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For over five decades epithelial ovarian cancer (EOC) is identified as the 

leading cause of death from gynecological malignancies in the USA. 

Unfortunately, due to latent progression of EOC and lack of accurate animal 

models studies of this disease's pathogenesis have been challenging. Not 

surprisingly, establishment of adequate screening tests for early disease 

stages, at which point the cancer would be curable, and advances in treatment 

approaches have been slow.  

 Deficiency of tumor suppressor genes p53 and RB and overexpression 

of c-MYC oncogene occur frequently in the most common form of sporadic 

EOC, high grade serous adenocarcinoma. Thus, we have initiated 

development of several mouse models of EOC based on alterations of these 

genes in the presumed EOC tissue of origin, the ovarian surface epithelium 

(OSE). By using a new approach of in situ targeting of OSE we have 

demonstrated that disruption of p53 and Rb leads to high grade serous 

adenocarcinoma. We have also established new models of EOC 

intraperitoneal spreading and have shown that c-MYC promotes tumorigenicity 

of p53-and p53/Rb-deficient OSE.  

 Next, we have shown that multiphoton microscopy and second 

harmonic generation (MPM/SHG) imaging are well suited for studies of cell 

motility in vivo and can complement pathological characterization EOC by 



 

allowing optical biopsies of native human and mouse tissues at resolution 

comparable to that of routinely processed histological sections. We have also 

shown the feasibility of laparoscopic MPM/SHG. Moreover, we identified 

layered nanohybrids as suitable particles for combination of intravital 

biomedical imaging with controlled drug release. 

 As the first step to determine whether EOC arises from the stem cell 

compartment we have identified an OSE subpopulation which is positive for 

stem cell marker aldehyde dehydrogenase 1, efficiently forms clonogenic 

spheres and displays extended self-renewal properties in serial sphere 

generation assays. These putative OSE stem cells are slow cycling according 

to BrdU label retention assays and are mainly located in the hilum area of the 

mouse ovary. These findings will direct our future search for better approaches 

to target EOC cells with stem cell properties. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Ovarian Cancer Biology and Etiology 

 

Ovarian Cancer is the leading cause of death from gynecological malignancies 

in the USA with 13,850 deaths predicted in 2010 (Jemal et al., 2010). One out 

of seventy women will endure the disease in the year 2010. The high lethality 

rate is mainly related to late diagnosis. Ovarian cancer has been termed a 

'silent killer', because only 20% of ovarian cancers are detected while they are 

at stage I, limited to the ovaries, a stage when available therapies can 

successfully cure 90% of patients (Bast et al., 2009). At an early stage of the 

disease patients show none or few symptoms. However, currently only limited 

early detection methods exist. Early diagnostic tools are trans-vaginal 

ultrasound and serum CA125 (cancer antigen 125) blood screenings in 

combination. Unfortunately, ongoing trials showed their shortcomings (Menon 

et al., 2009). For example, one trial reported detection of three ovarian 

cancers at advanced stages and none at early stages among 470 screenings. 

The malignancy progresses by spreading and metastasing to the pelvic 

organs (stage II), the abdomen (stage III) or beyond the peritoneal cavity 

(stage IV). At advanced stages cytoreductive surgery is carried out to remove 

the bulk of the tumor. After surgery 70% of ovarian cancers will respond to a 

combination regimen of platinum- and taxane-based chemotherapy and in 

approximately 50% of these patients, residual cancer is undetectable utilizing 

imaging studies and serum markers after 5 months of treatment. However, 
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limited numbers of drug-resistant cells remain dormant in the peritoneal cavity 

and, after several months, start to grow progressively, acquire resistance to 

drugs and cause the death of patients. Unlike neoplasms at many other sites, 

no anatomical barrier prevents widespread dissemination of ovarian cancer 

throughout the peritoneal cavity. Thus, due to the distinctive clinical biology 

and behavior of ovarian cancer, early detection is crucial to life-saving and our 

ability to cure this malignancy.  

 Ovarian cancer as a general term, groups together a diverse set of 

cancers originating from the ovary. Around 90% of all ovarian malignancies  

are epithelial cancers (EOCs)(Corney et al.; 2008; Nikitin et al., 2005), 

classified as serous, mucinous, endometrioid, clear cell, transitional cell, 

squamous cell, and mixed epithelial neoplasms (Scully et al., 1999). The most 

common variant of EOC is serous adenocarcinoma which occurs in 80% of all 

cases. It is believed that EOC arises from the ovarian surface epithelium 

(OSE) lining the ovary or the epithelial inclusion cysts (Auersperg et al., 2008). 

Malignant neoplasms  which have a similar histology might also arise from the 

lining of the fallopian tube, deposits of endometriosis or the exterior of the 

peritoneal cavity (Lengyel et al., 2010). 

 Understanding of EOC etiology remains inadequate and although 

several risk factors have been identified, their direct involvement remains 

mainly undetermined. The hypothesis that persistent ovulation increases 

ovarian carcinogenesis occurrence has received the largest attention. In 

normal ovarian homeostasis, repeated rupture of the ovarian surface occurs 

during oogenesis and the subsequent repair by OSE proliferation may result in 

cancer inducing mutations. Numerous studies support this theory in 

demonstrating that a reduction in ovulatory events by pregnancy and/or oral 
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contraceptive decreases EOC risk (Corney et al., 2008). However, since the 

cellular and molecular levels of EOC are remarkably heterogeneous, other 

effects, such as reproductive hormones or acute inflammation, both of which 

may be mutagenic, also have to be considered as cancer initiating events 

(Fleming et al., 2006; Nikitin et al., 2005). 

 

1.2 Genetics of Epithelial Ovarian Cancer 

 

1.2.1 Tumor Suppressor Genes p53 and RB in EOC. Advanced EOCs show 

a wide range of genetic and epigenetic. abnormalities. Familial cancer 

represents only about 5% of all cases and frequently contains mutations in 

tumor suppressor genes Brca1 and 2. By far the most frequent alterations in 

sporadic EOC occur in the p53 (a.k.a, TP53 and Trp53) and Rb (a.k.a., 

Retinoblastoma 1) pathways. Importantly, alterations in their function have 

been associated with poor prognosis for ovarian cancer patients (Horiuchi et 

al., 2003; Katsaros et al., 2004; Tachibana et al., 2003). Deficiencies in p53 

and RB pathways are present in over eighty percent of human cancers (Hahn 

and Weinberg, 2002; Sherr and McCormick, 2002). 

 Mutations and loss of the p53 gene are the most common genetic 

alteration in sporadic human EOC and are observed in 60-80% of both 

sporadic and familial cases. Functioning as a transcription factor, p53 directly 

connects to p53-binding sites in regulatory regions of target genes. Utilizing 

bioinformatics more than 4,000 putative target genes were identified (Wang et 

al., 2001). Activation of p53 occurs through UV irradiation-induced DNA 

damage, inappropriate proto-oncogene activation, mitogenic signaling and 

hypoxia. Cell type specific responses are cell cycle arrest, senescence, 
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differentiation or induction of the apoptotic cascade. Thus, impairment of 

wildtype p53 function, gain of oncogenic function or the ability to induce p53 

inappropriately results in increased cellular proliferation and survival. 

Alterations in both p53 regulators and downstream targets have been also 

implicated in ovarian cancer. The p53 inhibitor, HDM2 (mdm2) is an E3 

ubiquitin ligase that binds p53 and targets it for proteasomal degradation. 

Approximately one-third of ovarian cancers overexpress HDM2. In leukemia's 

with wild-type p53, distortion of the p53 - HDM2 binding with small molecular 

mass compounds such as nutlins increased p53 stability and induced 

apoptosis (Kojima et al., 2005). Thus, a similar therapy might be successful in 

EOCs with high levels of HDM2 and low levels of wild-type p53. Recently, a 

new class of p53 transcriptional targets, microRNA miR-34 family, has been 

discovered (Chang et al., 2007; Corney et al., 2010; Hermeking et al., 2010). 

All members of this family (miR-34a, miR-34b and miR3-4c) are down 

regulated in EOC and expression of miR34b/c is inversely correlated with 

disease stage (Corney et al., 2010). Strikingly, although p53 mutations have 

been found in all histological types of EOC, p53 mutations are strongly 

associated with high grade serous adenocarcinomas. On the contrary, they 

are rare in low grade or borderline serous carcinomas (Corney et al., 2008).  

 Frequent mutations in the RB pathway and RB loss or aberrant 

expression were demonstrated in over 60% of human ovarian carcinomas 

(Corney et al., 2008; Hashiguchi et al., 2001; Havrilesky et al., 2001; Nikitin et 

al., 2005).The RB family consists of RB, p107 and p130 tumor suppressor 

genes. They play an important part in the G1-S phase restriction point of the 

cell cycle by binding to the E2F family of transcription factors and governing 

DNA replication. RB is functionally inactivated by phosphorylation performed 
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by Cyclin/CDK complexes. These complexes are in turn regulated by CDK 

inhibitors INK4 (p16 Ink4a) and ARF (p19). Apart from important functions in cell 

cycle regulation the RB family genes play an important part in differentiation. 

Alterations in INK4 protein p16Ink4a, RB or cyclin D1/CDK4 are detected in 

nearly 50% of EOC clinical samples (Hashiguchi et al., 2001; Kusume et al., 

1999). 

 Remarkably, over fifty percent of EOC patients have mutations in both 

the p53 and RB pathways, including forty percent of serous carcinomas 

(Hashiguchi et al., 2001). These pathways have widespread connections 

(Sherr and McCormick, 2002) which includes a link to the oncogene C-MYC 

by cross talk with E2Fs. HDM2 binds directly to p53 to inhibit transcription and 

catalyses p53 ubiquitination. In turn, p14 ARF binds to HDM2 to antagonize 

these functions. The ability of deregulated E2F to induce ARF transcription 

provides an additional connection between the RB pathway and p53. 

 The main challenge of studies based on clinical data, neoplastic 

specimens and cell lines is the difficulty of separating critically important 

genetic alterations from passenger charges. As discussed in the Section 1.4 

and Chapter 2, introduction of specific genetic alterations in genetically 

modified mice should address this problem and allow direct genetic testing of 

the roles of p53 and RB in the pathogenesis of human EOC. 

 

1.2.2 C-MYC Oncogene Association with EOC. C-MYC oncogene 

overexpression was detected in 41-66% of EOCs, while amplifications ranged 

at 20% of cases (Plisiecka-Halasa et al., 2003). Correlation studies between 

C-MYC gene copy number and clinico-pathological parameters of ovarian 

tumors revealed the highest frequency of amplification in mixed epithelial 
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40.9% and endometrioid 30.8%, followed by mucinous 26.9%, serous and 

non-classified 22.2% carcinomas. The amplification rate was strongly 

associated with the degree of malignancy of ovarian neoplasms, increasing 

statistically from low malignancy to high and was zero in benign adenoma. C-

MYC is an oncogenic transcription factor, which uses distinct mechanisms for 

activating and repressing gene expression. The proto-oncogene was originally 

identified as the cellular homologue to V-MYC, the viral oncogene of the avian 

myelocytomatosis retrovirus (Vennstrom et al., 1982) in Burkitt's lymphoma 

patients. Three closely related MYC family proteins C-MYC, N-MYC and L-

MYC exist, each with documented oncogenic potential and similar DNA 

binding properties. However, most data reports deregulated expression of C-

MYC in a broad range of human cancers. Expression of C-MYC is often 

associated with poor prognosis, indicating a key role for this oncogene in 

carcinogenesis. For transcriptional activation, MYC and its binding partner 

MAX dimerize and bind to genomic DNA directly upstream or within the first 

introns of target genes. For transcriptional repression MYC does not interact 

with DNA directly, but rather is recruited through protein-protein interactions to 

target promoters and antagonizes the function of positive regulators of 

transcription (e.g. Sp1, Smad2, NF-Y).  

 One main biological function of C-MYC is the ability (Amati et al., 2001) 

to promote cell-cycle progression. C-MYC expression is virtually undetectable 

in quiescent tissue culture cells, however after serum stimulation, C-MYC 

mRNA and protein are rapidly induced and cells enter the G1 phase of the cell 

cycle. Subsequently, the mRNA and protein decline to low, but measurable, 

steady-state ranges in proliferating cells. If serum or growth factors are 

removed, C-MYC levels turn down to undetectable numbers and cells arrest. 
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Targeted gene deletion of both c-Myc alleles in embryonic stem cells leads to 

embryonic lethality at day 9.5-10.5, confirming the crucial role of C-MYC in 

normal growth control during mammalian development (Davis et al., 1993). 

Moreover, C-MYC significantly increases efficacy of somatic cell 

reprogramming into induced pluripotent stem (iPS) cells by transcription 

factors Oct4, Sox2, and Klf4. (Takahashi and Yamanaka, 2006) demonstrating 

the importance of this gene in mammalian biology. 

 Enigmatically, C-MYC, a potent inducer of cell proliferation, also 

possesses pro-apoptotic activity (Adhikary and Eilers, 2005). Ectopic 

expression of C-MYC in fibroblasts that were grown without  extracellular and 

intracellular components that block apoptosis (survival factors), resulted in 

apoptosis, with the death of the entire cell population (Evan et al., 1992). Later 

experiments, with other promoters of cell proliferation (e.g. E2F) corroborated 

these studies (Wu and Levine, 1994). Thus, cells acquiring growth 

deregulating mutations may harbor 'built-in' tumor suppressive functions, 

which counteract the expansion of potentially malignant cells.  

 As discussed in Sections 1.4 and 1.5 and Chapter 4 and 7 the 

generation of syngeneic lines of OSE should facilitate investigation of effects 

by defined genetic alterations on EOC progression. 

 

1.3 Adult Stem Cells of the OSE and Implications to EOC 

 

Somatic (aka, adult, tissue specific) stem cells (SSC) are believed to regulate 

normal tissue morphogenesis, renewal and repair of injured tissues. In adult 

mammals, SSCs have been identified in many organs, including the 

hematopoietic system, brain, intestine, mammary gland, prostate and skin 
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(Weissman et al., 2001). Features of SSC include ability for long-term self-

renewal and multipotency. Usually such cells are quiescent slow cycling, but 

when activated have increased potential for proliferation. SSC can divide 

either symmetrically, into two stem cells or two proliferating transit amplifying 

(TA) progeny, or asymmetrically, into one TA and one stem cell progeny. 

Anatomically, SSC and their progeny reside in a defined microenvironment, 

the SSC niche, protected from differentiation, apoptosis and diverse other 

processes that would deplete stem cell reserve (Fuchs et al., 2004; Moore and 

Lemischka, 2006).  

 The ovary is a reproductive organ and undergoes extensive tissue 

regeneration during folliculogenesis. Three primary functional somatic cell 

types of the ovary, the ovarian surface epithelium (OSE), theca cells and 

granulosa cells, could harbor a stem/progenitor cell population residing in a 

sheltering stem cell niche (Chang et al., 2009). Epithelia are continuous layers 

of tightly connected cells that constitute the surfaces e.g. corneal epithelium or 

epidermis and linings such as respiratory, uro-genital and ovarian surface 

epithelium of the ovary. They provide a protective envelope against the 

external environment and in addition regulate water and nutrient absorption as 

well as glandular secretions. While, epithelia can be multilayered (stratified; 

skin, prostate, breast) or single-layered (simple, OSE) and may originate from 

ectoderm, mesoderm (origin of the OSE), or endoderm, different epithelial 

mammalian tissues share several molecular and cellular characteristics 

(Blanpain et al., 2007). Epithelial development begins as a sheet of cells that 

attach to a basement membrane, loaded with extracellular matrix (ECM), 

nutritional, and growth factors that are formed and deposited at the interface of 

the epithelium and the underlying mesenchyme. Specifically, the OSE has 
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been shown to transition back and forth between epithelial and mesenchymal 

phenotypes (Ahmed et al., 2007; Auersperg et al., 1999), this epithelial-

mesenchymal transition (EMT) is believed to be an intrinsic process of post-

ovulatory wound repair after oocyte release and OSE rupture. Thus, normal 

OSE surrounding the ovary constantly mobilizes cell replacement of damaged 

and dead tissue at the ovulation place this process is defined as homeostasis. 

Classically, epithelial tissue homeostasis is driven by somatic stem cells. 

Therefore, OSE biology implies the existence of a stem cell source. Recently, 

putative thecal stem cells (Honda et al., 2007) and OSE stem/progenitor cells 

have been reported (Szotek et al., 2008) in the mouse. Unfortunately, no 

unique markers for OSE-SC have been identified and the location of these 

putative stem cells, as well as their ability for self-renewal, remains to be 

determent. As 90% of ovarian cancers are of epithelial origin (Auersperg et al., 

2001; Cho and Shih Ie, 2009) and are believed to arise from the OSE, studies 

aiming to confirm the existence of OSE-SC and to provide their complete 

characterization are essential for determining whether distortion of OSE-SC 

dynamics leads to carcinogenesis. This issue is specifically addressed in 

Chapter 6. 

 

1.4 Mouse Models in Cancer Research and Relevance to Human Cancer 

 

1.4.1 Generating Accurate Mouse Models for Human Cancer. Animal 

models are extremely useful tools in directly testing the roles of environmental 

factors such as hormones, diet, UV radiation, and chemicals, in cancer 

development. Studies on the effects of oophorectomy and estrogen removal, 

which are impossible or unethical to do in women, led to the discovery that 
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tamoxifen inhibits mammary carcinogenesis and facilitated the drugs approval 

for the treatment of human breast cancer (Jordan et al., 1977). The causative 

roles of UV and sunburn in melanoma were recognized first in mouse studies 

(Noonan et al., 2001), and the effect of the promoting compound 

phenobarbital was characterized in mice developing liver cancer treated with 

the reagent. 

 Mice share 99% of their genes with humans. They show great 

similarities in development, physiology and biochemistry to humans, which 

make them a prime model for research into human disease. Better than any 

other model system, the mouse has revolutionized our capability to investigate 

gene function in vivo and understand the molecular mechanisms of malignant 

transformation.   

 Cancers are thought to arise from the accrual of mutations that 

transform cells, induce abnormal growth, proliferation, and metastasis. 

Discovery of these abnormalities and understanding how they contribute to the 

pathophysiology of neoplasms are necessary for improvements in diagnosis 

and therapy. Genetically modified mice have significantly contributed to our 

understanding of cancer formation. Furthermore, studies in mouse models 

tremendously contribute to the success in therapeutic treatments. In one 

recent human / mouse model trial, two mechanism-based therapies for 

treating human pancreatic neuroendocrine tumors led to the discovery of two 

drugs (sunitinib and everolimus) for fighting these cancers, the first new 

effective treatment after 25 years (Tuveson and Hanahan, 2011). 

Contemporary cancer research utilizes highly advanced genetically modified  

mouse models, tailored to address specific questions (Cheon and Orsulic, 

2011). Numerous techniques for genetic manipulation are available to 
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researchers. Selecting the right techniques is an imperative first step in 

developing mouse models of cancers. The most common ways to create 

appropriate models are to activate oncogenes or inactivate tumor-suppressor 

genes (or both) through the use of transgenic and gene targeting approaches, 

such as gene knock out (KO) or knock (KI) in mice (Frese and Tuveson, 

2007). For loss-of-function studies researcher normally utilize conventional or 

conditional KO alleles, whereas gain-of-function studies employ transgenic, 

conditional transgenic, and KI approaches. Conditional and inducible systems 

permit introduction of somatic alterations in a tissue-specific and time-

controlled mode. Such systems allow avoiding embryonic lethality and other 

unwelcome phenotypes due to genetic alterations in a wide range of tissues. 

By far the most common conditional gene-expression strategy used is the Cre-

loxP system. Cre recombinase recognizes specific 34-base pair loxP sites in 

the DNA and mediates recombination between them. The relative orientation 

of the two loxP sequences decide the recombination results, whether host 

DNA is excised, inverted or translocated (Hoess et al., 1986). Two same 

oriented loxP sites are inserted into the target gene locus with the KI strategy, 

to develop either KO mice or conditional transgenic mice. By crossing these 

mice to tissue specific Cre expressing mouse lines, the Cre recombinase will 

be only activated in the organ of interest. A different possibility is the 

administration of lentivirus or adenovirus expressing Cre. The benefit of the 

Cre-loxP conditional set up is that gene function can be followed in a specific 

tissue or cell type at a specified time point, thus allowing accurate modeling of 

sporadic occurring mutational events in a sub-cellular level. Reporter mouse 

strains, such as ROSA26-lacZ reporter (R26R) strain (Soriano et al., 1999), 
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are used to confirm Cre expression is confined to the tissue and 

developmental stage of interest.  

 These approaches provide with a variety of tools facilitating modeling of 

ovarian cancer as described in Section 1.4.2 and Chapter 2.  

 

1.4.2 Animal Models of Ovarian Cancer. Historically, use of rodent models 

to identify the carcinogenic potential of chemicals and other agents for 

induction of ovarian cancer reaches back more than 40 years. For example, as 

early as 1969; ovarian tumors were induced by direct application of 7,12-

Dimethylbenz(a)anthracene DMBA (Krarup et al., 1969).  

 One of the first ovarian genetically engineered mouse model (GEM) 

made used an avian retroviral delivery system (Orsulic et al., 2002). TVA 

(tumor virus A) transgenic mice were generated with the TVA receptor 

expressed under the control of keratin 5 promoter and crossed with p53 null 

mice to generate TVA/p53-/- animals. TVA expression resulted in susceptibility 

to infection of replication-competent avian retrovirus (RCAS) which carried 

different oncogenes of interest (C-MYC, K-RAS, AKT). However, the keratin 5 

is widely expressed in the basal layer of stratified and simple epithelia in many 

organs (Marks et al., 2007). Hence, for targeting the OSE and ovary, dissected 

organs were infected in tissue culture experiments and then introduced into 

recipient mice either by injection or transplantation under the ovarian bursa. 

Keratin 5-TVA/p53-/- ovarian cells overexpressing any two oncogenes C-MYC, 

K-RAS or AKT induced carcinogenesis confirming the importance of genetic 

alterations in EOC development. 

 In a different mouse model system, expression of the transforming 

region of the SV40 large T antigen (SV40 Tag) was directed to the OSE by 
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using the Mullerian inhibitory substance type II recepter (MISIIR) promoter 

(Connolly et al., 2003). SV40 Tag binds and inactivates both p53 and RB 

proteins. The MISIIR-SV40-Tag transgenic mice developed at early age 

bilateral poorly differentiated carcinomas and frequently ascites in the 

abdominal cavity. However, the MISIIR promoter is not specific to the OSE 

leading to neoplastic lesions in other organs. In addition, MISIIR expression is 

also evident during early embryonic development resulting in cancer at early 

adult life, which is unlike ovarian carcinogenesis in women. Most importantly, 

through alternative splicing, SV40 early region encodes several viral proteins 

including small t and 17kT antigens in addition to large T. Binding reactions of 

these proteins result in inactivation of all RB family members including p107 

and p130, both are rarely mutated in human malignancies (Weinberg et al., 

1991). Moreover, small t antigen has been implicated in pathogenesis of 

human neoplasms (Hahn and Weinberg, 2002). 

 Our mouse model has several improvements over other generated 

systems to study EOC in the mouse (Chapter 2). For one, intrabursal injection 

of AdCre removes the requirement for an OSE-specific promoter, of which 

none are currently known and unlike earlier studies (Orsulic et al., 2002), no 

virus treatments in tissue culture and transplantation procedures are required. 

Immunocompetent mice can be used reflecting more closely natural host 

responses. Importantly, our model allows conditional and temporal control of 

the initiating events which is important for modeling early stages of EOC 

induction. Furthermore, the cancer is initiated in adult mice, similarly to the 

EOC in humans. Since our original publication, the approach of intrabursal 

injection has been successfully used for demonstration of the role of K-RAS 

and PTEN in the initiation of endometrioid ovarian cancer (Dinulescu et al., 
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2005). Deletion of tumor suppressors PTEN and APC in the OSE induced 

endometrioid adenocarcinomas (Wu et al., 2007) and the role of BRCA1 in 

preneoplastic lesions (Clark-Knowles et al., 2007) was demonstrated.  

 

1.4.3 Applications of Mouse Models to Development of Imaging and 

Therapeutic Approaches. In vivo imaging of mouse cancers similarly can 

facilitate development and testing of new diagnostic and therapeutic 

approaches in preclinical settings. Noninvasive live imaging of neoplastic 

lesions allows for sequential measurements of different factors, as well as the 

effects of prospective therapeutic drugs. Various instrumentation have been 

developed for imaging mouse malignancies, including micro-positron emission 

tomography, single-photon emission computed tomography, magnetic 

resonance imaging, microcomputed tomography, bioluminescence imaging 

(BLI), whole-body fluorescence imaging, intravital microscopy, and ultrasound 

(Lyons et al., 2005). Furthermore, "biosensor" reporter mice were generated 

(Hoffman et al., 2009) expressing luciferase or fluorescent protein which can 

be detected in BLI. Specifically, luciferase or fluorescent protein can be fused 

with tissue-specific promoters, transcription factors, or responsive elements 

and via gene-targeting introduced into the mouse genome. Such approaches 

result in mouse models  serving as biosensors to detect the activity of 

oncogenes or tumor suppressor genes and concomitant visualize processes 

during malignant transformation (Stell et al., 2007). 

 In the area of drug development and discovery, mouse models can be 

useful in evaluating the efficacy of novel anticancer drugs and in addition 

predicting chemotherapeutic responses, positive or negative. Studies with 

transgenic mouse models of multistage pancreatic islet cell cancer (RIP1-Tag2 
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mice) and prostate neoplasms (TRAMP mice) facilitated efficiency tests of 

angiogenesis inhibitors (Bergers et al., 1999; Huss et al., 2003) and brought 

insight into antiangiogenic drug prescription. Angiogenesis inhibitors are most 

effective at specific disease stages.  

 Combination chemotherapy is often required in cancer treatment and 

for testing the synergistic effects of reagents in pre-clinical trials, mouse 

models are valuable tools. Here experiments in GEM developing acute 

promyelomytic leukemia (APL) (Rego et al., 2000) initiated a new combination 

therapy with retinoic acid and arsenic trioxide for a subset of APL patients 

which is currently in clinical trials. These patients have a different genetic 

make up, causing the common retinoic acid therapy to fail. On the contrary, in 

cell culture experiments no synergistic efficacy of combination therapy was 

observed, confirming the value of mouse models in drug testing (Lallemand-

Breitenbach et al., 1999). 

 Utilizing MPM/SHG as biomedical imaging technique I describe a 

method for studying cell motility in a living mammalian system in Chapter 3. 

Furthermore, the feasibility of in vivo laparoscopic MPM/SHG is demonstrated 

by using a "stick" objective lens on unfixed, unsectioned, und unstained 

tissues at a resolution comparable to that of routinely processed histological 

sections (Chapter 4).  

 

1.5 Conclusions and Project Overview 

 

The overall cure rate of approximately thirty percent for ovarian cancer 

patients has not changed over the past three decades. Despite current 

strategies to generate an effective screening process, only twenty percent of 
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ovarian neoplasms are diagnosed at early stages, when curable (Das and 

Bast, 2008). My project has been focused on the development of accurate 

sporadic mouse models of EOCs advancing the understanding of this 

malignancy and improvement of effective diagnostic and therapeutic methods. 

 Deficiency of tumor suppressor's p53 and RB and overexpression of C-

MYC oncogene or alterations in their respective pathways occur in about 50%, 

30-60% and 30-40% of sporadic EOCs, respectively. Therefore, we have 

initiated development of several mouse models of EOC based on alterations of 

these genes (Fig. 1.1, A-C and Chapter 3, 4 and 7). We achieved this goal by 

development of the novel approach of intrabursal AdCre which allowed tissue -

specific, spatial and temporal control of gene deletion in a sporadic manner 

(Chapter 2). Using this approach we demonstrated that conditional inactivation 

of p53 and Rb in the OSE results in neoplasms that are mainly (97%) serous 

adenocarcinomas remarkably similar to those of human EOC. Furthermore, by 

using syngeneic OSE cell lines we found cooperation between p53 and RB 

deficiencies and C-MYC overexpression in EOC.  

 Secondly, I set out to develop biomedical imaging techniques for early 

EOC detection and diagnostic evaluation, on a sub-cellular level, where 

normal ovarian tissue could be compared to cancerous lesion (Fig. 1.2, A, B 

Chapters 4 and 5). Multiphoton microscopy imaging of malignancies 

expressing endogenous components and fluorescent proteins enables cells to 

be observed in great detail and greater depths within tissues (Shaner et al., 

2005; Zipfel et al., 2003). In addition MPM was tested for the analysis of 

individual cell migration and motility in a time-lapse manner (Chapter 3), which 

could be useful in identifying tumor response to chemotherapy. 
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Figure 1.1 Modeling epithelial ovarian cancer (EOC) in the mouse. Outline 

of studies conducted with our EOC mouse models. 1, Tumor & Cell Biology. 

(A) Mouse ovarian polycystic tumor (arrow) and normal ovary (arrowhead). (B) 

Serous ovarian adenocarcinoma of the mouse. (C) Malignant ovarian surface 

epithelium syngeneic line OSN3, deficient for p53 and Rb and overexpressing 

C-MYC. 2, High-Resolution In Vivo Imaging. (A) Multiphoton Microscopy 

(MPM) imaging system set up. (B) Standard histology (left images , H&E 

staining) and MPM/Second Harmonic Generation (SHG) (right images ) of 

human ovarian surface epithelium and poorly differentiated adenocarcinoma. 

Morphologically normal ovarian epithelium in the invaginations (top images, 

arrow) and simple cysts (top images, arrowhead). Atypical neoplastic cells 

forming glandular structure (bottom images, arrow) within desmoplastic stroma 

(bottom images, arrowhead). 3, Therapeutics Toxicity Test: (A) Layered 

nanohybrid (positively charged layers of magnesium-aluminum hydroxide, 

grey, incorporated molecules, red, and yellow). (B) Magnetic Resonance 

Imaging scanner. (C) MPM image of LNH incorporated into OSE 4 days after 

administration (green, arrow). 4, Stem Cell Location. (A) Immunohistochemical 

detection of stem cell marker ALDH1 on paraffin sections of the ovary (A, OV, 

ovary; U, uterus). (B) Insert from image (A), ALDH1 is highly expressed in the 

hilum region of the ovary (arrow). (C) BrdU label retaining cells in the hilum 

region after 2 months chase (green fluorescent, arrow). (D) OSE sub-

population of the hilum region develops conspicuous large OSE-Clones 

demonstrating greater ex vivo self-renewal potential compared to OSE of the 

anterior ovary region. 
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  Improvement of treatment options has been the third objective of my 

studies. Layered nanohybrids are promising vehicles in controlled drug 

delivery. Although tested on glioma, choriocarcinoma cell lines and cardiac 

myocytes where they demonstrated little or no toxicity; these particles were 

not tested in the whole mammalian system. Therefore, we initiated research to 

evaluate the biological toxicity of LNH in vivo and potential applications of LNH 

for targeting OSE (Fig. 1.3, A-C and Chapter 5). 

 My final study is centered on the identification and functional 

characterization of adult ovarian surface epithelial stem cells. Accumulating 

evidence supports the notion that neoplastic cells in epithelial ovarian cancer 

may acquire molecular and cellular mechanisms typical for stem and 

progenitor cells (Alvero et al., 2009; Deng et al., 2010; Wei et al., 2010). 

Somatic stem cells reside in a specific niche, defined as the 

microenvironment. The niche hosts, shelters, and maintains stem cells (Moore 

and Lemischka, 2006). Characterizing the OSE stem cell niche and analyzing 

possible mechanisms which might distort the balance between stem cells and 

niche lays the essential basis for understanding EOC pathogenesis.  (Fig. 1.4, 

A-D and Chapter 6). 
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CHAPTER 2 

INDUCTION OF CARCINOGENESIS BY CONCURRENT INACTIVATION OF 

P53 AND RB1 IN THE MOUSE OVARIAN SURFACE EPITHELIUM* 

 

 

2.1 Abstract 
 

Alterations in p53 and Rb pathways are frequently observed in epithelial 

ovarian cancer (EOC). However, their roles in EOC initiation remain uncertain. 

Using a single intrabursal administration of recombinant adenovirus 

expressing Cre, we demonstrate that concurrent inactivation of p53 and Rb1 is 

sufficient for reproducible induction of ovarian epithelial carcinogenesis in mice 

homozygous for conditional gene alleles. Similarly to progression of disease in 

women, ovarian neoplasms spread intraperitoneally, forming ascites, and 

metastasize to the contralateral ovary, the lung, and the liver. These results 

establish critical interactions between p53 and Rb1 pathways in EOC 

pathogenesis, and provide a genetically defined immunocompetent mouse 

model of sporadic EOC.  

 
2.2 Introduction 
 

Ovarian cancer is the fifth leading female cancer among both new cancer 

cases and deaths in the United States (Jemal et al., 2003). Almost 90% of 

cases are believed to be derived from the ovarian surface epithelium (OSE), 

with serous adenocarcinomas comprising about 80% of EOC (Scully et al., 

1996). By the time of diagnosis approximately 70% of tumors have spread 

beyond the ovary, and such cases are rarely curable by existing treatment 

schemes. Accordingly, over the past three decades the incidence and survival 
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of ovarian cancer have remained relatively constant (Jemal et al., 2003). 

Unfortunately, development of accurate genetic mammalian models of EOC 

has been significantly delayed, in large part due to absence of promoters with 

expression limited to the OSE. Recently, two approaches have been reported. 

The first is based on the avian retroviral receptor TVA-replication-competent 

avian leukosis virus-derived vector (TVA-RCAS) gene delivery technique for 

introduction of defined alterations in explanted OSE with subsequent induction 

of tumor formation after injection of infected cells at subcutaneous, 

intraperitoneal, or ovarian sites of immunodeficient mice (Orsulic et al., 2002). 

The second uses the MISIIR receptor regulatory element for expression of the 

SV40 T antigen (TAg). Although insightful, these approaches either require ex 

vivo manipulations or result in transgene expression during embryonic 

development, dissimilar to the expected natural history of EOC in women. 

Mutations of p53 gene are reported to be the most frequent alterations in 

sporadic EOC (Aunoble et al., 2000; Feeley and Wells, 2001), but initiate few, 

if any, carcinomas alone (Orsulic et al., 2002). p53 signaling is frequently 

interconnected with Rb-mediated pathways (Hahn and Weinberg, 2002; Sherr 

and McCormick, 2002). Aberrations in the Rb pathway in EOC have been 

suggested by a number of recent studies (Connolly et al., 2003; Gras et al., 

2001; Hashiguchi et al., 2001; Havrilesky and Berchuck, 2001), however, 

direct genetic evidence for their contribution to EOC formation has been 

missing. To circumvent promoter-related limitations we have established a 

procedure for intrabursal administration of the recombinant adenovirus, taking 

advantage of the enclosed anatomical location of the mouse ovary within the 

bursa, which allows for selective exposure of the OSE to inducing agents. 

Using this approach in conjunction with Cre-loxP- mediated gene inactivation 
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we have directly evaluated role of p53 and Rb1 inactivation in the initiation of 

ovarian epithelial carcinogenesis. 

 
 
2.3. Material and Methods 
 

Experimental Animals. Mice with floxed copies of p53 and Rb1 genes were 

described elsewhere (Jonkers et al., 2001; Marino et al., 2000). 

Rosa26STOPfloxLacZ reporter mice (B6;129-Gt(ROSA)26SorTM1sor) (Chai et 

al., 2000; Jiang et al., 2000; Soriano et al., 1999) were purchased from the 

Jackson Laboratory. In these mice, expression of bacterial -galactosidase is 

possible only after deletion of a stop codon flanked by loxP sites. All mice 

were maintained identically, following recommendations of the Institutional 

Laboratory Animal Use and Care Committee. 

 

Genotyping. All mice with floxed alleles were maintained in homozygous 

status. If necessary, PCR genotyping was performed essentially as described 

(Nikitin and Lee, 1996). p53floxP mice were identified with primers 10FM5' (5' 

AAG CTG AAG ACA GAA AAG GGG AGG G 3') and 10RM3' (5' AAG CTA 

AGG GGT ATG AGG GAC AAG G 3') or 10RM23' (5' ACA GAA AAG GGG 

AGG GAT GAA GTG A3'). PCR amplification of wild-type and floxed p53 gene 

sequences results in 163-bp and 316-bp DNA fragments, respectively, using 

10FM5' and 10RM3' or in 432-bp and 585-bp, respectively, using 10FM5' and 

10RM23'. Cre-mediated excision was detected as either 198-bp or 467-bp 

DNA fragment upon amplification with primers 1FM5' (5'GTG CCC TCC GTC 

CTT TTT CGC AAT C 3') and 10RM3' or 10RM23', respectively. Rb1floxP mice 

were identified with primers Rb18M3' (5'- GGA ATT CCG GCG TGT GCC 

ATC AAT G 3') and Rb19EM5' (5' AGC TCT CAA GAG CTC AGA CTC ATG 



29 

G 3'). PCR amplification of wild-type and floxed Rb1 gene sequences results 

in 247-bp and 295-bp DNA fragments, respectively. Cre-mediated excision 

was detected as a 269-bp DNA fragment upon amplification with primers 

Rb212M5' (5' CGA AAG GAA AGT CAG GGA CAT TGG G 3') and Rb18M3'.  

 

Primary Culture of OSE. Individual ovaries were dissected and placed in 

DMEM/F12 (Ham's) medium containing Collagenase-Dispase at 5% CO2 for 1 

hr. OSE were placed in six-well plates covered with 0.1% gelatin, maintained 

in Ham's medium supplemented with 5% fetal bovine serum, 2 mM L-

glutamine, 1 mM sodium pyruvate, 10 ng/ml EGF, 500 ng/ml hydrocortisone, 5 

µg/ml insulin, 5 µg/ml transferrin, and 5 ng/ml sodium selenite, and passaged 

upon confluence. For estimation of proliferation index cells were incubated 

with 100 M BrdU for 2 hr in cell culture incubator (37C), washed with PBS 

three times 1 min each on ice, fixed with 4% paraformaldehyde for 30 min on 

ice, washed with PBS, 2 X 3 min, and processed for BrdU staining starting 

with ddH2O rinse followed by 4N HCl as described in the Pathological 

Analyses.  

 

Adenoviruses. Recombinant adenoviruses AdCMVLacZ, AdCMVEGFP, and 

AdCMVCre are modifications of the adenovirus-5 genome, from which the e1a 

and e1b regions required for viral replication had been deleted and replaced 

with Escherichia coli LacZ or enhanced green fluorescent protein (EGFP) or 

Cre driven by the CMV immediate early regulatory sequence (AdCMVLacZ, 

AdCMVEGFP, and AdCMVCre, respectively). Viruses purified as described 

(Anderson et al., 2000) were titered at 1011–1012 infectious particles/ml, and 

frozen in small aliquots.  
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Adenovirus Administration. Pilot titration experiments demonstrated that 

infection at MOI 100 and 400-1000 resulted in lower infectivity or excessive 

cell damage, respectively (data not shown). Thus, for all subsequent cell 

culture ~ 2 x 105 OSE cells were incubated in 1 ml of serum-free medium with 

4 x 107 AdCMVCre, AdCMVEGFP or AdCMVLacZ pfu (MOI 200). After 2 

hours at 37ºC, cells were washed twice with PBS and covered with complete 

medium containing 5% fetal bovine serum. Adenoviral delivery into the ovarian 

bursa was performed by injection with a Hamilton syringe and a 30-gauge 

beveled needle under the control of a dissection microscope after deep 

anesthesia with intraperitoneal (i.p.) Avertin (2.5% v/v in 0.85% NaCl, 0.020 

ml/g body weight). Ovaries were accessed via dorsal incision, the needle was 

inserted into the oviduct near the infundibulum towards the bursa, and 

adenovirus (5 x 107 pfu/µl in PBS) was injected. According to our preliminary 

titration experiments using trypan blue and AdCMVEGFP for injection to the 

bursa of 60-day old FVB/N females, a 10 µl volume is sufficient to fill the bursa 

entirely, yet without any significant leakage to the peritoneal cavity from the 

place of injection in > 95% of cases. This volume was used in all subsequent 

experiments. 

 

Ovulation and Carcinogenesis Studies. To synchronize ovulation, 60-day-old 

females were mated with vasectomized males and the first day after ovulation 

was considered complete at midnight of the day after mating. Postnatal day 1 

was considered completed 24 h after birth. AdCMVCre and AdCMVLacZ were 

injected into the bursa of the right and left ovary, respectively, of p53floxP/floxP, 

Rb1floxP/floxP, p53floxP/floxPRbfloxP/floxP and wild type mice 1.5 days after ovulation. 
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To exclude possible inadvertent effects of mixed genetic background, all mice 

were kept on FVB/N background. 

 

Microdissection PCR. Frozen and paraffin sections were placed on foil 

attached to glass slides, stained with H&E, and evaluated under microscope. 

Identified lesions as well as single cells were dissected either manually or with 

UV laser (Laser Microdissection System; Leica) and collected into caps of 

Eppendorf tubes filled with lysis buffer. DNA was isolated and processed 

essentially as described earlier (Nikitin and Lee, 1996). 

 

Pathological Analyses. Moribund mice in long term-experiments, as well as 

those to be sacrificed according to schedule, were anesthetized with avertin, 

and, after cardiac perfusion at 90 mmHg with PBS followed by phosphate-

buffered 4% paraformaldehyde, were subjected to gross pathology evaluation. 

Ovaries and other affected organs were removed, processed for preparing 

paraffin sections and characterized by microscopic evaluation. Serial sections 

were prepared for confirmation of neoplastic invasion. Pathology studies were 

performed by one of us (A.Y.N.) according to existing human and mouse EOC 

classifications (Davis et al., 2001; Nikitin et al., 2003; Scully et al., 1996). 

Immunohistochemical analysis of paraffin sections of paraformaldehyde-fixed 

tissue was performed by a modified ABC technique (Nikitin and Lee, 1996). 

The antibodies to EGFP (Living colors A.v. rabbit peptide antibody; 1:100 

dilution, Clontech), cytokeratin 8 (CK8 TROMA-1 antibody, 1:50, 

Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA) or 

BrdU, (Pharmingen; 1:100), were incubated with deparaffinized sections for 1 

hour at room temperature. Ten-min boiling in 10 mM citric buffer was used for 
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antigen retrieval for detection of CK8. Rates of cell proliferation were 

evaluated by BrdU uptake according to earlier established protocols (Nikitin et 

al., 2002). At least 150 cells per field in 10 fields were scored for each tissue 

section. Detection of bacterial -galactosidase was performed according to 

published protocols (Bonnerot and Nicolas, 1993; Fire et al., 1992; MacGregor 

et al., 1991).  

 

Statistical Analyses. InStat 3.03 and Prism 3.02 (GraphPad, Inc. San Diego, 

CA) software was used in this study. Survival fractions were calculated using 

the Kaplan-Meier method. Survival curves were compared by log rank Mantel-

Haenszel tests. Means were compared by estimation of the two-tailed P value 

with Mann-Whitney test.  

 

2.4. Results and Discussion 

 

To test the efficacy of recombinant adenovirus infection, primary cultures of 

OSE (Fig. 2.1A) were prepared, and cells were infected with adenovirus 

containing the EGFP encoding gene under control of the CMV promoter 

(AdCMVEGFP) at a MOI of 200 infectious particles per cell. More than 80% of 

OSE cells expressed EGFP 24 h after infection (Fig. 2.1B). Similar results 

were also observed in cultured OSE of Rosa26STOPfloxPLacZ [B6;129-

Gt(ROSA)26SorTM1sor] reporter mice (Chai et al., 2000; Jiang et al., 2000; 

Soriano et al., 1999) after infection with AdCMVCre (data not shown). 

Accordingly, administration of AdCMVCre to OSE cells carrying p53floxP/floxP 

and/or Rb1floxP/floxP resulted in inactivation of the respective gene(s) (Fig. 2.1, C 

and D). According to 5'-bromodeoxyuridine (BrdU) incorporation assay OSE  
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Figure 2.1 Targeting ovarian surface epithelium (OSE) by recombinant 

adenovirus in the primary culture. (A) Cytokeratin 8 expression in OSE after 

three passages. TROMA-1 antibody, ABC Elite method. (B) EGFP expression 

(green fluorescence) in the majority of OSE three days after infection. 

Counterstaining with DAPI (blue nuclear fluorescence). Calibration bar, A, 50 

µm, B, 100 µm. C and D, PCR analysis of p53 (C) and Rb1 (D) gene structure 

in OSE containing either wild-type (Lane 1) or floxP/floxP (Lanes 2 - 4) gene 3 

days after either AdCMVCre (Cre +) or mock (Cre-) infection. (C) PCR with 

primers 10FM5' and 10RM3' results in 163 bp and 316 bp fragments for wild-

type and floxed p53 alleles, respectively. PCR with primers 1FM5' and 10RM3' 

detects 198 bp fragment diagnostic for Cre-mediated gene excision. (D) PCR 

with primers Rb19EM5' and Rb18M3' result in 247 bp and 295 bp fragments 

for wild-type and floxed Rb1 alleles, respectively. PCR with primers Rb212M5' 

and Rb18M3' detects 269 bp fragment diagnostic for Cre-mediated gene 

excision. The bands about 850 bp (Lane 1) and 900 bp (Lanes 2 and 4) are 

the result of specific amplification of exon 19 and surrounding intron 

sequences without and with inserted loxP sites, respectively. (C, D) Lane 5, 

mock control. Lane 6, DNA marker. Three percent NuSieve agarose gels 

stained with ethidium bromide. (E) proliferation of OSE cells containing either 

p53floxP/floxP (p53floxP), or Rb1floxP/floxP (Rb1floxP) or p53floxP/floxP, Rb1floxP/floxP 

(p53floxP, Rb1floxP), three (P3) and six (P6) passages after 2 hr exposure to 200 

MOI of either AdCMVCre (Cre) or AdCMVLacZ (LacZ). According to 

semiquantitative PCR analyses > 90% of cells lost both functional copies of 

floxed genes 6 days after infection with AdCMVCre. Cells were treated with 

BrdU for 2 h and BrdU indices (%, BrdUI, mean  SD) was determined. Mann-

Whitney test yielded two-tailed P values of <0.0001 for p53floxPCre versus 
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p53floxPLacZ (18.25 ± 0.82, n = 12 versus 11.84 ± 0.62, n = 12) and 

p53floxP/floxP, Rb1floxP/floxPCre versus p53floxP/floxPCre (54.94 ± 17.12, n = 11 

versus 18.25 ± 0.82, n = 12) at passage 3, and 0.0206 and 0.0028 for 

p53floxPCre versus p53floxPLacZ (21.00 ± 4.66, n = 11 versus 5.38 ± 3.20, n = 

11) and for Rb1floxPCre versus Rb1floxPLacZ (18.40 ± 3.50, n = 11, vs. 8.00 ± 

1.6, n = 11), respectively, at passage 6. No significant differences was found 

among p53floxP/floxP, Rb1floxP/floxP, and p53floxP/floxP, Rb1floxP/floxP OSE, exposed to 

AdCMVLacZ, as well as wild-type OSE exposed to either AdCMVCre or 

AdCMVLacZ (data not shown). 
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proliferation was pronounced after the first passage following inactivation of  

both p53 and Rb1 (Fig. 2.1E; data and not shown). Modest but statistically 

significant increase in proliferation of OSE was evident three and six passages 

after individual inactivation of p53 and Rb1, respectively (Fig. 2.1E). Taken 

together, these results indicate that recombinant adenovirus efficiently infects 

OSE, the CMV promoter is adequate for Cre expression in these cells, Cre-

mediated inactivation of floxed p53 and Rb1 occurs after a single 

administration of AdCMVCre, and simultaneous inactivation of both genes 

results in dramatic increase of OSE proliferation. 

 To evaluate the feasibility of direct targeting of OSE by recombinant 

adenoviruses in the mouse, we have administered AdCMVEGFP to the 

ovarian bursa. As determined by both fluorescence (Fig. 2.2, A and B) and 

immunostaining (Fig. 2.2, C and D), > 90% of OSE cells expressed EGFP 1 

day after injection with AdCMVEGFP. Notably no underlying stromal cells 

were infected. Expression ceased to be detected by the 21st day after 

administration, in agreement with the transient character of adenovirus 

infection. Similar results were obtained with the AdCMVLacZ reporter (data not 

shown). To evaluate Cre-loxP-mediated gene deletion, AdCMVCre was 

administered to OSE of Rosa26STOPfloxPLacZ mice (Chai et al., 2000; Jiang 

et al., 2000; Soriano et al., 1999). Consistent with Ad reporter experiments, 

E.coli -galactosidase expression was detected only in OSE but to a 

somewhat lesser extent (about 60-80% of cells, Fig. 2.2, E and F). At the 

concentrations used no reactive hyperplasia or other pathological alterations 

were observed in OSE after infection with any of the applied recombinant 

adenoviruses. These results indicate that adenovirus can be used as an  
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Figure 2.2 Targeting OSE by intrabursal administration of the 

recombinant adenovirus in the mouse. Wild type (A-D) and 

R26STOPfloxLacZ (E and F) mice were subjected to a single ovarian 

intrabursal injection with 5 x 107 pfu/µl of either AdCMVEGFP (A, C, and F), 

AdCMVLacZ (B and D) or AdCMVCre (E). Ovaries were collected 3 days after 

injection and processed immediately for fluorescence (A and B), ABC 

immunostaining with rabbit anti-EGFP antibody (C and D) or histochemical 

detection of -galactosidase (E and F). Arrow, OSE; O, oocyte. 

Counterstaining with Hematoxylin (C and D), and Nuclear Fast Red (E and F). 

Calibration bar, (A and B) 500 µm, (C and D) 50 µm. 
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efficient vector for selective induction of temporal localized gene expression in 

OSE. Thus, in conjunction with the Cre-LoxP system, this approach should be 

useful for OSE-targeted inactivation of floxed tumor suppressor genes, as well 

as for induction of oncogene expression in STOPfloxP designs such as K-ras 

(Jackson et al., 2001) and neu/ErbB2 (Andrechek et al., 2000).  

 Both adenovirus infection efficacy and success in fixation of acquired 

genetic mutations increase in actively proliferating cells. Since in the adult 

mouse OSE proliferation is induced after ovulation, the peak of proliferation 

was determined in synchronized females (see "Materials and Methods"). 

Using BrdU incorporation assay, we identified the peak of proliferation at 1.5 

days after ovulation (mean ± SD, 2.5 ± 0.3%; n = 3 versus 1.5 ± 0.3; n = 3 on 

day 1.5 and 3.5 after ovulation; P = 0.0034). Thus, in all subsequent 

experiments adenoviral administration was performed at 1.5 days after 

ovulation. 

 Thirty three out of 34 mice (97%) with inactivation of both genes 

succumbed to ovarian tumors at a median of 227 days (Fig. 2.3A, Table 1). In 

agreement with our pilot experiments indicating possible leakage of 

AdCMVCre upon injection in ~5% of cases (see "Materials and Methods"), one 

tumor was not associated with ovary and had features of undifferentiated 

neoplasm (Table 2.1). At the same time, 4 out of 31 (13%) and 1 out of 29 

(3%) mice developed tumors after Ad5Cre-mediated inactivation of floxed p53 

or Rb1, respectively. Among those tumors only 2 tumors in p53floxP/floxP mice 

arose from the ovary by 400 days after injection (Table 2.1). No tumors were 

observed after administration of AdCMVLacZ And AdCMVCre into the bursa of 

floxed (p53floxP/floxP, Rb1floxP/floxP, and p53floxP/floxPRb1floxP/floxP) and wild-type  
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Figure 2.3 Survival and pathology of mice with conditional inactivation of 

p53 and Rb1 in OSE. A, survival of p53floxP/floxP (n = 31), Rb1floxP/floxP (n = 29), 

p53floxP/floxPRb1floxP/floxP (n = 34) and wild-type (n = 32) female mice after a 

single ovarian intrabursal injection of AdCMVCre. Median survival for p53 

floxP/floxPRb1floxP/floxP mice was 227 days. (B) Abdominal distension (arrow) of the 

mouse with ovarian tumor. (C) Ovarian polycystic tumor (arrow) and normal 

ovary (arrowhead) of p53floxP/floxPRb1floxP/floxP mouse 255 days after a single 

intrabursal administration of AdCMVCre and AdCMVLacZ, respectively, into 

the right and left ovary. Low (D) and high (E) magnification of ovarian serous 

cystic adenocarcinoma with invasive growth (arrow). (F) Neoplastic OSE cells 

form papillary structures (arrow). (G) CK 8 is consistently detected in ovarian 

carcinoma cells arranged in invasive glandular structures and isolated groups 

(arrow) laying in dense fibrous tissue. D-F, H&E, G, immunohistochemical 

detection of CK 8 with TROMA-1 antibody, ABC elite method. Calibration bar, 

B, 21 mm; C, 68 mm; D; 180 µm; E-G, 55 µm. 
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Table 2.1 Ovarian neoplasms induced by a single intrabursal administration of 

AdCMVCre to mice carrying conditional p53 and/or Rb1 alleles 

 

+
Non ovarian neoplasms were not physically associated with the ovary and included low 

differentiated spindle and polymorphic cell neoplasms without any morphological or 

immunohistochemical features of specific differentiation, such as expression of epithelial 

(CK8, Pan-cytokeratin), lymphoid (CD45R and CD3), smooth (smooth muscle actin) and 

striated (-sarcomeric actin) muscle, histiocytic (F4/80) and schwannian (S100) markers. All 

neoplasms had no functional floxed gene(s) according to microdissection-PCR genotyping 

and were likely a result of rare inadvertent leakage of the AdCre during intrabursal 

administration.  

*Numbers in parentheses indicate number of mice with neoplasm out of total number of mice. 

#
Neoplasms originating from the ovary but without any specific morphological or 

immunohistochemical features of differentiation (see comment to 
+
). All neoplasms had loss of 

both floxed genes according to PCR genotyping. 

Genotype p53
floxP/floxP

 
p53

floxP/floxP 

Rb1
floxP/floxP 

Rb1
floxP/flox

 
Wild 

type 

Mice with neoplasms, total, %
+
 13 (4/31)* 100 (34/34) 3 (1/29) 0 (0/32) 

Mice with ovarian neoplasms, total % 6 (2/31) 97 (33/34) 0 (0/29) 0 (0/32) 
Well differentiated serous epithelial 

neoplasms of the ovary, % 
0 (0/2) 39 (13/33) 0 (0/0) 0 (0/32) 

Poorly differentiated CK8-positive 

neoplasms of the ovary, % 
100 (2/2) 45 (15/33) 0 (0/0) 0 (0/0) 

Undifferentiated neoplasms of the 

ovary, %
#
 

0 (0/2) 15 (5/33) 0 (0/0) 0 (0/0) 

Peritoneal spreading, % 0 (0/2) 27 (9/33) 0 (0/0) 0 (0/0) 
Ascites, % 0 (0/2) 24 (8/33) 0 (0/0) 0 (0/0) 
Metastases in the contralateral ovary, 
% 

0 (0/2) 15 (5/33) 0 (0/0) 0 (0/0) 

Lung metastases, % 50 (1/2) 18 (6/33) 0 (0/0) 0 (0/0) 
Liver metastases, % 0 (0/2) 3 (1/33) 0 (0/0) 0 (0/0) 
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Figure 2.4 Characterization of ovarian tumors induced by inactivation of 

p53 and Rb1. (A, B) Poorly differentiated carcinoma consisting of epithelioid 

cells in loose trabecular formation (arrow) containing CK8 (B). (C) 

Intraperitoneal spreading of CK8 positive (arrow) neoplastic cells. (D) Liver 

metastasis (arrow) of poorly differentiated ovarian carcinoma. (E) Early 

dysplastic OSE lesions consisting of disorganized, ciliated (arrow) and 

vacuolated (arrowhead) atypical cells. (F) Flat OSE (arrow) 180 days after 

exposure to a single administration of AdCMVLacZ. A, D-F, H&E. B, C, 

immunohistochemical detection of CK 8 with TROMA-1 antibody, ABC elite 

method. Calibration bar, A-F, 50 µm. G and H, PCR analysis of p53 (G) and 

Rb1 (H) gene structure in the same sets of tissues (Lanes 1, 4, and 7-11) and 

primary cell cultures (Lanes 2, 3, 5, 6, F and C) samples collected from mice 

heterozygous (Lane 1, H), wild-type (Lane 2, W) and homozygous (Lanes 3-

11) for both floxed gene without (Lanes 3 and 4, F) or with previous exposure 

to AdCMVCre (Lanes 5-11, C, N and E). N and E, cells from ovarian 

neoplasms and early neoplastic lesions, respectively, collected by 

microdissection. M (Lane 12), mock control. PCR primers are as described in 

legend to the Fig. 1, with exception that all three primers were used 

simultaneously and 10RM23'primer was used instead 10RM3', resulting in 

585-, 467-, and 433-bp fragments diagnostic for floxed, excised, and wild-type 

alleles of p53 gene, respectively. 
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mice, respectively. Grossly, the mice had abdominal distension (Fig. 2.3B). On 

necropsy polycystic tumor masses substituted the ovary and invaded 

surrounding tissues (Fig. 2.3C). Hemorrhagic or serous ascites were observed 

in 24% of the mice with ovarian tumors (Table 2.1). 

 Thirteen of 33 neoplasms that developed in the ovaries of 

p53floxP/floxPRb1floxP/floxP mice (39%) were composed of multiple serous cysts 

(Fig. 2.3D). These cysts were lined by crowded neoplastic epithelial cells with 

large hyperchromatic nuclei and small round to polygonal cytoplasm (Fig. 2.3, 

E and F). Neoplastic cells formed papillary structures (Fig. 2.3F), invaded 

underlying tissues (Fig. 2.3, D-G) and contained simple epithelium-specific 

cytokeratin 8 (CK8; Fig. 2.3G). Fifteen neoplasms (45%) were poorly 

differentiated and consisted of CK 8-positive epithelioid cells, which 

sometimes formed trabecular structures (Fig. 2.4, A and B). Tumors expanded 

i.p. (27%, Fig. 2.4C), formed ascites containing groups of neoplastic cells 

(24% of cases), and metastasized to the opposite ovary (15%), the lung (18%) 

and the liver (6%, Fig. 2.4D). Taken together, both pathology and biological 

behavior of induced neoplasms were remarkably similar to those of human 

EOC, particularly to its most common type, serous adenocarcinoma. 

Furthermore, in close concordance with human EOC, these neoplasms are 

induced in adult mice.  

 Microdissection-PCR confirmed loss of both copies of both Rb1 and 

p53 in the neoplastic cells of all 19 cases tested (Fig. 2.4, G and H; data not 

shown). Notably, loss of both genes was detected in early dysplastic lesions 

(Fig. 2.4, E, G, and H). No similar alterations were observed in the other ovary 

exposed to AdCMVLacZ (Fig. 2.4F). Simultaneous Cre-LoxP-mediated 

recombination may result in rearrangements between chromosomes 11 (p53) 
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and 14 (Rb1) with potential influence on carcinogenesis. No such alterations 

were detected after PCR with four combinations of primers flanking Rb1 

(Rb212 and Rb18M3') and p53 (1FM5' and 10RM3') loxP sites (not shown). 

Thus, inter-chromosomal rearrangements are unlikely to have a selective 

advantage in this model.  

 Formation of a small number of epithelial tumors in p53floxP/floxP mice 

alone indicates that p53 may be sufficient for initiation of OSE carcinogenesis. 

However, the complete effect of its inactivation is evident only in cooperation 

with alterations in the Rb pathway. These results support earlier studies which 

indicated that oncogenic transformation of OSE is easily achieved by 

cooperation of p53 inactivation with activation of c-myc, K-ras and Akt (Orsulic 

et al., 2002) or by inactivation of p53, Rb and PP2A pathways by SV40 T 

antigen (Connolly et al., 2003). Notably, both Akt and K-ras are involved in RB 

network signaling by regulating cyclin D1 activity (Sherr and McCormick, 

2002). It is of note, that some genetic alterations preferentially occur in specific 

EOC subtypes such as serous (Aunoble et al., 2000; Morita et al., 2000), 

mucinous (Cuatrecasas et al., 1997; Morita et al., 2000) and endometrioid 

(Aunoble et al., 2000; Feeley and Wells, 2001; Havrilesky and Berchuck, 

2001). Interestingly, carcinomas of the serous subtype more frequently have 

RB1 loss of heterozygosity and aberrant immunostaining (Gras et al., 2001), in 

close agreement with the observation of serous neoplasms in our model. 

Additional studies shall allow understanding of particular involvement of other 

genetic pathways, including c-MYC, AKT-2, PIK3CA, HER2/NEU, and 

EEF1A2. A small subset of hereditary cases are associated with alterations in 

tumor susceptibility genes BRCA1 and BRCA2 (Boyd et al., 2000). Mutations 

in BRCA1 and BRCA2 are rare in sporadic cases. However, recent studies 



46 

indicate that Rb1 interacts with BRCA1 (Deng and Brodie, 2000). Taken 

together, our experiments have established a genetically defined and 

phenotypically accurate model of EOC and have provided direct genetic 

evidence that defects in p53 and Rb1-mediated pathways may cooperate in 

ovarian carcinogenesis. These results furnish both rationale and suitable 

modeling means for development and testing of diagnostic, therapeutic and 

preventive approaches aimed at p53 and Rb1 signaling circuits in EOC. 
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CHAPTER 3 

USE OF MULTIPHOTON IMAGING FOR STUDYING CELL MIGRATION IN 

THE MOUSE* 

 

 

3.1 Abstract 

 

We describe a method for studying cell motility in the living mouse using 

multiphoton microscopy. The procedure consists of mouse anesthesia, 

labeling of target cells with enhanced green fluorescent protein by infection 

with recombinant adenovirus, implantation of beads carrying chemoattractant, 

preparation of the mouse for imaging, and imaging of individual cell motions 

via multiphoton microscopy. Two-photon fluorescence excitation of enhanced 

green fluorescent protein allows visualization of cells within the dermis, 

whereas second harmonic generation (a non-linear scattering process) allows 

a simultaneous detailed definition of the dermis structure. 

 

3.2 Introduction 

 

The recent deciphering of human and mouse genomes, together with technical 

advances in mouse genetic engineering, have resulted in continuously 

increasing use of mice for modeling of human diseases, including cancer, 

neurological, cardiovascular and immune disorders. Since individual cell 

tracing provides important clues for understanding pathogenesis, the ability to 

detect single cells and monitor their behavior in the living mouse is particularly 

important. Multiphoton microscopy (MPM) (Denk et al., 1990; Williams et al., 
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2001), a type of laser scanning microscopy, has become a preferred 

fluorescence imaging technique for in vivo studies due to its ability to image 

deeply into living tissue and its absence of out-of-focal plane excitation (Brown 

et al., 2001; Charpak et al., 2001; Christie et al., 2001; Lendvai et al., 2000; 

Svoboda et al., 1997; Wang et al., 2002). A type of MPM, two photon 

microscopy uses the simultaneous absorption of two infrared photons to excite 

an electronic transition equivalent to the absorption of a single higher energy 

(bluer) photon. In the absence of endogenously added (or transfected) 

fluorophores, MPM can also be used to image morphology via detection of 

intrinsic tissue emissions of such compounds as NADH and retinoids (Zipfel et 

al., 2003). However, genetically encoded green fluorescent proteins are 

significantly brighter (Xu et al., 1996), and, if incorporated into the system of 

interest, they enable imaging with lower power and less biologically damaging 

wavelengths (Zipfel et al., 2003). Using the same apparatus, second harmonic 

generation (SHG), a nonlinear scattering emission, can be collected from 

fibrillar collagen to obtain simultaneous images of structural features within 

many types of tissue. Here we describe how to use MPM for non-invasive 

imaging of the derma and its motile cells at subcellular resolution. The 

procedure consists of mouse anesthesia, labeling of target cells with 

enhanced green fluorescent protein (EGFP) by infection with recombinant 

adenovirus, implantation of beads carrying chemoattractant, preparation of the 

mouse for imaging, and imaging of individual cells with multiphoton 

microscopy. 

 

3.3 Materials 
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3.3.1 Mouse Anesthesia 

 

 1. Medical oxygen tank with pressure sensor (Airgas, Radnor, PA). 

 2. Oxygen flow regulator (Airgas). 

 3. Isoflurane vaporizer (Harvard Apparatus, Holliston, MA). 

 4. Isoflurane (Halocarbon Laboratories, Rever Edge, NJ). 

 5. Tubing manifold for directing the gas to either the induction chamber 

 or the imaging platform (Harvard Apparatus). 

 6. Port to building exhaust. 

 7. Tygon tubing (5/16-in. inner diameter). 

 8. Anesthesia induction chamber (Harvard Apparatus). 

 9. Small animal heating pad (Fine Science Tools, Foster City, CA) 

 

3.3.2 Labeling Target Cells with EGFP 

 

 1. FVB/N mice (Taconic, Germantown, NY). 

 2. Recombinant adenovirus Ad5CMVEGFP, purified and tittered at 1011 

 – 1012 infectious particles/ml as described (Anderson et al., 2000); 

 Gene Transfer Vector Core; University Iowa College of Medicine; Iowa 

 City, IA). Albeit this virus is replication deficient, all NIH Recombinant 

 DNA Guidelines must be closely followed. 

 3. Microscope Nikon SMZ 645 (Nikon, Melville, NY). 

 4. Fiber optic illuminator ACE (Schott-Fostec LLC, Auburn, NY). 

 5. Pet trimmer shaver (Wahl Clipper Corporation, Sterling, IL). 

 6. Isotonic saline (0.85% NaCl) sterile. 

 7. 70% ethanol. 
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 8. Tissue marking dye (Triangle Biomedical Sciences, Durham, NC). 

 9. Hypodermic needles 21 and 30 gauge. 

 10. Sterile disposable syringes; 1 ml. 

 11. Micro dissecting forceps serrated 3.5-in. long, 0.6 mm tip (Roboz, 

 Rockville, MD). 

 12. Pipetman for 1-20 µl, 10-200 µl and 100-1000 µl. 

 13. Sterile filter tips 1-20 µl and 10-200 µl. 

 

3.3.3 Implanting Beads with Chemoattractant 

 

 1. Monocyte chemotactic protein 1 (MCP1), recombinant, mouse 

 (derived from Escherichia coli), rmJE/MCP-1 (R&D Systems, 

 Minneapolis, MN). 

 2. Heparin-acrylic beads (Sigma, St. Louis, MO). 

 3. PBS, Ca 2+ /Mg 2+ -free phosphate-buffered saline, sterile (Cellgro, 

 Herndon, VA). 

 

3.3.4. Preparation of Mouse for Imaging 

 

 1. Pet trimmer shaver (Wahl Clipper Corporation, Sterling, IL).  

 2. Nair lotion hair remover (Carter products, New York, NY). 

 3. Skin immobilizer (custom built, Fig. 3.1). 

 

3.3.5 Multiphoton Microscopy 

 

 1. Ti:Sapphire laser (Spectra Physics, Mountain View, CA). The 
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Figure 3.1 Preparing mouse for imaging. (A) Mouse is placed on imaging 

platform consisting of an anesthesia line (arrow), a heating pad (HP) and a 

skin immobilizer (SI). (B) Wide field fluorescence image of the EGFP 

distribution in skin. Note that leading edge of infected cells (arrow) is directed 

towards the location of heparin beads containing MCP1 (arrowhead). VI, place 

of Ad5CMVEGFP injection, SI, skin immobilizer. (A) and (B) are taken with 

white light and fluorescence microscopies respectively. 
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 Ti:Sapphire laser is a Class 4 laser. A specular reflection directed into 

 the eye could result in retina damage. A dark object in the beam path 

 could result in a fire hazard. Appropriate cautions should be taken. The 

 beam should be covered and stray reflections blocked from imaging 

 personal. 

 2. Laser spectral analyzer (IST/Rees, Horseheads, NY). 

 3. Pockels cell for beam modulation (ConOptics, Danbury, CT). 

 4. Beam scanner with optics modified for IR transmission and 

 associated image acquisition electronics (BioRad, Hercules, CA). 

 5. Microscope with laser port (Olympus, Melville, NY). 

 6. Non-descanned fluorescence and SHG detection unit integrated with 

 beam scanner electronics (BioRad). 

 7. Appropriately selected microscope objective (Olympus). 

 

3.4 Methods 

 

The subsequent methods outline (1) mouse anesthesia, (2) labeling target 

cells with EGFP, (3) implanting beads with chemoattractant, (4) preparing 

mouse for imaging, and (5) multiphoton microscopy. 

 

3.4.1 Mouse Anesthesia 

 

Gas anesthesia (Fig. 3.2) enables the extended experimental durations that 

are necessary for these experiments.  

 1. Set the flow rate to 1 L/min. 

 2. Anesthetize the mouse in an induction chamber at 3.5% Isoflurane 
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Figure 3.2 Diagram of anesthesia apparatus. Oxygen flow from a 

pressurized cylinder is directed through an Isoflurane vaporizer. A gas 

manifold directs the gas through either an induction chamber or an 

imaging/surgery platform. The output of the system is funneled directly to the 

building exhaust. 
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 for several min. (see Note 1) 

 3. Transfer the mouse to the heated imaging/surgery platform and 

 maintain them at approx 1.5% Isoflurane. Anesthesia masks small 

 enough to fit under the microscope are not yet commercially available. 

 Holes cut in the anesthesia tubing are an operable solution (Fig. 

 3.1A). 

 

3.4.2 Labeling Target Cells with EGFP 

 

Connective tissue cells are labeled by infection with recombinant adenovirus 

Ad5CMVEGFP. Ad5CMVEGFP is a modification of the adenovirus-5 genome, 

from which the e1a and e1b regions required for viral replication had been 

deleted and replaced with EGFP encoding sequence driven by the CMV 

immediate early regulatory sequence (Anderson et al., 2000); Gene Transfer 

Vector Core, University Iowa College of Medicine.  

 1. Freeze Ad5CMVEGFP in small aliquots, and store at -80ºC.  

 2. Thaw frozen Ad5CMVEGFP aliquots, dilute in isotonic saline to 5 x 

 108 pfu/ml and keep on ice until needed (see Note 2).  

 3. Anesthetize two-month old FVB/N mice with Isoflurane (see 

 Subheading 3.4.1) place them on the heating pad, and shave on the 

 left and right side of the upper and lower back. 

 4. Transfer the mice to a stereomicroscope with fiber optic illumination 

 and position for the virus injection.  

 5. Inject 50 µl of virus with a 30-gauge hypodermic intradermally in both 

 lower dorsal quadrants.  
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 6. After injection, mark the areas of the visible virus bubble with four 

 blue tissue dye dots (see Note 2.). 

 

3.4.3 Implanting Beads with Chemoattractant 

 

MCP1 is a chemoattractant known to induce positive chemotaxis of 

mononuclear phagocytic cells (Gu et al., 1999; Luini et al., 1994; Rollins et al., 

1988). It is used to direct positive motility of macrophages infected with 

Ad5CMVEGFP.  

 1. Reconstitute a lyophilized sample of MCP1 in sterile PBS containing 

 0.1% bovine serum albumin to a concentration 100 µg/ml (see Note 3). 

 2. Suspend heparin beads in storage solution evenly by flipping the 

 tube and add 90 µl of suspension to 1 µg/10 µl MCP1 in 1.7-ml sterile 

 micro centrifuge tubes.  

 3. After incubation for 1 h at room temperature, centrifuge the beads for 

 5 minutes at 600g, take out the supernatant, add 1 ml sterile PBS, 

 suspend gently, and centrifuge as before. 

 4. After the washing, suspend the beads in sterile PBS to a final 

 concentration of 10 µg/ml MCP1 and store at room temperature until 

 injection.  

 5. Incubate and wash control beads in PBS as described in step 3. 

 6. Immediately after the virus administration, inject 100 µl of MCP1 

 chemoattractant releasing beads intradermally with a 21-gauge 

 hypodermic needle one centimeter above the area injected with 

 adenovirus.  
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 7. Control beads are injected in the opposite dorsal quadrant above the 

 area injected with adenovirus. 

 

3.4.4 Preparing Mouse for Imaging 

 

 1. Remove hair in region of interest with a small animal trimmer. 

 2. Apply Nair® lotion hair remover for 4 min (see Note 4) 

 3. Wash area with warm water and finish with 70% ethanol to remove 

 optical interference caused by mineral oil component of the Nair®. 

 4. General motion of the skin as the result of breathing would make 

 impossible the task of following individual cells with micron resolution. 

 Thus, during imaging, the skin must be stretched into a skin immobilizer 

 (Fig. 3.1A) to isolate the imaging area from the general body motion. 

 5. At this point the generalized distribution of fluorescent cells can be 

 imaged using a low NA objective and fluorescent illumination (Fig. 

 3.1B). 

 

3.4.5 Multiphoton Microscopy 

 

Several commercial multiphoton microscopes now exist (such as the Bio-rad 

Radiance2100 MP, the Zeiss 510 NLO and the Leica TCS MP) and should be 

capable of imaging into the dermis. Our setup consists of a Ti:Sapphire laser 

(Milenia/Tsunami combination, Spectra Physics), Bio-Rad 600 laser scanner 

and modified Olympus AX-70 upright microscope (Fig. 3.3).  

 The excitation light is focused into the mouse dermis with a large-barrel 

Olympus 20X/0.95NA water objective, which provides a large field-of-view, a 
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Figure 3.3 Multiphoton microscope. Ti:Sapphire laser (Milenia/Tsunami 

combination, Spectra Physics) is directed into a Bio-Rad 600 beam scanner 

interfaced with a modified Olympus AX-70 upright microscope. A Conoptics 

350-80 BKLA Pockel’s Cell provides beam intensity modulation and blanking 

during scanner flyback when data is not being collected. A frequency spread in 

the output beam is necessary for supporting mode-locked (pulsed) operation 

and is monitored by a laser spectral analyzer (IST/Rees E201). The excitation 

light is focused into the mouse dermis with a large-barrel Olympus 

20X/0.95NA water objective, which provides a large field-of-view, a relatively 

high NA, good IR transmission, and a few mm of working distance, which is 

usually necessary for maneuvering in live animals. The non-linear emissions 

are not directed back through the scanning mirrors like they are in confocal 

microscopy because background rejection is unnecessary. The emission 

beam is collected in epi mode, spectrally separated from the excitation beam 

and immediately detected within the microscope housing (termed “non-

descanned” detection). 
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relatively high NA, good IR transmission, and a few mm of working distance.

 The multiphoton excitation wavelength peak ( ex) is tuned to 900 nm 

because EGFP absorbs well at this wavelength (Xu et al., 1996), whereas 

water and intrinsic cellular absorbers do not (Zipfel et al., 2003). The EGFP 

emission spectral profile is independent of the excitation wavelength; it peaks 

at 515 nm with a spectral width of approx 40 nm. The collagen SHG emission 

wavelength, however, will tune with the excitation wavelength; it peaks at 

ex/2 (and possesses a spectral width equal to that) of the exciting beam 

reduced by 2 (Zipfel et al., 2003). Non-linear emissions are collected in epi 

mode and immediately separated from the excitation beam directly after the 

objective with a 670DCXXRU long-pass dichroic filter.  Emission filters are 

chosen for a clean blue, green (450 and 515 nm) separation (BGG22 and 

580/150 filters with a separating 500DCXR dichroic filter, Chroma Technology) 

and a 107 rejection ratio of the exciting to emitting wavelengths. The resulting 

two emission beams are collected by Hamamatsu HC125-02 bialkali 

photomultiplier tube assemblies (see Note 5) 

 1. Tune laser wavelength to 900 nm. 

 2. Peak laser power. 

 3. Tune laser prisms for a stable, Gaussian-like frequency spread. 

 4. Image test slide to ensure system is operating properly. 

 5. Image mouse skin. One of the benefits of multiphoton microscopy is 

 its ability to collect clean optical sections from live tissue. The thickness  

 (full-width at half maximum) of each section is given by (Williams et al., 

1994): 

    
)2/(sin

ex31.0

2
n

z   
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 where sinn  is the NA of microscope objective and n is the refractive 

 index of the immersion fluid. For the 20X/0.95NA water objective used 

 in our experiments, this thickness is 1.4 m. To follow cells, one can 

 either acquire a time series at one plane or a time series of stacks at 

 multiple planes. An example of time series at 8 min. intervals shows cell 

 movement with an average speed of 1.4 m/min (Fig. 3.4).  

 

3.5 Notes 

 

1. The amount of sufficient Isoflurane varies from mouse to mouse and 

especially with age. Breathing rate is the easiest way to monitor the health of 

the mouse. Higher Isoflurane levels correspond to slower breathing rates. We 

try to maintain the mouse at an “ideal” breathing rate of about 0.3 Hz, or 1-2 

breaths per image. A “typical” 8 h-day of surgery and imaging will consume 

about one “medical-sized” oxygen tank and about one 200-ml bottle of 

Isoflurane.  

 Heating is critical to long-term maintenance of the mouse under 

anesthesia.  We use a Fine Science Tools heating pad calibrated to a surface 

temperature (without the mouse) of 30-35oC. While under anesthesia, the 

mouse is unable to regulate its own temperature well. Too much or too little 

heat can result in the death of the patient. 

2. All aliquots are only thawed once and rest is discarded after the use. The 

use of sterile filter tips to aliquot and dilute the virus is recommended. All 

plasticware and instruments which had virus contact are soaked in 70% 

ethanol for decontamination. To perform the intradermal injection, a skin fold is 

hold up with a pair of micro dissection forceps. After penetrating the skin with a 
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Figure 3.4 Multiphoton images of cell migration. Detection of fluorescence 

of EGFP-expressing cells (EGFP, A-D) and SHG-producing collagen (SHG, E-

H) in the dermis. (I-L) Photon emissions from both channels added together in 

order to show cell motion with respect to the stationary dermal structure. 

Images are acquired each 30 s, and displayed at 8-min intervals. Note that 

EGFP-labeled cell (arrows) moves in relation to stationary collagen fibers 

(arrowheads). Calibration bar, 20 µm. 
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30-gauge needle, the forceps are loosened and the fluid is allowed evenly to 

disperse. The needle is slowly withdrawn so that no liquid is able to leak out. 

3. Upon reconstitution MCP1 can stored at -20º C no more than three months. 

See also Notes 2 regarding intradermal injection. 

4. For repeated imaging, the Nair® hair removal solution must be totally 

removed because it is quite caustic (pH > 11), and thus expected to be toxic to 

the mice when ingested during grooming.  

5. Of utmost importance in imaging live specimens are the efficiency and 

placement of the emission detectors. Because non-linear emissions are only 

excited in the focal plane, they need not be descanned and focused through a 

confocal pinhole. Removing extraneous optics from the detection pathway and 

locating detectors close to the collecting objective increases the detector 

efficiency and enables the additional collection of photons deflected by the 

highly scattering skin on the way out. 

 Imaging a constant test slide, consisting of a fixed biological specimen 

or a fluorescent polymer or beads, before every microscopy session is an 

extremely valuable practice. Though the multiphoton microscope is a relatively 

complicated instrument, it should return consistent imaging results from day to 

day. When imaging highly variable specimens such as live mice, one should 

be sure that the instrument itself is not providing any of the experimental 

variability. 

 One irritating problem encountered in these experiments is that the 

immersion saline often wicks around the mouse and away from the objective, 

resulting in the loss of the image. A thin layer of bathroom caulk over the skin 

immobilizer eliminates this problem. Another difficulty encountered in the 

acquisition of time series images is focal plane drift over time. This problem is 
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best solved by identifying and alleviating any slight temperature variations 

around the microscope or specimen. Because skin pigmentation significantly 

impairs photon penetration, all experiments should be performed on white 

albino mice, such as FVB/N. 
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CHAPTER 4 

STRATEGIES FOR HIGH-RESOLUTION IMAGING OF EPITHELIAL 

OVARIAN CANCER BY LAPAROSCOPIC NONLINEAR MICROSCOPY* 

 

 

4.1 Abstract 

 

Ovarian cancer remains the most lethal of the gynecological cancers due to 

late detection of this disease. Here, by using human specimens and 3 mouse 

models of ovarian cancer we test the feasibility of nonlinear imaging 

approaches, such as multiphoton microscopy (MPM) and second harmonic 

generation (SHG) microscopy to serve as valuable complementary tools for 

ovarian cancer diagnosis. We demonstrate that MPM of intrinsic tissue 

fluorescence allows visualization of unfixed, unsectioned, and unstained 

tissues at a resolution comparable to that of routinely processed histological 

sections. In addition to permitting discrimination between normal and 

neoplastic tissues according to pathological criteria, such as alterations in size 

and shape of cellular compartments and tissue architecture, the method 

facilitates morphometric assessment of specimens and detection of very early 

cellular changes in the ovarian surface epithelium. A red-shift in cellular 

intrinsic fluorescence and collagen structural alterations have been identified 

as additional cancer-associated changes that are indiscernible by conventional 

pathologic techniques. Importantly, the feasibility of in vivo laparoscopic 

MPM/SHG is demonstrated by using a "stick" objective lens that allows direct 

access to and stabilization of imaged tissues. Intravital detection of neoplastic 

lesions has been further facilitated by low magnification identification of an 



71 

indicator for cathepsin activity followed by MPM laparoscopic imaging. Taken 

together, these results demonstrate that MPM may be translatable to clinical 

settings as an endoscopic approach suitable for high resolution optical 

biopsies as well as a pathology tool for rapid initial assessment of ovarian 

cancer samples. 

 

4.2 Introduction 

 

Ovarian cancer is the most deadly gynecological cancer. It is estimated to be 

the fifth leading cancer in cancer related deaths in women in the United 

States. It will be responsible for about 21,550 (3% of total) of new cancer 

cases and 14,600 (5% of total) of cancer related deaths in 2009 (Jemal et al., 

2009). When the disease is diagnosed at its early stages, the survival rate can 

be over 90%. However because the early stages are relatively asymptomatic, 

the vast majority of cases of ovarian carcinomas are not identified until late, 

rarely curable stages when almost 70% of tumors have already spread beyond 

the ovary (Bast et al., 2009). Cytoreductive surgery of metastatic ovarian 

cancer may extend patient's survival but its success greatly depends on 

effective detection and elimination of the bulk of tumor (Olson et al., 2001; 

Tingulstad et al., 2003; Zivanovic et al., 2009).  

 Development of new imaging diagnostic approaches is expected to 

significantly advance detection of ovarian cancer. Several recent studies have 

reported on improved detection of metastatic ovarian cancer by multi-targeted 

in vivo optical imaging (Kosaka et al., 2009) and fluorescence protease 

imaging in immunocompromised mice (Sheth et al., 2009). Unfortunately, 

resolution of these approaches has precluded evaluation of neoplasms at the 
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cellular level. Furthermore, feasibility of intravital detection of earlier stages of 

ovarian cancer has not been demonstrated. 

 A possible approach to address both issues is nonlinear imaging by 

multiphoton microscopy (MPM) and second harmonic generation (SHG). MPM 

is a type of incoherent nonlinear laser scanning microscopy that uses the 

simultaneous absorption of 2 near-infrared photons to excite an electronic 

transition equivalent to the absorption of a single higher energy, "bluer" photon 

(Denk et al., 1990) (Zipfel et al., 2003b). Use of near-infrared light instead of 

UV or higher energetic bands, which are required to excite most intrinsic 

emitters in biological tissues (Ramanujam et al., 2000; Richards-Kortum and 

Sevick-Muraca, 1996; Zipfel et al., 2003a), mitigates UV associated 

photodamage, optical aberrations and excitation light attenuation. These 

advantages, together with absence of out-of-focal plane excitation, allow MPM 

to penetrate about 2-fold deeper into optically scattering tissues with much 

cleaner subcellularly-resolved images compared to confocal microscopy 

(Helmchen and Denk, 2005; Zipfel et al., 2003b). MPM is frequently used 

simultaneously with SHG, an imaging strategy based on linear coherent 

scattering of the illumination light by certain tissue components, such as 

collagen. SHG always emits at exactly one half of the illumination wavelength 

and is easily separated from the broad generally blue fluorescence emission 

spectra characteristic of unstained tissue, enabling simultaneous imaging of 

collagen at the single fibril level (Zipfel et al., 2003a). 

 Owing to MPM's features, such as depth of penetration, reduced 

phototoxicity and intrinsic optical sectioning, and SHG's high-resolution 

assessment of fibrillar collagen structure not visible in standard hematoxylin 

and eosin stained (H&E)-stained sections these nonlinear imaging methods 
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have been recognized as a promising diagnostic approaches of cancer (Zipfel 

et al., 2003a). Optical biomarkers of ovarian cancer were specifically 

evaluated with nonlinear microscopy (Kirkpatrick et al., 2007). However, it 

remains unclear to what extent MPM/SHG imaging will allow for robust 

identification of routine diagnostic pathological features. Furthermore, 

applicability of MPM/SHG to characterization of various stages of ovarian 

carcinogenesis in autochthonous mouse models of cancer has not been 

tested. Most importantly, it is unknown whether there is adequate sensitivity to 

identify features in vivo, making the feasibility of practical high-resolution 

endoscopic MPM/SHG uncertain.  

 In this paper we assess of applicability of the MPM/SHG approach to 

pathological evaluation of epithelial ovarian carcinoma (EOC) in human 

samples and three syngeneic mouse models generated by us. We 

demonstrate that MPM of intrinsic tissue fluorescence in ovarian tissues allows 

reproducible identification of neoplastic features such as cellular atypia and 

architectural alterations at different stages of carcinogenesis. This information 

is further complemented by MPM/SHG-specific features such as cancer-

associated alterations in intrinsic fluorescence and collagen structure. Finally, 

we demonstrate, in a proof-of-principle experiment, that high-resolution 

MPM/SHG optical biopsy can be accomplished by in vivo laparoscopy with a 

miniature stick objective lens. This approach can be further combined with pre-

screening for neoplastic changes by a cathepsin-activated NIR fluorescent 

probe. 

 

4.3 Materials and Methods 
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Mouse Models of Ovarian Cancer. Development of EOC in mice expressing 

Simian virus (SV) 40 T antigen under control of the Mullerian inhibitory 

substance receptor 2 promoter (TgMISIIR-TAg) was described previously 

(Connolly et al., 2003). Induction of EOC by a single trans-infundibular 

intrabursal administration of recombinant adenovirus expressing Cre (AdCre) 

in mice carrying floxed copies of p53 and Rb genes was also described 

elsewhere (Flesken-Nikitin et al., 2003). To prepare a syngeneic mouse model 

of disseminated peritoneal EOC, p53-, and Rb-deficient FVB/N ovarian 

surface epithelium (OSE), cell line OSN1 (Corney et al., 2007) was transduced 

with LNCX2  retrovirus containing mouse c-Myc (kind gift of Dr. Andrew Yen). 

Briefly, retrovirus was produced by EcoPack2-293 (protocol PT3132-1; 

Clontech Laboratories), and exponentially growing cells were infected with a 

medium containing 50% retroviral supernatant and 8 µg/ml polybrene (S2667; 

Sigma) for 24 hours. Medium was changed for complete growth medium and 

500 µg/ml G418 (gentamicin sulfate) was added 48 hours afterwards. The 

resulting cell line OSN3 was intraperitoneally inoculated into 5- to 6-week-old 

FVB/N inbred mice (Taconic) at a concentration of 1x 107 cells/0.5 ml of PBS. 

Mice injected with 0.5 ml PBS only were used for control. At scheduled time 

points or upon signs of illness the animals were either anesthetized or 

euthanized and their tissues were processed for in vivo or ex vivo imaging, 

respectively, followed by histological processing and pathological assessment 

as described later. As a control for morphological alterations during imaging, a 

part of some specimens was directly processed for histological analysis. In 

addition, a parallel identically treated group of animals was euthanized at the 

same time points and subjected to standard necropsy and processing 

procedures. All the mice were maintained identically following 
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recommendations of the Institutional Laboratory Animal Use and Care 

Committee. 

 

Cell Culture. Preparations of primary normal and p53/Rb mutant OSE cells 

were performed as previously described (Corney et al., 2007; Flesken-Nikitin 

et al., 2003; Flesken-Nikitin et al., 2007). Briefly, OSE cells were isolated by 

collagenase-dispase digestions from ovaries of mice carrying floxed copies of 

p53 and Rb genes (Flesken-Nikitin et al., 2003). Cells were expanded within 

three passages, exposed to AdCre and used after three passages. Complete 

Cre-LoxP-mediated gene excision was verified by polymerase chain reaction  

(Flesken-Nikitin et al., 2003). For control experiments OSE cells were exposed 

to adenovirus-expressing β-galactosidase (AdLacZ). 

 

 Human Materials. Using anonymous fresh surgical material tagged for 

disposal, specimens of morphologically normal ovaries and serous EOC were 

collected at the Weill Medical College of Cornell University. One- to three-

millimeter-thick slices of the material were prepared, immediately placed into 

either Ringer's solution or serum- and phenol red-free, HEPES-buffered RPMI 

and kept on ice. The material was transported to imaging facilities and used 

for collection of images by multiphoton microscope within 6 to 20 hours after 

resection. All procedures were approved by the institutional review board. 

 

Nonlinear (MPM and SHG) Imaging of Intrinsic Fluorescence. Multiphoton 

imaging was accomplished as previously described (Kloppenburg et al., 2000; 

Williams and Webb, 2000; Zipfel et al., 2003a). Briefly, a 780 nm, 

uncompensated beam from a mode-locked Ti:sapphire laser (Tsunami 
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pumped with a Millennia Xs; Spectra Physics, Mountain View, CA) was 

directed through a Pockels Cell (350-80LA; Conoptics, Danbury, CT) with 

laboratory-built electronics for beam modulation and blanking during scan fly-

back. The beam was then directed into a modified BioRad scanner (MRC-600, 

Hercules, CA) interfaced with a modified (fixed stage) Olympus AX-70 upright 

microscope (Center Valley, PA). Specimens were imaged either with a 

standard objective (20x/0.95W XLUMPlanFl; Olympus) or with an endoscopic 

stick objective (27x/0.7W IV-OB35F22W20; Olympus). Tissue emissions were 

separated from the excitation beam using a 670DCXRU long-pass dichroic 

filter (Chroma Technology, Inc, Rockingham, VT) placed directly at the back 

aperture of the microscope objective. The emissions were subsequently 

separated into two channels with a 440DCXRU long-pass dichroic and 

HQ390/702-2P and BGG22 emission filters (Chroma Technology, Inc). The 

first channel (355-425 nm, pseudocolored blue in the figures) is designed for 

collecting second harmonic from fibrillar collagen and the second channel 

(~450-550 nm, pseudo-colored yellow) collects emissions from tissue intrinsic 

fluorescence such as cellular NAD(P)H and retinoid compounds. Both signals 

were detected using blue bialkali-photocathode PMT assemblies (HC125-02; 

Hamamatsu, Bridgewater, NJ). For determining intrinsic fluorescence color -- 

long-wavelength (LW) versus short-wavelength (SW) emission--signals were 

instead separated using a 500DCXRU dichroic splitter to BGG22 (SW) and 

580DF150MP (LW) emission filters (Chroma Technology, Inc). All imaging on 

freshly excised mouse samples occurred within 15 min after removal. Analysis 

of collagen fibril alignment in the peritoneum was analyzed by calculating two-

dimensional fast Fourier tranforms (FFTs) of high-resolution SHG image 

stacks (164 x 110 x 10 µm3). The resulting Fourier images were fit to two-
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dimensional Gaussian surfaces, and their asymmetry was defined as the 

ration of major-minor axes. Image stacks were collected from the peritoneum 

around tumors of two EOC mice (n = 4 stacks) and in two control mice (n = 4 

stacks). 

 

Quantitative Assessment of Intrinsic Fluorescence: Intensity, Color, and 

Anisotropy. For quantification of intensity, color, and steady-state emission 

anisotropy of the intrinsic fluorescence in cell cultures, cell regions were 

automatically defined by pixel intensities greater than the measured image 

background plus the image SD. In tissue explants, cells of interest were 

masked manually using the paint tool and an additional channel in Adobe 

Photoshop. All pixel tabulation routines were custom-written using the IDL 

data analysis environment (ITT Visual Information Solutions, White Plains, 

NY). 

 For anisotropy measurements the excitation polarization was adjusted 

for linear polarization (~50/1 ellipticity) directly after the objective by means of 

a Berek compensator (5540; New Focus, San Jose, Ca) placed before the 

scanning box. The emitted fluorescence was separated into parallel and 

perpendicular components after the collecting objective with a broadband 

polarizing beam splitter (10FC16PB.3; Newport, Irvine, CA) and two polarizers 

(5511; New Focus) placed immediately before the emission filters (BGG22; 

Chroma Technology, Inc.).  The fluorescence anisotropy A  was defined as 

the normalized difference between the emission intensities parallel (
II
I ) and 

perpendicular ( I ) to the exciting polarization: 

II

II
A

2II

II  
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Calibration of the relative detected efficiencies (
II
I and I ) was accomplished 

by rotating the excitation polarization so that the parallel channel becomes the 

perpendicular channel and vice versa. For an isotropic sample, the measured 

anisotropy is the same with both excitation polarizations so that: 

rotrot
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This relationship was used to determine g, the relative scaling factor between 

the two channels accounting for differential emission path efficiencies, and 

PMT gain variations. Average anisotropy values for the masked regions were 

calculated by an algorithm written within IDL. 

 Quantification of red shift in cellular intrinsic fluorescence of tissues was 

accomplished by masking normal OSE or tumor regions in images from the 

disseminated metastasis mouse model. Average pixel values from the LW 

versus SW channels from those regions were tabulated using a custom-written 

algorithm within IDL. 

 

 In Vivo Imaging. The mouse to be imaged was shaved and anesthetized in an 

induction chamber with 3.5% isoflurane gas. After 1 to 2 minutes, it was 

transferred to the imaging stage where gas was delivered through a 0.5-inch-

diameter tube with a small opening to insert the mouse snout, and warming 

was accomplished with a heating pad with feedback from a rectally inserted 

probe monitoring core temperature (FHC model 40-90-8C A720D). Gas 

percentage was adjusted to 1% to 2%, maintaining a ~60/min breathing rate 

as described previously (Flesken-Nikitin et al., 2004). For imaging with a 

standard water immersion objective (Olympus XLUNPlanFl 20x/0.95 W), a 

Parafilm bed was suspended over the mouse as a platform to isolate the ovary 

from mouse breathing motions. The ovary was threaded through an incision in 
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the abdomen and a precut opening in the suspended Parafilm bed. Immersion 

saline necessary for optimal imaging was kept around the ovary by the 

Parafilm bed. Imaging directly into the mouse abdomen was accomplished 

using the 3.2 mm diameter Olympus stick objective lens (IV-OB35F22W20 

27x/0.7 W). In addition to the microprobe optic, two other developments were 

required for obtaining high-quality cellularly resolved tumor images within the 

abdominal cavity: 1) a mechanism for flushing blood and other optically 

unfavorable, tissue-derived substances away from the imaging region, and 2) 

a mechanism for stabilizing the tissues from mouse movements. We initially 

designed a sleeve through which the microprobe slid for focusing; the sleeve 

was connected to perfusion piping and provided stabilization to the tissue. This 

design turned out to be too bulky and drew the tissue into it when the probe 

was moved away from the specimen. A simpler design in which a small tube 

(2 mm in diameter) was mounted on a separate micromanipulator proved 

better for flushing tissues in the field of view. The hose also acted to stabilize 

the tissue, reducing tissue motion due to mouse breathing and objective 

focusing. 

 

Imaging of Cathepsin Activity. For administering ProSense 680 (VisEn 

Medical, Inc., Woburn, MA), mice were anesthetized with Avertin (2.5% v/v in 

0.85% NaCl; 0.020 ml/g body weight) and the ProSense 680 was injected into 

a tail vein at 2 nmol/150 µl in PBS. Mouse tissues were imaged ex vivo 24 hrs 

after ProSense 680 administration. Overall fluorescence images were 

collected using the RFP2 filter on an Olympus SZX12 fluorescence 

stereomicroscope. Multiphoton imaging of ProSense 680 was accomplished 

as previously described for intrinsic fluorescence, except that the fluorescence 
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emission was instead split by a 560DCXRU into blue- (BGG22; Chroma 

Technology, Inc.) and red- (650DF100MP, Chroma Technology, Inc.) 

pseudocolored channels.  The blue emission was detected with a bialkali PMT 

(HC125-02; Hamamatsu) and the NIR ProSense 680 emission (pseudocolored 

red in the figures) was detected using a red-sensitive GaAsP photocathode 

PMT (H7422P-40; Hamamatsu) with custom-designed amplifier circuitry. 

ProSense 680 imaging required significantly (typically fivefold) less excitation 

power than that for imaging intrinsic fluorescence.  

 

Pathological Assessment. Human and mouse specimens were labeled by ink 

for orientation, placed into PBS-buffered 4% paraformaldehyde, fixed 

overnight, and processed for paraffin embedding. Before sectioning, samples 

were carefully oriented in order to ensure direct comparison of MPM/SHG and 

routine microscopic images. Prepared sections were stained with H&E and 

evaluated under a light microscope. All ovarian lesions were identified 

according to the Classification Guidelines endorsed by the Mouse Models of 

Human Cancer Consortium (MMHCC Davis et al., 2001; Nikitin et al., 2004) 

and World Health Organization's classification of human ovarian cancer 

(Scully and Sobin, 1999). Histological images were collected by SPOT-RT or 

Insight cameras (Diagnostic Instruments, Sterling Heights, MI) and compared 

to MPM/SHG images of the same or parallel specimens.  

 

Morphometric Analysis. Digital MPM images of z series with 5-μm steps were 

imported into SPOT software (v. 4.6; Diagnostic Instruments). Comparable 

areas of optical sections across OSE covering the corpus luteum were 

identified and nuclear and cytoplasmic contours were manually marked by 
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individuals that were blinded to the experimental parameters. Image overlays 

were recorded and parameters calculated using the measurements function. 

 

Statistical Analysis. For statistical analysis, two-sided unpaired Student’s t 

tests were performed using InStat 3.05 and Prism 4.03 software (GraphPad, 

Inc., La Jolla, CA). 

 

4.4 Results 

 

4.4.1 High-Resolution Multiphoton Microscopy of Intrinsic Fluorescence 

in Mouse and Human Ovarian Cancer. Previously we demonstrated that 

histological architecture of the normal ovary and its cellular composition can 

be accurately identified by MPM of intrinsic fluorescence of freshly excised 

samples (Zipfel et al., 2003a). Therefore, to determine the value of MPM for 

pathological assessments of neoplastic lesions, we compared images taken 

with MPM/SHG without added fluorescent labels with those from sections after 

routine histological processing and H&E staining of the normal OSE and its 

neoplasms (both mouse and human). As visualized using H&E staining, 

normal OSE presented as a single layer with squamous morphology (Fig. 

4.1A).  In contrast, ovarian carcinomas of TgMISIIR-TAg mice (n = 12) 

contained densely packed polygonal atypical epithelial cells (Fig. 4.1D). In 

agreement with our previously reported observations (Connolly et al., 2003), 

the neoplastic cells were arranged in solid sheets and separated by a limited 

stroma. MPM/SHG imaging of fresh unstained tissues provided the same level 

of resolution in terms of the overall histological and cellular features of the 

normal (Fig. 4.1, B and C) and neoplastic tissues (Fig. 4.1, E and F). Similar to  
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Figure 4.1 Evaluation of MPM (yellow) and SHG (blue and grayscale) 

potential for examination of (EOC). Normal mouse ovary (A-C), ovarian 

carcinomas of TgMISIIR-TAg (D-F) and disseminated peritoneal EOC (G-M) 

mouse models were visualized by H&E staining (A, D and G). MPM intrinsic 

emission (B, E and H) and SHG imaging (B, C, E, F, H, I-M). (A-C) The 

ovarian surface epithelium (OSE, arrow), part of the corpus luteum (CL) and 

the ovarian bursa (OB) are all clearly resolvable by MPM and resemble those 

in conventional histological image. In addition, SHG demonstrates collagen in 

the ovarian bursa and the basement membrane (BM) underneath of OSE. (D-

F) Monomorphous polygonal neoplastic cells (arrow) are detectable by H&E 

and MPM. Note that SHG demonstrates presence of collagen with most 

collagen fibers near tumor periphery being located perpendicular towards its 

surface (arrowhead), a feature not evident in conventionally prepared tissue. 

(G-H) A group of neoplastic cells (arrow) invading the parietal peritoneum. Low 

-(J and L) and high- (K and M) magnification projection images of collagen 

architecture from normal peritoneum (J and K) and around tumor regions (L 

and M). (N and O) Representative Fourier transforms from the full images 

shown in K and M, respectively. Gaussian ellipses (blue) are fit to determine 

the collagen fibril asymmetry. MPM images were acquired using 780-nm 

excitation. Blue and yellow pseudo colors represent 355 to 425 nm and 450 to 

550 nm emission, respectively. For clarity, the SHG images are reproduced in 

gray in C, F, and I to M. Scale bars: 30 µm (A-C), 22 µm (D-F), 45 µm (G-I, J, 

and L) and 12 µm (K, and M). 
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H&E staining, neoplastic features, such as high nuclear-cytoplasmic ratios, 

variations in cell sizes and altered tissue architecture were easily identifiable. 

MPM/SHG imaging also allowed better visualization of collagenous stroma 

(Fig. 4.1, B, C, E and F) and demonstrated that the majority of collagen fibers 

near the invasive edge are located perpendicular towards its surface (Fig. 4.1, 

E and F). At the same time, H&E sections were essential for evaluation of 

such key pathological characteristics as nucleoli, chromatin condensation and 

overall tinctorial properties of tissues. Identification of mitotic and apoptotic 

cells was also problematic with MPM/SHG alone.  

 To extend the generality of these observations, we developed and 

evaluated a new model of disseminated peritoneal EOC. In this model, OSE 

transformed by p53 and Rb inactivation and c-Myc overexpression form 

multiple neoplastic tumors on the visceral and parietal walls of the abdominal 

cavity 3 to 5 weeks after intraperitoneal injection. Similar to neoplasms of 

TgMISIIR-TAg mice, neoplastic cells were identified by both H&E and 

MPM/SHG imaging (Fig. 4.1, G and H) in all 10 studied cases. Notably, these 

tumors also had an aberrant appearance and orientation of collagen (Fig. 4.1, 

H and I). Fibrils underlying normal peritoneal mesothelium were relatively 

uniform and had a wavy appearance, whereas those around tumor masses 

had variable diameter and a straight-rigid appearance. Uniformity and 

appearance aberrations were well discernable (at low and high resolution, 

respectively) by projecting optical slices from a collagen image stack 

underlying mesothelium (Fig. 1, J and K) or neoplastic cells (Fig. 4.1, L and 

M). Alignment properties were automatically analyzed by computing FFT’s of 

the projected images and fitting Gaussian ellipses to the resulting Fourier 

components. FFT’s from normal (Fig. 1N) and carcinomatous (Fig. 4.1O) 
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peritoneum image stacks revealed a significant increase in asymmetry (P = 

0.0456) of the tumor fibrils with respect to normal fibrils (mean ± SE; 3.0 ± 0.6, 

n = 4 vs. 1.49 ± 0.02, n = 4). A potential difference in segmental collagen 

indicative of fibrillogenesis (observable as micron-scale spots in the images, 

see Williams et al., 2005) was also investigated. Collagen segments were 

hypothesized to be more numerous in the cancer tissues owing to an 

increased collagen turnover in these tissues (see for example Kenny and 

Lengyel, 2009). However, the amount of observable segmental collagen was 

found to be fairly equivalent in the cancer and control tissues. We next tested 

the application of MPM/SHG to human samples. Comparative analysis of 

normal ovary (Fig. 4.2, A and B, n = 8) and ovarian adenocarcinomas (Fig. 

4.2, C and D, n = 4) confirmed that this approach provides a level of detail 

similar to that obtained with standard histological processing, with previously 

noted advantages and limitations. Consistent with observations in mouse 

models and studies in human tissues (Kirkpatrick et al., 2007), collagen from 

human EOC tumors was generally observed in thicker, less uniform bands 

than that from normal ovaries (Fig. 4.2, D versus B).  

 

4.4.2 MPM-based Morphometric Analysis Allows Detection of Early 

Changes during Ovarian Carcinogenesis. According to literature reports, in 

humans, early ovarian lesions can be identified according to their 

morphometric parameters, such as enlarged cellular and nuclear size 

(Deligdisch et al., 1995; Deligdisch and Gil, 1989; Deligdisch et al., 1999; 

Deligdisch et al., 1993; Gil and Deligdisch, 1989). However, because 

identification of such lesions is usually accompanied by ovariectomy, their 

progression to carcinoma remains unconfirmed. In order to reproducibly 
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Figure 4.2. Standard histology and MPM/SHG of human ovarian 

epithelium and poorly differentiated adenocarcinoma. The same tissue 

specimens were visualized after formalin fixation and paraffin embedding 

followed by H&E staining (A and C) and before fixation using MPM/SHG of 

intrinsic tissue emissions (B and D). (A, B) Morphologically normal ovarian 

epithelium in the invaginations (arrow) and simple cysts (arrowhead) near the 

surface of of the ovary. (C-D) Atypical neoplastic cells forming glandular 

structure (arrow) within desmoplastic stroma (arrowhead). Note presence of 

collagen fibrils imaged via second harmonic generation (SHG; blue), a feature 

not readily evident in conventionally prepared tissue. MPM/SHG images are 

acquired as in Fig. 1. Scale bar, 30 µm in all images. 
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examine early events associated with ovarian carcinogenesis we turned to our 

model of serous ovarian adenocarcinoma initiated by conditional inactivation 

of OSE p53 and Rb after a single transinfundibular intrabursal injection of 

AdCre (Flesken-Nikitin et al., 2003). This model is uniquely suited for such 

studies because of temporal and local control of the initiating event. EOC 

develop relatively synchronously and lead to death in 97% of mice with 

median survival of 227 days after gene inactivation (Flesken-Nikitin et al., 

2003).  

 Similar to other ovarian samples, neoplastic lesions discernable by 

pathological evaluation of H&E sections were readily detectable by MPM/SHG 

(Fig. 4.3, A and B). Furthermore, MPM/SHG allowed detection of a thickening 

of the collagen fibers at or near the basement membrane underlying early 

dysplastic lesions (compare Fig. 4.3, C and D to Fig. 4.1, B and C). After 

confirming our earlier observations that over 90% of OSE cells are infected 

after administration of 5 x 107 pfu/μl of adenovirus (Fig. 3E and Flesken-Nikitin 

et al., 2003), we next tested whether MPM/SHG optical sectioning could 

facilitate detection of morphological alterations at 8 and 34 days after 

conditional inactivation of p53 and Rb. No changes in cellular morphology and 

histological architecture were detected by visual evaluation of either H&E or 

MPM sections. However, a quantitative morphometric assessment of MPM 

sections taken in parallel to the ovarian surface, demonstrated a significant 

enlargement of nuclei and cytoplasm of OSE 8 and 34 days after initiation of 

carcinogenesis (Figue 4.3, F-H). Interestingly nuclear-cytoplasmic ratios were 

not changed to any significant extent (P = .6547 and .3761 at day 8 and 34, 

respectively).  
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Figure 4.3 Ovarian surface epithelium carcinogenesis associated with 

conditional inactivation of p53 and Rb genes. Multilayered atypical cells 

forming papillary structures (arrows) can be identified by conventional 

microscopy (A) and MPM/SHG (B). Thickening of the collagen fibrils 

(arrowheads) near and at the basement membrane of early dysplastic lesion 

(arrow) is evident in the MPM/SHG image (C) with the SHG reproduced in 

grayscale for clarity (D). (E) Expression of eGFP in the OSE of a mouse ovary 

after a single ovarian intrabursal injection with 5 x 107 pfu/µl of AdCMVEGFP. 

Arrow indicates OSE; CL, corpus luteum; F, follicle; and V, vessel. Green 

pseudocolor is GFP fluorescence and yellow is intrinsic fluorescence (< 500 

nm emission). (F) Morphometric evaluation of intrinsic emission images of 

mouse OSE. Size of individual cells and their nuclei and cytoplasm was 

assessed by estimation of area (white rings, µm2, mean ± SE). (G) Results are 

plotted for images collected at 8 days after intrabursal administration of 

AdCMVCre (Cre) or AdCMVLacZ (LacZ) to p53floxPRb1floxP mice. Unpaired t 

test yielded 2-tailed P values of .0002 for whole cell Cre versus LacZ (171.4 ± 

12.4, n = 45 vs. 120.4 ± 6.0, n = 53), P = .0466 for nucleus Cre versus LacZ 

(74.8 ± 5.3, n = 45 vs 53.0 ± 10.7, n = 26) and P = .0009 for cytoplasm Cre 

versus LacZ (96.58 ± 8.7, n = 45 vs. 65.6 ± 3.78, n = 53). (H) At 34 days after 

transformation, unpaired t test yielded 2-tailed P = .0007 for whole-cell Cre 

versus LacZ (130.4 ± 6.5, n = 40 vs 92.1 ± 8.8, n = 36), P = .015 for nucleus 

Cre versus LacZ (70.0 ± 4.5, n = 40 vs 53.4 ± 4.9, n = 36), and P = .0007 for 

cytoplasm Cre versus LacZ (60.38 ± 4.3, n = 40 vs 38.6 ± 4.3, n = 36). All 

experiments have been performed in duplicates, and yielded similar results. 

Scale bars, 15 µm (A, B), 20 µm (C, D), 30 µm (E) and 12 µm (F). 
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4.4.3 Quantitative Changes in Intrinsic Fluorescence Properties of 

Ovarian Cancers. Because the intracellular fluorescence signal in epithelial 

cells is thought to derive primarily from NAD(P)H, we hypothesized that 

characteristics of this signal - intensity, spectrum or anisotropy - may yield 

further information about the metabolic state of cells. We initially tested these 

parameters in primary OSE cells carrying floxed p53 and Rb genes three 

passages after exposure to AdCre or AdLacZ (control). Indeed intensity in 

cells with p53/Rb deletion was significantly lower (60 ± 4%, mean ± SE, n = 32 

images) than that of the normal population (100 ± 12, n = 16 images, P = 

.0003). We also observed a slight spectral red shift in cell cultures (not 

shown). Both characteristic changes seemed correlated with a vesicular 

production of a fluorescent material not evident in the normal cells in vivo. 

 The third parameter tested was steady state emission anisotropy of the 

intrinsic fluorescence signal. Such a measurement is expected to yield 

information about the amount of time the fluorophore has rotated with respect 

to its fluorescence lifetime. For example, the rotation time (and fluorescence 

lifetime) can change upon NADH binding to a high molecular weight protein. 

Intrinsic fluorescence anisotropy in neoplastic OSE cells (0.301 ± 0.001, mean 

± SE, n = 25 images) was significantly (P < .0001) lower than that found in 

normal OSE cells (0.319 ± 0.003 mean ± SE, n = 25 images). These results 

may indicate that more metabolically active cells, such as neoplastic cells, 

have a higher fraction of free to bound NAD(P)H (as has been shown in 

transformed mammary cell cultures, Yu and Heikal, 2009).  

 However, in mice, we determined that intensity and anisotropy values 

were highly sensitive to tissue scattering and thus depended on the amount 

and type of tissue through which the image was obtained. Accordingly, 
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intensity and anisotropy analyses of tissues have yielded inconsistent results 

(not shown).  

 At the same time, a red-shift in the average cellular intrinsic 

fluorescence was reproducibly observed in tumor-derived cell masses as 

compared to normal OSE. MPM images of freshly excised tissue from the 

disseminated metastasis model (Fig. 4.4) exhibited a LW/SW ratio that was 

significantly higher in neoplastic versus normal cells (1.3 ± 0.1, mean ± SE, n 

= 7 tumors, vs 1.00 ± 0.03, n = 9 ovaries, P = .0064). Intriguingly, the spectral 

shift in tumors appeared to arise mainly from a separate population of red-

emitting cells within the tumor mass (Fig. 4.4D). These red-emitting cells were 

found to be viable by analysis of NADH intensity and co-staining with the vital 

stain calcein-AM (data not shown). 

 

4.4.5 Intravital MPM of ovarian cancer using laparoscopic stick objective. 

It has been previously demonstrated that under specific experimental 

conditions, usually in combination with research fluorophores, MPM may be 

used for imaging in living animals (Zipfel et al., 2003; Brown et al., 2001; 

Condeelis and Segall, 2003). To examine the feasibility for in vivo applications 

without contrast agents, we imaged ovaries from live mice (Fig. 4.5, A-F) by 

exteriorizing the ovary to isolate it from the body cavity. This method was 

sufficient for resolving single OSE cells in unstained ovaries (Fig. 4.5, A-C) 

and for discriminating these normal OSE from early EOC neoplasias using the 

floxed p53/Rb model (Fig. 4.5, D-F). 

 However, standard large diameter microscope objectives preclude 

access to internally located organs and tissues. In addition, to collect images 

at micronmeter-scale resolution, strategies for mitigating motion artifacts 
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Figure 4.4 Emission color changes in intrinsic fluorescence of epithelial 

ovarian carcinoma (EOC). Normal OSE (A and B) and neoplastic cells from 

the disseminated peritoneal EOC model (C and D) were analyzed for the 

relative amounts of long-to-short wavelength (LW/SW, 510-650 nm/410-490 

nm, green/red pseudocolor) intrinsic fluorescence. For reference, SHG from 

the collagen of the ovarian bursa is shown in blue pseudocolor. Intrinsic 

fluorescence images of OSE are manually marked (green masked areas, A 

and C). The white boxes mark the zoomed regions shown in B and D 

respectively. (E) Analysis of average pixel intensities in the green masked 

areas shows that tumor intrinsic fluorescence is red-shifted with respect to 

normal OSE due to a distinct red-emitting cell population (arrows, D). Average 

LW/SW ratios are 1.00±0.03 (mean±SE, n = 9; RU, relative units) for normal 

OSE and 1.3±0.1 (P value=0.0064, n = 7) for neoplasms. Data was acquired 

from 450 images at 780 nm excitation. The calibration bar is 50 µm (A and C) 

and 25 µm (B and D). 
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Figure 4.5. Discriminating normal from neoplastic OSE in live mice using 

MPM/SHG. Images of normal (A-C) and transformed (D-F) OSE mice from the 

conditional inactivation of p53 and Rb model are acquired by exteriorizing the 

ovary and imaging with a standard objective lens. In zoomed images from A 

and D respectively, OSE (arrows) are resolvable as a single layer in normal 

ovaries (B) and in multiple layers in neoplasia (E). In addition, the SHG 

channel (C, F) shows that the collagenous layer underneath of the OSE is 

visibly thicker in the neoplasia (arrowhead). OB marks the ovarian bursa and  

>> marks horizontal motion artifacts due to mouse breathing. Scale bars, 30  

µm (A and D) and 15 µm (B, C, E and F).  
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primarily due to patient breathing must be in place. To address these 

challenges we tested a microprobe "stick" objective recently developed by 

Olympus. This series of optics are fully aberration corrected objective lenses 

with small-diameter (1.2 and 3.2 mm) centimer-long tips.  We found simple 

GRIN lenses to be ineffective for collection of high-quality intrinsic emission 

images due presumably to their more significant aberrations. In agreement 

with our previous results demonstrating the applicability of the Olympus 

microprobe objective for MPM imaging of intrinsic fluorescence of excised 

colon tissues (Rogart et al., 2008), we could successfully image ovarian and 

peritoneal tissues without staining (not shown). After additional improvements 

for tissue rinsing and stabilization by supplementary tubing, we were able to 

image the parietal and visceral mesothelium and underlying tissues of the 

peritoneal cavity. Importantly, neoplastic cells were readily discernable from 

surrounding normal tissues in the mouse model of disseminated peritoneal 

EOC (Fig. 4.6). 

 

4.4.6 Combination of low magnification screening with high resolution 

MPM optical biopsy. A potential limitation of the stick objective lens is its 

small field of view. To facilitate intravital screenings of neoplastic lesions 

across large areas, mice were intraperitoneally injected with ProSense 680, a 

complex that emits red light upon cathepsin B-mediated hydrolysis. In 

agreement with previous results (Gounaris et al., 2008), this indicator of 

protease activity has been effective in detection of neoplastic disseminated 

peritoneal EOC cells by low magnification both with standard and multiphoton 

excitation (Fig. 4.7, A-D). Selected areas were subsequently visualized by the 

laparoscopic objective lens (Fig. 4.7, E and F) enabling visualization of  
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Figure 4.6 Intravital MPM/SHG imaging in the abdominal cavity using a 

microprobe objective lens (diagram, A). Normal peritoneum (B and C) and 

neoplastic cells of the disseminated peritoneal EOC model (D-G) imaged in 

vivo and in situ through an abdominal incision. Normal mesothelium is very 

thin, has low intrinsic fluorescence and is essentially invisible using intravital 

MPM. However neoplastic lesions are clearly visible at the invasive edge (D 

and E) and at the tumor surface (F and G). For clarity SHG images are 

reproduced in grayscale in C, E and G. Motion artifacts due to mouse 

breathing are marked with >>. The yellow meniscus at the bottom of (B) is the 

edge of field of view of the stick objective lens. The calibration bar is 30 µm. 
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Figure 4.7 Imaging cathepsin activity using MPM/SHG. Images of the 

normal peritoneum (A, C, E, and G) and peritoneal tumors (B, D, F and H, 

arrows) from the disseminated peritoneal model after administration of 

ProSense 680 (red). Detection of neoplastic lesion using standard stereo 

fluoroscopy (A and B) and subsequent mapping its tumor boundaries (D, 

arrowheads) in three dimensions with MPM/SHG. In this case normal (C) and 

tumor (D) images were collected with a low-magnification objective (4x/0.28 

NA) and displayed as projections, each from 100 images at 5-µm intervals. 

Discrimination between normal abdominal wall (E) and neoplasm (F) at 

cellular resolution with the stick objective. High-resolution MPM/SHG images 

demonstrate cathepsin activity in certain stromal cells (G, arrowheads) and 

neoplastic cells (H, arrow). Additionally they show alterations in the size and 

shape of neoplastic cells and tissue architecture as well as the orientation of 

collagen fibrils towards tumor boundary (H, arrowhead). Scale bars, 1000 µm 

(A, B), 500 µm (C, D), 80 µm (E, F), and 100 µm (G, H). 
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individual cells with cathepsin B activity. Whereas most fluorescent cells were 

neoplastic cells, capillaries and intra-muscular cells underneath of the parietal 

peritoneum (Fig. 4.7G) were also detected in agreement with earlier 

observations (Gounaris et al., 2008). MPM/SHG enabled a detailed mapping 

of the tumor boundary in three dimensions, confirming our earlier observations 

that collagen fibrils around tumors were straighter and orientated towards the 

tumor boundary at the invasive front (Fig. 4.7H). 

 

4.5 Discussion 

 

Minimally invasive or noninvasive methods of cancer diagnosis and 

therapeutic assessment in humans and real-time monitoring of carcinogenesis 

in experimental animals remain among the most coveted, challenging goals of 

cancer research. Undoubtedly, such abilities would tremendously facilitate our 

understanding of cancer initiation and progression, as well as enable 

development of patient-tailored therapeutic approaches. Two recent 

developments have provided an exciting premise for further studies. Firstly, 

there has been recent remarkable progress in technologies allowing 

noninvasive imaging of molecular and cellular processes (Weissleder and 

Ntziachristos, 2003; Weissleder and Pittet, 2008). Secondly, technological 

progress in manipulating and genetically modifying the mouse genome has led 

to rapidly expanded repertoire of accurate cancer models that genetically and 

phenotypically mimic human cancers (reviewed in Jonkers and Berns, 2002; 

Van Dyke and Jacks, 2002; Frese and Tuveson, 2007). 

 Both advances have stimulated the evolution of fluorescent contrast 

agents for detection and monitoring of cancer (Pierce et al., 2008; Weissleder 
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and Ntziachristos, 2003). Problems with these agents include reporter 

specificity, induced toxicity and appropriate delivery strategies. Endogenous 

emitters, in contrast, are integral to the tissue. Although their photophysical 

characteristics are generally inferior (dim and emitting at short wavelengths 

that scatter easily in tissue), intrinsic tissue emissions exhibit signature 

properties of the natural tissue (Zipfel et al., 2003a). Because emission 

spectra are independent of the mode of excitation (i.e., conventional UV 

illumination vs two-photon excitation), the interpretation of multiphoton intrinsic 

tissue fluorescence images initially relies on a broad body of one-photon 

excitation tissue spectroscopy and imaging experiments (for reviews, see 

Ramanujam et al., 2000; Richards-Kortum and Sevick-Muraca, 1996), in which 

significant effort has been dedicated towards identifying spectral 

characteristics of intrinsic tissue that discriminate between normal and 

dysplastic or neoplastic tissues. Generally empirical diagnostic criteria are 

established by analyzing the spectral shape of the intrinsic fluorescence 

excitation and/or emission curves by using a training set of cancerous versus 

normal specimens. This strategy has proven successful for a wide variety of 

cancerous tissues (Avrillier et al., 1997; Brancaleon et al., 2001; Coghlan et 

al., 2001; Heintzelman et al., 2000; Li and Xie, 2005; Majumder et al., 2000; 

Qu et al., 2002; Qu et al., 2000; Ramanujam et al., 1994; Wang et al., 1999; 

Zheng et al., 2003) and has been implemented in endoscopic devices for early 

detection of cancerous lesions in cervix (Ramanujam et al., 1994), colon 

(Wang et al., 1999), bladder (Avrillier et al., 1997), skin (Brancaleon et al., 

2001), oral cavity (Heintzelman et al., 2000; Majumder et al., 2000; Qu et al., 

2000), and esophagus (Georgakoudi and Feld, 2004). Typically, spectral 

measurements are taken at a single point in the tissue, the location of which is 
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guided by a white-light endoscope. Recently, however, imaging intrinsic 

fluorescence endoscopes have been developed (the LIFE-GI and Olympus 

Auto-Fluorescence Videoscope systems) that show diagnostic potential for 

gastric (Namihisa et al., 2003), lung (Kobayashi et al., 2001) and colon (Ikeda 

et al., 2003) cancers.  

 Albeit useful, the resolution of these systems is in the millimeter range, 

precluding detection and characterization of microscopic lesions as well as 

evaluation of tissue properties at the single-cell level. Nonlinear imaging 

approaches, such as MPM and SHG have the potential to address this current 

limitation (Zipfel et al., 2003b). However, their applicability to clinical settings 

greatly depends on several advances including 1) the development of 

diagnostic criteria comparable to those obtained from routine histological 

imaging; 2) the ability to obtain clear images in a difficult environment with 

significant optical scattering from blood (Cheong et al., 1990) and motion 

artifacts from breathing and heart beat; 3) the development of endoscopic 

instruments compatible with ultrafast optics, enabling minimally invasive 

access to target organs and tissues; with high enough sensitivity to collect 

weak intrinsic fluorescence signals, and (4) improvements in the ability to 

locate regions for high resolution assessment by MPM/SHG (better integration 

of the low- to high-magnification switch). 

 

4.5.1 MPM/SHG Diagnostic Criteria. In the present study we have tested the 

feasibility of MPM/SHG imaging in ovarian cancer, where the need for early 

diagnosis and thorough assessment of effectiveness of debulking surgery is of 

particular importance. Because translation of new diagnostic tests and 

approaches into clinical practice and, particularly into pathology greatly 
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depends on the ability for linking new diagnostic criteria with already 

established and clinically proven sets of features, we have taken a particular 

attention to advantages and disadvantages of imaging of native tissues with 

MPM as compared to routine microscopy of H&E histological slides. Side-by 

side- evaluation of EOC specimens from human patients and mouse models 

has demonstrated that MPM/SHG was sufficient to detect features of 

neoplasia such as size and shape of cellular compartments and tissue 

architecture. In addition, MPM/SHG images of tissue emissions provided 

information that was different to that obtained using standard histological 

protocols. For instance, SHG clearly delineates fibrillar collagen structure, 

which is not visible in standard H&E sections. However absent in MPM/SHG 

images were diagnostic nuclear information such as nucleoli size and shape, 

chromatin condensation, and localization. Furthermore, H&E color variations 

are also absent; cytosolic spaces are instead largely delineated by NAD(P)H 

fluorescence, which is sensitive to redox state (Chance et al., 2004).  

 The origins of many reproducible fluorescent features in the intrinsic 

tissue fluorescence images are still unknown. Our work contributes to the 

development of an atlas or database for interpreting intrinsic tissue emission 

changes characteristic of different lesions. Such efforts complement those by 

other laboratories (Han et al., 2008; Kirkpatrick et al., 2007; Mukherjee et al., 

2009; Provenzano et al., 2008; Rogart et al., 2008; Skala et al., 2005). 

 In addition to the direct applicability of MPM/SHG imaging for diagnosis 

of neoplasia according to established pathological criteria, several of its 

intrinsic features are particularly attractive for facilitation of diagnosis. Firstly, 

MPM/SHG imaging allows rapid and three-dimensional pathological 

assessment of excised tissue with virtually no tissue preparation. This 
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methodology should be useful in a clinical situation requiring fast three-

dimensional images of biopsies or in live tissue studies where tissue fixation 

cannot be used because it perturbs the tissue architecture or processes under 

study. We demonstrate here that MPM/SHG “optical sections" allow us to 

avoid time-consuming serial histological sectioning required for the accurate 

evaluation of a single-layered OSE. It is anticipated that further studies using 

this approach will simplify morphometric assessments of early ovarian lesions 

in humans. 

 Secondly, MPM/SHG imaging allowed better estimation of location and 

characterization of collagenous stroma. Because, metastatic progression of 

ovarian cancer is known to coincide with increased collagen synthesis and 

degradation (Kenny and Lengyel, 2009; Petri et al., 2009); we analyzed 

images for an increase in segmental collagen associated with fibrillogenesis in 

the regions surrounding tumors, but found comparable amounts. Instead we 

observed a thickening of collagen at the basement membrane in early ovarian 

neoplasias and straighter, less uniform collagen fibrils around peritoneal 

neoplastic implants, consistent with previous reports that stromal matrix 

components become rearranged in tight, linearly aligned fibers in invasive 

ovarian carcinomas (Quiros et al., 2008; Yamada and Cukierman, 2007). In 

addition, we demonstrated that most collagen fibers near the invasive edge 

are located perpendicular towards its surface. These results are consistent 

with previous reports from breast tumors (Provenzano et al., 2008), suggesting 

that fibrils oriented perpendicular to the tumor were correlated to tumor cell 

infiltration to the host stromal tissue.  

 Thirdly, MPM allows comprehensive evaluation of spectral changes in 

intrinsic fluorescence with cellular resolution. We determined that intensity and 
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anisotropy analyses of tissues are unlikely to yield consistent results owing to 

their high sensitivity to tissue scattering. Similar to a previous report from 

human tissue (Kirkpatrick et al., 2007), we detected a red-shift in fluorescence 

of neoplastic cells in mice with advanced EOC. Kirkpatrick et al. (Kirkpatrick et 

al., 2007), attributed this spectral shift to an increase in the overall FAD to 

NAD(P)H ratio. However, according to our observations, this alteration in 

intrinsic cellular fluorescence derives not from an average color change but 

from a specific population of redder-emitting cells within the tumor. These cells 

were determined to be alive by cellular NAD(P)H expression and calcein-AM 

staining, and may represent porphyrin -containing cells (Li and Xie, 2005; 

Nilsson et al., 1997; Onizawa et al., 2003). 

  

4.5.2 Towards an In Vivo Implementation of Intrinsic Tissue 

Fluorescence MPM/SHG. Clearly, a standard multiphoton microscope cannot 

be used for microscopic imaging in humans. However, several recent 

technologic advances have made an endoscopic version of MPM/SHG - a 

device for in vivo collection of histologic-like images - to be a realistically 

achievable goal. Several recently developed confocal endoscopes offer 

remarkable cellular-scale imaging in vivo and are undergoing clinical trials (Lin 

et al., 2008; Smith et al., 2008). In these devices, motion artifacts are 

minimized with catheter tissue stabilization and use of suction ports. An 

endoscopic implementation of MPM may complement such efforts with the 

additional ability for imaging intrinsic tissue fluorescence and an expected 

several-fold increase in depth penetration (Zipfel et al., 2003b). The first 

challenge has been to engineer fibers through which sufficiently powerful 

femtosecond laser pulses can propagate with minimal temporal pulse 
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broadening due to dispersion. An uncompensated 1- nJ, 100 fs pulse will 

lengthen to ~4000 fs after traveling through a meter of optical fiber (reducing 

the 2P excitation potential by a factor of 40). Pulse dispersion can be partially 

compensated at low powers. But for higher power delivery, microstructured 

fibers are necessary. These are relatively large (keeping average intensities 

low), but only propagate a single mode due to intricate boundary conditions 

(Ouzounov et al., 2002a; Ouzounov et al., 2002b). Scanning is done either by 

wiggling the fiber (Bao et al., 2008; Delaney et al., 1994; Engelbrecht et al., 

2008; Myaing et al., 2006; Smith et al., 2008) or through MEM devices (Tang 

et al., 2009) transferred to a gradient-index or micro-lens for focusing (Barretto 

et al., 2009). Several researchers have demonstrated collagen imaging 

through an MPM endoscope (Fu et al., 2006; Tang et al., 2009), but not yet in 

vivo. The real challenge has been to design an endoscope with the sensitivity 

for imaging intrinsic cellular fluorophores, which are typically 100-fold dimmer 

than standard fluorophores (Zipfel et al., 2003a). In the current study, we 

demonstrate cellular visualization in vivo using MPM/SHG of intrinsic 

emissions that can be used to identify neoplasias in several mouse models of 

ovarian cancer. In addition,-we demonstrate the feasibility of an in vivo 

laparoscopic implementation of MPM/SHG by using a recently developed 3-

mm diameter stick objective that allows direct access to imaged tissues. In this 

case a separate small tube served to stabilize and rinse the tissue, the latter 

capability being particularly relevant to tumors that present with internal 

bleeding. 

 

4.5.3 Contrast Agents for Targeting MPM/SHG to Putative Neoplastic 

Lesions Regions. In addition to endogenous intrinsic fluorescence, it is likely 



106 

that fluorescent contrast agents (for example ALA, Loning et al., 2006) and/or 

smart indicators (Mahmood and Weissleder, 2003; Pierce et al., 2008) will 

improve diagnostic information and signal once issues of toxicity and delivery 

are better understood. Others have demonstrated the utility of the cathepsin 

activity indicator ProSense 680 for ovarian cancer diagnostics (Sheth et al., 

2009). We showed that this signal can be used to quickly identify lesions with 

standard fluoroscopy for subsequent cellular-resolved interrogation using 

MPM/SHG. ProSense 680 can be imaged simultaneously with intrinsic tissue 

emissions providing a contextual tissue background. Because it fluoresces in 

the NIR, ProSense 680 may also substantially improve the depth and 

accuracy to which lesions can be mapped with MPM/SHG in the difficult in 

vivo environment. 

 Taken together, our results demonstrate the feasibility of high resolution 

imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy. 

They also demonstrate the value of MPM/SHG imaging for rapid initial 

assessment of ovarian cancer samples. Further advances in photonics and 

microfabrication should make it possible to produce an efficient fiber-coupled 

multiphoton endoscope with capabilities for a minimally invasive, all-optical 

biopsy for a cellularly resolved diagnostic assessment of ovarian cancer 

lesions, as well as other malignancies. 
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CHAPTER 5 

TOXICITY AND BIOMEDICAL IMAGING OF LAYERED NANOHYBRIDS IN 

THE MOUSE* 

 

 

5.1 Abstract 

 

Layered nanohybrids (LNH) are a promising non-viral system allowing 

controlled drug and DNA delivery. In order to test the toxicity of LNH consisting 

of a magnesium/aluminum core, mice were subjected to subcutaneous, 

intraperitoneal, and intravenous injections of these nanoparticles at three 

doses. Intravenous injections resulted in 8% (1 out of 12) lethality at doses 

100 µl and 200 µl of 6.96 x 10-4 M solution, while all mice survived after LNH 

administration by any other routes. Histopathological alterations were limited 

to mild localized inflammatory lesions in the lungs and the dermis after 

intravenous and subcutaneous administration, respectively. LNH labeled with 

Lucifer Yellow were readily detectable in both locations by fluorescent 

microscopy. To test their potential for intravital imaging, LNH-Lucifer Yellow 

were injected into the ovarian bursa and successfully visualized by 

multiphoton microscopy within the ovarian surface epithelial cells. In similar 

experiments, the ovary and the ovarian bursa were readily detectable by 

magnetic resonance imaging after administration of modified LNH, where 

aluminum was substituted for gadolinium. Taken together, these results 

demonstrate minimal in vivo toxicity of LNH and illuminate their potential as 

multifunctional nanoscale particles suitable for combination of intravital 

biomedical imaging with controlled drug release. 
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5.2 Introduction 

 

Nanotechnology is expected to be one of the leading technologies of the 

future. The reduction of material size from micro- to nano scale offers benefits 

to diverse scientific fields and has the potential to revolutionize medical 

diagnostics and care (Roco et al., 2003; Stix et al., 2001). The development of 

multifunctional nanoparticles for biomedical and biotechnological applications 

may improve cancer therapy, DNA transfection, intravital imaging, targeted 

drug delivery, and enzyme immobilization (Ferrari et al., 2005; Hirsch et al., 

2003; La Van et al., 2002; Vijayanathan et al., 2002; Wagner et al., 2006). 

Though there is a growing literature on application of nanoparticles and 

nanotechnology, only limited information on the biological effects of 

nanoparticles on cells and tissues and their potential risks to humans and the 

environment is available (Chen and von Mikecz, 2005; Colvin et al., 2003; 

Donaldson et al., 2006; Holsapple et al., 2005; Oberdoerster et al., 2005; 

Peter et al., 2004; Service et al., 2004).  

 Layered nanohybrids (LNH) represent a promising class of therapeutic 

delivery systems. These nanoscale platform particles are based on a layered 

inorganic host that can intercalate various biological molecules into the 

nanometer size galleries between the layers. The host consists of positively 

charged layers of a mixed divalent/trivalent hydroxide (e.g. 

magnesium/aluminum as well as other cation combinations described later). 

The inorganic core of an LNH is like a nanoscale deck of cards. Various 

molecules can be incorporated between the cards while the outer surface of 

the deck can be treated and conjugated to different molecules for targeting. 

LNH are based on self-assembly, a robust, common approach in biological 



116 

systems. Traditional uses for LNH have focused on both medical and non-

medical applications, for example LNH based on Mg/Al have been used for 

years as oral antacids. More recently, several reports describe the use of LNH 

in other pharmaceutical/medical applications including gene and drug storage, 

drug and gene delivery and enzyme immobilization (Ambrogi et al., 2003; 

Ambrogi et al., 2001; Choy et al., 2000a; Choy et al., 2000b; Hussein et al., 

2002; Khan et al., 2001; Kwak et al., 2002; Tyner et al., 2004a; Tyner et al., 

2004b). Recently, LNH were developed for delivering the nonionic, poorly 

water-soluble drug camptothecin or whole gene and promoter using 

magnesium-aluminum layered double hydroxide (Tyner et al., 2004a; Tyner et 

al., 2004b). These studies on glioma and choriocarcinoma cell lines and 

primary culture of cardiac myocytes showed that the nanohybrids were well 

tolerated, caused no pronounced toxicity and delivered the cytostatic drug and 

the functioning gene in all cell lines tested. Furthermore, they also 

demonstrated that LNH could be successfully functionalized and coupled with 

an antibody. However, biological toxicity of LNH in vivo remained unclear. 

 In this communication we perform initial testing to evaluate LNH toxicity 

in vivo. We further demonstrate that, in addition to their value as vehicles for 

controlled drug release, LNH may be suitable agents for biomedical imaging, 

including such advanced technologies as multiphoton microscopy and 

magnetic resonance imaging. 

 

5.3 Materials and Methods 

 

Experimental Animals. FVB/N inbred mice and mice with floxed copies of p53 

and Rb genes were maintained in our laboratory animal facility under 12 hours 
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light/dark cycle at a temperature of 20oC and relative humidity of 20-50% and 

were monitored daily following recommendations of the Institutional Laboratory 

Animal Use and Care Committee of Cornell University.  

 

Preparation of LNH. LNH were synthesized according to a previously 

described method (Tyner et al., 2004a; Tyner et al., 2004b). In brief, positively 

charged magnesium-aluminum (Mg/Al) double hydroxide forming the layered 

nanoparticle cores was mixed with the potassium salt of Lucifer Yellow 

fluorescence dye. Ion exchange allowed the incorporation of the negatively 

charged dye into the nanometer size galleries between the layers. 

Nanoparticles with inorganic gadolinium/magnesium (Gd/Mg) double 

hydroxide core were synthesized similarly. 

 

Administration of LNH. LNH were administered to two to four months old mice 

intravenously (i.v.), intraperitoneally (i.p.) or subcutaneously (s.c.) at 6.96 x 10-

4 M in 50, 100, and 200 µl of distilled water and mice were euthanized 3, 7, 21 

and 35 days post injection. For each concentration at least 3 animals were 

used per each time point in each treatment group. As a control, mice were 

injected with distilled water and collected over the same time schedule.  

 

Pathological Analysis. Moribund and scheduled for material collection mice 

were anesthetized with avertin (2.5% v/v in 0.85% NaCl, 0.020 ml/g body 

weight) followed by CO2 euthanasia and subjected to careful pathological 

evaluation. Brain, lungs, liver, kidney, spleen, pancreas, tight muscle, eye, and 

skin were fixed in phosphate-buffered 4% paraformaldehyde and 

representative specimens were processed routinely and embedded in paraffin 
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as described previously (Flesken-Nikitin et al., 2003; Zhou et al., 2006). Our 

preliminary results demonstrated that LNH containing Lucifer Yellow (LNH-LY) 

can be equally well detected both in frozen and paraffin material. Thus, 

parallel paraffin sections were used for hematoxylin and eosin (H&E) staining 

and LNH detection. Distribution of LNH was assessed in either unstained or 

DAPI counterstained sections mounted with GEL/MOUNT (Biomeda Corp. 

Foster City, CA), sealed with Clarion Mounting Medium (Biomeda Corp. Foster 

City, CA), and imaged by fluorescence microscopy (Carl Zeiss Axioskop 2).  

 

Primary Culture of the Ovarian Surface Epithelium (OSE). Individual ovaries 

were dissected from mice with floxed copies of p53 and Rb genes, placed in 

DMEM/F12 (Ham's) medium containing Collagenase-Dispase at 5% CO2 for 1 

hour and expanded as described previously (Flesken-Nikitin et al., 2003). 

Inactivation of p53 and Rb was achieved by recombinant adenovirus-mediated 

expression of Cre recombinase and gene excision was monitored by PCR as 

in (Flesken-Nikitin et al., 2003). Primary cell cultures of OSE deficient for p53 

and Rb were incubated with 6.96 x 10-4 mol of LNH-Lucifer Yellow for 3 to 6 

hrs hours, washed three times with PBS, fixed with 4% paraformaldehyde, 

mounted with GEL/MOUNT and imaged by fluorescence microscopy 4 days 

after LNH administration.  

 

Administration of Nanohybrids to Mouse OSE in vivo. Ten µl of LNH was 

delivered into the ovarian bursa by transinfundibular injection with a Hamilton 

syringe and a 30-gauge beveled needle under the control of a dissection 

microscope after deep anesthesia with intraperitoneal avertin as described 
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previously (Flesken-Nikitin et al., 2003). As a control, a vehicle solution was 

injected into the contralateral ovarian bursa.  

 

Multiphoton and Magnetic Resonance Imaging. For multiphoton imaging 

freshly dissected  ovaries were placed in saline and imaged within 10 min after 

dissection as described previously (Flesken-Nikitin et al., 2004; Zipfel et al., 

2003a).  Multiphoton imaging was accomplished with a water immersion 

Olympus XLUMPlanFl 20x/0.95NA objective and excitation at 780 nm. The 

tissue emission was spectrally resolved into 2 channels; a 360-500 nm band 

(pseudocolored yellow) was used to image tissue structure: cellular 

autofluorescence and second harmonic generation from collagen, and a 500-

650 nm band (pseudocolored green) was used to detect the Lucifer yellow 

fluorescence. For magnetic resonance imaging (MRI) mice were anesthetized 

with avertin, placed on a heating pad and imaged in a 2 Tesla MRI scanner at 

the Cornell University Hospital for Animals 3 days after injection of Gd/Mg 

LNH. 

 

5.4 Results 

 

5.4.1 LNH Toxicity and Biodistribution. To assess the potential in vivo 

toxicity of LNH, groups of mice were subjected to single i.v., i.p. and s.c. 

injections with three different doses of nanoparticles as described in the 

Materials and Methods. One mouse per each group of 12 (8%) died within 3 

days after i.v. administration of 100 µl and 200 µl at concentration 6.96 x 10-4 

M of LNH. Necropsy findings included extension of alveolar capillaries by 
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blood, alveolar septal edema and focal intraalveolar hemorrhage. These 

features were consistent with acute pulmonary congestion, most likely due to 

the capillary obstruction by nanoparticles. No abnormal clinical signs or 

behaviors were detected in the remaining mice of the same groups, as well as 

in all mice of 50 µl i.v. group and all groups subjected to i.p. or s.c. injections. 

Mice were euthanized 3, 7, 21 and 35 days post injection and subjected to 

careful gross and microscopic pathological evaluation. Most treated organs 

and tissues from the treated mice showed no significant changes compared to 

corresponding samples from the control animals exposed to aqueous vehicle. 

Exceptions were the presence of inflammatory lesions at sites of 

subcutaneous injections and limited inflammatory lesions detected in the lungs 

of mice with i.v. administration of LNH.  

 Solitary infiltrates of mixed inflammatory cells including neutrophils, 

macrophages, lymphocytes and plasma cells were located in the dermis (Fig. 

5.1A) 3 days after SC injection. At 7 and 21 days postinjection some lesions 

became somewhat larger and contained necrotic center surrounded by 

infiltrating cells and fibrous connective tissue. The lesions become smaller and 

more compact by 35 days after injection. In agreement with these 

observations, LNH-specific fluorescence was observed within inflammatory 

lesions 3 (Fig. 5.1B), 7 and 21 days after LNH administration.  

 Three days after i.v. administration of LNH the lungs contained small 

perivascular inflammatory lesions consisting of neutrophils, macrophages and 

lymphocytes (Fig. 5.1C). By 35 days postinjection these lesions were smaller 

in size and mainly composed of macrophages (Fig. 5.1D, E).The number of 

lesions decreased in a dose-dependent manner, and only a few of them were 

detected in the lungs of mice exposed to 50 µl of LNH. Bright and  
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Figure 5.1. Histological lesions associated with injection of layered 

nanohybrids. (A) Inflammatory response (arrow) composed of neutrophils, 

macrophages, lymphocytes and plasma cells in the skin of a mouse at the 

injection site 3 days after SC administration of 200 μl LNH. (B) Parallel section 

of the same site showing LNH-Lucifer Yellow specific fluorescence (arrow). 

(C). Small inflammatory lesion (arrow) consisting of neutrophils, macrophages, 

and lymphocytes 3 days after i.v. injection with LNH. (D and E) Granuloma 

(arrow) containing macrophage derived epithelioid cells with pale pink 

cytoplasm and indistinct cell borders surrounding a blood vessel 35 days after 

IV injection with LNH. (F) Lucifer Yellow fluorescence indicating LNH uptake in 

cells (arrow) of the same lesion as in (E) in a parallel section. (A, C, D, and E) 

Hematoxylin and Eosin. (B and F) Lucifer Yellow fluorescence. Calibration bar, 

A-F, 50 µm.  
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particulate fluorescence of LNH was observed within inflammatory lesions of 

the lung at all time points of observation including 35 days postinjection (Fig. 

5,1F). Punctate fluorescence was also detected in single liver Kupffer cells of 

IV-treated mice, although no pathological changes were observed. No specific 

nanohybrid fluorescence was detected in any other tissues at the time points 

and routes of application studied. 

 

5.4.2 Biomedical Imaging of LNH 

 

For assessment of potential clinical applications of the LNH, recently 

established approaches for targeting ovarian surface epithelium (Flesken-

Nikitin et al., 2003; Nikitin and Hamilton, 2005) were undertaken.  

 Since prior LNH toxicity and delivery studies on epithelial cells mainly 

utilized established cell lines, such as 9L glioma cells and JEG3 

choriocarcinoma (Tyner et al., 2004a; Tyner et al., 2004b), we tested the 

efficacy of LNH targeting in primary culture of mouse OSE cells acutely 

transformed by p53 and Rb inactivation. Four days after administration over 

80% of OSE retained LNH with no detectable change in their morphology (Fig. 

5.2 A -D), extent of cell death or rate of proliferation (not shown).  

 To extend these studies to animal models, LNH were injected into the 

ovarian bursa of living mouse resulting in exposure of OSE in situ (Flesken-

Nikitin et al., 2003). Using multiphoton microscopy (Zipfel et al., 2003a; Zipfel 

et al., 2003b), LNH were easily detected in the OSE four days after 

administration (Fig. 5.2 E-F). Serial optical section of confirmed intracellular 

location of LNH. Parallel histological evaluation did not demonstrate any  
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Figure 5.2 Detection of fluorescent layered nanohybrids in the ovarian 

surface epithelium in cell culture and living mice. Nanobiohybrids labeled 

with Lucifer Yellow (A, B, E) or control aqueous solvent (C, D, F) have been 

administered to primary cell culture of OSE deficient for p53 and Rb (A-D) or 

to the ovarian bursa of living mouse (E, F). Phase contrast (A, C), fluorescent 

(B, D) and multiphoton images (E, F) were collected 4 days after 

nanobiohybrid administration. Lucifer yellow fluorescence is present in B, and 

E (pseudocolored in green). OSE is indicated by arrows in E and F. Calibration 

bar, A-D, 50 µm, E, F, 40 µm. 
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significant toxicological effects of LNP within this time frame after their 

administration.  

 In order to test potential application of LNH in conjunction with MRI, the 

aluminum of the Al/Mg double hydroxide core was substituted with gadolinium, 

which is commonly used for clinical MRI as a contrasting agent. The 

intrabursal administration of Gd-based nanoparticles (n = 4) was tolerated 

well, resulted in increased contrast of the mouse ovary and demonstrated 

periovarian retention of nanoparticles 3 days after injection (Fig. 5.3). 

 

5.5 Discussion 

 

With the exponential increase of new types and uses of nanoparticles there is 

clearly a call for more research on toxicology of nanomaterials in order to 

determine potential health risks (Maynard et al., 2006; Service et al., 2005). 

The risk assessment studies on graphite, metal oxide and quartz nanoparticles 

revealed complex relationship between adverse biologic effects and particle 

composition, size, and other characteristics and their toxicity and adverse 

biologic effects (Tsuji et al., 2006). The toxicity of airborne nanoparticles is 

relatively well studied, but other routes of exposure, such as subcutaneous, 

intravenous and intraperitoneal administrations remain largely terra incognita.  

 The present study on the systemic and localized administration of LNH 

represents an initial evaluation of their possible in vivo toxicological effects of 

these nanoparticles, as they have great potential for application as tools for 

delivery of anti-tumor and anti-inflammatory drugs and genes (Tyner et al., 

2004a; Tyner et al., 2004b). 

 The s.c., i.p. and i.v. administration of LNH did not cause pronounced 
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Figure 5.3 Detection of gadolinium layered nanohybrids by magnetic 

resonance imaging (MRI). MRI of 6-month old female mice 3 days after 

transoviductal intrabursal injection with vehicle solution (A) or gadolinium-

based nanoparticles (B). Injected left ovaries are indicated with arrows. 

Increase in density indicates location of the ovary contrasted with gadolinium 

nanoparticles. Inverse coronal images. Top, head. Calibration bar, 1 cm. 
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toxicity in the FVB/N mice, as demonstrated by their high survival and lack of 

clinical and behavior signs. This is in accord with the decade-long good safety 

record of aluminum and magnesium oxides and salts as vaccine adjuvants, 

antacids and laxatives (Verdier et al., 2005).  

 In the s.c.-treated mice LNH remained close to the injection site for 21 

days in cutaneous and subcutaneous tissue. The microscopic changes in the 

site of SC injection of LNH resemble the local reaction after administration of 

aluminium-containing vaccines (Valtulini et al., 2005).  

 In the i.p.-injected mice, no specific fluorescence was detected on the 

peritoneum covering liver, spleen, pancreas or kidney, as well as in the 

adjacent mesenteric lymph nodes and additional studies are needed to 

determine the fate of the LNH administered in this fashion.  

 After i.v. application specific nanohybrid fluorescence was observed in 

chronic inflammatory lesions in the lungs and in macrophages in the liver. The 

lesions in the lungs were comparable in principle to those of rat lung exposed 

to inhaled nanoparticles reported by Tsuji et al. (Tsuji et al., 2006), who 

established that macrophage-mediated immunological responses occurred 

following a transient (24-hour postexposure) neutrophil-associated 

inflammation. Further studies would be necessary for comprehensive 

examination of the uptake, metabolism and excretion of the layered 

nanohybrids similar to those done by Flarend et al.(Flarend et al., 1997).  

 The minor pathologic changes caused in lung of mice treated IV with 

layered nanohybrids, as compared to the control tissues speaks in favor of the 

relative safety for their use. It should be noted that tested doses of LNH 

administration far exceed those likely to be required for targeted delivery of 



129 

therapeutic compounds. Toxic properties of LNH could be further attenuated 

by substituting aluminum for more biologically safe metals, such as iron.  

 Since LNH can incorporate fluorescent molecules we used this 

approach to monitor LNH distribution within the body and to co-localize their 

presence with potential pathological lesions. After the initial experiments 

showed that LNH can be readily detected in tissues we extended these 

studies to evaluate the clinical potential of LNH as imaging and reporting 

enablers. Our work indicates that LNH are well tolerated both in primary OSE 

cell culture and OSE in situ. As compared to our previous work with adenoviral 

vectors (Flesken-Nikitin et al., 2003; Manor et al., 2003; Riley et al., 1996) and 

lipid-polycation-DNA (LPD) formulations (Nikitin et al., 1999), LNH provide 

efficiency exceeding and approaching those of adenoviral vectors and LPD, 

respectively. Importantly, LNH fluorescence was detected even 35 days after 

IV administration indicating a possibility of longer intracellular retention of the 

vector than that of LPD (up to 2 weeks) and on par with that of adenovirus.  

 Fluorescent photon emission-based and magnetic resonance imaging 

are among the most common and practical methods for biological assessment 

of nanoparticles. The fluorescence approach provides an inherent subcellular 

resolution. But biological specimens are notoriously scattering within distances 

~ 50 µm so that a relatively thick specimen will appear as a blur. Generally 

one obtains information histologically by fixing the tissue, sectioning it to ~1 - 5 

µm slices and staining those slices. Multiphoton microscopy, achieves 

subcellular resolution in optically thick specimens without having to section 

them. It works by a quantum mechanical trick in which the photoexcitation 

(and any phototoxicity or photobleaching) are confined to the focal plane. It 

enables high-resolution imaging of live mice with minimal photodamage (Zipfel 
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et al., 2003a; Zipfel et al., 2003b). The availability of highly specific targeting 

vectors with bright and specific reporters allows imaging of cell-based 

processes with the promise of minimizing phototoxicity to clinically acceptable 

levels.  

 MRI is currently used in clinical practice. It provides high-resolution 

images of anatomical structures and allows functional assessment of organs 

and tissues. For example, it is used for estimating the partial pressure of 

oxygen and determining the presence of hypoxic tumor cells (Kachur et al., 

1999; Seddon et al., 2002), detection of apoptosis in tumors (Schellenberger 

et al., 2004), and evaluation of angiogenesis, tumor blood volume, and 

microvessel permeability (Kiessling et al., 2004; Marzola et al., 2003). 

Although the rate of image acquisition is significantly slower than photon 

emission-based methods, and structural resolution does not reach subcellular 

levels comparable to that of fluorescence-based imaging, MRI is one of the 

best methods for non-invasive imaging. For a comprehensive analysis, probes 

that can be detected by both strategies are ideal, such as the multimodal 

proteins described in Schellenberger et al. (Schellenberger et al., 2004).  

 Our current study demonstrated that layered magnesium/aluminum and 

magnesium/gadolinium-based nanoparticles can be successfully detected in 

the ovary by multiphoton and magnetic resonance imaging. Further 

functionalization of LNH with specific peptides and antibodies should allow 

imaging and monitoring ovarian and other tumors while subjecting them to 

selective anticancer drug delivery. 

 The results of the current study on biologic effects and biomedical 

applications of LNH demonstrate only minor toxicity and are encouraging with 

respect of their use as imaging enablers. Taken together with established 
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properties of LNH as effective drug and nucleic acid delivery vehicles, this 

work provides a basis for further development of LNH as multifunctional 

nanoparticles suitable for a broad variety of biomedical applications.  
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CHAPTER 6 

THE HILUM REGION IS A PUTATIVE STEM CELL NICHE FOR THE 

OVARIAN SURFACE EPITHELIUM 

 

 

6.1 Abstract 

 

The ovarian surface epithelium (OSE) is formed by a monolayer of squamous 

or cuboidal cells surrounding the ovary. During ovulation the OSE is ruptured 

and its loss requires a constant supply of new epithelial cells. Recently 

putative ovarian surface epithelium (OSE) stem/progenitor cells (OSE-SC) 

cells have been identified based on their slow proliferation in label retention 

assays. However, the self-renewal ability of these cells remains unknown. 

Furthermore, it is unknown if OSE-SC occupy any anatomically defined areas. 

By using a stem cell marker, aldehyde dehydrogenase (ALDH) 1, we have 

been able to identify an OSE subpopulation which efficiently forms clonal 

ovaspheres. These ALDH1+ cells are slowly cycling in vivo and are mainly 

located in the hilum region of the mouse ovary, the transitional area between 

OSE, mesothelium and oviductal epithelium. Hilum OSE cells expressed the 

stem cell markers CK6, CD44, Notch 1, Notch2, CD133, and p63 as well as 

epithelial markers calretinin, and PAX8. Importantly, cells isolated from the 

hilum display increased proliferative potential and extended self-renewal 

properties in serial sphere generation assay. We propose a model of OSE 

homeostasis in which OSE-SC cells are concentrated in the hilum region of 

the ovary. Identification of a putative OSE-SC stem cell niche may have 
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important implications for understanding epithelial ovarian cancer (EOC) 

pathogenesis. 

 

6.2 Introduction 

 

Approximately 90% of ovarian cancers are of epithelial origin (Auersperg et al., 

2001; Cho and Shih Ie, 2009). Due largely to asymptomatic development, the 

majority of patients are diagnosed with having an advanced stage of the 

disease, by which time treatment options are of limited therapeutic value and 

accordingly, the 5-year survival is below 30% (Jemal et al., 2010). Pathological 

observations of human EOC, as well as experimental induction of EOC 

(Auersperg et al., 2001; Scully et al., 1999) in mice (Clark-Knowles et al., 

2007; Dinulescu et al., 2005; Flesken-Nikitin et al., 2003; Orsulic et al., 2002; 

Wu et al., 2007), indicate that the majority of EOC arises from the OSE, a 

monolayer of squamous or cuboidal cells that line the ovary. Additionally some 

EOC may derive from the epithelium of the Fallopian tube fimbriae (Dubeau et 

al., 2008; Medeiros et al., 2006). 

 Unlike the majority of epithelial tissues, presence of OSC remains 

insufficiently established and no unique markers have been identified. 

Recently, using pulse-chase experiments with BrdU/IdU (5-bromo-2’-

deoxyuridine/5-iodo-2’deoxyuridine) and tetracycline-regulated (doxycycline 

responsive) tetO-H2B-GFP transgenic mice, Szotek and colleagues (Szotek et 

al., 2008) have identified the existence of ovarian epithelial label retaining cells 

(LRC). This putative somatic stem/progenitor cell population exhibits 

properties of quiescence, functional response to estrous cycling by 

proliferation in the mouse, enhanced colony forming ability in tissue culture 
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and ability for exclusion of the DNA-binding dye Hoechst 33342 (Szotek et al., 

2008). However, long-term self-renewal, the key feature of the stem cells, has 

not been tested. Furthermore, it is unknown if OSE-SC occupy anatomically 

defined areas, similar to those in other organs, such as the intestine, hair 

follicle, cornea and prostate (Blanpain et al., 2007; Nikitin et al., 2009). 

 Recent reports identified a detoxifying enzyme ALDH1 as a useful 

marker of stem/progenitor cells in a number of cell lineages, such as 

mammary (Ginestier et al., 2007), prostate (Burger et al., 2009), colon (Huang 

et al., 2009), hematopoietic (Storms et al., 1999), neural (Corti et al., 2006), 

and mesenchymal (Gentry et al., 2007). Strikingly, enzymatic activity of 

ALDH1 correlates well with its expression, thereby allowing assessment of 

ALDH1 function by conversion of ALDH1 substrate into the fluorescent product 

(ALDEFLUOR reaction), as well as by immunodetection, such as 

immunohistochemistry (IHC) and western blotting (Deng et al., 2010). 

Moreover, it has been reported that about 7.6 % of OSE cells express ALDH1 

(Deng et al., 2010). However, it is unknown if such cells have any stem cell-

related properties.  

 In the present study we combine a classic approach, the identification 

of replication quiescent BrdU (5-bromo-2’-deoxyuridine) label-retaining cells 

(LRCs), with the detection of ALDH1 and ex vivo functional characterization of 

OSE-SCs in three dimensional (3D) clonogenic sphere formation assays. 

Based on these assays we demonstrate that ALDH1+ cells are slowly cycling 

in vivo and are mainly located in the hilum area of the mouse ovary. Centering 

on the characterization of hilum OSE versus OSE covering other regions we 

report that hilum cells express in higher frequency the stem cell markers CK6, 
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CD44, CD133, Notch1, Notch2 and p63, as well as epithelial markers 

calretinin, and PAX8. 

 

6.3 Materials and Methods 

 

Experimental Animals. FVB/NCr mice were purchased from NCI-Frederick 

Animal Production Program, Charles River Laboratories, Inc., Frederick, 

Maryland or breed in house. Wild type mice were breed in house. The ß-actin 

GFP [C57BL/6-Tg(CAG-EGFP01Osb/J], and ß-actin DsRed mice [B6.Cg-

Tg(ACTB-DsRed*MST)1Nagy/J] were purchased from The Jackson 

Laboratory (Bar Harbor, ME). All of the mice were maintained identically, 

following recommendations of the Institutional Laboratory Animal Use and 

Care Committee.  

 BrdU pulse-chase experiments were performed three times with 

postpubertal 6 to 7 weeks old virgin FVB mice. Animals were injected daily 

with 250 µl of BrdU (5-bromo-2'deoxyuridine, Sigma, 1mg/ml) intraperitonially 

for 10 days (pulse) and euthanized after the pulse and at monthly intervals for 

4 months (Fig.6.3). 

 

Primary Culture of Hilum and Ovary parts. Individual hilum and anterior ovary 

parts were dissected under dissection microscope from 6 to 8 weeks old virgin 

FVB mice (Fig. 6.6A), minced in a drop of PBS with 25G needles, transferred 

to 100 µl digestion-buffer: 4 mg/ml Collagenase-Dispase(Roche) 

supplemented with 30 mg/ml bovine albumin (Sigma) and 1 µl DNaseI (1 

mg/ml, Sigma) , incubated and allowed to adhere for 24 hr as described onto 

24 well-plates in complete OSE Stem Cell Medium (OSE-SCM), DMEM/F12 
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(Ham’s) medium containing 5% fetal bovine serum, 4 mM L-glutamine, 1 mM 

sodium pyruvate, 10 ng/ml epidermal growth factor, 500 ng/ml hydrocortisone, 

5 µg/ml insulin, 5 µg/ml transferring, 5 ng/ml sodium selenite, 0.1 mM MEM 

non-essential amino acids, 10-4 M ß-mercaptoethanol, 103 u/ml leukemia 

inhibitory factor (Millipore).  

 

Cellular proliferation assay. Primary hilum/ovary part cells, passage 0, were 

harvested, reseeded in triplicates at 1 x 104 cells/3.5cm dish in OSE-SCM, 

grown for three days, then stained with Giemsa solution, air-dried and images 

were taken (Fig. 6.6B). Total area analyzed was 4.92 cm2.  

 

Cultivation of OSE-spheres. Cell populations from 2 x 104 to 1 x 105 

cells/assay were collected in 0.5 ml OSE-SCM, centrifuged and pellets were 

suspended in 1:1 Geltrex/OSE-SCM (Invitrogen) in a total volume of 120 µl. 

Following a modified protocol of Lawson et al(Lawson et al., 2007) each cell 

population was plated around the rim of a well of a 12 well plate and allowed 

to solidify for 25 minutes at 37°C  in a 5% CO2 incubator before adding 1.5 ml 

OSE-SCM. Spheres were grown from 7 to 12 days. For passaging of spheres, 

media was aspirated and Geltrex was digested by incubation in 750 µl 

digestion-buffer for 1 h, at 37°C, during incubation spheres were suspended 2 

– 3 times manually by pipetting using a blue 1 ml tip. Digested cultures were 

pelleted and incubated in 0.3 ml 0.25% Trypsin/EDTA for 10 min at 37°C, cells 

were suspended and the enzyme reaction was stopped by adding 4 ml OSE-

SCM. Cells were harvested and counted by hemocytometer and replated at 

different densities as described above.  
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 For analysis the following calculation was applied: OSE-CFC (%) = # of 

OSE-Clones x 100 / # of input cells. Corresponding OSE-Clone Forming Units 

in the hilum region: OSE-CFU = # of input cells / # of OSE-Clones formed, 

were determined (Table 6.6E).  

 

Cytospin preparations. Cells suspended at concentrations from 0.5 x 104 to 1 x 

105 / 100 µl OSE-SCM / slide were spin down for 5 min. at speed 13 in a 

CytoFuge2 (StatSpin Inc.), immersed in PBS for 4 minutes, fixed with 4% 

paraformaldehyde for 30 minutes on ice, rinsed with PBS and stored in PBS 

until immunofluorescence analysis. 

Immunohistochemistry, Immunofluorescence, and Image Quantitative 

Analysis. Immunohistochemical analysis of paraffin sections of 

paraformaldehyde-fixed tissue was performed by a modified ABC technique 

(Nikitin and Lee, 1996; Zhou et al., 2006). The antibodies to calretinin (Abcam, 

Cambridge, MA, 1:50),E-Cadherin (Cell Signaling, Danvers, MA, 1:10)PAX8 

(Abcam, 1:1000), cIAP1 (Abcam 1:300), CK5 (Covance, Berkeley, CA, USA, 

1:1000), p63 (Santa Cruz, Santa Cruz, CA, 1:200), BrdU (Abcam; 1:100) 

ALDH1A1 (Abcam; 1:100), were incubated with deparaffinized sections for 1 h 

at room temperature. Ten-min treatment with 4N hydrochloric acid and 10 min 

boiling in 10 mM citric buffer was used for antigen retrieval for detection of 

BrdU. For immunofluorescence analysis, deparaffinized sections or cells fixed 

in 4% paraformaldehyde were incubated with the antibodies to BrdU or 

ALDH1A1 as above, CK6 (Covance, 1:300), CD44 (Santa Cruz Biotechnology; 

1:25), CD133 (Miltenyi Biotec; 1:50), Notch1 (bTAN20; 1:25, Developmental 

Studies Hybridoma Bank), Notch2 (C651.6DbHN; 1:25). For Runx1 enzymatic 

detection of bacterial ß-galactosidase was performed as previously described 
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(Flesken-Nikitin et al., 2003). Samples were analyzed under an Axioskop 2 

(Zeiss) fluorescence microscope equipped with a CCD camera described in 

(Zhou et al., 2007). Digital images were computer processed with Adobe 

Photoshop 7.0. For the quantitative analysis of IHC and IF experiments 

performed with cytospin samples (Fig. 6.5A-G), the ImageJ image-analysis 

software (W. Rasband, National Institutes of Health) was used. 

 

Statistical Analyses. All statistical analyses in this study were done using 

InStat 3.06 and Prism 5.01 software (GraphPad, Inc., San Diego, CA) as 

described previously (Zhou et al., 2006). 

 

6.4 Results 

 

6.4.1 Generated OSE-spheres are monoclonal. To initiate assessment of 

putative OSE-SC we have established OSE-sphere formation rim assay 

suitable for evaluation of normal OSE cells. See for further details Materials 

and Methods. In these assays single cell suspension of OSE cells were placed 

in Geltrex/OSE-SCM around the rim of a well of a 12 well plate and grown for 

7-12 days. To confirm single cell derivation of spheres, cell suspensions of 

primary OSE were derived from of Tgß-actin EGFP or ß-actin DsRed mice and 

mixed at various ratios. The resulting spheres were exclusively 

monochromatic, indicating their clonal origin (Fig. 6.1A, B).  

 

6.4.2 ALDH activity is enriched in an OSE sub-population. To assess if 

ALDH activity can be used to enrich for cells with functional properties of 

stem/progenitor cells, primary OSE cell populations were separated into  
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Figure 6.1 Formation of clongenic spheres and self-renewal properties 

by a subset of OSE cells. Single cell suspensions of the OSE were prepared 

from Tgß-actin EGFP (EGJ) or ß-actin DsRed (DsR) mice and mixed in 

various ratios (4+1 and 1+4). All individual spheres were exclusively 

monochromatic, indicating clonal origin. (A) Phase contrast (left) and 

fluorescence (right) images of DsRed (red) and EGFP (green) positive OSE-

spheres (arrows). Bar, A - B, 50 µm. (B) Quantitative assessments of 

fluorescent spheres grown for 10 to 12 days. Number (mean± SD) of EGFP 

positive (EGFP) and DSRed positive (DsRed) spheres in individual groups: 

"EGFP only": EGFP 163.5 ± 25.9, n = 6, DsRed 0; "4 + 1": EGFP 169.7 ± 

29.8, n = 3, DsRed 44.3 ± 14.2, n = 3; "1+4"; EGFP 46.0 ± 19.3, n = 3, DsRed 

208.7 ± 69.0, n = 3: "DsRed": EGFP 0, DsRed 273.0 ± 62.0, n = 3. The table 

indicates the number of cells seeded. (C) FACS plot depicturing gating of 

ALDH- (GFP low) and ALDH+ (GFP high) cells. (D). Efficiency of sphere 

formation by ALDH1+ and ALDH1- OSE cells (P = 0.0001) at second 

generation (G2). (E) Growth of ALDH1+ and ALDH1- cells in OSE-sphere 

assays.  
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ALDH1 high (ALDH1+) and ALDH1 low (ALDH1-) cells according to their level 

of ALDEFLUOR fluorescence by fluorescence activated cell sorting (FACS, 

Fig. 6.1C) and subjected to OSE-sphere formation assays. After two rounds of 

sphere generation (G2) ALDH1+ cells formed clonogenic OSE spheres at 

significantly higher frequency and continued to show enhanced growth as 

compared to those of ALDH1- cells (Fig. 6.1D). Indicating self-renewal 

properties of OSE-sphere forming cells, spheres were formed from a single 

cell suspension in at least up to 7 consecutive rounds of sphere 

dissociation/generation (Fig. 6.1E). 

 

6.4.3 ALDH1 is highly expressed in OSE located in the hilum area of the 

mouse ovary. Towards identification of OSE-SC in the mouse ovary by 

regions we performed immunohistochemical analysis for ALDH1 of ovarian 

tissues from 3, 6 and 8 weeks old virgin FVB mice. Since the ovary has well 

defined anatomical regions, we have evaluated expression of ALDH1 in the 

OSE covering the corpus luteum, the distal-, antral and the hilum region. 

Strikingly, cells with high ALDH1 activity have been predominantly detected in 

the hilum region (Fig. 6.2). 

 

6.4.4 BrdU label retaining cells (LRCs) co-localize with ALDH1+ cells. To 

test if slow proliferating cells are preferentially located in the hilum, pulse 

chase experiments were performed by injecting 6 – 7 weeks old virgin FVB 

mice for 10 days with a BrdU solution (Fig. 6.3) followed by detection of LRCs 

immediately after the pulse and monthly for up to 4 months. Ovarian regional 

analysis revealed that the hilum contains the highest percent of slow-cycling 

OSE cells by 3 months after BrdU pulse (Fig. 6.4A). Consistently with these  
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Figure 6.2 Detection of ALDH1 in the OSE of different areas of the ovary. 

ALDH1 (brown color) is preferentially expressed in the OSE of the hilum 

region (HiIum, arrowhead) as compared to the antral region, corpus luteum or 

distal region. Arrows indicate location of the corresponding regions in the 

mouse ovary. B, bursa; F, follicle; OV, ovary; OVI, oviduct; U, uterus. Paraffin 

ovarian sections from 6 weeks old mouse. ABC Elite method, hematoxylin 

counterstaining. Bar, upper left image, 500 µm; all other images, 5000 μm. 
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Figure 6.3 Schematic of BrdU pulse-chase timeline. Animals were injected 

continuously with BrdU for 10 days (pulse) and their ovaries were collected 

after the pulse and at monthly intervals for 4 months for analysis. 
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Figure 6.4 Identification of BrdU label-retaining cells (LRC) and 

LRCs/ALDH1 co-localization. (A) Quantification of LRCs in the corpus 

luteum (CL), antral, distal and hilum regions (n = 4). At 3 months after BrdU 

pulse hilum versus CL, P < 0.001; versus antral region, P = 0.0005; versus 

distal region, P < 0.0001). (B-E) Detection of BrdU LRCs (B, green, arrow), 

ALDH1 (E, red, arrow) and overlay (D, orange, arrow) after 3 months of chase 

in the hilum. (C, counterstaining with DAPI, blue). Bar, B - E, 50 µm. 
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findings, double-immunofluorescence of LRCs in the OSE demonstrated that 

most of them expressed ALDH1 (Fig. 6.4B-E). 

 

6.4.5 Hilum cells express a number of stem cell markers. For phenotypical 

characterization of OSE cells isolated from different region of the ovary and 

grown in sphere assays, cytospin preparations were used for immunostaining 

for a panel of markers (Fig. 6.5, A - F). As compared to the rest of the ovary, 

cytospins prepared form hilum-derived OSE-spheres had significantly fractions 

of cells positive for stem cell markers ALDH1, CK6, CD44 and Notch2. 

Importantly, according to double immunofluorescence staining, the hilum-

derived set had significantly higher number cells co-expressing ALDH1 and 

CD44, as well as ALDH1 and Notch2, as compared to OSE cells derived from 

other ovary regions. Higher percentages of CD133, Notch1, ALDH1+/CD133+ 

and ALDH1+/Notch1+ expressing hilum cells were also found, compared to the 

ovary part cells, although the P values were considered not quite significant 

(Fig. 6.5G). 

 To perform semiquantitative expression analysis in situ, a panel of 

epithelium and stem cell markers E-Cadherin, calretinin, PAX8 and stem cell 

markers cIAP1, CK5, CK6, CD44, CD133, GATA3, Notch1, Notch2, p63, 

ABCG2/BCRP and Runx1 were tested for their expression levels in the OSE 

and oviductal epithelium in situ. Hilum OSE stained positively for calretinin, 

Pax8, ABCG2/BCRP, CD44, CD133, CK6, Notch1 and p63 (Fig. 6.5H). The 

oviductal epithelium but not OSE stained positive for E-Cadherin. The 

oviductal epithelium also expressed, albeit weakly and with preferential 

staining of cilia, calretinin, as well as PAX8 and CD44. (Fig. 6.5H). Staining 

results for markers cIAP1, CK5, GATA3 and Runx1 were negative in the hilum  
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Figure 6.5 Functional characterization of primary hilum OSE versus rest 

of the ovary OSE. (A-F) ALDH1 detection in cytospin preparations of OSE 

cells grown in sphere assays at sphere generation 3. Immunofluorescence 

with (A, B) and without (C) anti-ALDH1 antibody and DAPI counterstaining (D, 

E, F) of OSE cells from the hilum (A, D, C, F) and the rest of the ovary (B, E). 

Bar, all images, 50 µm. (G) Quantitative assessment of stem cell marker 

expression in the OSE cells prepared as in (A-F). Percent of positive cells from 

the hilum versus the rest of the ovary (ovary): CK6+, P = 0.0101, ALDH1+, P = 

0.0037, CD44+, P = 0.0042, ALDH1+/CD44+, P = 0.083, CD133+, P = 0.0983, 

ALDH1+/CD133+, P = 0.25, Notch1+, P = 0.6913, ALDH1+/Notch1+, P = 

0.1188, Notch2+, P = 0.0109, ALDH1+/Notch2+, P = 0.0094. RU, relative units. 

(H) Immunodetection of epithelial (Calretinin and PAX8), and stem cell 

(ABCG2, CD44, CK6, Notch1, p63 and CD133) markers. Paraffin ovarian 

sections from 6 - 8 weeks old mice. Immunofluorescence (CD133) or ABC 

Elite immunoperoxidase (all other images). Counterstaining with methyl green 

(calretinin, PAX8, p63); hematoxylin (ABCG2, CD55, CK6 and Notch1) or 

DAPI (CD133). Arrows indicate positive cells; arrowheads indicate negative 

cells; OV, ovary; OVI, oviduct. Bar for all images, 50 µm. 
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region. In addition to the hilum, p63 expression was detected in other regions 

of the ovary and was highly positive throughout the oviduct (Fig. 6.5H). In 

addition to the hilum, CD133 expression was detected in some cells of other 

ovarian regions.  

 

6.4.6 Hilum OSE cells have a greater ex vivo proliferative and self-

renewal capacity compared to other regions of the ovary. Slow-cycling 

quiescent stem cells have an extensive proliferation capacity (Barrandon and 

Green, 1987; Tsujimura et al., 2002). Therefore we assessed the growth 

potential of OSE cells isolated from hilum (posterior) and opposite ovary part 

(anterior) regions of the ovary (Fig. 6.6A). After three days of primary culture 

hilum OSE cells formed significantly more large colonies (over ≥ 20 cells) than 

OSE from the anterior region (Fig. 6.6, B-C). Notably, starting at generation 

two, hilum OSE cells developed conspicuous large spheres (over 77 μm in 

diameter). In contrast, cultures of anterior ovary part regions formed such 

large spheres clones very rarely (Fig. 6.6, D-F).  

 

6.5 Discussion  

 

6.5.1 Development of approaches to study functions of OSE-SC. Colony 

forming assays, such as e.g. clonogenic sphere formation, were developed for 

ex vivo functional characterization of stem cell populations in many tissues, 

such as the corneal epithelium (Barrandon and Green, 1987; Pellegrini et al., 

1999), neural tissues (Reynolds and Weiss, 1996), breast (Pece et al., 2010), 

and normal human ovarian surface epithelial cells (Jackson et al., 2009; 

Kwong et al., 2009). Sphere formation has been also successfully used for  
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Figure 6.6 The proliferative capacity and self-renewal of the hilum OSE. 

(A-E) Schematic of the hilum and the anterior (ovary part) regions used for 

isolation of OSE cells under a dissection microscope (A). AN, antral follicle; 

BU, bursa; CL, corpus luteum; F, follicle; OV, ovary; OVI, oviduct; U, uterus. 

(B) Colony formation by OSE cells isolated from the hilum (left) or the ovary 

part (right) images of Giemsa stained colonies (arrows). (C) Quantitative 

analysis formation of large colonies (≥ 20 cells) formed by OSE cells from the 

hilum (mean ± SD; 42.7 ± 12.8, n = 6; two independent cultures) and the ovary 

part (11.4 ± 5.68; n = 8; three independent cultures). Two tail P < 0.0001. (D, 

E) Hilum OSE sub-population develops conspicuous large spheres 

demonstrating greater ex vivo self-renewal potential compared to OSE cells of 

the anterior ovary region. (D) Largest (bottom image, 199 μm) and smallest 

(top image, 77 μm, arrow) sizes of spheres at generation three. (D) Phase 

contrast. (E, F) Frequency of OSE-sphere forming cells (OSE-CFC, %) and 

OSE-CFU for 7 consecutive generations (dissociation/clonal formation) in 

representative experiment. Bar, A, 5 µm, B, 12.5 µm; D, 50 µm. 
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studies of ovarian cancer stem cells (Alvero et al., 2009; Zhang et al., 2008). 

After testing of several approaches, we have successfully adapted and 

modified a prostate sphere-forming assay (Lawson et al., 2007) for this study. 

 Long-term label retention assay take advantage of the slow-cycling 

nature of SC. In this method tissues are pulsed with 3H-thymidine (Cotsarelis 

et al., 1989), BrdU (Tsujimura et al., 2002), or histone2B-green fluorescent 

protein (Tumbar et al., 2004). A chase period follows, allowing the 

identification of fast dividing (transit-amplifying) SC progeny over slow-cycling 

resident stem cells. Utilizing this approach combined with clonal cell culture 

analysis, corneal epithelial stem cells of the eye were found to reside in the 

limbus region, leading to clinically successful development of lens 

regeneration approaches curing blindness (Ezhkova et al., 2009; Rama et al., 

2010). Label retention assays also identified stem cell compartments of other 

tissues and organs, such as the bulge area of the hair follicle (Oshima et al., 

2001; Taylor et al., 2000), the terminal end bud and duct of the mouse 

mammary gland (Kenney et al., 2001), the renal papilla of the kidney SC 

reservoir (Oliver et al., 2004) and the proximal part of the prostatic ducts 

(Tsujimura et al., 2002).  

 

6.5.2 Identification of putative niche for OSE-SC. Stem cell biology requires 

a protective microenvironment known as the stem niche. Niche components 

nurture and shield SC from unwanted stimuli and/or initiate required 

differentiation (Fuchs et al., 2004; Hsu et al., 2011; Jones and Wagers, 2008). 

Anatomical niche locations have been defined for several organs. A narrow 

transitional zone between the cornea and the bulbar conjunctiva, the limbus 

region, shelters corneal epithelial stem cells (Pellegrini et al., 1999; Schermer 



158 

et al., 1986). Mouse prostate epithelial stem cells reside in the proximal region 

of mouse prostatic ducts, near their connection to the urethra (Burger et al., 

2005; Tsujimura et al., 2002; Zhou et al., 2007). Putative intestinal stem cells 

are located in a narrow band near the base of the intestinal crypt (Potten and 

Loeffler, 1990). The hair-follicle bulge serves as niche for hair follicle 

epidermal stem cells (Alonso and Fuchs, 2003). Stem cells of the mammary 

gland inhabit the terminal end bud at the end of the mammary duct 

(Hennighausen and Robinson, 2005). These examples demonstrate preferred 

niche locations for different tissues structures. However, notably, all are 

closely located to nerves and vessels, elementary components to support 

stem cell nourishment and some of them, such as corneal and prostate niches 

are at the junction between two tissues or organs.  

 Utilizing FACS we demonstrate ALDH1 activity can be used to enrich 

for OSE cells with functional properties of stem/progenitor cells. These sub set 

of cells revealed self-renewal properties in clonogenic OSE sphere forming 

assays and were slow cycling in label retaining assays. Strikingly, we detected 

ALDH1+ OSE cells predominantly in the hilum region of the ovary. This region 

represents point where nerves and vessels enter the ovary and is covered by 

the epithelium representing transition between OSE, mesothelium and 

oviductal epithelium. 

 In 1932 Butcher et al. (Butcher and College, 1932), reported that the 

greatest growth activity of OSE (aka, germinal epithelium) induced by 

ovulation occurred  near the hilum of the rat ovary. Increased OSE 

proliferation was also observed in the hilum region of mice and rats after local 

injection of estrogen (Stein and Allen, 1942). It was also observed that in adult 

mice, the OSE covering the posterior part of the ovary, close to the oviduct, 
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showed little mitotic activity (Bullough et al., 1942). Although none of these 

early reports proposed existence of stem cell compartment in the hilum, their 

findings are very consistent with our results showing location of slow-cycling, 

yet with high growth potential, cells in this region.  

 Cell replacement in tissue homeostasis requires stem cells to execute 

different programs of terminal differentiation. Stimuli send out from the niche 

instruct stem cells to selectively adopt a particular cell lineages. The Notch 

signaling pathway controls selective cell-fate determination in various tissues 

.(Artavanis-Tsakonas et al., 1999). We detected significantly higher frequency 

of Notch2 and ALDH1+/Notch2+ expressing cells in primary hilum primary 

cultures compared to ovary part cultures. Although we detected frequent 

Notch1 positive cells in the hilum region on paraffin sections. Notch signaling 

regulates lineages determination of epithelial stem cells of the intestine, skin 

and mammary gland (Blanpain et al., 2007). The SC marker CD44 has been 

demonstrated to be important in stem cell niches (Haylock and Nilsson, 2006). 

Consistently, we detected CD44 in the hilum OSE by immunohistochemistry 

and found significantly more CD44+ cells in hilum primary cultures versus 

ovary part cultures. Interestingly, we also found frequent expression of 

mammary, prostate and skin stem cell marker CK6 (Hsu et al., 2011; Schmelz 

et al., 2005; Stingl et al., 2006) in primary hilum but not ovary part cultures. 

This is of particular interest, because CK6 is postulated to participate in the 

advancement of a stem cell from its specialized niche into a differentiated 

state (Schmelz et al., 2005). 

 In humans the area corresponding to the junction part between OSE 

and the oviduct in the mouse would be a narrow epithelial isthmus extending 

onto the ovary from the ovarian fimbriae of the Fallopian tube (Auersperg et 
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al., 2008). Notably, while there is a clear morphologic transition from the OSE 

to the fimbrial epithelium, epithelial cells in this transitional area express both 

OSE and fimbrial epithelium markers, calretinin and E-Cadherin, respectively. 

Based on these observations, it has been proposed that cells in the 

transitional area may have more plastic and, presumably, less differentiated 

state. Our findings develop this concept further raising the question whether, 

similarly to the mouse hilum cells, as well as to human corneal and mouse 

prostate niches, human cells of epithelial isthmus represent stem cell 

compartment. This question is of particular importance because transitional 

areas were found to be particularly susceptible to neoplastic transformation a 

number of locations, such as the uterine cervix and the esophageal-gastric 

junction in humans (Auersperg et al., 2008), and prostatic ducts in mice (Zhou 

et al., 2006).  

 During recent years it has become increasingly clear that similar to 

cancers of other locations neoplastic cells in EOC may acquire molecular and 

cellular mechanisms typical for stem and progenitor cells (Cheng et al., 2010). 

However, it remains unknown if EOC may arise from the stem cell 

compartment and if so, whether neoplasms originating from stem/progenitor 

cells have particularly aggressive behavior. Of interest, ovarian cancer stem 

cells express ALDH1, CD44 and CD133 (Alvero et al., 2009; Bapat et al., 

2005; Deng et al., 2010; Ferrandina et al., 2009), the markers expressed in 

normal hilum OSE cells according to our observations. Identification and 

characterization of the OSE stem cell compartment described in our study 

provide a necessary basis for further studies aimed to understand the 

molecular and cellular mechanisms that regulate normal ovarian development 
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and to unravel how aberrations in those regulatory mechanisms may 

contribute to EOC pathogenesis. 
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CHAPTER 7 

SUMMARY AND FUTURE DIRECTIONS 

 

 

7.1 Summary 

 

Alterations in p53 and RB tumor suppressor pathways are detected frequently 

in epithelial ovarian cancer (EOC), particular in high grade serous 

adenocarcinomas (Corney et al., 2008; D'Andrilli et al., 2008). To elucidate 

their roles in EOC pathogenesis we instigated a study to determine whether 

concurrent inactivation of p53 and Rb1 genes in the mouse ovarian surface 

epithelium (OSE) is sufficient for induction of epithelial ovarian carcinogenesis 

(Chapter 2, and Flesken-Nikitin et al., 2003). As nearly ninety percent of 

ovarian cancer cases are believed to be derived from the OSE (Auersperg et 

al., 2008; Feeley and Wells, 2001), with serous adenocarcinomas comprising 

around eighty percent of EOC (Bast et al., 2009; Scully et al., 1999) we 

targeted these cells in mice carrying floxed copies of p53 and Rb1 genes 

(Jonkers et al., 2001; Marino et al., 2000). First, we established a tissue 

culture method for reproducible generation of primary OSE and OSE cell lines. 

When primary OSE cells were treated with recombinant adenovirus 

expressing EGFP (AdCMVEGFP, Anderson et al., 2000) we observed more 

than 80 % of OSE expressed EGFP after 24 hours after infection. Similar 

results were received with cultured OSE of Rosa26STOPfloxPLacZ reporter 

mice (Chai et al., 2000; Jiang et al., 2000; Soriano et al., 1999) confirming that 

recombinant adenovirus efficiently infects OSE. Primary OSE derived from 

mice homozygous for conditional gene alleles (p53/Rb1 double floxed mice) 
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and treated with AdCMVCre had deletion of both genes according to PCR 

analysis. Next we took advantage of the anatomical structure of the mouse 

ovary, which is completely enveloped with a thin membrane called the bursa. 

We developed a transinfundibular intrabursal injection technique and, by using 

different adenoviruses, shown that OSE infection efficiency was similar to that 

in ex vivo experiments. Importantly, no adverse effects of the viruses on the 

OSE were observed. Utilizing this novel technique of intrabursal 

administration, we performed concomitant inactivation of p53 and Rb1 in the 

OSE of p53/Rb1 double floxed mice by injection of AdCMVCre. Loss of both 

p53 and Rb1 genes resulted in 97% of epithelial ovarian neoplasms within 7 to 

8 months after single Ad-Cre administration. Importantly, these cancers were 

histopathologically similar to human high grade serous adenocarcinomas. 

Deletion of only p53 or Rb1 resulted in 13 % and 3 % of ovarian neoplasms, 

respectively. Similarly to progression of malignancy in women (Kurman and 

Shih Ie, 2010; Lengyel et al., 2010), ovarian cancer spread intraperitoneally, 

formed ascites, and metastasized to the contralateral ovary, lung, and the 

liver.  

 Our results ascertained critical interactions between p53 and RB 

pathways in EOC pathogenesis, and established a genetically defined 

immunocompetent mouse model of sporadic EOC. Our in situ OSE-targeting 

approach is well suitable for studies of different genetic alterations in EOC 

pathogenesis and has been successfully used in subsequent studies by other 

investigators (Clark-Knowles et al., 2007; Dinulescu et al., 2005; Wu et al., 

2007). 

 Since in our model EOC develops after a long latency period, we have 

also decided to established mouse models suitable for fast assessment of 
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advanced stages of disease. To this end we developed syngeneic lines of 

OSE. Primary cell cultures were prepared from either p53flox/floxPRbfloxP/floxP, 

p53floxP/floxP or wild-type age-matched mice of the same background as 

described (Chapter 2). Cancer cell lines OSN1 and OSN2 were established by 

Cre-loxP mediated inactivation of p53 and Rb or p53 alone, after three 

passages of OSE primary cultures, following  continuous passaging upon 

reaching confluence for more than 20 generations (Corney et al., 2007). At 

least fifteen oncogenes have been associated with EOC (Bast and Mills & Jr, 

2008), among them the C-MYC transcription factor. C-MYC overexpression 

was detected in 41-66% of EOCs, while amplification ranged at 20 % of cases 

(Plisiecka-Halasa et al., 2003). We introduced c-Myc by retroviral transduction 

into OSN1 and OSN2 generating neoplastic cell lines OSN3 and OSN4, 

respectively (Chapter 4, and Flesken-Nikitin et al., 2008)). OSE cultures from 

wild-type mice were immortalized by continuous culturing without Ad-Cre 

treatment resulting in cell line OSN5. These cells are non-tumorigenic and 

carry wild-type p53 (Flesken-Nikitin et al., 2008).  

 Using the OSN cancer cell lines we developed a mouse model of EOC 

intraperitoneal spreading (Chapter 4) and have initial evidences that c-Myc 

promotes tumorigenicity of p53-and p53/Rb- deficient OSE (Flesken-Nikitin et 

al., 2008). 

 Cancer screening procedures can be augmented with in vivo imaging 

techniques. Towards the development of multiphoton microscopy (Denk et al., 

1990; Williams et al., 2001; Zipfel et al., 2003a; Zipfel et al., 2003b) as a new 

imaging modality we established a method for studying cell motility in the living 

mouse using MPM (Chapter 3, and Flesken-Nikitin et al., 2005). In our work 

we successfully traced individual cells and monitored their behavior in the 
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living organism. Furthermore, we provided very detailed description of the 

whole imaging technology, mouse preparation and anesthesia, labeling target 

cells with EGFP, implantation of beads coated with chemoattractant (Gu et al., 

1999; Luini et al., 1994; Rollins et al., 1988), and the multiphoton microscope 

equipment, thereby facilitating future advances of the research in this field.  

 Encouraged by our cell migration work we decided to initiate a follow-on 

study, testing the suitability of MPM and second harmonic generation (SHG) 

for high-resolution imaging of EOC (Chapter 4, and Williams et al., 2010). By 

imaging human biopsy samples and three mouse models of ovarian cancer 

(Connolly et al., 2003; Flesken-Nikitin et al., 2003), we demonstrated that 

MPM/SHG (Helmchen and Denk, 2005; Zipfel et al., 2003b) imaging of 

endogenous tissue emissions allows visualization of unfixed, unsectioned, and 

unstained tissues at a resolution comparable to that of routinely processed 

histological sections. At a sub-cellular level we observed atypical neoplastic 

cells forming glandular structures while imaging human and mouse ovarian 

adenocarcinomas. In contrast, optical sections of normal OSE presented a 

single layer with typical squamous morphology. Importantly, differences in the 

collagenous stroma of normal and cancer tissue were detected via SHG 

(Zipfel et al., 2003a) imaging. Rigid collagen fibers near the tumor periphery 

were found to be always perpendicular towards its surface. This feature is not 

evident in conventionally prepared tissue. The same differences in 

observations were made by imaging normal and malignant mouse tissues. 

Furthermore, quantitative morphometric assessment (Deligdisch et al., 1999; 

Deligdisch et al., 1993; Gil and Deligdisch, 1989) of MPM sections from one of 

our mouse models, revealed a significant enlargement of nuclei and cytoplasm 

of OSE at very early stages of carcinogenesis, a second feature which is 
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difficult to assess in traditional histological assessments. Thirdly, while imaging 

EOCs in our ascites mouse model, we observed a reproducible red shift of 

intrinsic fluorescence with respect to normal OSE owing to a distinct red-

emitting cell population in neoplasm.  

 Thus, we show that  MPM/SHG imaging is translatable into a clinical 

setting for diagnosis of EOC biopsy samples and adds three additional 

auxiliary criteria, namely collagen structure, neoplastic cell size measurements 

and intrinsic fluorescence red-shift, to the final pathological assessment. 

Towards, the development of an endoscopic devise for EOC screening 

procedures we tested a microprobe "stick" objective for laparoscopic (Rogart 

et al., 2008) imaging in live mice. Tissue stabilization and blood flow disturbing 

the view are common problems which need to be overcome in life imaging 

settings. After improvements for tissue rinsing and stabilization by exteriorizing 

the ovary, we were able to acquire images from neoplastic cells discernable 

from surrounding normal tissues in our mouse model of disseminated 

peritoneal EOC. Moreover, we facilitated the intravital screenings of tissues by 

injection of a fluorescent indicator of protease activity, ProSense 680, 

(Gounaris et al., 2008) which labeled most neoplastic cells. Notably, our live 

imaging data corroborated with the results obtained from biopsy samples.  

 Towards development of targeted drug delivery to ovarian cancer cells 

we initiated a toxicity and biomedical imaging study of layered nanohybrids 

(LNH) in the mouse (Chapter 5). Although LNH (Ferrari et al., 2005; Hirsch et 

al., 2003; LaVan et al., 2002; Vijayanathan et al., 2002; Wagner et al., 2006) 

are promising vehicles in controlled drug delivery, they were not tested in the 

whole mammalian system. We administered LNH in all standard clinical 

routes, intravenoulsy (i.v.), intraperitoneally (i.p.), and subcutaneously (s.c.) 
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and covered different concentrations, exceeding those likely to be required for 

targeted delivery of therapeutic compounds. Our results indicated no 

pronounced toxicity of LNH particles in mice. Furthermore, by intrabursal 

injection of LNH we demonstrated, via MPM efficient LNH incorporation into 

the OSE without any detectable toxicological effects. We also tested LNH 

containing gadolinium (magnetic resonance imaging, MRI, contrast agent) and 

shown that in vivo administration of these particles results in increased MRI 

contrast of the mouse ovary. Taken together, our results revealed that LNH 

displayed moderate in vivo toxicity and are promising multifunctional 

nanoscale particles allowing combination of intravital biomedical imaging with 

controlled drug release. 

 Recent research supports the notion that cancerous lesions feature a 

subpopulation of neoplastic cells that may be responsible for cancer initiation 

and progression. These cells, called cancer stem cells (Deng et al., 2010; Pan 

and Huang, 2008; Sell et al., 2004), tumor-initiating cells or tumor-propagating 

cells, share several properties with embryonic and somatic cells, such as self-

renewal and multi-potent differentiation. However, little is known if such cells 

arise from the OSE stem cell compartment. Therefore, our research interest 

turned to the characterization and functional analysis of previously reported 

(Szotek et al., 2008) a putative OSE stem cell population previously reported 

(Chapter 6). We identified Aldehyde dehydrogenase 1 (ALDH1) (Yoshida et 

al., 1998) as a useful OSE stem cell marker (Gentry et al., 2007; Hess et al., 

2004; Storms et al., 1999), demonstrated the clonal origin of OSE spheres 

derived from an OSE subset grown in 3D sphere assays(Lawson et al., 2007; 

Xin et al., 2007) and found enrichment of BrdU label retaining cells (LRCs) in 

the hilum region of the ovary. Notably, most of the BrdU LRCs expressed 
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ALDH1. In primary sphere cultures grown over 7 consecutive passages, OSE 

cells generated from the hilum consistently formed conspicuous large clones, 

which were very rarely formed by OSE cells derived from the anterior segment 

of ovary. Hilum cells highly expressed the stem cell markers CK6, CD44 and 

Notch2 as compared to OSE in other parts of the ovary. Additionally, some 

hilum OSE expressed the epithelial markers Calretinin, and PAX8 and the 

stem cell markers CD44, CD133, Notch1 and p63. Combining these results we 

propose that the hilum region of the ovary is a putative OSE stem cell niche.  

 

7.2 Future Directions 

 

Ideal genetically induced EOC mouse models need to fulfill multiple criteria 

(Cheon and Orsulic, 2011). They should mimic the human tumor 

histopathology and the multistage processes of carcinogenesis, including 

ascites formation and metastatic spread (Jonkers and Berns, 2002; Nikitin et 

al., 2005; Van Dyke and Jacks, 2002). Additionally, they should have similar 

multiple mutations in specific genes, gross chromosomal aberrations induced 

by genomic instability, and specific pathway alterations known to be involved 

in human cancers. Our mouse models closely satisfy these requirements. At 

the same time, our spontaneous mouse model of EOC has certain limitations, 

as the transinfundibular intrabursal administration of adenovirus needs specific 

training of personnel and is time consuming. Cross-contamination of 

neighboring tissues can occur from leaking the virus and low efficiency of in 

vivo infection for some cell types, such as non-dividing cells might be a 

disadvantage. Therefore, generation of a genetically modified mice allowing 

conditional induction of EOC without surgical intervention remains highly 
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desirable. The development of an OSE specific promoter is crucial for the 

realization of this goal. Although different mouse models of ovarian cancer 

were made during recent years (Fong and Kakar, 2009), a specific promoter 

targeting the OSE was not achieved  and no inheritable line that would 

spontaneously form EOC is available. A project aimed to identify OSE specific 

promoter would require individual isolation of the OSE, mesothelium, oviductal 

epithelium and stromal cells by Laser Microdissection (LMD), genome-wide 

microarray analysis of gene expression profile of isolated cells, identification of 

OSE specific gene signatures, validation of findings by quantitative RT-PCR 

and in situ hybridization or immunostaining. After the lack of expression of 

identified genes has been determined in other organs and systems, 

computational promoter analysis of selected genes will be initiated, following 

by preparing BAC constructs for generation of BAC transgenes or knock-ins 

expressing Cre recombinase. Additional control of Cre recombinase 

expression will be achieved by using either Tamoxifen or tetracycline-

mediated regulation. Among first likely, particularly, considering, our results of 

higher Notch 1 and Notch 2 expression in OSE-SC, Notch target genes could 

be promising candidates, but unfortunately they are also expressed in a 

number of other organs and systems. 

 We will continue in vivo imaging using various modalities. In addition to 

the MPM we anticipate using the Olympus OV 100 small imaging system 

(Hayashi et al., 2006) for whole body fluorescence imaging, XenogenIVIS200 

(Peterson et al., 2008) for bioluminescence/fluorescence whole body imaging, 

and Visual Sonics Vevo770 (Olive et al., 2009) hi-resolution ultrasound 

imaging. In one therapeutic treatment analysis we have already monitored 

tumor reduction in our mouse model of EOC intraperitoneal spreading  
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Figure 7.1 Therapeutic treatment analysis in live animals with the OV100. 

Our ascites epithelial ovarian cancer mouse model is very useful to assess 

different therapeutic approaches. The Olympus OV100 Small Animal Imaging 

System (A) allows Bright field, GFP 680nm and RFP 750nm fluorescence 

imaging; 114:1 Zoom ratio; High magnification 1.6 - 16x zoom; Low 

magnification 0.89x, 0.56x and 0.14x. Mice were injected with OSN1-GFP cell 

line (p53/Rb1 deficient) and tumor growths imaged after 6 - 8 weeks was 

compared to a control mouse (B), early tumor growth (C) and late stage of 

tumor growth (D). Histopathology of the same neoplasm; Hematoxylin and 

Eosin staining (E). Cancer mice treated with Lenti-viruses expressing blank 

(F), miR-34b (G), miR-34c (H) and miR-34b/c virus (I) demonstrating tumor 

reduction. 
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Figure 7.2 C-Myc promotes tumorigenicity of p53- and p53/Rb- deficient 

OSE. Soft agar assays were performed to test the ability of different OSE cell 

lines for adhesion independent growth. Bar graph analysis of clone sizes (A) 

or clone number (B) from different syngeneic lines of OSE. Graph showing 

survival data (C). Neoplastic cell lines OSN1eG (p53, Rb deficient, expressing 

EGFP), OSN2eG (p53 deficient, expressing EGFP), OSN3eG (p53/Rb 

deficient, overexpressing c-Myc, expressing EGFP), OSN4 (p53 deficient, 

overexpressing c-Myc), OSN5 (non-transformed); * indicates P < 0.05; survival 

curves P = 0.001. 
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employing the OV100 (Corney, Flesken-Nikitin and Nikitin, unpublished). 

Tumors induced by our p53/Rb deficient epithelial ovarian cancer cell line 

were treated with Lentivirus expressing the tumor suppressor genes mir-34b, 

mir-34c and their combination. The genes of miR-34 family are direct 

transcriptional targets of p53 (Corney et al., 2007). We observed the highest 

reduction in cancer progression after treatment with Lentivirus expressing both 

micro RNAs 34b/c (Fig. 7.1).  

 One area of our studies we are going to extend is related to the C-MYC 

oncogene association with EOC. C-Myc plays an important role in normal 

growth control during mammalian development (Davis et al., 1993) and 

somatic cell reprogramming into induced pluripotent stem cells (Takahashi and 

Yamanaka, 2006) indicating deregulated c-Myc in stem cells might accelerate 

carcinogenesis. Interestingly, survival curves and soft agar assays from our 

syngeneic OSN lines reveal OSE cells p53-and p53/Rb-deficient and 

overexpressing c-Myc are highly malignant (Flesken-Nikitin et al., 2008) and 

Fig. 7.2). Notably, corroborating data (Wong et al., 2008) suggests that c-Myc 

is sufficient to reactivate the embryonic stem cell-like program in normal and 

epithelial cancer cells (Chapter 1). Exploring the function of c-Myc in OSE-

stem cell homeostasis may reveal important new insights into EOC 

pathogenesis. 

 Most of our future work will center on further characterization of somatic 

OSE stem cells and their relationship with epithelial ovarian carcinogenesis. 

Several challenges should be addressed in this research. First, enrichment of 

OSE-SC will be achieved by isolating ALDH1+ OSE cells specifically from the 

hilum region. In our previous test we used bulk epithelium. These enriched 
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populations will allow more precise and thorough characterization of OSE 

stem cells (Szotek et al., 2008).  

 Secondly, we plan to develop an OSE reconstitution assay. The ability 

to regenerate tissue in vivo is a hallmark of stem cells (Burger et al., 2005; 

Shackleton et al., 2006; Stingl et al., 2006; Wang et al., 2009). This property 

has been used to characterize various antigens as stem cell markers. In this 

way Sca-1 (stem cell antigen-1) was found to be a marker for hematopoietic 

(Spangrude et al., 1988) and mammary epithelial stem cells (Welm et al., 

2002). Sca-1 expressing cells isolated from bone marrow were able to 

reconstitute all blood cell types. Moreover, mammary epithelial cells enriched 

for Sca-1 can regenerate the mammary gland in vivo and demonstrated 

greater growth potential than Sca-1 negative cells. Implantation of grafts under 

the renal capsule (Burger et al., 2005; Li et al., 2010; Xin et al., 2005) and 

organ cultures (Jackson et al., 2009; Kwong et al., 2009) are tissue 

regeneration procedures which we will pursue as the initial step in these 

studies.  

 Thirdly, to determine the extent of contribution of the hilum OSE-SC to 

the renewal and regeneration of whole OSE we plan two different approaches: 

OSE-SC lineage tracing and OSE-SC ablation. For the lineage tracing 

experiment we plan to test a recently generated Lgr5-EGFP-IRES-creERT2 

knock-in mouse strain (Barker et al., 2007). This strain is likely to be useful 

because stem cells in the small intestine and colon are characterized by high 

Lgr5 (leucine rich repeat containing G protein coupled receptor 5) expression. 

Moreover Lgr5 is expressed in rare cells in several other tissues as in skin 

stem cells (Hsu et al., 2011; Jaks et al., 2008). Heterozygous Lgr5 animals 

harbor a "kock-in" allele that both abolishes Lgr5 gene function and expresses  
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Figure 7.3 Identification of OSE-SC by marker Lgr5. Adapted schematic 

from Barker et al. (Barker et al., 2007) depicturing generation of mice 

expressing EGFP and creERT2 from a single bicistronic message by gene 

knock-in into the first exon of Lgr5. Following Tamoxifen treatment the LacZ 

gene is activated and ß-galactosidase can be detected in Lgr5+ cells shown in 

blue frame. SA, splice acceptor; UTR, untranslated region; EGFP, enhanced 

green fluorescent protein; IRES, internal ribosome entry site; creERT2, Cre 

recombinase fused to a G400V/M543A/L544A triple mutation of the human 

estrogen receptor ligand binding domain; TM, Tamoxifen. 

 



181 

EGFP and CreERT2 fusion protein from the Lgr5 promoter/enhancer elements. 

EGFP fluorescence is observed in Lgr5+ stem cells. Injection of tamoxifen 

activates the CreERT2 fusion enzyme in Lgr5-expressing cells. Cre-mediated 

excision of the roadblock sequence in the Rosa26STOPfloxPLacZ reporter 

irreversibly marks Lgr5+ cells. Even through potential progeny of these cells 

will no longer express EGFP, the activated LacZ reporter functions as a 

genetic marker, allowing lineage tracing. If our initial tests show that OSE cells 

express Lgr5, crosses to the Cre-activatable Rosa26STOPfloxPLacZ reporter 

mouse (Soriano et al., 1999) will be made. ß-galactosidase expressing 

progeny of Lgr5+ will reveal fate and migration of OSE-SC (Barker et al., 2007; 

Fuchs et al., 2009)(Fig. 7. 3). 

 For OSE-SC ablation we plan to use MPM. OSE-SC ablation can be 

achieved by UV pulse delivered through the endoscopic stick objective. We 

will determine if it is possible to accurately ablate small areas of OSE cells in 

the living mouse. Tracking tissue regeneration after ablation should reveal 

cells with extreme high proliferation potential. In both imaging and tracing 

experiments, tissues collected at different time points 7, 14, 28 and 35 days 

after treatments should illuminate stem cell fate.  

 To initiate testing if OSE-SCs have increased potential for malignant 

transformation, as compared to the rest of OSE cells, we intend to study 

effects of p53 and/or Rb inactivation on the OSE-SCs and more differentiated 

OSE cells. This gene inactivation will be accomplished both ex vivo, after 

isolation of individual cell with ALDEFLUOR, followed by their infection with 

AdCMVCre, and in vivo by using adenovirus expressing Cre under the control 

of ALDH1 promoter. Parameters, such as genome-wide changes in gene 

expression, proliferation, apoptosis, differentiation, senescence, DNA repair, 
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invasion and tumorigenicity will be studied in OSE-SC and the rest of OSE 

before and after gene inactivation.  
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Danny Manor, Elena N. Shmidt, Anuradha Budhu, Andrea Flesken-Nikitin, 
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Abstract 

 

Retinoic acid (RA) modulates cell proliferation, differentiation, and apoptosis, 

and is used in chemotherapy and chemoprevention in several human cancers. 

RA exerts its pleiotropic activities by activating the nuclear receptors, retinoic 

acid receptor (RAR), which, in turn, regulate transcription of multiple target 

genes. In cells, RA also associates with cellular RA-binding proteins [cellular 

RA binding proteins (CRABPs)-I and -II]. Recent studies revealed that 

CRABP-II functions by “channeling” RA to RAR, thereby enhancing the 

transcriptional activity of the receptor. In search for a biologically meaningful 

role for CRABP-II, we examined its effect on RA-induced growth inhibition in 

RA-resistant tumors. Stable expression of CRABP-II in mammary carcinoma 

SC115 cells enabled activation of RAR, considerably sensitized the cells to 

RAinduced growth inhibition, and dramatically suppressed their tumorigenicity 

in immunodeficient mice. Similarly, injection of an adenovirus expressing 

CRABP-II into mammary carcinomas that spontaneously develop in 

TgN(MMTVneu)202Mul mice resulted in a significant delay in tumor growth 

and in prolonged survival rates. Remarkably, in both mouse models, 

administration of exogenous RA had no additional beneficial effect, indicating 

that endogenous levels of RA are sufficient for maximal tumor suppression on 

CRABP-II overexpression. The observations reveal that CRABP-II plays a 

critical role in sensitizing tumors to the growth-suppressive activities of RA in 

vivo. 
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SUPPRESSION OF MELANOTROPH CARCINOGENESIS LEADS TO 

ACCELERATED PROGRESSION OF PITUITARY ANTERIO LOBE TUMORS 

AND MEDULLAR THYROID CARCINOMAS IN RB+/- MICE 

 

Zongxiang Zhou, Andrea Flesken-Nikitin, Corinna G. Levine, Elena N. Shmidt, 

Jessica P. Eng,Ekaterina Yu. Nikitina, David M. Spencer, and Alexander Yu. 

Nikitin, (2005). Cancer Research. 65: 787-796. PMID: 15705875. 
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Abstract 

 

Mice with a single copy of the retinoblastoma gene (Rb+/-) develop a 

syndrome of multiple neuroendocrine neoplasia. They usually succumb to fast-

growing, Rb-deficient melanotroph tumors of the pituitary intermediate lobe, 

which are extremely rare in humans. Thus, full assessment of Rb role in other, 

more relevant to human pathology, neoplasms is complicated. To prevent 

melanotroph neoplasia while preserving spontaneous carcinogenesis in other 

types of cells, we have prepared transgenic mice in which 770-bp fragment of 

pro-opiomelanocortin promoter directs expression of the human RB gene to 

melanotrophs (TgPOMC-RB). In three independent lines, transgenic mice 

crossed to Rb+/- background are devoid of melanotroph tumors but develop 

the usual spectrum of other neoplasms. Interestingly, abrogation of 

melanotroph carcinogenesis results in accelerated progression of pituitary 

anterior lobe tumors and medullary thyroid carcinomas. A combination of 

immunologic tests, cell culture studies, and tumorigenicity assays indicates 

that a-melanocyte–stimulating hormone, which is overproduced by 

melanotroph tumors, attenuates neoplastic progression by decreasing cell 

proliferation and inducing apoptosis. Taken together, we show that cell 

lineage–specific complementation of Rb function can be successfully used for 

refining available models of stochastic carcinogenesis and identify a-

melanocyte–stimulating hormone as a potential attenuating factor during 

progression of neuroendocrine neoplasms. 
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SYNERGY OF P53 AND RB DEFICIENCY IN A CONDITIONAL MOUSE 

MODEL FOR METASTATIC PROSTATE CANCER 

 

Zongxiang Zhou, Andrea Flesken-Nikitin, David C. Corney, Wei Wang, David 

W. Goodrich, Pradip Roy-Burman, and Alexander Yu. Nikitin, (2006). Cancer 

Research. 66:7889-7898. PMID: 16912162. 
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Abstract 

 

Pathways mediated by p53 and Rb are frequently altered in aggressive human 

cancers, including prostate carcinoma. To test directly the roles of p53 and Rb 

in prostate carcinogenesis, we have conditionally inactivated these genes in 

the prostate epithelium of the mouse. Inactivation of either p53 or Rb leads to 

prostatic intraepithelial neoplasia developing from the luminal epithelium by 

600 days of age. In contrast, inactivation of both genes results in rapidly 

developing (median survival 226 days) carcinomas demonstrating both 

epithelial and neuroendocrine differentiation. The resulting neoplasms are 

highly metastatic, resistant to androgen depletion from the early stage of 

development, and marked with multiple gene expression signatures commonly 

found in human prostate carcinomas. Interestingly, gains at 4qC3 and 4qD2.2 

and loss at 14qA2-qD2, have been consistently found by comparative genomic 

hybridization. These loci contain such human cancer-related genes as NFIB, 

L-myc and Nkx3.1, respectively. Our studies demonstrate a critical role for p53 

and Rb deficiency in prostate carcinogenesis and identify likely secondary 

genetic alterations. The new genetically defined model should be particularly 

valuable for providing new molecular insights into the pathogenesis of human 

prostate cancer. 
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PROSTATE CANCER ASSOCIATED WITH P53 AND RB DEFICIENCY 

ARISES FROM THE STEM/PROGENITOR CELL-ENRICHED PROXIMAL 

REGION OF PROSTATIC DUCTS 

 

Zongxiang Zhou, Andrea Flesken-Nikitin, and Alexander Yu. Nikitin, (2007). 

Cancer Research. 67: 5683-5690. PMID: 17553900. 
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Abstract 

 

Recently, we have shown that prostate epithelium–specific deficiency for p53 

and Rb tumor suppressors leads to metastatic cancer, exhibiting features of 

both luminal and neuroendocrine differentiation. Using stage-by-stage 

evaluation of carcinogenesis in this model, we report that all malignant 

neoplasms arise from the proximal region of the prostatic ducts, the 

compartment highly enriched for prostatic stem/progenitor cells. In close 

similarity to reported properties of prostatic stem cells, the cells of the earliest 

neoplastic lesions express stem cell marker stem cell antigen 1 and are not 

sensitive to androgen withdrawal. Like a subset of normal cells located in the 

proximal region of prostatic ducts, the early neoplastic cells coexpress luminal 

epithelium markers cytokeratin 8, androgen receptor, and neuroendocrine 

markers synaptophysin and chromogranin A. Inactivation of p53 and Rb also 

takes place in the lineage-committed transit-amplifying and/or differentiated 

cells of the distal region of the prostatic ducts. However, the resulting prostatic 

intraepithelial neoplasms never progress to carcinoma by the time of mouse 

death. Interestingly, in an ectopic transplantation assay, early mutant cells 

derived from either region of the prostatic ducts are capable of forming 

neoplasms within 3 months. These findings indicate that p53 and Rb are 

critically important for the regulation of the prostatic stem cell compartment, 

the transformation in which may lead to particularly aggressive cancers in the 

context of microenvironment. 
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MICRORNA-34B AND MICRORNA-34C ARE TARGETS OF P53 AND 

COOPERATE IN CONTROL OF CELL PROLIFERATION AND ADHESION-

INDEPENDENT GROWTH 

 

David C. Corney, Andrea Flesken-Nikitin, Andrew K. Godwin, Wei Wang, and 

Alexander Yu. Nikitin, (2007). Cancer Research. 67: 8433-8438. PMID: 

17553900. 
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Abstract 

 

MicroRNAs (miRNA) are a recently discovered class of noncoding RNAs that 

negatively regulate gene expression. Recent evidence indicates that miRNAs 

may play an important role in cancer. However, the mechanism of their 

deregulation in neoplastic transformation has only begun to be understood. To 

elucidate the role of tumor suppressor p53 in regulation of miRNAs, we have 

analyzed changes in miRNA microarray expression profile immediately after 

conditional inactivation of p53 in primary mouse ovarian surface epithelium 

cells. Among the most significantly affected miRNAs were miR-34b and miR-

34c, which were down-regulated 12-fold according to quantitative reverse 

transcription–PCR analysis. Computational promoter analysis of the mir-

34b/mir-34c locus identified the presence of evolutionarily conserved p53 

binding sites f3 kbups tream of the miRNA coding sequence. Consistent with 

evolutionary conservation, mir-34b/mir-34c were also down-regulated in p53-

null human ovarian carcinoma cells. Furthermore, as expected from p53 

binding to the mir- 34b/c promoter, doxorubicin treatment of wild-type, but not 

p53-deficient, cells resulted in an increase of mir-34b/ mir-34c expression. 

Importantly, miR-34b and miR-34c cooperate in suppressing proliferation and 

soft-agar colony formation of neoplastic epithelial ovarian cells, in agreement 

with the partially overlapping spectrum of their predicted targets. Taken 

together, these results show the existence of a novel mechanism by which p53 

suppresses such critical components of neoplastic growth as cell proliferation 

and adhesion-independent colony formation. 
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CORE-SHELL SILICA NANOPARTICLES AS FLUORESCENT LABELS FOR 

NANOMEDICINE 

 

Jinhyang Choi, Andrew A. Burns, Rebecca M. Williams, Zongxiang Zhou,  

Andrea Flesken-Nikitin, Warren R. Zipfel, Ulrich Wiesner, and Alexander Yu. 

Nikitin, (2008). Journal of Biomedical Optics. 12: 064007-1-11. PMID: 
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Abstract.  

 

Progress in biomedical imaging depends on the development of probes that 

combine low toxicity with high sensitivity, resolution, and stability. Toward that 

end, a new class of highly fluorescent core-shell silica nanoparticles with 

narrow size distributions and enhanced photostability, known as C dots, 

provide an appealing alternative to quantum dots. Here, C dots are evaluated 

with a particular emphasis on in-vivo applications in cancer biology. It is 

established that C dots are nontoxic at biologically relevant concentrations, 

and can be used in a broad range of imaging applications including intravital 

visualization of capillaries and macrophages, sentinel lymph node mapping, 

and peptide-mediated multicolor cell labeling for realtime imaging of tumor 

metastasis and tracking of injected bone marrow cells in mice. These results 

demonstrate that fluorescent coreshell silica nanoparticles represent a 

powerful novel imaging tool within the emerging field of nanomedicine. 

 

 

 

 

 

 

 

 

 

 

 



203 

 

 

 

 

 

 

 

 

 

 

 

ROLE OF P53 AND RB IN OVARIAN CANCER 
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Abstract 

 

Ovarian cancer remains a major health concern worldwide, primarily in 

postmenopausal women. Among the most common genetic alterations in 

human sporadic epithelial ovarian cancer (EOC) are p53 mutations, defective 

retinoblastoma (RB) pathway (p16Ink4a/RB) and activation of oncogenes such 

as c-myc, K-ras and Akt. Although these alterations are frequently associated 

with poor clinical prognosis, their specific contributions to EOC formation 

remain unclear. In order to gain a better understanding of the roles of these 

proteins in vivo, a number of mouse models have been generated, largely 

based upon inducing specific genetic lesions in the ovarian surface epithelium 

from which the majority of carcinomas are thought to arise in humans. Here, 

we review the role of tumor suppressor p53 and the Rb pathway in EOC with 

particular attention to association of p53 to high grade serous carcinomas as 

opposed to low grade and benign tumors. We also provide an overview of the 

utility and application of genetically engineered mouse models, in particular 

towards rational drug design and development of improved imaging 

techniques in ovarian cancer.  
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CELL LINEAGE-SPECIFIC INTERACTIONS BETWEEN MEN1 AND RB IN 

NEUROENDOCRINE NEOPLASIA 

 

Andres Matoso, Zongxiang Zhou, Ryo Hayama, Andrea Flesken-Nikitin, and 

Alexander Yu. Nikitin, (2008). Carcinogenesis. 29: 620-628. PMID: 17893233. 
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Abstract 

 

Inactivation of multiple endocrine neoplasia (MEN) type 1 gene (Men1) results 

in development of multiple endocrine tumors in Men11/2 mice and in humans. 

Intriguingly, loss of the wild-type retinoblastoma 1 (Rb) gene also leads to 

MEN-like phenotype in Rb1/2 mice. To evaluate potential genetic interactions 

between these genes, we prepared and characterized Men11/2Rb1/2 

compound mice in parallel with their parental genotypes. Men1 and Rb did not 

cooperate in tumor suppression, as demonstrated by comparable survival 

rates of Rb1/2 and Men11/2Rb1/2 mice, absence of tumor growth acceleration 

and lack of novel neoplasms. Notably, the loss of the remaining copy of the 

wild-type Men1 and Rb was mutually exclusive in all tumors of Men11/2Rb1/2 

mice, including pituitary anterior lobe and adrenal medulla neoplasms shared 

by Rb- and Men1-deficient phenotypes. Down-regulation of Men1 targets p18 

and p27 and increased presence of phosphorylated-Rb were observed in 

Men1-deficient pheochromocytomas of Men11/2Rb1/2 and Men11/2 mice. At 

the same time, the RNA interference (RNAi) knock-down of Men1 mRNA 

resulted in increased apoptosis of Rb-deficient medullary thyroid carcinoma 

cells. These results demonstrate that, depending on cell lineage context, 

combined Men1 and Rb deficiency may be either redundant or detrimental to 

neoplastic growth. Identification of cell lineage-specific interactions between 

Men1 and Rb may have important implications for development of rationally 

designed therapeutic approaches. 
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MOUSE MODELS FOR CANCER STEM CELL RESEARCH 

 

Le Cheng, Anirudh V. Ramesh, Andrea Flesken-Nikitin, Jinhuang Choi, and 

Alexander Yu. Nikitin, (2010). Toxicologic Pathology. 38: 62-71. PMID: 

19920280. 
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Abstract 

 

The cancer stem cell concept assumes that cancers are mainly sustained by a 

small pool of neoplastic cells, known as cancer stem cells or tumor initiating 

cells, which are able to reproduce themselves and produce phenotypically 

heterogeneous cells with lesser tumorigenic potential. Cancer stem cells 

represent an appealing target for development of more selective and efficient 

therapies. However, direct testing of the cancer stem cell concept and 

assessment of its therapeutic implications in human cancers have been 

complicated by the use of immunocompromised mice. Genetically defined 

immunocompetent autochthonous mouse models of human cancer provide a 

valuable tool to address this problem. Furthermore, they allow for a better 

understanding of the relevance of mechanisms controlling normal stem cell 

compartment to carcinogenesis. Advantages and disadvantages of some of 

the existing mouse models are reviewed, and future challenges in cancer stem 

cell research are outlined. 
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FREQUENT DOWNREGULATION OF MIR-34 FAMILY IN HUMAN OVARIAN 

CANCERS 

 

David C. Corney, Chang-Il Hwang, Andres Matoso, Markus Vogt, Andrea 

Flesken-Nikitin, Andrew K. Godwin, Aparna A. Kamat, Anil K. Sood, Lora H. 

Ellenson, Heiko Hermeking, and Alexander Yu. Nikitin, (2010). Clinical Cancer 

Research. 16: 1119-1128. PMID: 20145172. 
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Abstract 

 

Purpose: The miR-34 family is directly transactivated by tumor suppressor 

p53, which is frequently mutated in human epithelial ovarian cancer (EOC). 

We hypothesized that miR-34 expression would be decreased in EOC and 

that reconstituted miR-34 expression might reduce cell proliferation and 

invasion of EOC cells. Experimental Designs: miR-34 expression was 

determined by quantitative reverse transcription-PCR and in situ hybridization 

in a panel of 83 human EOC samples. Functional characterization of miR-34 

was accomplished by reconstitution of miR-34 expression in EOC cells with 

synthetic pre-miR molecules followed by determining changes in proliferation, 

apoptosis, and invasion. Results: miR-34a expression is decreased in 100%, 

and miR-34b*/c in 72%, of EOC with p53 mutation, whereas miR-34a is also 

downregulated in 93% of tumors with wild-type p53. Furthermore, expression 

of miR-34b*/c is significantly reduced in stage IV tumors compared with stage 

III (P = 0.0171 and P = 0.0029, respectively). Additionally, we observed 

promoter methylation and copy number variations at mir-34. In situ 

hybridization showed that miR-34a expression is inversely correlated with 

MET immunohistochemical staining, consistent with translational inhibition by 

miR-34a. Finally, miR-34 reconstitution experiments in p53 mutant EOC cells 

resulted in reduced proliferation, motility, and invasion, the latter of which was 

dependent on MET expression. Conclusions: Our work suggests that miR-34 

family plays an important role in EOC pathogenesis and reduced expression of 

miR-34b*/c may be particularly important for progression to the most 

advanced stages. Part of miR-34 effects on motility and invasion may be 

explained by regulation of MET, which is frequently overexpressed in EOC. 
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MOUSE PROSTATE CANCER CELL LINES ESTABLISHED FROM 

PRIMARY AND POSTCASTRATION RECURRENT TUMORS 

 

Chun-Peng Liao, Mengmeng Liang, Michael B. Cohen, Andrea Flesken-

Nikitin, Joseph H. Jeong, Alexander Yu. Nikitin, and Pradip Roy-Burman, 

(2010). Hormones and Cancer. 1: 44-45. PMID: 20631921. 
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Abstract 

 

The clinical course of prostate cancer is grouped into two broad phases. The 

first phase, which is the growth of the androgen-dependent cancer (AD-Ca), 

responds well to androgen depletion treatment while the second phase that 

could be termed as androgen-depletion-independent cancer (ADI-Ca) does 

not. We used two separate prostate tumors, one AD-Ca and one ADI-Ca from 

the conditional Pten deletion mouse model, to generate from each a pair of 

cell lines. The AD-Ca cell lines (E2 and E4) and the ADI-Ca cell lines (cE1 and 

cE2) display biallelic deletion at the Pten gene locus, an event which is 

specific for the prostate epithelium for this mouse model and a fairly similar 

level of expression of the androgen receptor (AR). The ADI-Ca cell lines (cE 

series) grow well in the absence of androgen, display increased AR 

transcription under androgendeprived environment, and retain the sensitivity to 

increased proliferation when androgen is supplemented. The AD-Ca cell lines 

(E series) grow slowly in the absence of androgen and, unlike cE cells, do not 

show increased AR expression when maintained in the absence of androgen. 

The detection of epithelial cell markers, such as CK8, CK14, CK18, and E-

cadherin in the cE series is conforming with the polygonal epithelial 

morphology of these cells in culture. The E cells also present mostly 

polygonal-shaped morphology with a small percent of cells with fibroblastoid 

morphology and produce little or very low levels of cytokeratins but increased 

levels of vimentin, Twist, and Slug, the markers known to be associated with 

epithelial– mesenchymal transition. Each of the cell lines, when inoculated 

subcutaneously into male or female NOD.SCID mice induced tumors within 8 

weeks with 100% incidence. Histopathological examinations of the tumor 
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sections, however, led to noticeable biological differences. The cE series 

engenders adenocarcinomas, particularly in male hosts, and the E series 

induces sarcomatoid carcinomas (positively stained for CK8 and AR as well as 

vimentin expression) in either male or female hosts. These new cell lines are 

promising models for the elucidation of the androgen metabolism and their role 

in prostate cancer. 
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RB INACTIVATION ACCELERATES NEOPLATIC GROWTH AND 

SUBSTITUTES FOR RECURRENT AMPLIFICATION OF CIAP1, CIAP2 AND 

YAP1 IN SPORADIC MAMMARY CARCINOMA ASSOCIATED WITH P53 

DEFICIENCY 

 

Le Cheng, Zongxiang Zhou, Andrea Flesken-Nikitin, Ilja A. Toshkov, Wei 

Wang, John Camps, Thomas Ried, and Alexander Yu. Nikitin, (2010). 

Oncogene. 29: 5700-50711. PMID: 20676140. 
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Abstract 

 

Genetically defined mouse models offer an important tool to identify critical 

secondary genetic alterations with relevance to human cancer pathogenesis. 

We used newly generated MMTV-Cre105Ayn mice to inactivate p53 and/or Rb 

strictly in the mammary epithelium, and to determine recurrent genomic 

changes associated with deficiencies of these genes. p53 inactivation led to 

formation of estrogen receptor-positive raloxifene-responsive mammary 

carcinomas with features of luminal subtype B. Rb deficiency was insufficient 

to initiate carcinogenesis but promoted genomic instability and growth rate of 

neoplasms associated with p53 inactivation. Genome-wide analysis of 

mammary carcinomas identified a recurrent amplification at chromosome band 

9A1, a locus orthologous to human 11q22, which contains protooncogenes 

cIAP1 (Birc2), cIAP2 (Birc3) and Yap1. It is interesting that this amplicon was 

preferentially detected in carcinomas carrying wild-type Rb. However, all three 

genes were overexpressed in carcinomas with p53 and Rb inactivation, likely 

due to E2F-mediated transactivation, and cooperated in carcinogenesis 

according to gene knockdown experiments. These findings establish a model 

of luminal subtype B mammary carcinoma, identify critical role of cIAP1, cIAP2 

and Yap1 co-expression in mammary carcinogenesis and provide an 

explanation for the lack of recurrent amplifications of cIAP1, cIAP2 and Yap1 

in some tumors with frequent Rb deficiency, such as mammary carcinoma. 
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CONDITIONAL KNOCKOUT OF FIBRONECTIN ABROGATES MOUSE 

MAMMARY GLAND LOBULOALVEOLAR DIFFERENTIATION 

 

Keyi Liu, Le Cheng, Andrea Flesken-Nikitin, Lynn Huang, Alexander Yu. 

Nikitin, and Bendicht U. Pauli, (2010). Developmental Biology. 6: 11-24. PMID: 

20624380. 
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Abstract 

 

Fibronectin (Fn) plays an important part in the branching morphogenesis of 

salivary gland, lung, and kidney. Here, we examine the effect of the conditional 

knockout of Fn in the mammary epithelium [FnMEp−/−] on postnatal mammary 

gland development, using Cre-loxP-mediated gene knockout technology. Our 

data show that Fn deletion causes a moderate retardation in outgrowth and 

branching of the ductal tree in 5-week-old mice. These defects are partially 

compensated in virgin 16-week-old mice. However, mammary glands 

consisting of Fn-deficient epithelial cells fail to undergo normal lobuloalveolar 

differentiation during pregnancy. The severity of lobuloalveolar impairment 

ranged from lobular hypoplasia to aplasia in some cases and was associated 

with the amount of Fn protein recovered from these glands. Decreased rates 

of mammary epithelial cell proliferation accounted for delayed ductal outgrowth 

in virgin and lack of alveologenesis in pregnant FnMEp−/− mice. Concomitant 

decreased expression of integrin β1 (Itgb1) and lack of autophosphorylation of 

focal adhesion kinase (Fak) suggest that this pathology might, at least in part, 

be mediated by disruption of the Fn/Itgb1/Fak signaling pathway. 
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LOCAL MESENCHYMAL STEM/PROGENITOR CELLS ARE A 

PREFERENTIAL TARGET FOR INITIATION OF ADULT SOFT TISSUE 

SARCOMAS ASSOCIATED WITH P53 AND RB DEFICIENCY 

 

Jinhyang Choi, Stephen J. Curtis, David M. Roy, Andrea Flesken-Nikitin, and 

Alexander Yu. Nikitin, (2010). The American Journal of Pathology. 177: 2645-

2658. PMID: 20864684. 
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Abstract 

 

The cell of origin and pathogenesis of the majority of adult soft tissue 

sarcomas (STS) remains poorly understood. Because mutations in both the 

P53 and RB tumor suppressor genes are frequent in STS in humans, we 

inactivated these genes by Cre-loxP–mediated recombination in mice with 

floxed p53 and Rb. Ninety-three percent of mice developed spindle cell/ 

pleomorphic sarcomas after a single subcutaneous injection of adenovirus 

carrying Cre-recombinase. Similar to human STS, these sarcomas 

overexpress Cxcr4, which contributes to their invasive properties. Using 

irradiation chimeras generated by transplanting bone marrow cells from mice 

carrying either the Rosa26StoploxPLacZ or the Z/EG reporter, as well as the 

floxed p53 and Rb genes, into irradiated p53loxP/loxPRbloxP/loxP mice, it was 

determined that sarcomas do not originate from bone marrow–derived cells, 

such as macrophages, but arise from the local resident cells. At the same 

time, dermal mesenchymal stem cells isolated by strict plastic adherence and 

low levels of Sca-1 expression (Sca-1low, CD31negCD45neg) have shown 

enhanced potential for malignant transformation according to soft agar, 

invasion, and tumorigenicity assays, after the conditional inactivation of both 

p53 and Rb. Sarcomas formed after transplantation of these cells have 

features typical for undifferentiated high-grade pleomorphic sarcomas. Taken 

together, our studies indicate that local Sca-1low dermal mesenchymal 

stem/progenitor cells are preferential targets for malignant transformation 

associated with deficiencies in both p53 and Rb. 
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