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Abstract 

In this work, we present a theoretical framework that unifies polymer field theory and 

density functional theory in order to efficiently predict ordered nanostructure formation of 

systems having considerable complexity in terms of molecular structures and interactions. We 

validate our approach by comparing its predictions with previous simulation results for model 

systems. We illustrate the flexibility of our approach by applying it to hybrid systems composed 

of block copolymers and ligand coated nanoparticles. We expect that our approach will enable 

the treatment of multi-component self-assembly with a level of molecular complexity that 

approaches experimental systems. 
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Manuscript text 

1. Introduction 

Nanoparticle (NP) assembly and co-assembly are topics of significant current scientific 

interest due to their potential impact on the engineering of new materials. Recent advances in 

synthesis allow the growth of monodisperse NPs from a wide range of solids, e.g. metals, 

semiconductors, and insulators.1-5 This control enables ordered crystal formation, including 

binary superlattices at the mesoscopic scale (1 to 1000 nm ), thus providing powerful modular 

pathways to the design of ‘metamaterials’ that should ultimately result in devices with 

programmable chemical and physical properties.6-9 NP formation and assembly has also been 

found to play a critical role in natural biomineralization processes. It recently has been shown 

that amourphous calcium carbonate (ACC) NPs nucleate in solution and assemble at an ordered 

template of macromolecules thus challenging classical crystallization theories.10-11 Similar NP 

assembly behavior is currently utilized in the field of synthetic porous solids.12 Aside from oxide 

structures mesoporous bulk metals are formed from block copolymer (BCP) / metal NP self-

assembly through careful tailoring of particle-polymer-solvent and particle-particle 

interactions.13 In many of these experimental systems, chemical building blocks are complex 

organic/inorganic hybrid molecules such as ligand-stabilized NPs. Furthermore, Coulomb or 

dipolar long-range particle-particle interactions are believed to play an essential role in their 

assembly. In particular for complex multi-component systems involving assembly of NPs and 

macromolecules, limited understanding of the role of such key factors has severely hampered 

progress. Clearly, better predictive theoretical and simulation methods are needed. 

To this end, we present an efficient theoretical framework that unifies polymer field theory 

and density functional theory (DFT) into a single method in order to incorporate complex 
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molecular details with key physical interactions. Atomistic or particle-based modeling such as 

molecular dynamics and Monte Carlo (MC) simulations can readily incorporate different 

molecular details but are computationally more expensive than field-theoretical approaches. 

Furthermore, they require specialized methods to measure or impose chemical potentials and an 

analysis of finite system-size effects to ensure that structures at thermodynamic equilibrium are 

obtained (e.g., some morphological features can be frustrated by a lack of geometric 

commensurability with the box dimensions).14-18 Alternatively, the morphologies of BCP self-

assembly have been successfully studied and predicted by self-consistent field theory 

(SCFT),14,19-23 a field theoretic description of chemical fields exploiting the mean-field 

approximation.21 Shi et al.56 and Wang et al.57 proposed SCFT approaches to simulate 

polyelectrolyte by incorporating Coulomb interactions between polymer segments. The SCFT 

approach is very efficient and powerful, but the original SCFT approach is not readily applicable 

to systems beyond BCP self-assemblies due to its inability to describe the interactions associated 

with NPs. A combined approach of atomistic and field theoretic modeling as well as a novel MC 

approach have been suggested for simulation of BCP/NP self-assembly,24 but they have the same 

or similar limitations found in atomistic simulations. Meanwhile, DFT approaches were 

suggested for different molecular systems,25-27 but their applications were limited to local 

structure prediction. Thompson et al. introduced a new numerical scheme of combining SCFT 

with DFT.28-29 The SCFT/DFT approach seems quite promising for investigating the equilibrium 

properties of BCP/NP composites, but its application has been limited to simple mixture systems 

of BCPs and hard sphere (HS) particles.28-30 Due to the difficulties in describing arbitrary types 

of molecular structures and interactions, applications of field theoretic approaches to more 

complex molecular systems such as those systems with charged NPs or ligand-stabilized NPs 
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remain a significant challenge. 

In order to overcome such limitations of existing theories, we extend the Green function 

propagator to hard particles and incorporate key physical interactions in the form of direct 

correlation functions for complex molecular systems. The Green function propagator approach 

has been used to describe polymer configurations in polymer field theory, but their applications 

have been limited to polymers. By using this propagator we introduce a theoretical framework 

that enables us to integrate not only discrete but also continuous segments into a molecule. The 

framework offers greater flexibility to incorporate complex molecules composed of soft and 

hard chemical species than existing SCFT, SCFT/DFT, and other polymer DFT approaches.27,46 

The direct correlation functions are widely used in well-established DFT approaches.31 

Atomistic interactions such as Coulomb,32-34 Yukawa,33 dipole,34 and Lennard-Jones 

interactions33,35 can be incorporated in this context. Therefore, our approach enables us to 

incorporate the complexity of molecular structures and their interactions while taking advantage 

of the efficiency of field theories for sampling phase space of molecular systems. We 

demonstrate the validity of our approach by first comparing its predictions with previous 

results28 and then applying it to a hybrid materials system consisting of multi-component 

molecules with NPs. Further applications of our approach will be presented elsewhere.36 

 

2. Theoretical and numerical procedures 

2.1. Overview 

Our field-theoretic approach is based on the minimization of the Helmholtz free energy 

functional, [ ],F w! , of a system with respect to variations of the density functions, ! , and 

chemical fields, w . The general schematic procedure and key equations are summarized in Fig. 
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1. In Sections 2.2 and 2.3, F  is obtained from the particle-based partition function, where 

interactions are added to the excess free energy functional, exF , in a functional form. Various 

interactions can be incorporated following Eq. (11). The process is similar to that of 

incorporating different force field terms in particle-based simulations. The most general form of 

F  for the present work is given as Eqs. (9) and (13). In Sections 2.3 and 2.4, the chemical fields, 

w , given in Eqs. (14) and (18) are obtained from the functional derivative of F  with respect to 

! . In Section 2.5, the density functions, ! , are obtained from the functional derivative of F  

with respect to w , see Eq. (40). It is shown that !  can be calculated from the single molecular 

partition function Q  and the segment distribution functions, q  and †q . To obtain Q , q  and †q , 

we introduce the Green’s function,  G , that propagates from one segment to another as  i  to 1i +  

in Fig. 2. The density distribution functions q  and †q  for each segment are calculated from their 

convolution with  G  via Eqs. (34) and (35) with the boundary conditions given by Eqs. (37) and 

(38). In Section 2.6, q , †q , and  G  are formulated for continuous segments, see Eqs. (44), (47), 

and (48). For each step in the calculations outlined in Fig. 1, w  and !  are updated iteratively 

until changes of ( )! r  and ( )w r  become sufficiently small. Finally, in Section 2.7, field theories 

beyond the mean-field approximation in Section 2.7 are considered. 

 
2.2. Helmholtz free energy functional 

For clarity, we only present the equations derived for a homogeneous system with one 

type of molecule; the extension to inhomogeneous mixture systems is straightforward. The 

configurational partition function of the canonical ensemble is given by 
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 ( ) ( ) ( ) ( )1
exp /

!
! "= #$ %& n n n n n

BZ d P E R U k T
n

r r r r r , (1) 

 

where n  is the number of molecules, ( )nR r  is the incompressibility constraint term, ( )nU r  is 

the interaction potential, and Bk T  is the Boltzmann constant multiplied by the temperature (note 

that we neglect unimportant constant terms such as the de Broglie thermal wavelength). The term 

( )nP r  accounts for the molecular configuration of multi-component molecules such as polymers 

or hybrid molecules (see discussion in Section 2.5). For hard particle interactions, the excluded 

volume constraint, ( )nE r , is included. For multi-component molecules, we specify each 

monomer species with a parameter, i . The density operator of the i th monomer species, ( )ˆi! r , 

for multi-component molecules is given by 

 

 ( )!̂ " # $= %& '(
n

j
i i

j
r r r ,   (2) 

 

where j
ir  is the positional vector of the monomer species i  of molecule j . Consequently, 

( )nU r  is given by 

 

 ( ) ( ) ( ) ( )
,

1 ˆ ˆ,
2

n
i ij j

i j
U d d u! !" " "= #$$r r r r r r r , (3) 

 

where ( ),iju !r r  is a pair potential function describing the interaction between monomer species 

i  at r  and j  at !r . For example, ( ),iju !r r  for Coulomb interactions between point charges is 
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given by ( ), / 4ij i ju Z Z !"# #= $r r r r , where iZ  and jZ  are charges of species i  and j  

respectively, and !  is the permittivity. The 2nd order direct correlation function defined by 

( ) ( ) ( )2, 1/ / ! !" "= # $ ex
ij B i jC k T D F D Dr r r r  in Sections 2.3 and 2.4 has a meaning consistent 

with ( ), /ij Bu k T!" r r , where [ ]exF !  is the ‘excess’ free energy functional and the free energy 

contributions of pair-wise interactions between particles (noting that /DF D!  denotes the 

functional derivative of the functional [ ]F ! ). Higher order direct correlation functions than 2nd 

order can be neglected for slowly varying potentials such as the Coulomb potential without 

significant loss of accuracy,33 since they are related to multi-body interactions. The excluded 

volume constraint ( )nE r  in Eq. (1) is also included in the excess free energy functional form as 

in Section 2.4. Therefore, particle-particle interactions including enthalpic interactions and 

purely entropic excluded volume interactions are given in the form of the excess free energy 

functional. In field theoretic approaches, the partition function Z  is re-expressed in terms of 

local densities, ( )! r , and chemical potential fields, ( )w r , using the identities for the delta 

functional,20,37 

  

 [ ]ˆ 1i i iD! " ! !# =$  (4) 

 
and 
 
 [ ] ( ) ( ) ( ){ }ˆ ˆexpi i i i i iDw d w! " " " "# $% = %& '( ( r r r r , (5) 

 

where D  represents the functional integral. Then Z  for the field theoretic description takes the 

form 
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( ) ( ){ }

{ } ( ) ( )

exp
!

1
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N
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i

N
n ex

i
i B
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n

Q w d F
k T

! " "

! #

$ %
= & '

( )

* + , -, -
, -. / /0 1 2 32 34 5
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89 9

:9

r r r

r r r
 (6) 

 

where C  is the normalization constant, N  is the number of monomer species in one molecule, 

and Q  is the single molecular partition function discussed in Section 2.5. The excess free energy 

functional  F ex  details interactions between particles as ( )nU r  in Eq. (1) and will be discussed 

more detail in Section 2.3. The incompressibility term, ( )nR r , in Eq. (1) is given in a functional 

form, 

 

 ( ) ( ) ( )1 exp 1
N N

i i
i i

D d! " # # "
$ %& ' ( )

* = *+ ,- . / 0
1 2 3 45 6
7 78 8r r r r , (7) 

 

satisfying the incompressibility condition, 

 

 ( ) 1
N

i
i
! =" r , (8) 

 

where ( )i! r  is the local volume fractional functional of the i th monomer species, obtained from 

its density function, ( )i! r , by convolution with its shape function, ( )iS r , defined as 

( ) ( )1
0iS ! "#=r r  for point-like monomer species, and ( ) ( )i iS H R= !r r  for spherical 

monomer species, where 1
0!
"  is the reference volume for point-like monomer species, ( )x!  is 
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the Dirac delta function, ( )xH  is the Heaviside step function, and iR  is the radius of the 

spherical monomer species i . The ( )! r  is a Lagrange multiplier function that needs to be 

chosen to satisfy Eq. (8). The Helmholtz free energy functional, F , is given as 

 

 [ ] [ ] [ ]0, , exF w F w F! ! != + , (9) 

 

where 0F  describes the mixing and conformational entropy as well as the pressure energy, and 

is obtained from 

 

 

{ } ( ) ( ){ }

( ) ( )

0 / ln

1

B i i
i

i
i

F k T n Q w d w

d

!

" #

$ %= & &' (

$ %
& &) *

' (

+ ,

+,

r r r

r r r
, (10) 

 

where we neglect unimportant constant terms for clarity. When the incompressibility condition is 

satisfied, the last term of Eq. (10) vanishes. 

 

2.3. The excess free energy functional 

exF  in Eq. (9) primarily contains the enthalpic interactions between all species but also 

includes purely entropic hard sphere (HS) interaction terms (hence the notation of ‘excess’ 

instead of ‘enthalpic’); in its most general form it is given by:  

 

 ex HS C Dipole YukawaF F F F F F!= + + + + +! . (11) 
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The conventional SCFT approach14,19-23,38-39 only includes the first term describing short range 

enthalpic interactions, F ! . A combined SCFT/DFT approach was recently developed to also 

implement short range HS interactions, HSF , in addition to F ! .28-30 In order to describe more 

realistic experimental systems, long range interactions such as Coulomb, CF , dipole, DipoleF , 

and screened Coulomb interactions, YukawaF , have to be included. By choosing Coulomb 

interactions as an example, here we introduce our strategy to implement such long range 

interactions. The excess free energy functional is obtained as 

 

 

( ) ( ) { }

( ) ( ) ( )

0/ ;

1 ,
2

ex HS
B ij i j

i j

C
i ij j

ij

F k T d d d

d d C

! " # # !

! !

<

$ $ % &= + ' ( )

$ $ $*

+ ,, ,

+,,

r r r r r r

r r r r r r
, (12) 

 

where the first term represents F ! , the second term HSF , and the last term CF . Here C
ijC  is the 

direct correlation function for Coulomb interactions.33 By combining Eqs. (10) and (12), the 

Helmholtz free energy functional, F , is obtained as 

 

 

{ } ( ) ( ){ }

( ) ( )

( ) ( ) { }

( ) ( ) ( )

0

/ ln

1

;
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2

!

" #
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<
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, , ,'

. /

./

. // /

.//

B i i
i

i
i

HS
ij i j

i j

C
i ij j

ij

F k T n Q w d w

d

d d d

d d C

r r r

r r r

r r r r r r

r r r r r r

, (13) 

 

where the first three terms in the right hand side represent the entropic part, 0F , and the last 

three terms represent the excess part, exF , for short-range enthalpic, HS, and long-range 
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Coulomb interactions, respectively.  The Helmholtz free energy functional,F , is not directly 

used in the self-consistent iteration process, but is evaluated for obtaining the system with the 

lowest free energy as shown in Fig. 1. Applying the mean-field approximation,21,38 the average 

chemical potential field felt by the i th monomer, ( )iw r , is obtained at saddle points of F , 

where ( )/ 0iDF D! =r , and is given by 

 

 ( ) ( ) ( ) ( ) ( )/HS C
i i i i B iw k T!µ µ µ" #= + + +$% &r r r r r . (14) 

 

where ( )i
!µ r , ( )HS

iµ r , and ( )C
iµ r , are the chemical potential fields of short range enthalpic, 

short range HS, and long range Coulomb interactions, respectively, and ( )i! r  is the pressure 

field for monomer i . As in the conventional SCFT, short range enthalpic interactions between 

distinct chemical species are described by dimensionless Flory-Huggins interaction parameters, 

ij! , and the first term in Eq. (14), ( )i
!µ r , is given by 

 

 ( ) ( ) ( )0/i B i ij j
i j

k T d S N
N

! "
µ ! #

$

% % %= & '(r r r r r . (15) 

 

Here we use ij!  parameters for the short range enthalpic interactions, since experimental 

solubility parameters can be directly applied as simulation parameters. We utilize the 

fundamental measure theory (FMT) approach39 for short range HS interactions described by the 

second term, ( )HS
iµ r  in Eq. (14), as outlined in Ref. 33 and repeated in Section 2.4. The third 

term in Eq. (14), ( )C
iµ r , describes the long-range Coulomb interactions and is obtained from the 
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direct correlation function as 

 

 ( ) ( ) ( )/ ,C C
i B ij j

j
k T d Cµ !" " "= #$%r r r r r , (16) 

 

The non-negligible contribution of the long range Coulomb potential tail on the chemical field is 

efficiently computed via the Ewald summation technique.31 Thus, long range interactions can be 

incorporated into the theory by using direct correlation functions and the Ewald summation 

technique, which is discussed in Section 2.4. Other long-range interactions such as screened 

Coulomb,33 dipole,34 and Lennard-Jones interactions33,35 can be included in the theory in the 

same way as the Coulomb interaction case exemplified here. Finally, the last term in Eq. (14), 

( )i! r , is given by 

 

 ( ) ( ) ( )0
i id S

N
!

"# # #$ = %&r r r r r . (17) 

 

Combining Eqs. (15), (16), and (17) yields the chemical fields felt by monomer species i  

 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

0

/ ,

i ij j i
j

HS C
i B ij j

j

w d N S
N

k T d C

!
" # $

µ !

% &
' ' ' '= + () *
+ ,

' ' '+ (

-.

-.

r r r r r r

r r r r r
. (18) 

 

 

2.4. Density Functional Form 

To account for excluded volume interactions in our field theoretic approach, we include 
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the excluded volume constraint, ( )nE r , in Eq. (1) that particles cannot concurrently occupy the 

same space. In contrast to other interactions, hard-particle interactions are purely entropic. 

Unfortunately, there is no exact analytic solution for 3-dimensional systems. Instead, Percus 

obtained an exact result for the free energy density of 1-dimensional hard rods.40 Although the 1-

dimensional result is not widely useful in itself, it is an important starting point for evaluating 

other hard-particle interactions.41 The FMT method pioneered by Rosenfeld for hard-particle 

interactions in 3 dimensions is based on Percus’ result.39 In the present work, we utilize the FMT 

since it is the most advanced hard particle DFT for inhomogeneous hard body systems.41 The 

FMT was originally developed for inhomogeneous mixture systems of HSs. It supersedes other 

approaches in (i) providing flexibility for incorporating inhomogeneous hard particle mixtures, 

and in (ii) providing accurate predictions for dense packing behaviors, e.g. liquid to solid 

transitions, of hard particles.41-42 The excess free energy functional is given as 

( )/HS HS
BF k T d= !" r r , where the excess free energy density, HS! , is obtained from 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

23
0 3 1 2 3 2 3

2
1 2 3 2 1 2 3

ln 1 / 1 / 1 / 24

/ 1 / 1 / 8

!

!

" = # # + # + #

# $ # # $ #

HS

V V V V

n n n n n n n

n n n

r

n n n n
. (19) 

 

HS!  is a function of the weighted densities, n! , which are given by 

 

 ( ) ( ) ( ) ( )!
! "# # #= $%& i i

i
n d Wr r r r r , (20) 

 

where the weighting functions are ( ) ( ) ( )3 = !i iW H Rr r , ( ) ( ) ( )2 != "i iW Rr r , 
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( ) ( ) ( )2 != "V
i iR

rW r r
r

, ( ) ( ) ( ) ( )1 2 / 4!=i i iW W Rr r , ( ) ( ) ( ) ( )0 2 2/ 4!=i i iW W Rr r , and 

( ) ( ) ( ) ( )1 2 / 4!=V V
i i iRW r W r  and iR  is the radius of HS particle i . The excess chemical potential 

functional is obtained as 

 

 ( ) ( ) ( )/HS
i B ik T d W !

!
!

µ µ" "= #$%r r r r , (21) 

 

where /HS n! !µ = "# "  and 
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n
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n
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n
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µ

µ
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!

µ

!

!

µ

µ !

= " "

= "

= " + "

" # "

= " + "

" " " # "

" # "

= " "

= " " " "

n n

n n

n n

n

n n

. (22) 

 

The direct correlation function for the Coulomb potential, ( ) / /= !B i jV k T Z Zr r , was obtained 

based on the mean-spherical approximation.42 The direct correlation function, C
ijC , for charged 

HS particles can be interpreted as the effective interaction between two spherical cavities with 

the radii, iR  and jR , where charges are uniformly distributed.33 Blum’s theory for C
ijC  is also 
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based on interactions between two spherical charged cavities with radii increased as much as the 

capacitance length.32,43-44 In this work, we use Rosenfeld’s formulation of the direct correlation 

function42 which is given by 

 

 ( ) ( ) ( )(2) (2), /! !! ! !! ! !!= " # " " "$$C
ij i j i j i i j jC Z Z d d W Wr r r r r r r r r r  (23) 

 

and 

 

 
( )

( )

( ) ( )

0

2

0 0

2 ,  if 
, 12 , if 

1 ,  if 

! !

! ! !

"
# $+ % % <#
#$% # $ $= + % % % % < % < +& $' %#
#

$+ < %#
$%#(

i j ij ij
C
ij

i j ij ij ij i j
i j

i j

B R R
C

B R R B R R
Z Z

R R

r r
r r

r r r r
r r

r r
r r

, (24) 

 

where jiij RR !="  and ( ) ( )( )2 2
0 2 4 / 4 4! ! ! != i j i jB R R R R . The Coulomb potential decays 

slowly and long-range contributions to the free energy in a periodic system are not negligible. 

The Ewald summation technique is widely used to calculate the long-range contributions 

efficiently.31 In this work, the Ewald summation technique is not applied to the Coulomb 

potential. Instead, since long-range contributions are very important in the formation of ordered 

nanostructure,36 we introduce our approach to apply the Ewald summation technique in the 

context of the direct correlation function. The chemical potential from the Ewald summation is 

separately calculated and the direct correlation function is modified as 
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( ) ( ) ( )

( ) ( ) ( )

,

,
,

/ ,

,

µ !

! µ

" " "= #

"" " "= # +

$%

$%

C C
i B i j j

j

C C ew
i j j i

j

k T d C

d C

r r r r r

r r r r r
 (25) 

 

and 

 

 ( ) ( ) ( ), , !
"# # # #= + $
#$

i jC C
ij ij

Z Z
C C erfr r r r r r

r r
, (26) 

 

where the positive constant !  in the error function ( )erf x  determines the width of the Gaussian 

compensating charge distribution. The reciprocal space contribution, ( ),µC ewi r  to the chemical 

potential from the Ewald summation is calculated by 

 

 ( ) ( ) ( )2, 1
2

4
/ exp / 4

!
µ " #$

% &
= ' $( )

( )* +
!C ew

i B ik T Zr FT k k
k

, (27) 

 

where ( ) ( )! !
" #

= $ %
& '
(! j j
j
Zk FT r , FT  and 1!FT  are the Fourier and the inverse Fourier 

transformations. Since 21/ k  is singular at 0=k , ( )! 0!  should be zero, i.e. the charge 

neutrality condition should be met. In an infinitely periodic system, the boundary condition at 

infinity affects the system free energy due to long-range Coulomb interactions and the resulting 

polarization energy should be considered.31 Eq. (27) is valid for a system embedded in materials 

with infinite dielectric constant, i.e. metals. For a vacuum boundary condition, the polarization 
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energy needs to be included and the chemical potential field and the free energy become 

 

 ( ) ( ) ( ), , 4/ /
3
!

µ µ "
# $%& & & &= + '( )
* +
, -C ew C ew i

i B i B j j
j

Zk T k T Z d
V

r r r r r r  (28) 

 

and 

 

 ( )
2

2
3
!

"
#$ = + % &ex ex

i i
i

F F Z d
V

rr r . (29) 

 

2.5. Single molecular partition function 

 Here we discuss the single molecular partition function, Q , for the discrete limit and the 

linear configuration of monomer species as shown in Fig. 2. The extension to the continuous 

monomer segments as in SCFTs and configurations other than linear is discussed in Section 2.6. 

Q  is given by 

 

 ( ) ( )1 1, , exp! "
= #$ %

& '
() ! !
N

N N i i
i

Q d d K wr r r r r , (30) 

 

where K  is the product of constraints between neighboring monomers 

 

 ( ) ( )
1

1 1, , ,
N

N i i i
i

K P
!

+="r r r r! . (31) 
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The bond length between neighboring monomers of polymers is usually approximated to follow 

a Gaussian distribution45 and the constraint for the polymer configuration shown in Fig. 2A is 

given by 

 

 ( ) ( )
3/ 2

2

2 2

3 3
, exp

2 2!

" # $ %
& &= ' '( )* +

, - . /
i

i i

P
a a

r r r r , (32) 

 

where ia  is the average distance between neighboring monomers, i.e. the Kuhn length. If the i th 

monomer is a HS as shown in Fig. 2B, the constraint is given by 

 

 ( ) ( ) 2, / 4! "# #= $ $iP R Rr r r r , (33) 

 

where R  is the radius of the HS. To calculate Q , we introduce the segment distribution 

functions, ( )iq r  and ( )†
iq r , defined as 

 

 ( ) ( ) ( )1 ,+ ! ! != "i i iq d G qr r r r r  (34) 

 

and 

 

 ( ) ( ) ( )† †
1, +! ! != "i i iq d G qr r r r r , (35) 

 

where iG  is physically interpreted as the propagator from the i th monomer to the 1i + th one 
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toward the right in Fig. 2. The propagator, iG  is given by 

 

 ( ) ( ){ } ( ) ( ){ }1, exp / 2 , exp / 2+! ! != " "i i i iG w P wr r r r r r . (36) 

 

Eqs. (34) and (35) can be numerically obtained from convolution of the distribution functions, q  

and †q , respectively, with the propagator, G , if boundary conditions are given such as,  

 

 ( ) ( ){ }1 1exp / 2= !q wr r  (37) 

 

and  

 

 ( ) ( ){ }† exp / 2= !N Nq wr r .  (38) 

 

Therefore, the distribution functions, q  and †q , are obtained from the chemical potential fields, 

w , as shown in Fig. 1. Finally, Q  is given as 

 

 ( ) ( )†= ! i iQ d q qr r r , (39) 

 

where i  can be arbitrarily chosen, since Eq. (39) is equal to Eq. (30) regardless of i . Physically, 

( )iq r  and ( )†
iq r  have the meaning of distribution functions of species i  propagated from the 

free ends, 1i =  and i N= , respectively. The density function of monomer species i  is obtained 

from Eq. (10) with the condition, ( )/ 0=iDF Dw r , as 
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 ( ) ( ) ( )†! =i i i
n q q
Q

r r r . (40) 

 

Although we only introduced two kinds of constraint functions, one for polymers in Eq. (32), and 

the other for hard particles in Eq. (33), this formulation can be generalized to other constraints 

such as the continuous-segments propagator relevant for SCFTs (see Section 2.6) as well as to 

other monomer species such as non-isotropic Janus NPs. Furthermore, the approach can be 

applied to the mixed case of continuous and discrete segments as needed for ligand-stabilized 

NPs.36 Such flexibility in the choice of monomer species and constraints clearly highlights the 

advantages and versatility of the proposed approach compared with previous SCFT, SCFT/DFT, 

and other polymer DFT approaches,27,46 and allows us to simulate complex multi-component 

systems. 

 

2.6. Numerical implementation 

Eqs. (34) and (35) can be numerically evaluated using the convolution theorem as 

 

 
( ) ( ){ }

( ) ( ){ } ( )
1 1

1

exp / 2

exp / 2

+ +

!

= !

" #" #$ !% &% &
!

i i

i i i

q w

P w q

r r

FT k FT r r
 (41) 

 

and 

 

 
( ) ( ){ }

( ) ( ){ } ( )

†

1
1 1

†

exp / 2

exp / 2!
+ +

= !

" #" #$ ! !% &% &
!

i i

i i i

q w

P w q

r r

FT k FT r r
, (42) 
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where ( ) ( )i iP P= ! "# $k FT r! . However, in SCFTs, the propagator is modified for the continuous 

case and the parameter, i , becomes a continuous parameter. For clarity, we use s  for the 

continuous parameter. The constraint function, ( ),i jP! "r r , becomes 

 

 ( )
( )

2

2

3
, exp

2
j

i j i

dP ds
a s ds!

" #$ $% &' ( )* +, -
. /$ $0 1

2
rr r  (43) 

 

and the propagator is given by the path integral 

 

 ( )
( )

( )
2

2

3
, exp

2!

" #$ %&&' '( )& && &&= * ++ ,- ./ 0
1 2+ ,' '3 45 6

7 7
j

i j si

dG ds w
a s ds

rr r r rD  (44) 

 

so that ( ) ( )0 ,!" "= #s sq d Gr r r r  and ( ) ( )† ,!" "= #s s Nq d Gr r r r . The molecular partition function 

Q  can be obtained from ( ) ( )†
s sQ d q q= ! r r r , where s  has any value between 0  and N . From 

the boundary conditions, ( )0 1q =r  and ( )† 1Nq =r , one can obtain ( )sq r  and ( )†
sq r  from the 

modified diffusion equations20-21,45,47-49 

 

 
( ) ( ) ( ) ( )

2
2

6
s

s s

q a s
w q

s

! "# $ $
= % &' (

# $ $) *

r
r r  (45) 

 

and 
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( ) ( ) ( ) ( )

2†
2 †

6
s

s s

q a s
w q

s

! "# $ $
% = & %' (

# $ $) *

r
r r . (46) 

 

In this work, we utilize this functional form in order to account for the conformational entropy of 

polymers and ligands. Solving the diffusion equation is usually the most time consuming step in 

the iterations. The computation time required for the calculation is proportional to 2M , where 

M  is the number of spatial grid points. Matsen et al. proposed a spectral method where ( )sq r  

and ( )†
sq r  are a linear combination of symmetry-adopted basis functions.20 The method reduces 

the computational load dramatically but requires knowledge of the exact symmetry of the 

expected morphologies. Alternatively, the real space approach doesn’t need such information 

and structures are obtained without any restriction of symmetry19 but then the computational cost 

of calculating the partition function becomes extremely large. We adopt the real space approach 

but minimize the computational effort by implementing a recently developed algorithm, called 

the ‘split step algorithm’,49 which extensively utilizes the Fast Fourier Transform (FFT). The 

basic scheme is given as 

 

 

( ) ( )

( ) ( )

2
2exp exp

2 6

exp
2

s ds s

s s

ds aq w ds

ds w q

+

! "# $= % &' ( ) *
+ , - .

# $/ %' (
+ ,

r r

r r
 (47) 

 

and 
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( ) ( )

( ) ( )

2
† 2

†

exp exp
2 6

exp
2

s ds s

s s

ds aq w ds

ds w q

!

" #$ %= ! &' ( ) *
+ , - .

$ %/ !' (
+ ,

r r

r r
. (48) 

 

These equations can be numerically implemented as 

 

 

( ) ( )

( ) ( ) ( )
2

21

exp
2

exp exp
6 2

+

!

" #= !$ %
& '

( )" # ( )* * " #+ ,- ! !$ % $ %+ ,
+ ,& '. /* *& '. /

s ds s

s s

dsq w

a s dsds w q

r r

FT k FT r r
 (49) 

 

and 

 

 

( ) ( )

( ) ( ) ( )

†

2
21 †

exp
2

exp exp
6 2

!

!

" #= !$ %
& '

( )" # ( )* * " #+ ,- ! !$ % $ %+ ,
+ ,& '. /* *& '. /

s ds s

s s

dsq w

a s dsds w q

r r

FT k FT r r
 (50) 

 

(note that Eq. (49) is identical to Eq. (41), if the constraint function is given by Eq. (32)). Up to 

now, we have limited the discussion to the case of chains with a linear configuration. The 

extension to more complex configurations is identical to that reported for other polymer systems 

such as branched polymers47-48 and is not repeated here. Since, in our work, monomer species 

can be soft molecules and hard molecules, multi-component molecular structures can be readily 

described by defining the monomer-monomer connectivity and specifying monomers with a 

parameter, i  or s .   
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We adapted a numerical algorithm called the combinatorial screening technique by 

Drolet et al.19 to iteratively solve Eqs. (8), (39), (34), (35), (40), and (14).  The algorithm is 

illustrated in Fig. 1 and operates as follows. In the first step, we generate trial configurations of 

all species, ( )! r , and obtain ( )w r  from ( )! r  using Eqs. (8) and (14). In the next step, new 

( )! r  are calculated from ( )w r  of the previous step using Eqs. (39), (34), (35), and (40). 

Following this way, each step generates values for ( )w r  and ( )! r  from results of the previous 

step. This process is iterated until changes of ( )! r  and ( )w r  become sufficiently small. Since 

the free energy strongly depends on the box dimensions, we also minimize the system’s free 

energy by varying the system size between iterations.14 This procedure yields different solutions 

depending on the initial configurations. Thus, we perform these calculations with various initial 

configurations and choose the solution with the lowest free energy as the likely equilibrium 

phase. 

 

2.7. Beyond the mean-field approximation 

 As shown in the previous sections, the numerical implementation is drastically simplified 

by the mean-field approximation, which is generally accurate for dense molecular systems. By 

limiting configurations to saddle points, the mean-field approximation greatly reduces the 

numerical complexity of the calculations. However, to properly describe dilute systems 

composed of small molecules, for example, a more advanced approach than the mean-field 

approach is required. In general, the chemical fields, w , and density functions, ! , are complex 

(noting that w  in Eq. (14) is a real function due to the mean-field approximation, see also 

relevant discussions in Refs. 50-51). Therefore, they cannot be calculated with the numerical 
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procedure given in Section 2.6. For such calculations, Ganesan et al. applied a complex 

Langevin dynamics for thermodynamic sampling.50-51 We expect that such sampling method can 

be applied to our approach, since DFTs do not assume the mean-field approximation. Validation 

of these ideas is left for future work.  

 

3. Simulation Results 

3.1 HS Particle Behavior within BCPs 

To test our theory for HS interactions, we compare our 1-dimensional predictions with 

the results obtained by Thompson et al. 28 using the DFT approach by Tarazona52 for the same 

parameters. In this study, BCP composition is set to 0.35Af =  and a typical value of 0.4655  is 

assigned for 1 3
0 gN R!" " , a parameter that specifies the volume of BCP relative to that of NPs. The 

radius of gyration of unperturbed BCPs, gR , is the basic length unit in this work. The Flory-

Huggins N!  parameters are summarized in Table 1. We utilize the original form of the FMT 

approach and its hyper-netted chain (HNC) approximation form,33,39,42 so that the ( )/HS
i Bk Tµ r  

term in Eq. (14) becomes ( ) ( ),HS
ij j

j

d C !" " "#$% r r r r , where ( ),HS
ijC !r r  is the direct correlation 

function of the excess HS interaction free energy functional.39 We examine two cases: large NPs, 

( )00.735 0.3 p gR R R= = , with a small volume fraction, 0.03p! =  (Fig. 3A), and small NPs, 

( )00.490 0.2 p gR R R= = , with an intermediate volume fraction 0.15p! =  (Fig. 3B), where 0R  

is the unperturbed chain end-to-end distance of BCPs equal to gR6 . For the case near the dilute 

limit, 0.03p! = , all of the DFT approaches yield consistent results as shown in Fig. 3A. This is 

expected because both, the DFT by Tarazona52 as well as the FMT approach, utilize virial 
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expansions of the excess chemical potential corresponding to pair exclusions at the dilute limit, 

and the HNC approximation is generally accurate if the density functional has small deviations 

from the reference state.33,39,52 However, at the intermediate volume fraction of NPs, 0.15p! = , 

shown in Fig. 3B, the results given by Thompson et al. 28 are in between those of the FMT and its 

HNC approximation form in terms of its shape and lamellar spacing. Compared with the FMT 

approach, the HS interactions of the DFT method by Tarazona52 and HNC approximation are 

more repulsive. The discrepancy originates from the different functional forms of the excess free 

energy for HS interactions. A detailed discussion for those approaches can be found in Refs. 41-

42. 

 

3.2. Binary Mixture of Charged HS Particles near a Charged Hard Wall 

To benchmark the accuracy of HS and Coulomb interactions in our approach, we 

calculate the double layer formation of HS particles with opposite charge to the surface charge of 

a hard wall and compare to results of previous simulations.53-54 We study a binary mixture of 

charged HS particles near a charged hard wall. We add positively (+ ) and negatively (! ) 

charged HS particles near a positively charged flat wall. The charges are fixed at 1Z+ =  and 

1Z! = ! , and the Bjerrum length is set to 019.8145 d! =  for the Coulomb potential, 

( ) / /B i jk T Z Z! = "r r , where 0d  is the diameter of particles and the basic length unit in these 

simulations. The overall volume fractions of particles are set to 0.0462!+ =  and 0.0462!" = . 

The surface charge densities are given by * 0.25! = , 0.42 , 0.55 , and 2
00.7 d ! . Figure 4 shows 

the formation of the double layer formation of negatively charged HS particles at high surface 

charge densities. This is consistent with previous exact Monte Carlo simulations for * 2
00.7 d! "= , 
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shown as the open red circles in Fig. 4.53 Results are further compared to a previous DFT study55 

that used the same surface charge densities, shown in the inset of Fig. 4. Our 1-dimensional 

simulation results correctly predict the position of the correlation peak but overestimate the 

particle density relative to the exact Monte Carlo simulation data. Deviations between these 

simulation and theoretical results are expected and are due to the different levels of 

approximations involved. The deviations between the predictions of the two theories arise from 

the different functional forms adopted for HS and long-range Coulomb interactions. 

 

3.3. Self-assembly of two chemically distinct HS particles connected by a homopolymer 

molecule within BCPs 

As an example of the Green function propagator for the mixed case of the continuous 

and discrete segments, we introduce two chemically distinct HS particles, p1 and p2, connected 

with a homopolymer, H, as well as A-B di-BCPs. We want to determine how the HS particle 

distribution in the A and B regions of the di-BCP depends on the length of the homopolymer H. 

For this molecule, the single molecular partition function is given by 
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. (51) 

 

where HG  is the continuous propagator for the homopolymer H defined by Eq. (44). To obtain 

Q , we introduce the segment distribution functions, ( )iq r  and ( )†
iq r  in Eqs. (34) and (35). The 

numerical calculation is performed using the equations, 
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 ( ){ }1 1expp pq w= ! r  (52) 

 

and 

 ( ) ( ) ( )0 1
1

pq q!" # $# $= % &% &r FT k FT r! , (53) 

 

where ( ) ( ) 2/ 4R R! ! "# $= %& 'k FT r!  and ( )0q r  is the segment distribution function of one end 

of the homopolymer propagated from the particle p1. The segment distribution functions of the 

homopolymer from ( )0q r  to ( )
hN

q r  are calculated utilizing Eq. (45). The segment distribution 

( )2pq r  is obtained from 

 

 ( ) ( ){ } ( ) ( )2 2
1exp

hp p Nq w q!" # $# $= " % &% &r r FT k FT r! . (54) 

 

and the ( )†
iq r  for the opposite direction from p2 to p1 are obtained using the same equations by 

replacing p1 with p2. To segregate p1 HS particle into block A and the p2 HS particle into block 

B, we set the N!  parameters as shown in Table 2 (noting that for this simulation the N!  

parameters between the homopolymer and the two blocks were set equal to zero in order to 

clearly monitor the homopolymer size dependence). The radii of HS particles are fixed at 

1 2 0.735 p p gR R R= = , i.e. identical to the simulation described in Fig. 3A for single NPs in only 

one block and the overall volume fraction of p1 and p2 particles in the system is set to 

1 2 0.03p p! != = . We assign a typical value of 0.4655  for 1 3
0 gN R!" " . For comparison, Fig. 4A 

shows the results of the simulations for HS particles without homopolymers. When a long 
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homopolymer with the size, / 0.5hN N = , bridges two HS particles, the HS particles are slightly 

segregated to the edge of the blocks, i.e. towards the interface. In case of a short homopolymer 

bridge, / 0.1hN N = , the segregation becomes significantly more pronounced. These results are 

physically reasonable, since shorter homopolymers are expected to bring two HS particles closer 

due to the smaller end-to-end chain length. 

 

3.4. Ligand-stabilized NP / BCP self-assembly: bead-spring model of polymers and charged 

ligand effect on NP self-assembly behavior 

In order to demonstrate flexibility of our methodology for incorporating complex 

molecular structures and interactions, we introduce NPs with charged ligands and BCPs 

represented by a bead-spring model where the BCP monomers have a hard-sphere core as shown 

in Fig. 6A. Firstly, we compare our bead-spring model with a comparable model system without 

hard-sphere cores, for which the system parameters are set to fA = 0.4  and !ABN = 45 . For the 

hard spheres BCPs, A and B, we chose NA = 40  and NB = 60 , equivalent to fA = 0.4 . The 

radius of a monomer is set to R = 0.106Rg , where Rg = Na2 / 6  and a  is the Kuhn length set 

to a = 0.245Rg . The short-range interaction parameter is given by !AB / (4"R
3 / 3) = 80  and the 

overall system volume fraction is given by 0.4 . Fig. 6B shows the normalized volume fractions 

of monomers A and B. The overall shape of the lamellar self-assembly behavior is very similar. 

However, compared with SCFT, the bead-spring model of BCPs yields a larger lamellar spacing. 

This is due to the more extended conformations of the polymers represented by the bead-spring 

model arising from excluded volume interactions between monomer units, compared to those for 
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unperturbed polymer models, as expected theoretically.45 Having established our bead-spring 

model, we add NPs with charged ligands and counter anions (CAs) satisfying the charge 

neutrality condition. The overall volume fraction of ligand-stabilized NPs and CAs is set to 0.08, 

while the value of BCPs is set to 0.32. The radius of NPs is given by RNP = 0.530  and the 

number of ligands per NP is set to nLigand = 20 . The ligands are composed of 5 HSs with the 

radius equal to that of the BCP monomers and the terminal HSs have a positive charge Z+ = 1   as 

shown in Fig. 7A. CAs have a negative charge Z! = !1 . As discussed in Section 2.4, the 

boundary condition at infinity affects the overall system energy in case of the long-range 

Coulomb potential. In our simulation, the vacuum boundary condition was assumed. The 

interaction parameters are summarized in Table 3. The single molecular partition function of the 

ligand-stabilized NPs shown in Fig. 7A is given by 
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where  ( ),
LigandLigand i NG r r  is the propagator from one ligand chain end  i  to the other end NLigand . 

The first step is to obtain ( )†
iq r  for the ligand monomer  i  in Fig. 7A from the boundary 

condition, ( ) ( ){ }† exp / 2= !
Ligand LigandN Nq wr r  using Eq. (36) with the Gaussian constraint given in 

Eq. (32). Then ( )†
NPq r , ( )NPq r , and ( )iq r  are calculated using the following equations,  

 

 ( ) ( ){ } ( ) ( ){ }† †1exp / 2 !" # $# $= " % &% &
!

NP NP iq w qr r FT k FT r , (56) 



31 
 

 

 ( ) ( ){ } ( ) ( )
1†1exp / 2 !
"" # $# $= " % &% &

! Ligandn

NP NP iq w qr r FT k FT r , (57) 

 

and 

 

 ( ) ( ){ } ( ) ( )1exp / 2 !" # $= " # $% &% &
!

i i NPq w qr r FT k FT r , (58) 

 

where ( ) ( ) ( )2/ 4! ! "# $= % % +& '
!

NP NPR R R Rk FT r . Finally, other ligand components, 

1+ ! Ligandi Nq q , can be calculated using Eq. (36) with the Gaussian constraint. Two different 

conditions are studied: (i) no Coulomb interactions, i.e. ! = 0  and (ii) Coulomb interaction with  

! = 7.0Rg , which corresponds to a typical dielectric constant of a polymeric materials with 

Rg = 5 nm  at room temperature of !r = 20 . In the absence of Coulomb interactions (! = 0 ), 

NPs are highly localized within block A as shown in Fig. 7B due to a very weak entropic driving 

force of mixing (noting that the volume ratio of NPs to BCPs is 2.25).  When the Coulomb 

potential is applied by setting ! = 7.0Rg , the NP-NP repulsion forces become stronger and NPs 

are more dispersed (compare Fig. 7D and 7E). Such repulsive interactions between ligands can 

lead to an enhanced dispersion of NPs when they are mixed with BCPs.13,58 The density profile 

of CAs are shown in Fig. 7F and Fig. 7G. Due to the long-range Coulomb interactions, CAs and 

NPs form an ordered structure where CAs localize between NPs to screen the Coulombic 

repulsive force among NPs. Such ordered NP localization in BCPs has not been experimentally 

observed to date and is intriguing. Future work will include a full study of this phenomenon. 
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4. Conclusion 

We presented a theoretical framework that unifies polymer self-consistent field theory and 

density functional theory that incorporates the complexity of hybrid molecular structures and 

their interactions. The Green function propagator was extended to hard particles for describing 

multi-component molecules composed of soft and hard chemical species. Furthermore, direct 

correlation functions used in DFTs were utilized to describe key physical interactions including 

long-range Coulomb and HS interactions. To validate our approach, we compared our results 

with two previous simulation studies: (i) the NP segregation behavior within BCPs and (ii) the 

double layer formation of charged HS particles near a charged wall. In both cases, we obtained 

good agreement with previously reported results on these systems.  We then applied our 

approach to demonstrate the self-assembly of two chemically distinct NPs connected by a 

polymer molecule within the phase-separated BCPs. Finally, we investigated a model system for 

the self-assembly of BCPs and NPs with charged ligands. Due to sampling efficiency of phase 

space and descriptive power of molecular structures and interactions, we expect that our 

approach will vastly improve our ability to simulate large complex systems without loss of 

molecular details. Our approach is based on the mean-field approximation. To overcome the 

limitations of the mean-field approximation such as the neglect of thermal fluctuations, we 

expect that our method can be combined with a recent field theoretic approach50 that goes 

beyond the mean-field approximation. Future research will include systems with dipole 

interactions between NPs and various polymeric systems with unique architectures. 
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Tables 

TABLE 1. Flory-Huggins N!  parameters for the simulation of HS particle self-assembly 

within BCPs. 

 

 

 

 

 

 

TABLE 2. Flory-Huggins N!  parameters for the simulation of self-assembly of 

two chemically distinct HS particles connected by a homopolymer molecule within BCPs 

N!  B p1 p2 H 

A 20 0 20 0 

B  20 0 0 

p1   20 0 

p2    0 

 

 

TABLE 3. Flory-Huggins !  parameters for the self-assembly of BCPs and NPs 

with charged ligands 

! / (4"R3 / 3)  B NP Ligand CA 

N!  B P 

A 20 0 

B  20 
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A 80 0 0 0 

B  80 80 80 

NP   0 0 

Ligands    0 

 

 

 

Figure Legends 

 

FIG. 1. The general schematic procedure and key equations of the present approach for a 

homogeneous system of n  molecules composed of N  monomers specified as i . 
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FIG. 2. Multi-component molecule representations with the linear configuration for (a) flexible 

monomers and (b) HS particles with flexible molecules 
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FIG. 3. Comparison of particle density profiles, p! , in the lamellar morphology of BCP/NP self-

assembly varying the excess HS free energy functional. We verify our approach by comparing 

with results of previous calculations.28 Black solid lines are results applying the FMT, blue 

dashed lines results from the HNC approximation form of the FMT, and red dotted lines results 

from applying the DFT by Tarazona, see Ref. 28. (a) Large particles at the dilute condition 

( 0.735 p gR R= , 0.03p! = ). (b) Small particles with intermediate volume fraction 

( 0.490 p gR R= , 0.15p! = ). Compared with the FMT approach, the HS interactions of the DFT 

approach by Tarazona52 and HNC approximation are more repulsive. The discrepancy originates 

from different functional forms of the excess free energy for HS interactions. 
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FIG. 4. Density profiles of positively charged, !+ , and negatively charged HS particles, !" , as a 

function of distance from a positively charged flat wall with different surface charge densities, 

* 0.25! = , 0.42 , 0.55 , and 2
00.7 d !  (bottom to top for !"  and top to bottom for !+ ), where 0d  

is the diameter of HS particles. Open red circles are Monte Carlo simulation results of Ballone et 

al. at * 2
00.7 d! "= .53 The inset displays results from R. Groot.55 The double layer formation is 

observed at high surface charge densities. 
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FIG. 5. Density profiles of NPs, ! , and local volume fractions of BCPs, ! . The solid blue lines 

depict !  of the p1-type NPs and the solid red lines show !  of the p2-type NPs. The dotted blue 

lines represent !  of block A and the red lines show !  of block B. (a) Free NPs. (b,c) NPs 

connected by a homopolymer molecule with size (b) / 0.5hN N =  and (c) / 0.1hN N = . 
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FIG. 6. Comparison of the bead-spring model and SCFT. The bead-spring model exhibits a 

larger lamellar spacing due to excluded volume interactions between monomer units. (a) 

Illustration of the bead-spring representation of a BCP. (b) Normalized local volume fractions of 

block A (black) and block B (red). The solid lines are results of SCFT and the dotted lines are 

those of the bead-spring model. 
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FIG. 7. Self-assembly of BCPs, NPs with charged ligands, and CAs, illustrating the effect of NP 

Coulomb repulsions on enhancing the regular dispersion of NPs. (a) Illustration of NPs with 

charged ligands and CAs. (b,c) Red color represents block A, blue color block B, and green color 

NPs with ligands. Density profiles of (d,e) NPs and (f,g) CAs. Two different conditions are 

studied by varying the parameter ! : (b,d,f) ! = 0 , (c,e,g) ! = 7.0Rg . 

 
 


