and the time-to-failure is roughly 4-fold longer. Under prying, the force for soft-

loading is 10% greater than for hard-loading and the time-to-failure is about 5-fold

longer.

Pulling is the only loading geometry where quantitative results from experi-

ment are available. Eisner and Aneshansley[9] provide a photo of the time-course,

reproduced in the inset of figure 6.9. The precipitous fall in force in the photo

should be compared to figure 6.9. The good qualitative match suggests a soft-

loading failure. On this basis, one may speculate that the beetle is not controlling

the length of bridges, in contrast to our lab experiment on a single bridge (cf.

figure 6.6), but is mediating the force, probably through its muscles under stress

for this pull off.

The data of Eisner and Aneshansley[9], in their figure 6 (right), can be re-

arranged to plot failure-load against time-to-failure. The shape of this plot is

suggestive of soft-loading failures at high loads and hard-loading failures at low

loads, but the difference in maximum loads is only about a factor of 3. Note that

these in vivo experiments are done on glass. Whether or not there are scenarios in

which beetle adhesion yields as under hard-loading conditions is an open question.

Our 1D model is then extended to a 2D model with the main goal of under-

standing how geometry influences pull-off failure. Regarding the beetle, we learn

that it is in the ant’s best interest to pry from the rear of the beetle, ‘blind-siding
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it,’ so to speak. Regarding SECAD design, we learn that a high degree of symmetry

is desirable to eliminate weak points, yet we have considerable freedom with design

specifics. For example, a square array and a circular array with the same number

of contacts have nearly identical force responses. This is useful when designing a

SECAD device as any deviations from a circular device due to fabrication issues

will have minimal impact.

A number of extensions to this work are possible. Incorporating elasticity in

the adhesion plate model may provide insight and aid in design of devices. For

the beetle, elasticity likely becomes important as the beetle fatigues. The SECAD

plate may realize greater adhesion strength in real-world applications since better

compliance to curved or rough substrates will increase the number of adhesive

contacts made. A future study may involve optimization of the balance between

perfectly rigid and perfectly compliant devices.

It also may be of interest in the future to incorporate a physiological time-

dependent model of the beetle’s fatigue. Muscular action is presumed an impor-

tant part in keeping the feet rigid to remain hunkered down. By estimating the

beetle’s available energy versus the energy expended in remaining rigid, a model

that predicts the time duration of adhesion may be possible, and this data could

be compared to existing data of beetle endurance [9].

The present model considered isolated bridges of fixed volume. While this

may be a reasonable approximation to the beetle, the SECAD can be operated in

various modes, some of which differ from this approximation. Specifically, the liq-

uid bridges are typically connected internally (in communication with each other

through a reservoir), which implies that any change in the shape of one bridge can

affect all other bridges (although the rate of this communication can be controlled).
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Further, the SECAD is often operated under a fixed-pressure (atmospheric) con-

straint rather than fixed-volume. Modeling these different operational modes is

beyond the scope of this paper but may be investigated in the future.

6.8 Concluding remarks

The strength of an array of liquid bridges is at the source of the remarkable ad-

hesion exhibited by the leaf beetle and that of the man-made SECAD. For the

beetle, there are upwards of 100, 000 bridges of a size on order of 2 µm, while for

the SECAD the number of bridges varies from 100 to nearly 5000 of a size from

1000 down to 200 µm. To the extent that liquid bridge instability must mediate any

net pull-off detachment (adhesive failure), one might expect to observe signatures

of those instabilities in the force against time measurements. Pulling and prying

models of adhesive failure for hard- and soft-loading assumptions do indeed show

significantly different time-to-failure courses. For pulling, the time-to-failure fol-

lows the single bridge case and the sole difference between hard- and soft-loading is

due to the difference between hard- and soft-loading in the single-bridge response.

In contrast, for prying, the bridges break sequentially as each reaches its own crit-

ical force/length limit of instability. In this case, the arrangement of bridges can

make a significant difference. A simple model of the arrangement of groups of

beetle feet show that prying from at rear of the beetle is most dangerous to the

beetle. A similar model for a SECAD pad suggests that failure under prying is

relatively insensitive to bridge array pattern as long as the geometry is symmetric.

This may allow welcome flexibility in fabrication. There are a few measurements

available on the beetle and we interpret these in terms of the predictions. Pull-off

by pulling on the beetle back is argued to be a soft-loading failure. A number of
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extensions to this work may further elucidate the beetle’s detachment as well as

provide important design improvements in the SECAD.
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CHAPTER 7

FUTURE WORK

In this section, we discuss potential implications for further study. Broadening the

area of research provides an avenue for development of complementary material.

Hence, we are able to infer additional properties of capillary-surface oscillators and

thus further the understanding of this class of problems.

One logical extension of the Sn model in Chapter 3 is to relax the strict sym-

metry assumption and consider consider other networks. As such, other networks

of droplets may be examined. For example, when the assumption of symmetry

is relaxed, droplets can be arranged in a ring while connected to their nearest

neighbors; this would generate an n droplet model with Dn symmetry. Another

extension would be to consider a flat plate that houses a rectangular array of

droplets coupled via a central reservoir. Modeling such a system can be achieved

by coupling all droplets and scaling the effect of droplet i on droplet j by physical

distance. This model would be D4-symmetric. In either of these studies, bifur-

cation and stability results can be obtained for the resulting system. Further, if

the system has maintained some degree of symmetry, detectives can be utilized to

determine the symmetries of trajectories.

In addition to considering different networks, analysis can be varied in terms of

classification of trajectories. In chapter 4 the S3 symmetric three droplet system

is analyzed using symmetry detectives and Lyapunov exponents. The data from

these methods can be compared with the results of other methods such as ‘group

averaging’ of symbol sequences. Any trajectory can be represented as a sequence

of symbols using symbolic dynamics in a number of ways. To clarify, each time

the trajectory crosses a line of symmetry, a symbol is added to a sequence: 1 for
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AA′, 2 for BB′, and 3 for CC ′ (see Figure 4.2). Such crossings occur when two of

the three droplets have equal volume (e.g. AA′ is crossed when droplets two and

three have the same volume). In this manner, a trajectory can be represented as

a sequence of 1’s, 2’s and 3’s. Once trajectories are mapped to a symbol sequence,

they can be analyzed in terms of group averages that characterize the degree of

symmetry of the sequence.

As noted previously in this dissertation, forced oscillations are another source

of interest. Networks of droplets may be weakly dampened and forced resulting

in chaotic dynamics and strange attractors. The dynamics of such systems can

be analyzed with techniques such as a higher order Melnikov method. Note that

forcing a single droplet in an Sn symmetric network reduces overall symmetry and

gives rise to Sn−1 symmetry. Naturally, systems with four or more droplets are of

particular interest because they retain nontrivial symmetries. The symmetries of

the resulting strange attractors can be determined using symmetry detectives.

The most significant extensions evolve from the bridge-droplet switching sys-

tem presented in Chapter 5. One of the more noteworthy avenues of exploration is

to treat the system as a fast-slow dynamical system, in which the slow subsystem

is the current model and the fast subsystem would model the system during transi-

tions between states. Because the transitions remain non-smooth, the interaction

between non-smoothness and multiple-time scales is of particular interest as it can

lead to complicated and interesting behavior.

The bridge-droplet system can also be extended to accommodate larger net-

works of droplets and bridges. For example, the Sn droplet model in Chapter 3 can

be modified to incorporate bridges by introducing substrates above each droplet (or

a subset of droplets). Then, like the model presented in Chapter 6, droplets make
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contact with substrates and form bridges. For large n, such systems can serve as a

model for a dynamic adhesion pad, with the droplets and bridges coupled through

tubes or a central reservoir.

Additional topics of interest for bridge-drop systems include time dependence

and other families of bridges. Time dependent bridge-droplet systems can behave

chaotically. For instance, suppose the substrate (or the plate) in the bridge-droplet

system experiences regular vibrations. Now, if small dampening (due to viscous

resistance) is included in the model, it can be analyzed using the methods from

Chapter 2. Possible extensions to other families of bridges include different contact

angles (corresponding to different types of substrates) and bridges pinned at both

ends (continuation of Section 5.5.1 but allowing the radius at each end to vary).

Observe that these systems are complicated since the volume of the system may

change due to satellite droplets being left on the substrate.

Finally, in the realm of adhesion modeling, several areas of future work are

possible. First, the addition of elasticity may prove insightful: with respect to

the SECAD device, increased adhesion strength is possible via better compliance

to curved or rough surfaces. One simple way to incorporate elasticity is to con-

sider a series of hinged flat plates to approximate a curved surface. Furthermore,

incorporating physiological time-dependence in the model would account for the

beetle’s fatigue. Such a model could be compared with existing data from experi-

ments done on the beetle’s endurance. Lastly, different bridge couplings should be

considered (e.g. a model with volume flow between bridges).
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