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In [CCV07], Charney, Crisp, and Vogtmann construct an outer space for a 2-

dimensional right-angled Artin group AΓ. It is a contractible space on which a

finite index subgroup Out0(AΓ) of Out(AΓ) acts properly. We construct a differ-

ent outer space S(AΓ) for AΓ and show that non-empty fixed point sets of finite

subgroups of Out0(AΓ) are contractible in this space. While Culler’s realization

theorem ([Cul84]) implies that fixed point sets of finite subgroups of Out(Fn)

are always non-empty in the Culler-Vogtmann outer space, there is no direct

counterpart to this result in the case of right-angled Artin groups and S(AΓ).

We present some methods for constructing elements in fixed point sets of finite

subgroups and examine cases where such methods are applicable.
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CHAPTER 1

INTRODUCTION

The following sections briefly summarize the results of this work, and then

present the relevant background: right-angled Artin groups (RAAGs), clas-

sifying spaces EG, basic properties of the Culler-Vogtmann outer space of a

free group, and the outer space for 2-dimensional RAAGs defined by Charney,

Crisp, and Vogtmann.

1.1 A brief summary

A right-angled Artin group (RAAG) can be defined by a simplicial graph Γ, with

vertices being the generators, and [v, w] being a relator if and only if vertices

v, w ∈ Γ are connected by an edge. A RAAG is 2-dimensional if Γ has no trian-

gles.

In this work we attempt to construct a finite dimensional, contractible space

on which a finite index subgroup of the outer automorphism group of a 2-

dimensional RAAG acts properly and with contractible fixed point sets of finite

subgroups. The existence of such a space, called a classifying space of proper

actions, has implications for the cohomological properties of the group (Section

1.3).

Charney, Crisp, and Vogtmann have constructed an outer space for 2-

dimensional RAAGs, i.e., a contractible space on which a finite index subgroup

of the outer automorphism group acts properly ([CCV07]). It is stitched to-

gether out of outer spaces for free groups together with certain compatibility

constraints arising from the action of subgroups of the RAAG on products of
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trees (Section 1.5). A point in this outer space can be thought of as a collection

of actions of free groups on simplicial trees glued together according to the sub-

group structure of the RAAG. For a generic point in this outer space, the gluing

maps impose rigidity: a given tree in the collection constituting the point may

not be changed without either changing most other trees (in accord with the

gluing maps) or leaving the outer space. This posses a challenge in defining

paths in this outer space from one point to another and hence for contracting a

fixed point set of a finite subgroup.

To get around this difficulty, we restrict ourselves to a subspace of that outer

space, one with points in which the gluing maps impose only “local” restrictions

(Section 2.1). This subspace is itself contractible and hence itself an outer space

for a 2-dimensional RAAG (Section 2.1.3). We then define paths in individual

outer spaces of free groups that can be extended to paths in this outer space

(Section 2.2). This extension is then used to contract a non-empty fixed point set

of a finite subgroup by “working in one outer space of a free group at a time”

(Section 2.3).

The contractibility thus shown assumes that the fixed point set is non-empty.

The last chapter of this work is devoted to describing some methods and partial

results aimed at showing that fixed point sets of finite subgroups are in fact

non-empty. Our approach is to find suitable fixed points of projections of our

finite group in each outer space of a free group (Section 3.1), and then to piece

them together to form a fixed point in the outer space of the RAAG (Section 3.2).

To accomplish the first part, we describe the sphere system model of the outer

space of a free group and show how surgery can be used to find fixed points

having a certain separateness property (Sections 3.1.2, 3.1.3). These methods
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allow us to show, for some specific types of finite subgroups, that their fixed

point sets in the outer space of a RAAG are non-empty.

1.2 Right-angled Artin groups and their automorphisms

Recall that a RAAG is a group having a presentation of the form

AΓ = 〈v1, . . . , vn | R〉

where [vi, vj] ∈ R if and only if vi is adjacent to vj in Γ. For an empty graph Γ,

the RAAG AΓ is free while for a complete graph Γ, the group AΓ is free abelian.

Considerable investigation of RAAGs has been conducted starting in the late

70s by Baudisch ([Bau81]), Droms ([Dro87a, Dro87b]), Charney ([Cha92, Cha95])

and others. A very good survey of RAAGs is [Cha07].

The automorphism groups of free groups and of free abelian groups, the

two “extreme” cases of RAAGs, share many properties. To what extent do au-

tomorphism groups of all RAAGs share properties of Aut(Fn) (and Out(Fn))

and GLn(Z) is still largely unknown. This thesis concentrates on answering this

question for on one such property, the existence of a finite EG, a type of classi-

fying space defined in Section 1.3.

Laurence ([Lau95]), based on the work of Servatius ([Ser89]), has shown that

the group Aut(AΓ) is finitely generated by generators of the following types:

1. Conjugations

2. Inversions

3. Transvections
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4. Partial conjugations

5. Graph symmetries

An inversion is generated by sending a vertex generator to its inverse. A transvec-

tion is an automorphism generated by taking w ∈ Γ to wv ∈ Γ when the link of

w is contained in the star of v, that is, lk(w) ⊂ st(v), where st(v) is the star graph

v ∗ lk(v). A partial conjugation is a conjugation of a connected component of

Γ \ st(v) by v. A graph symmetry is a graph automorphism of Γ, which induces a

corresponding automorphism of AΓ.

Let Aut0(AΓ) be the normal subgroup of Aut(AΓ) generated by all the gener-

ators above except graph symmetries. Let Out0(AΓ) be the quotient of Aut0(AΓ)

by the group of inner automorphisms. By examining conjugation of each type

of generator above by a graph symmetry, we can see that Out0(AΓ) is a normal,

finite index subgroup of Out(AΓ).

Henceforth, we restrict ourselves to 2-dimensional RAAGs AΓ: those for

which Γ contains no triangles. Consider a binary relation≤ on the set of vertices

of Γ defined by link containment: v ≤ w if and only if lk(v) ⊂ lk(w). Two ver-

tices v, w ∈ V (Γ) are in the same equivalence class if v ≤ w and w ≤ v, that is, if

they have the same link; the equivalence class of v is denoted [v]. If [v] contains

a single vertex v, we call v a cyclic vertex. We choose a representative vertex

in each maximal equivalence class and define the graph Γ0 as the induced sub-

graph of Γ on these representatives. The following are properties of Γ0 (Lemma

3.7 [CCV07]).

1. Γ0 is independent of the choice of maximal vertices (up to isomorphism).

2. Γ0 is connected.
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3. No vertex of Γ0 is a leaf of Γ.

4. Every vertex v ∈ Γ is adjacent in Γ to at least one vertex w ∈ Γ0.

For two graphs G1, G2, the join G1 ∗ G2 is a graph whose vertex set is V (G1) ∪

V (G2) and whose edge set consists of all edges present in G1 and G2, and edges

connecting every vertex of G1 to every vertex of G2. Given any vertex v ∈ Γ, let

Jv = [v]∗lk(v). Note that if v ∈ Γ0, this join in maximal: no other complete bipar-

tite subgraph of Γ contains it. The following two results appear as Proposition

3.2 and Lemma 3.8 in [CCV07] respectively.

Proposition 1.2.1. For any ϕ ∈ Aut0(AΓ) and v ∈ Γ0, ϕ maps AJv = F ([v]) ×

F (lk(v)) to a conjugate of itself, and the factor F ([v]) is preserved up to conjugacy.

Proposition 1.2.2. If v, w ∈ Γ0 are neighbors, and ϕ ∈ Out0(AΓ) is represented by

automorphisms ϕv, ϕw ∈ Aut0(AΓ) preserving AJv and AJw respectively, then there

exist gv ∈ AJv and gw ∈ AJw such that c(gv) ◦ ϕv = c(gw) ◦ ϕw, where c(g) denotes

conjugation by g.

Let

R =
∏
v∈Γ0

Rv : Out0(AΓ)→
∏
v∈Γ0

Out(AJv)

be a restriction homomorphism, taking an element ϕ of Out0(AΓ) to a product∏
ϕv, each ϕv ∈ Out(AJv) being the restriction of ϕ to maximal join Jv, which

exists by Proposition 1. Further, since ϕv preserves A[v] = F ([v]) when v ∈ Γ0

(up to conjugacy), it projects to an outer automorphism of Alk(v)
∼= AJv/A[v].

Thus we get a projection homomorphism

P =
∏
v∈Γ0

Pv : Out0(AΓ)→
∏
v∈Γ0

Out(Alk(v))
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This projection homomorphism lets us construct actions of Out(AΓ) using

actions of Out(Alk(v)) for different vertices v. In [CV86] Culler and Vogtmann

defined an outer space for a free group, a contractible space of proper actions of

an outer automorphism group of a free group on marked trees. We describe

this space and its properties in Section 1.4, and later, in Section 1.5, show how

Charney, Crisp and Vogtmann use it to construct contractible a space of proper

actions of Out(AΓ), an outer space for AΓ.

1.3 EG and contractibility of fixed point sets of finite subgroups

The main result of this thesis concerns the contractibility of fixed point sets of

finite subgroups of outer automorphisms of right angled Artin groups inside a

suitable outer space. One reason why this contractibility is important is because

it is a key condition for a space to be a type of classifying space usually denoted

EG.

Given a group G, there is an Eilenberg-MacLane space K(G, 1) with

π1(K(G, 1)) = G and trivial higher homotopy groups. If G has finite cohomo-

logical dimension, then there is a finite dimensional K(G, 1), and its universal

cover, a classifying space EG, is a finite dimensional contractible CW-complex on

which G acts freely by deck transformations. When G does not have finite co-

homological dimension – when G has torsion for instance – there is no finite

dimensional K(G, 1) and hence no finite dimensional EG.

Thus for a group G having torsion, the condition of acting freely on its clas-

sifying space must be weakened if we want a finite dimensional space. A space

X is a classifying space for proper actions, denoted EG, if it is a CW-complex on
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which G acts with finite cell stabilizers and for each finite subgroup H < G,

the subcomplex fixed by H is contractible. Just as EG classifies free actions of

G, i.e. given a CW-complex Y on which G acts freely, there is a unique (up to

G-homotopy) G-equivariant map Y → EG, a space EG classifies proper actions.

By this universality, any two EG spaces are G-equivariantly homotopy equiva-

lent ([LN10]).

One way to construct an EG canonically is to take the poset of finite, non-

empty subsets of G, on which G acts on the left. The geometric realization of

this poset is an EG. However, this EG is infinite-dimensional when G is infinite.

Examples of finite dimensional EG for infinite groups G are trees on which a

discrete group G acts properly with finite vertex stabilizers, the Rips complex

Pd(G) for a δ-hyperbolic group G, where d depends on δ ([MS02]), and a CAT(0)

complex for a group G which acts on it properly by isometries ([BH99]). Al-

gebraically characterizing groups G which have a finite-dimensional EG is an

ongoing effort ([KM98, Mis01]).

A group which has a finite dimensional EG has rational cohomological di-

mension at most the dimension of EG, and its nth homology group is torsion for

n greater than the dimension of EG ([KM98]). Classifying spaces for proper ac-

tions also play an important role in the Baum-Connes conjecture, which asserts

that the so-called assembly map from the equivariant K-homology of an EG to

the K-theory of the C∗-algebra of G is an isomorphism (see [BCH94] for details).

If the fixed point condition is relaxed, we arrive at the related notion of

Kropholler’s hierarchy ([Kro93]). Given a class of groups F closed under iso-

morphism and taking subgroups, a group is in H1F if it acts on some finite di-

mensional, contractible CW-complex X with cell stabilizers in F . The class HF ,
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defined as the smallest H1-closed class containing F , is called Kropholler’s class of

hierarchically decomposable groups ([LN10]). When F is the class of finite groups,

then if a group G has a finite dimensional EG, it is clearly in H1F . The ques-

tion of whether all groups G ∈ H1F have finite dimensional EG is still unsettled

([KM98, LN10]).

1.4 Outer space for free groups

For a 2-dimensional RAAG AΓ, the projection homomorphism (Section 1.2)

takes a finite subgroup of Out(AΓ) to a product of finite subgroups of Out(Alk(v)),

outer automorphism groups of discrete RAAGs, that is, of free groups. To define

an outer space for a general 2-dimensional RAAG, Charney, Crisp, and Vogt-

mann use outer spaces for free groups. The following sections describe outer

spaces for free groups, path in these spaces, and the contractibility of fixed point

sets of finite subgroups of outer automorphisms in these spaces.

1.4.1 Aut(Fn), Out(Fn) and O(Fn)

Let Fn = 〈a1, . . . , an〉 denote the free group on n generators. Then Out(Fn) =

Aut(Fn)/ Inn(Fn) is the outer automorphism group of Fn. Although the structure

of Aut(Fn) and Out(Fn) has been studied since the early days of group theory,

beginning with Nelson’s proof that Aut(Fn) is finitely generated ([Nie24]), re-

cent results about these groups have used geometric methods and techniques.

One such technique has been the study of the action of Out(Fn) on a contractible,

finite dimensional space introduced by Culler and Vogtmann ([CV86]).
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Let Rn be the rose with n petals, that is, a graph with a single vertex and

n oriented edges incident at both ends to the vertex, and identify Fn
∼= π1(Rn)

sending each generator to an edge ofRn. Consider a connected simplicial metric

graph G, with no valence one or two vertices, and a homotopy equivalence

τ : Rn → G. A point in the (projectivized) outer space O(Fn) is an equivalence

class (τ,G), where (τ,G) ∼ (τ ′, G′) if there is a homothety f : G → G′ and τ ◦ f

is homotopic to τ ′.

The universal cover of a metric marked graph (τ,G) (from now on just G

whenever this does not create confusion), is a simplicial R-tree T on which the

group Fn
∼= τ∗π1(Rn) acts by deck transformations. Thus we may equivalently

define a point in O(Fn) to be an equivalence class of free minimal actions of Fn

on simplicial R-trees T , where two actions ρ : Fn → Isom(T ), ρ′ : Fn → Isom(T ′)

are equivalent is there is an equivariant homothety f : T → T ′, i.e. f ◦ ρ(g) =

ρ(g) ◦ f for all g ∈ Fn.

The axis topology on O(Fn) is determined by the map L : O(Fn) → RP∞

sending each tightened immersed loop in G corresponding to a cyclically re-

duced word in Fn to its length. This map is an injection ([CM87]) and O(Fn)

inherits the subspace topology. This topology gives O(Fn) the structure of a fi-

nite dimensional simplicial complex with some faces of simplices missing. See

Figure 1.1 for an example illustrating the local simplicial structure.

Since some lower dimensional faces of simplices in O(Fn) are missing (for

example all vertices in 1.1), the quotient O(Fn)/Out(Fn) is not compact. How-

ever, using the fact that O(Fn) can be equivariantly deformation retracted to a

finite dimensional subcomplex on which Out(Fn) acts cocompactly, Culler and

Vogtmann showed that the virtual cohomological dimension of Out(Fn) is 2n−3

9



Figure 1.1: A neighborhood of a 2-cell in CV2

([CV86]).

Bestvina and Handel ([BH92]) defined train tracks for Out(Fn), based on

Thurston’s theory of train tracks on surfaces, and used them to prove the Scott

Conjecture ([DS75]): for every automorphism α ∈ Aut(Fn), the fixed subgroup

{a ∈ Fn | α(a) = a} has rank at most n. Since then train tracks have been used

to study the dynamics of automorphisms in outer space ([Gui00]). Levitt and

Lustig, for instance, showed that suitably defined irreducible automorphisms

have analogous North-South dynamics in outer space as do pseudo-Anosov

automorphisms acting on Teichmüller space ([LL03]). Hatcher and Vogtmann

used a model of the outer space based on embedded 2-spheres inside a con-

nected sum of S1×S2’s (defined and discussed in Section 3.1.2) to show that the

homology groups of Aut(Fn) stabilize ([HV98]). That is, for n ≥ 2i+ 3, the map

Hi(Aut(Fn)) → Hi(Aut(Fn+1)) induced by the inclusion Aut(Fn) → Aut(Fn+1)
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is an isomorphism. Using this model of outer space, Hatcher and Vogtmann

showed that the Dehn functions of Aut(Fn) and Out(Fn) for n ≥ 3 are at most

exponential ([HV96]) and recently Handel and Mosher ([HM10]) have shown

that the Dehn functions are indeed exponential (for a much simpler proof of

this result, see Bridson and Vogtmann [BV10]). Additionally, for n ≥ 3, nei-

ther Aut(Fn) nor Out(Fn) can act properly and cocompactly on a CAT(0) space

([BV95]).

The methods and results most pertinent to this thesis concern fixed points of

finite subgroups of Out(Fn) in the outer spaceO(Fn). These are discussed in the

next section.

1.4.2 Morphisms and paths in O(Fn)

Given two simplicial R-trees T and T ′, a map f : T → T ′ taking vertices to

vertices is called a morphism if it can be made simplicial by subdividing T . That

is, f is a morphism if it is locally injective on f−1(T ′ \ V (T ′)), where V (T ′) is the

vertex set of T ′. If additionally the trees T and T ′ are G trees, for some group G,

then we take our morphisms to be equivariant with respect to the action of G.

We have defined the axis topology on O(Fn) in Section 1.4. Another way

to topologize O(Fn), which naturally extends to the topology of the space

of morphisms between Fn-trees, is by the equivariant Gromov-Hausdorff topol-

ogy. A fundamental system of neighborhoods is defined by neighborhoods

VT (K,P, ε), where K is a compact subset of T , P is a finite subset of Fn,

ε > 0, and T ′ ∈ VT (K,P, ε) if and only if there is a map r : K → T ′ so that

|dT (x, gy)− dT ′(r(x), gr(y)| < ε for every x, y ∈ K, g ∈ P . The Gromov-
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Hausdorff and axis topologies are the same for O(Fn) ([GL07b]).

This topology can be extended to the space M of morphism between

Fn-trees. Given a morphism ϕ : T → T1, a neighborhood Wϕ(K,P, ε) in-

cludes a morphism ψ : T ′ → T ′1 if and only if T ′ ∈ VT (K,P, ε) and∣∣dT1(ϕ(x), gϕ(y))− dT ′
1
(ψ(r(x)), gψ(r(y)))

∣∣ < ε.

In [Sko89] Skora defines an interpolating path between two trees T and T ′

for a morphism f : T → T ′. In particular, Skora constructs a partial map

F : O(Fn)×O(Fn)×M→ O(Fn)× [0,∞)

taking a triple (T, T ′, f : T → T ′) to a continuous path p where p(0) = T and

p(s) = T ′ for all s > r, where r depends on f . This map is equivariant with

respect to the action of Out(Fn) on O(Fn).

The path corresponding to f : T → T ′ is produced by defining a continuum

of equivalence relations on T , where x ∼i y iff f(x) = f(y) and dT (x, y) ≤ i.

Then p(s) = T/ ∼s.

Definition 1.4.1. For each s ≥ 0, we have a quotient morphism ϕs : T → p(s) and a

morphism ψs : p(s)→ T ′ defined by ϕs(x) = f(x̃), where x̃ is any point in T such that

ϕs(x̃) = x. We call these Skora morphisms.

These morphisms are continuous with respect to f , and equivariant un-

der the action of Out(Fn) y O(Fn) (Theorem 4.8, [Sko89]). (See also [GL07b,

GL07a].)
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1.4.3 Fixed point sets of finite subgroups in O(Fn)

Given a finite subgroup of H < Out(Fn), in [Cul84] Culler (also independently

Khramtsov [Khr85] and Zimmermann [Zim81]) has shown that there is a graph

G, with π1(G) = Fn, such that a subgroup of the group of graph automorphisms

of Γ realizesH . That is,G, as a marked graph, is fixed byH . Thus the fixed point

sets of finite subgroups of Out(Fn) in O(Fn) are non-empty. White ([Whi93]),

and independently Krstić and Vogtmann ([KV93]), have shown that fixed point

sets of finite subgroups of Out(Fn) in O(Fn) are contractible. This proves that

O(Fn) is an E Out(Fn).

White defines an Out(Fn)-equivariant assignment of morphisms to pairs of

trees inO(Fn). That is, he constructs a continuous, Out(Fn)-equivariant function

O(Fn)×O(Fn)→M

which takes trees T0 and T̄ to a morphism f : T → T̄ where T is in the same

simplex of O(Fn) as T0. Applying Skora’s interpolation (1.4.2) produces a con-

tinuous, Out(Fn)-equivariant map

O(Fn)×O(Fn)→ O(Fn)× [0,∞)

taking a pair of trees to a path between them (see Figure 1.2). This, together with

Culler’s realization theorem, implies that fixed point sets of finite subgroups of

Out(Fn) are contractible in O(Fn). Namely, given two points T, T ′ in the fixed

point set of a finite subgroup, White’s theorem guarantees a path p between

them. Since the assignment of paths is equivariant with respect to Out(Fn) ac-

tion, the whole path is fixed by the finite subgroup. By the continuity of the

path assignment, the fixed point set can be contracted.
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Figure 1.2: The White mapping and corresponding Skora path

Krstić and Vogtmann take a different approach to showing contractibil-

ity. For a finite subgroup H < Out(Fn), they construct a simplicial complex

LH ⊂ O(Fn) on which C(H), the centralizer of H , acts with finite stabilizers

and quotient. This complex is not the fixed point set of H , but the fixed point

set equivariantly deformation retracts onto LH . They then show that LH is con-

tractible and use the action C(H) y LH to determine the virtual cohomological

dimension of C(H).

In this work we will make use of White’s theorem in constructing the retrac-

tion of fixed point sets of finite subgroups in the 2-dimensional RAAG case.

1.5 Outer space for 2-dimensional right-angled Artin groups

We now describe the Charney, Crisp, and Vogtmann construction of the outer

space O(AΓ) for a 2-dimensional RAAG AΓ.

A RAAG AΓ acts properly and cocompactly on its Cayley 2-complex, the

universal cover of the presentation complex, which, for the usual presentation

〈v1, . . . , vn | [vi, vj]〉, vi ∈ V (Γ), vivj ∈ E(Γ), can be given a natural cube complex

structure. If the graph Γ is a complete bipartite graph V ∗W , the correspond-
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ing action on the Cayley 2-complex is of a product of two free groups on the

product of two simplicial trees, F (V ) × F (W ) y TV × TW . This example is

in fact “generic”: whenever F (V ) × F (W ) acts properly and cocompactly by

isometries on a simplicial CAT(0) cube complex X without boundary, and both

V and W have more than one element, then the action F (V ) × F (W ) y X

splits as a product action (F (V ) y TV ) × (F (W ) y TW ) ([BH99], p.239). If

V has a single element v, then all elements of F (W ) leave the min set of v,

Min(v) = {x ∈ X | d(vx, x) = l(v)}, invariant. Hence if the action on X is

minimal, that is, if there is not a proper invariant subspace, X = Min(v) which

by [BH99] Theorem 6.8 is isometric to T ×R, where T is a simplicial R-tree, and

the action of every w ∈ F (W ) is an isometry of T followed by a translation of R.

In the case where neither V nor W are singletons, every element of Out(AΓ)

preserves the two free factors (or perhaps interchanges them if |V | = |W |), and

the natural outer space is thenO(F (V ))×O(F (W )). In the case where V = {v},

Out(F ({v}) × F (W )) → Out(Z) × Out(F (W )) splits, since any automorphism

preserves the center Z, with the kernel being transvections w 7→ wv, for every

w ∈ W . Thus R|W | × R+ ×O(F (W )) can be taken as the outer space, where R+

is the possible translation length of v, and R|W | are the possible translations of

the R-factor in T × R for each w ∈ W . This space is contractible, and Out(Z ×

F (W )) ∼= Z|W | o (Z/2 × Out(F (W ))) acts on it. For a general AΓ, the action

of subgroups of AΓ corresponding to maximal joins in Γ on products of tress,

together with compatibility conditions among the actions, encode a point in the

outer space O(AΓ).

In general, a point of O(AΓ) is a set X = {Xv, Xe, ie,v}v∈Γ0 , where Xv =

Tlk(v)×T[v] is the product of F (lk(v)) and F ([v])-trees respectively,Xe = T[v]×T[w]
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for every edge e connecting two vertices v, w ∈ Γ0, and ie,v : Xe → Xv is (up to

equivariant isometry) the identity on the T[v] factor and an A[w]-equivariant em-

bedding of T[w] into Tlk(v). The action of each F (lk(v))×F ([v]) on Xv is a product

action unless lk(v) contains a leaf vertex. In this case v is cyclic, hence T[v] is

isometric to the real line, and the action may be sheared by λ : F (lk(v)) → R

taking the value 0 on non-leaf vertices:

(g, vn) · (x, r) = (g · x, r + ntv + λ(g))

where x ∈ Tlk(v), r ∈ T[v]
∼= R, and g ∈ F (lk(v)).

Definition 1.5.1. The action of ϕ ∈ Out0(AΓ) on X = {Xv, Xe, ie,v}v∈Γ0 is given

by ϕX = {Xϕv
v , Xϕe

e , t(gv)
−1ie,v}, where Xϕv

v is the action F (lk(v)) × F ([v]) on Xv

twisted by the automorphism Rv(ϕ) = ϕv, Xϕe
e is the action on Xe twisted by ϕe :=

c(gv) ◦ ϕv = c(gw) ◦ ϕw if edge e connects v and w (Proposition 1.2.2), and t(gv)−1 is

the translation by g−1
v in Xv.

A simpler way of viewing a point of O(AΓ) is as a collection of F (lk(v))-

trees Tlk(v) and F ([v])-trees T[v] for every vertex v ∈ Γ0, equivariant isometries

iw,v : T[w] → Tlk(v) for every v ∈ Γ0 and w ∈ lk(v) ∩ Γ0, and real numbers s(u) for

every leaf vertex u ∈ Γ. The action of the free subgroups F (lk(v)) and F ([v]) for

all v ∈ Γ0 is either a simplicial action of F (lk(v)) y Tlk(v) and F ([v]) y T[v] by

isometries, if lk(v) has no leaf vertices, or, if leaf vertices are present (in which

case v is cyclic), action of the product group F (lk(v)) × F ([v]) must be consid-

ered as above. That is, we have a shear homomorphism λ : F (lk(v))→ R taking

the value 0 on non-leaf vertices and the value s(u) on the leaf vertices u ∈ lk(v),

and (g, vn) · (x, r) = (g · x, r + ntv + λ(g)) for (g, vn) ∈ F (lk(v)) × F ([v]). Such

non-orthogonal actions must be allowed in order for leaf transvections (auto-

morphisms ofAΓ sending a leaf vertexw connected to v towv) to act nontrivially
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on a point in outer space, by “shearing” the action on Tlk(v) × T[v].

There is an injection

O(AΓ)→

(∏
v∈Γ0

O(F (lk(v)))

)
× Rk × Rl

where l is the number of leaf vertices. Here Rl encodes the possible shear factors,

and Rk encodes the injections iv,w among adjacent vertices of Γ0 in terms of

basepoints (see Proposition 4.2 in [CCV07]). The space O(AΓ) is then given the

subspace topology induced on its image.
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CHAPTER 2

CONTRACTIBILITY OF NON-EMPTY FIXED POINT SETS OF FINITE

SUBGROUPS

This chapter presents the main results of this thesis: the definition of a con-

tractible subspace S(AΓ) ⊂ O(AΓ) on which Out0(AΓ) acts properly and co-

compactly, the analysis of paths in this space, and the proof that non-empty

fixed-point sets of finite subgroups of Out0(AΓ) are contractible in S(AΓ).

2.1 An outer space S(AΓ)

Given a point X ∈ O(AΓ), a local deformation of a single action Tlk(v), for some

v ∈ Γ0, need not extend to a deformation in O(AΓ), since in general there is

“rigidity” in O(AΓ) imposed by the compatibility conditions among the actions

on trees Tlk(w), w ∈ Γ0. To allow such deformations of actions on individual trees

to extend, we restrict the compatibility conditions. This produces a subspace

S(AΓ) ⊂ O(AΓ) equal toO(AΓ) in dimension, but simpler in structure. We show

that it is an outer space: a contractible space on which Out0(AΓ) acts properly.

2.1.1 A subspace S(AΓ) ⊂ O(AΓ)

A point X ∈ O(AΓ) is in S(AΓ) if and only if for every v ∈ Γ0 and every w, z ∈

lk(v) ∩ Γ0 and every g ∈ F (lk(v)), the intersection Min(F ([w])) ∩ gMin(F ([z]))

contains at most one point, where Min(F ([w])) is the minimal subtree of the ac-

tion F ([w]) y Tlk(v). That is, F (lk(v)) translates of Im(iw,v), the minimal subtree

of F ([w]), and Im(iz,v), the minimal subtree of F ([z]), intersect in at most a sin-
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gle point in Tlk(v), for every v ∈ Γ0. For a given v ∈ Γ0, we say that a tree Tlk(v)

having this property is separated. Thus X is in S(AΓ) if for every v ∈ Γ0, Tlk(v) is

separated.

Figure 2.1: A separated tree and a non-separated tree.

Suppose v, w ∈ Γ0 are adjacent vertices. Let Gv = Tlk(v)/Alk(v) and Gw
v =

T[w]/A[w], and let the composition map Gw
v ↪→ Tlk(v)/A[w] → Gv be denoted by

αw,v : Gw
v → Gv. Then the subspace S(AΓ) can be described as those points in

O(AΓ) in which for every v, w, z ∈ Γ0 such thatw, z ∈ lk(v), Imαw,v∩Imαz,v does

not contain a non-trivial interval (i.e., is either a collection of discrete points or

is empty). This and the previous definitions are equivalent since if Min(F ([w])∩

gMin(F ([z])) contains a non-trivial interval, so does the quotient by the Alk(v)

action, and conversely, if Imαw,v ∩ Imαz,v contains a non-trivial interval I , it

implies that there is a g ∈ Alk(v) such that Min(F ([w]))∩ gMin(F ([z])) contains a

non-trivial interval that maps into I by Tlk(v) → Gv.
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2.1.2 The action Out0(AΓ) y S(AΓ) is proper

In order to show that Out0(AΓ) acts properly on S(AΓ), it suffices to prove that

it is a subspace invariant under the action Out0(AΓ) y O(AΓ) defined in Section

1.5, since that action itself is proper. To that end, we demonstrate that minimal

subtrees are preserved in each Tlk(v) by the projection of any outer automor-

phism in Out0(AΓ) to the respective link (Lemma 2.1.1 below).

Lemma 2.1.1. For every ϕ ∈ Out0(AΓ) and w ∈ Γ0 ∩ lk(v), Pv(ϕ) translates

Min(F ([w])) in Tlk(v) by an element of Alk(v).

Proof. Let ϕ ∈ Out0(AΓ). By Proposition 1, there exist automorphisms ϕv and

ϕw representing ϕ such that ϕv preservesAJv andA[v], and ϕw preservesAJw and

A[w]. By Proposition 1.2.2, there are gv ∈ AJv and gw ∈ AJw such that c(gv) ◦ ϕv =

c(gw) ◦ ϕw. Thus we get ϕv = c(g−1
v gw) ◦ ϕw.

Then Min(A[w]) in Tlk(v) is sent to the minimal set of ϕv(A[w]) = c(g−1
v )◦c(gw)◦

ϕw(A[w]) = g−1
v A[w]gv, the translation of Min(A[w]) by g−1

v ∈ AJv . Since any ele-

ment in AJv can be expressed as a product of generators in Alk(v) and A[v], and

the two sets of generators commute, g−1
v A[w]gv = hA[w]h

−1, where h ∈ Alk(v).

Proposition 2.1.2. The subspace S(AΓ) is preserved under the action of Out0(AΓ) and

the action Out0(AΓ) y S(AΓ) is proper.

Proof. By definition 1.5.1, given ϕ ∈ Out0(AΓ), the action ϕX takes {Xv, Xe, ie,v}

to {Xϕv
v , Xϕe

e , t(gv)
−1ie,v}, where if edge e connects v to w, ϕv ∈ Aut0(AΓ) pre-

servesAJv andA[v], while ϕe ∈ Aut0(AΓ) preserves bothAJv andAJw (see Propo-

sition 1.2.2). Since each ϕv preserves A[v] and so descends to Pv(ϕ) : Alk(v) →
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Alk(v), in each tree Tlk(v) the action is twisted by Pv(ϕ). By Lemma 2.1.1, this pre-

serves the subtrees Im(iw,v) up to translation by an element of Alk(v). Thus Pv(ϕ)

preserves the property of being separated, and hence S(AΓ) is mapped to itself

under the action of ϕ on O(AΓ).

Since the action Out0(AΓ) y O(AΓ) is proper, and S(AΓ) is a subspace of

O(AΓ), the action Out0(AΓ) y S(AΓ) is proper.

2.1.3 S(AΓ) is contractible

Proposition 2.1.3. The space S(AΓ) is contractible.

Proof. We will show that the contraction of O(AΓ) in Section 5 of [CCV07] re-

stricts to a contraction of S(AΓ). For completeness, we provide a sketch of the

contraction here, applied to S(AΓ).

Given a point X ∈ S(AΓ), we define an X0 ∈ S(AΓ) where each tree (T0)lk(v)

in this new point is the universal cover of a stemmed rose, a graph formed by

attaching circles to each endpoint and possibly the central vertex of a star graph.

Then we define a morphism X0 → X (that is, an equivariant morphism for each

tree (T0)lk(v) → Tlk(v)) which, using Skora’s interpolation (see 1.4.2), defines a

path in S(AΓ).

To define (T0)lk(v), we choose basepoints on each Tlk(v) from a set of projec-

tions of axes. If x, y ∈ lk(v), then p(x, y) ∈ Tlk(v) is the point on the oriented axis

of y that is either closest to the axis of x, if the two are disjoint, or the point in

the intersection of the two axes furthest along with respect to the orientation of

the axis of y. If w ∈ lk(v) ∩ Γ0 is non-cyclic, we take projections p(t, w) for all
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t ∈ [w]. For cyclic w ∈ lk(v) ∩ Γ0 and for w ∈ lk(v) but not equivalent to a vertex

in Γ0, we take projections p(t, w) for all t ∈ lk(v), t 6= w.

Thus on each axis of u ∈ lk(v) lies at least one projection. Let b(u) denote the

least (where the translation direction of u is positive) projection on the axis of u.

Let the convex hull of the set of projections Π = {p(t, w)}, which is equal to the

convex hull of the basepoints, be denoted by B(Π, T ); it depends continuously

on T (Lemma 5.2 [CCV07]). We then take the finite tree B(Π, T ), attach an ori-

ented circle S1 to b(u) for each u ∈ lk(v), and let the universal cover be (T0)lk(v)

with the corresponding action of the free group Alk(v), translation lengths of

whose generators are defined to be the same as their translation lengths in Tlk(v).

We similarly define (T0)[v] for every v ∈ Γ0 by taking the projections p(t, w) ∈

T[v] for every t, w ∈ [v] such that t 6= w if v is not cyclic, choosing basepoints,

attaching oriented S1 to the basepoint of every axis, and taking (T0)[v] to be the

universal cover. If v is cyclic, (T0)[v] is a line and a basepoint is chosen arbitrarily.

We thus have a canonical isometric embedding (T0)[w] ↪→ (T0)lk(v) for every w ∈

lk(v)∩Γ0. The trees and embeddings are compatible with the respective actions

and thus constitute a point X0 ∈ O(AΓ).

By the definition of the projections, since X was in S(AΓ) to begin with, the

resulting trees (T0)lk(v) are separated. A Skora interpolation path between two

separated trees does not always contain only separated trees (see Section 2.2

where this issue is dealt with). In this case, however, the Skora path for each

morphism (T0)lk(v) → Tlk(v) does contain only separated trees, as the next lemma

shows.

Lemma 2.1.4. Suppose f : Tlk(v) → T ′lk(v) is a morphism between two separated trees

and f(T[w]) ⊂ T ′[w] for all w ∈ lk(v) ∩ Γ0, then all trees in the Skora interpolation path
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corresponding to f are separated as well.

Proof. If T̂ is in the Skora interpolation path for the morphism f , and if it is not

separated, assume without loss of generality that there is an edge e ∈ T̂ which

is in T̂[u] ∩ T̂[w] for u,w ∈ lk(v) ∩ Γ0. Then the image of e in T ′lk(v) is a non-trivial

edge in T ′[u] ∩ T ′[w], contradicting separateness of T ′lk(v).

We can thus use the paths corresponding to morphism fv : (T0)lk(v) → Tlk(v)

and gw : (T0)[w] → T[w] to construct a compatible system of paths, since if

w ∈ lk(v), gw is the restriction of fv to (T0)[w] ⊂ (T0)lk(v). Hence we may con-

tract S(AΓ) continuously to the subspace of stemmed roses (itself a subspace

of S(AΓ)), in which every Gv is a stemmed rose. This subspace is contractible

hence so is S(AΓ).

Corollary 2.1.5. The space S(AΓ) is an outer space for two dimensional RAAGs AΓ,

that is, S(AΓ) is contractible and Out0(AΓ) acts on it properly.

While S(AΓ) is a proper subspace of O(AΓ), the two spaces have the same

dimension. This is because marked separated graphs can correspond to top di-

mensional simplices in the outer space of a free group—of dimension 3n− 4 for

a free group on n generators ([CV86]). The other parameters in the topology of

O(AΓ), namely the shear constants of leaf vertices and basepoints for the injec-

tions iw,v : T[w] → Tlk(v) when w is cyclic, retain their full range when restricted

to S(AΓ).
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2.2 Contracting fixed point sets of finite subgroups in S(Fn)

Before we can show that the fixed point set of any finite subgroup of Out0(AΓ) is

contractible in S(AΓ) for any 2-dimensional AΓ, we must show it for Γ a discrete

graph. That is, it is possible to contract the fixed point sets of finite subgroups of

Out(Fn) in the usual Culler-Vogtmann outer space while preserving the prop-

erty of being separated.

Consider a free group

Fn = A1 ∗ A2 ∗ . . . ∗ Ak ∗ Z

LetH < Out(Fn) be a finite subgroup such that every element ofH preserves

each Ai (i.e., each element lifts to an automorphism sending each Ai to a conju-

gate of itself). Finally, let S(Fn) ⊂ O(Fn) be a subset of the outer space of Fn all

of whose trees are separated with respect to each Ai, that is, Min(Ai)∩gMin(Aj)

is either a point or empty for every 1 ≤ i, j ≤ k and g ∈ Fn. In this section we

will prove the following theorem.

Theorem 2.2.1. The subspace Fix(H) ∩ S(Fn) is contractible.

As described in Section 1.4.2, given a morphism between two trees, there is

a canonical folding path between them in O(Fn). If the morphism is between

two separated trees, however, the resulting path p between them need not stay

in S(Fn), i.e., a tree p(s) need not be separated, as is illustrated in Figure 2.2.

Figure 2.2 shows two trees Fn-trees M and N , with axes of a ∈ A1, b ∈ A2

and z ∈ Z, both separated. A morphism which folds as indicated in the figure

has a Skora folding path which does not lie in S(Fn): the intermediate tree at

the bottom of the figure is not separated.
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Figure 2.2: A morphism f : M → N between two separated trees

To get around this problem we define a tree T ′ ∈ S(Fn) and paths p1 from

T to T ′ and p2 from T ′ to T̄ which depend continuously on p and which both

stay in S(Fn). We also show that if T and T̄ are in Fix(H), so is T ′ and so are the

paths p1 and p2. This implies the contractibility of S(Fn) ∩ Fix(H).

2.2.1 Constructing the intermediate tree T ′

Informally, to construct T ′, we take T and equivariantly identify points of each

minimal subtree Min(Ai) mapped to the same point of T̄ . The path from T to

T ′ consists of folding within each minimal subtree and their translates, and the

path from T ′ to T̄ consists of folding the rest.
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More precisely, Let Ti = Min(Ai) ⊂ T . Consider the following equivalence

relation: for x, y ∈ T , x ∼ y if and only if there is an i and a g such that x, y ∈ gTi

and both are mapped to the same point in T̄ . Then T ′ = T/ ∼. In other words,

starting with T , for each g ∈ Fn and each 1 ≤ i ≤ k, identify edges in gTi which

are identified in T̄ .

There is a well-defined, free minimal action of Fn on T ′, since otherwise, if an

Axis(u) (for some u ∈ Fn) becomes degenerate in T ′, then it must be degenerate

in T̄ , contradicting T̄ being a free, minimal Fn-tree. Also, since folding was only

done within Min(Ai) and their translates, T ′ ∈ S(Fn).

Let ξ denote a morphism from T to T̄ , ϕ denote the quotient morphism from

T to T ′, and ψ denote the morphism from T ′ to T̄ defined by ψ(x′) = ξ(x), where

x ∈ T is such that ϕ(x) = x′.

Lemma 2.2.2. Fix a tree T0 ∈ Fix(H) ∩ S(Fn), the White morphism ξ : T → T̄ ,

the tree T ′, morphism ϕ : T → T ′, and morphism ψ : T ′ → T̄ defined above depend

continuously on T̄ .

Proof. Recall that given a fixed T0 ∈ O(Fn) and any T̄ , White ([Whi93]) con-

structs an equivariant morphism ξ : T → T̄ where T is in the same simplex as

T0. The morphism ξ, and hence also T , depends continuously on T̄ (see Section

1.4.3).

Since T ′ is defined as the identification in T of all points in each Min(Ai)

and their translates identified by ξ, the subtrees T̄i = Min(Ai) ⊂ T̄ are Ai-

equivariantly isometric to T ′i = Min(Ai) ⊂ T ′. Consider an (oriented) axis of

z ∈ Fn \ Ai in T , and let p(i, z) be the point on the axis closest to Ti. If Ti and

Axis(z) intersect, let p(i, z) be the greatest (per orientation of Axis(z)) point of
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intersection. Let d(i, z) be the distance between ϕ(p(i, z)) and T ′i in T ′ (see Fig-

ure 2.3). The tree T ′ is determined by the T ′i = T̄i and the distances d(i, z) for

different z’s. The former clearly depends continuously on T̄ . The distance d(i, z)

is equal to the distance between ψ(p(i, z)) and T̄i in T̄ , since all folding in Ti is

“already done” in T ′ and thus the segment between ϕ(p(i, z)) and T ′i in T ′ is

mapped isometrically to T̄ .

Figure 2.3: Basepoint p(i, z) and distance d(i, z)

This shows the continuity of T ′. Since ϕ : T → T ′ is determined by T ′,

namely ϕ(x) = [x] (where [x] is the equivalence class under ∼ defined earlier),

ϕ itself depends continuously on T̄ .

Finally, since ξ = ψ ◦ ϕ, and the image of ϕ is all of T ′, the morphism ψ

is determined by ξ and ϕ. Hence, since ϕ depends continuously on ξ, so does

ψ.

2.2.2 Paths p1 and p2

Let p be the Skora path corresponding to ξ, and let p1 be the Skora path from T

to T ′ corresponding to ϕ. Let p2 be the Skora path from T ′ to T̄ corresponding
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to ψ, parametrized by distance of ϕ-preimages in T . That is, points x, y ∈ T ′ are

identified in p2(s) if there are ϕ-preimages x̃ and ỹ of x and y in T such that (1)

they are mapped to the same point by ξ, and (2) they are distance s or less apart

in T . These paths are illustrated in Figure 2.4.

Figure 2.4: Paths p, p1, and p2 in O(Fn)

Let ξs denote the Skora morphism (see Definition 1.4.1) from T to p(s), let ϕs

denote the morphism from T to p1(s), and let ψs denote the morphism from T

to p2(s). Since ξs is equivariant with respect to the Fn-action, by the definition of

the Skora paths p1 and p2, the morphisms ϕs and ψs are equivariant as well.

To show that the paths p1 and p2 are in the fixed point set of H , we will

use the characterization that a tree is fixed if H is realized by a subgroup of

automorphisms of the quotient graph of the tree by the free group action. Ac-

cordingly, let G(r) = p(r)/Fn, G1(r) = p1(r)/Fn, and G2(r) = p2(r)/Fn. The

equivariant morphisms ξr, ϕr, and ψr induce morphisms Ξr : T/Fn → G(r),

Φr : T/Fn → G1(r) and Ψr : T/Fn → G2(r). Since T/Fn and T̄ /Fn are in Fix(H),

H acts on both graphs by graph automorphisms. By Skora’s theorem, Ξr is

equivariant with respect to the action of H . The following two facts follow di-

rectly from the continuity p1, and p2.

Proposition 2.2.3.

1. If p1(s) ∈ Fix(H) for s ≤ r, then Φr is equivariant with respect to the action of

H .
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2. If all of p1 is in Fix(H) and p2(s) ∈ Fix(H) for all s ≤ r, then Ψr is equivariant

with respect to the action of H .

Lemma 2.2.4. p1 is in S(Fn) ∩ Fix(H).

Proof. Since p1 is produced through folding within Min(Ai) and their translates,

it is in S(Fn). We now show that it is in Fix(H), that is, the twisting of the action

Fn y p1(r) by outer automorphisms in H quotients to an action of H on G1(r)

by graph automorphisms for every r.

Let p1 be parametrized from p1(0) = T to p1(t) = T ′ (i.e. no identified

points are more than t apart). Consider any r such that p1(r) ∈ Fix(H) and

any 0 < ε ≤ min edge length in p1(r). We will show that p1(r + ε) ∈ Fix(H).

Figure 2.5: Adjacent edges in G1(r) which are ε folded in G1(r + ε)

Since p1(r) ∈ Fix(H), we have H y G1(r) by graph automorphisms. To
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prove that p1(r + ε) ∈ Fix(H), we show that H is realized by graph automor-

phisms of G1(r + ε).

Suppose e1, e2 are two edges adjacent to a common vertex x in G1(r) and

an initial ε-segment of e1 is folded onto an initial ε-segment of e2 in G1(r + ε).

Consider edges ẽ1 and ẽ2 in T/Fn which are isometrically mapped by Φr to e1

and e2 respectively (see Figure 2.5). By the parametrization of the path p1, we

know that the images Ξ(ẽ1) and Ξ(ẽ2), denoted ē1 and ē2 respectively, are ad-

jacent edges in G(r). Here we may need to take a suitable subdivision of the

edges of T , p1(r) and p(r) for ẽ1 and ẽ2 to be edges (and not edge segments),

Ξ(ẽ1) and Ξ(ẽ2) to be edges in G(r) (and not paths) and for them to have one

common vertex in G(r) (and not two).

It follows from the definition of p1 that the edges ē1 and ē2 ε-fold in G(r + ε)

(i.e., initial segments of length ε of ē1 and of ē2 adjacent to their common vertex

get folded). Since p(r) ∈ Fix(H), for any γ ∈ H , we have γē1 and γē2 ε-fold in

G(r + ε). Then by Proposition 2.2.3, edges γe1 and γe2 also ε-fold in G1(r + ε).

Since this is true for any γ ∈ H and any ε-folded edges e1, e2 in G1(r), we

conclude that p1(r + ε) ∈ Fix(H). Since ε was arbitrary, up to the length of the

smallest edge (which is bounded away from 0), this implies that all of p1 is in

Fix(H).

Lemma 2.2.5. p2 is in S(Fn) ∩ Fix(H).

Proof. Note that ψ restricted to T ′i (and all translates gT ′i ) is an isometry, and

hence so is each ψr. Thus, since T ′ separated, so is every tree p2(r).

To show that p2 ∈ Fix(H) we use the same method as in the proof of Lemma

2.2.4. Consider p2(r) ∈ Fix(H) and 0 < ε ≤ min edge length in p2(r). Suppose
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adjacent edges e1, e2 ∈ G2(r) ε-fold in G2(r + ε).

Choose edges ẽ1 and ẽ2 in T/Fn mapping to e1 and e2 respectively. (As in the

proof of Lemma 2.2.4, a suitable subdivision needs to be taken.) Because of our

chosen parametrization of p2, edges ẽ1 and ẽ2 are mapped to adjacent edges in

G(r), which we denote by ē1 and ē2 respectively. It follows from the definition

of p2 that these edges ε-fold in G(r + ε). Since p(r) ∈ Fix(H), γē1 and γē2 ε-fold

in G(r + ε) as well.

By Proposition 2.2.3, this implies that γe1 and γe2 ε-fold in G2(r + ε).

Proof of Theorem 2.2.1. By Lemmas 2.2.4 and 2.2.5, both p1 and p2 are in Fix(H)∩

S(Fn). Since T ′, ϕ, and ψ depend continuously on T̄ by Lemma 2.2.2, we get

that the paths p1 and p2 vary continuously with T̄ . Since T̄ ∈ Fix(H) ∩ S(Fn) is

arbitrary, we get a deformation retraction of Fix(H)∩S(Fn) to T0. Thus Fix(H)∩

S(Fn) is contractible.

2.3 Contracting non-empty fixed point sets of finite subgroups

H < Out0(AΓ) in S(AΓ)

Theorem 2.3.1. Give a finite subgroupH < Out0(AΓ), if the subspace Fix(H)∩S(AΓ)

is non-empty, then it is contractible.

Proof. Let X̄ be a point in Fix(H) ∩ S(AΓ). We will define a continuous defor-

mation of Fix(H) ∩ S(AΓ) to X̄ .

Since Pv(H) is a finite subgroup of Out(Alk(v)), by Theorem 2.2.1, S(Alk(v)) ∩
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Fix(Pv(H)) is contractible. That is, for any point X ∈ Fix(H), the tree Tlk(v) with

the corresponding action of Alk(v) can be connected by a path within S(Alk(v)) ∩

Fix(Pv(H)) to the tree T̄lk(v), where T̄lk(v) is the corresponding tree in X̄ . We claim

that this path in S(Alk(v)) ∩ Fix(Pv(H)) extends to a path in S(AΓ) ∩ Fix(H).

Note that a deformation of Tlk(v) along the path to T̄lk(v) induces a defor-

mation of trees T[w] = Min(A[w]) ⊂ Tlk(v) for every w ∈ Γ0 ∩ lk(v). For every

u ∈ Γ0 ∩ lk(w), this deformation in turn extends to a deformation of Tlk(u) (see

Figure 2.6).

Figure 2.6: Deforming Tlk(v) induces a deformation in Tlk(u).

However, since the trees are separated, the induced deformations only affect

Tlk(u) for vertices u ∈ Γ0 whose distance from v is 2. Thus, since the topology

on O(AΓ) is the product topology of O(F (lk(v))) for all v ∈ Γ0 (with additional

real-valued parameters) and all trees are separated, the path from Tlk(v) to T̄lk(v)

extends to a path in S(AΓ).

To see that this S(AΓ) path stays in Fix(H), note that for ϕ ∈ H , Pv(ϕ) fixes

(up to equivariant isometry) the subtrees T[w] in Tlk(v) for every w ∈ lk(v) ∩ Γ0

throughout the path from Tlk(v) to T̄lk(v). Thus T[w] is also fixed by Pu(ϕ) as a

subtree of Tlk(u) for all u ∈ lk(w) ∩ Γ0 throughout the path in S(AΓ). All other

minimal subtrees in Tlk(u) corresponding to vertices of (lk(u) ∩ Γ0)\ lk(v) remain

unaffected since Tlk(u) is separated. Hence the S(AΓ) path is in Fix(H) ∩ S(AΓ).

This path varies continuously as a function of its starting point X in Fix(H)
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by the continuity of the path in Fix(Pv(H))∩S(Alk(v)) (Lemma 2.2.2). Hence we

can contract Fix(H) ⊂ S(AΓ) to a subset in which trees corresponding to v ∈ Γ0

are equivariantly isometric to T̄lk(v). We then proceed to perform the same type

of deformation for trees corresponding to all other vertices z ∈ Γ0, one vertex at

a time. The resulting deformation takes Fix(H)∩S(AΓ) to a single point, X̄ .
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CHAPTER 3

EXISTENCE OF FIXED POINTS OF FINITE SUBGROUPS

Given a two dimensional RAAG AΓ, for a finite H < Out0(AΓ) the fixed

point set Fix(H) ∩ S(AΓ) is contractible by Theorem 2.3.1 if it is not empty. This

chapter is devoted to demonstrating particular categories ofH for which we can

show that the fixed point sets are always non-empty. The general question of

whether this is true for all finite H remains open: it is not even known if a fixed

point exists in the larger space O(AΓ).

3.1 Fixed points and sphere systems

Recall that we can project the group Out0(AΓ) onto each Out(Alk(v)) for every

v ∈ Γ. We may similarly project a finite H < Out0(AΓ) to each outer automor-

phism group, but just as Out0(AΓ) is not in general a direct product of outer

automorphism groups, neither in general is H a direct product of its images.

Analogously, we can realize each projection of H by a fixed graph, but it is not

clear whether it is always possible to “patch” these graphs together to form a

point in S(AΓ). The first step toward such patching is to find separated trees

fixed by each projection of H to Out(Alk(v)). The second step is to create a fixed

point in S(AΓ) from these separated trees. We take up the first step in this sec-

tion, and the second step in Section 3.2.

34



3.1.1 A simple case

If for each v ∈ Γ0 the finite subgroup Pv(H) of Out(Alk(v)) lifts to a finite sub-

group H̃ < Aut(Alk(v)) preserving all maximal A[w] < Alk(v) as well as the sub-

group generated by non-maximal vertices, then we can easily construct a sepa-

rated fixed point.

For each v ∈ Γ0, let Zv = 〈lk(v) \ ∪w∈Γ0 [w]〉. That is, the free group generated

by vertices in the link of v which are not maximal, i.e. whose link is contained in

a larger link. By Culler’s Realization Theorem, there is a finite marked simplicial

graphG([w]) realizing H̃ restricted toA[w] in which a vertex is fixed, and a graph

G(Zv) realizing Zv in which a vertex is fixed. Then we can take Gv to be the

wedge product of all these graphs, wedged at their respective fixed points. The

group Pv(H) is realized by automorphisms of Gv, so Gv ∈ Fix(Pv(H)).

Taking the universal covers Tv of each Gv and universal covers Tw of each

G([w]), we get a point X = {Tv, Tw, iw,v, γ} in S(AΓ), where the maps iw,v, are

isometries between Tw and the min set of A[w] in Tv and γ is the zero map. By

the construction of each Gv, the point X is fixed under the action of H y S(AΓ).

We can show that S(Alk(v)) ∩ Fix(Pv(H)) is non-empty for certain wider

classes of subgroups H < Out0(AΓ) using the sphere system model of outer

space O(Fn). In this model, described in Section 3.1.2, points of outer space cor-

respond to embedded collections of spheres in a doubled handlebody with fun-

damental group Fn, and elements of Out(Fn) correspond to diffeomorphisms of

the doubled handlebody. For some finite subgroups of Out(Fn), we can surger

a sphere system corresponding to a fixed point of a finite subgroup such that

the resulting sphere system is both fixed and separated (with respect to a given
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decomposition Fn = A1 ∗ A2 ∗ · · · ∗ Ak ∗ Z).

3.1.2 The sphere system model of O(Fn)

Let Fn = A1 ∗ A2 ∗ · · · ∗ Ak ∗ Z and H < Out(Fn) a finite subgroup in which

every element preserves each Ai up to conjugacy. In the following paragraphs

we give a sketch of a model of O(Fn) in which points are sphere systems inside

a doubled handlebody, as described in [Hat95] and [HV98].

Consider M = #nS
1×S2, the connected sum of n copies of S1×S2. A sphere

system in M is a finite collection of disjoint embedded spheres S2 in which no

two spheres are isotopic and none of which bound a ball. The sphere system

complex S(M) is a simplicial complex whose k-simplices are isotopy classes of

sphere systems with k + 1 spheres. The barycentric coordinates in each simplex

of S(M) corresponding to a particular sphere system provide weights to each

sphere in the sphere system. Consider the subcomplex consisting of sphere sys-

tems S such that every component of M − S is simply connected. Let this sub-

complex be denoted S0(M). As we describe below, the weighted sphere systems

in S0(M) are in one-to-one correspondence with points in O(Fn).

First, we fix a homotopy equivalence τ : Rn →M , where Rn is the rose with

n petals. Given a sphere system S ∈ S0(M), consider the graph having a vertex

for each component of M − S and an edge between two vertices if and only

if there is a sphere in S adjacent to the components corresponding to the two

vertices. The length of each edge is equal to the weight of the corresponding

sphere. The homotopy equivalence τ induces a marking on the resulting graph.

This defines a point in O(Fn). In fact S0(M) and O(Fn) are homeomorphic (see
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appendix of [Hat95]).

If we keep track of a marked basepoint p in M , diffeomorphisms of (M, p)

induce automorphisms of π1(M) = Fn. By a result of Laudenbach ([Lau74]),

the mapping class group of M is generated by diffeomorphism which corre-

spond to the Nielsen generators of Aut(Fn) and by 2π twists about spheres

embedded in each of the S1 × S2 summands. These twists act trivially on

S(M), since homotopic spheres in M are isotopic ([Lau73]). Thus, the kernel

of MCG(M, p)→ Aut(Fn) is generated by the 2π sphere twists; let this kernel be

denoted by K. Then MCG(M, p)/K ∼= Aut(Fn), and if we do not keep track of a

basepoint in M , then MCG(M)/K ∼= Out(Fn).

The diffeomorphism of M inducing the Nielsen automorphism a 7→ ab is a

torus Dehn twist in a torus passing through the b handle and containing one end

of the a handle (Figure 3.1). Consider M as the identification of two handlebod-

ies Hn along their boundaries. Restricting to the Heegaard surface (the bound-

ary along which the handlebodies are glued), this diffeomorphism restricts to

two Dehn twists supported on the shaded annuli in Figure 3.1.

Figure 3.1: The intersection of two fixed torii with the Heegaard surface
of M , and between those S1 intersections, the support of the
Dehn twist inducing a→ ab
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By torus Dehn twist we mean a diffeomorphism fixing the boundary of an

embedded torus (the outer circle in 3.2) and “twisting” a smaller torus inside

it (the inner circle in 3.2) a full revolution, thus fixing it too, while twisting the

region between the two torii an intermediate amount which increases continu-

ously from 0 radians near the outer torus to 2π radians near the inner torus.

Figure 3.2: A cross section of the support of the torus Dehn twist. The
horizontal segment is a cross section of the Heegaard surface
in M

A convenient way of visualizing this torus Dehn twist is as “pulling” the end

of S1 × S2 corresponding to a through the S1 × S2 corresponding to b along the

b−1 direction, dragging nearby parts of the surface along.

The Nielsen automorphism a 7→ a−1 is induced by the diffeomorphism

switching the “ends” of the S1×S2 corresponding to a, and the diffeomorphism

corresponding to a 7→ b, b 7→ a switches the two corresponding S1 × S2’s.

Thus the automorphism which sends a to bab−1 and fixes the remaining gen-

erators is induced by the diffeomorphism “pulling” the whole a handle around

the b handle. The support of this diffeomorphism, restricted to the Heegaard

surface, is illustrated in Figure 3.3.

Given a sphere system S and a maximal sphere system Σ in M , we say that

S is in normal form with respect to Σ if S intersects each component ofM−Σ in a
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Figure 3.3: The intersection of two fixed torii with the Heegaard surface
of M , and between those S1 intersections, the support of the
Dehn twist inducing a 7→ bab−1

collection of surfaces each having at most one boundary circle on each boundary

sphere of a component ofM−Σ, and no surface can be isotoped to the boundary

of a component of M −Σ. That is, the number of intersections between S and Σ

is minimal.

Two sphere systems S and S ′ in normal form with respect to Σ are equivalent

if there’s a homotopy between them fixing common spheres of Σ and S and

keeping the remaining spheres in S transverse to Σ throughout the homotopy,

with the circle components of S ∩ Σ varying by isotopy in Σ.

Proposition 3.1.1 (Hatcher). 1. Every sphere system S can be isotoped into nor-

mal form with respect to any maximal sphere system Σ.

2. Two isotopic sphere systems in normal form with respect to the same maximal

sphere system are equivalent.

The proof of the first part of this proposition proceeds by minimizing the

number of transverse intersections Σ ∩ S. If S is not in normal form, it can be

isotoped to decrease this number of intersection. For details see [Hat95].
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Hatcher uses this proposition to show thatO(Fn) is contractible by defining a

contraction of S0(M) (Theorem 2.1, [Hat95]). This contraction relies on a surgery

which we’ll use to construct an element of S(Fn) fixed by a finite subgroup of

Out(Fn).

3.1.3 Surgery

Given a maximal sphere system Σ, and a weighted sphere system S in normal

form with respect to Σ, we can surger S by a sphere Σi ∈ Σ. Since S is in normal

form with respect to Σ, the intersection S ∩Σi is a finite collection of circles. An

inner-most such circle bounds either one open disk D ⊂ Σi disjoint from S or

two such disks (see Figure 3.4).

Figure 3.4: If S ∩ Σi is a single circle, two choices are possible for disks to
surger with

If only one such disk D ⊂ Σi disjoint from S exists, surger S across D, re-
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placing the sphere of S in which ∂D lies with two spheres, dividing the weight

of the removed sphere equally between them. If there are two choices for a disk

D ⊂ Σi disjoint from S, surger S by replacing the sphere in which ∂D lies with

four spheres, dividing the weight of the removed sphere equally among them

(see Figure 3.5).

Figure 3.5: Surgering a sphere of S across Σi when S ∩ Σi is a single circle

In the resulting sphere system, the number of components of S ∩ Σi is de-

creased by one. Performing this surgery with resultant inner-most components

of S ∩ Σi, and then with all other spheres in Σ, we arrive at a sphere system S ′

disjoint from Σ.

This process can be made canonical by doing all inner-most surgeries at once.

3.1.4 Constructing an element in Fix(H) ⊂ S(Fn)

As in 2.2, let Fn = A1∗A2∗· · ·∗Ak∗Z, andH < Out(Fn) be a finite subgroup pre-

serving A1, . . . , Ak (i.e., each element lifts to an automorphism mapping every

Ai to a conjugate of itself).
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Definition 3.1.1. To the free decomposition A1 ∗A2 ∗ · · · ∗Ak ∗Z corresponds a single

(up to isotopy) decomposition sphere system. It is the sphere system Σ for which

M −Σ has k+ 1 components, marked by generators A1, A2, . . ., Ak, and Z respectively

(Figure 3.6 illustrates an example).

Figure 3.6: The intersection of a decomposition sphere system for F = a∗b
with the Heegaard surface of M

Proposition 3.1.2. Let Fn = A1 ∗A2 ∗ · · · ∗Ak ∗Z be a free group and H < Out(Fn)

be finite subgroup preserving A1, . . . , Ak. If the decomposition sphere system Σ is pre-

served by H (up to isotopy), then S(Fn) ∩ Fix(H) is non-empty.

Proof. By Culler’s Realization Theorem, there is a point in O(Fn) fixed by H .

Let S be the sphere system corresponding to that point. Assume, without loss

of generality, that it is in normal from with respect to Σ. Since both Σ and S

are fixed by H , so is the system S ′ resulting from surgering S by Σ. The sphere

system S ′ is also separated, that is, the marked graph corresponding to S ′ defines

a point in O(Fn) which is separated with respect to the given decomposition of

Fn. Hence S ′ is in S(Fn) ∩ Fix(H).
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3.1.5 Constructing a fixed point when the separating sphere

system is not fixed

The hypothesis in Proposition 3.1.2 that the decomposition sphere system is

fixed by H is far from necessary. For example, when all but one of the spheres

in a decomposition sphere system Σ are fixed, then surgering S by the spheres

that are fixed produces a separated sphere system S ′ in S(Fn) ∩ Fix(H). (See

Figure 3.7.)

Figure 3.7: Even though only the spheres corresponding to A1 and A3 may
be fixed (red), surgering by these spheres separates all three
Ai’s

Even this however, is not necessary. For example, for F = 〈a, b, z〉, (where

A1 = 〈a〉, A2 = 〈b〉, and Z = 〈z〉), and H generated by (the conjugacy class of)
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the automorphism

a 7→ a−1

b 7→ b−1

c 7→ acb

none of the spheres in the decomposition sphere system are fixed. However,

the sphere system Σ illustrated in Figure 3.8 is fixed by H and it separates A1

from A2. Hence surgering any fixed sphere system S by Σ produces S ′ ∈ S(F )∩

Fix(H).

Figure 3.8: A separating sphere system Σ and support of diffeomorphism
induced by H restricted to the Heegaard surface.

Unfortunately we have not found a satisfactory description of all finite H <

Out(Fn) for which a separating sphere system exists.

Finally, we highlight one particular case in which a separating system exists

here, since it will be useful in the next section. Suppose H < Out(Fn) is such

44



that there is a finite H̃ < Aut(Fn) mapping to H under Aut(Fn)→ Out(Fn), and

H̃ maps each Ai to ziAiz
−1
i , where zi ∈ Z and preserves Z. Then we say that H

strongly preserves the free decomposition Fn = A1 ∗ A2 ∗ · · · ∗ Ak ∗ Z. Note that

all spheres in the decomposition sphere system except that corresponding to the

factor Z are fixed. These fixed spheres constitute a separating sphere system.

3.2 From fixed points in S(Fn) to fixed points in S(AΓ)

Proposition 3.2.1. Suppose AΓ is a right-angled Artin group, and H < Out0(AΓ)

a finite subgroup. If Pv(H), for every v ∈ Γ0, strongly preserves the decomposition

Alk(v) = A[w1] ∗A[w2] ∗ · · · ∗A[wm] ∗Z, where {w1, . . . , wm} = Γ0 ∩ lk(v), then there is

a point of S(AΓ) fixed by H .

Proof. By the discussion in the previous section, we can find Tlk(a) ∈ S(Alk(a)) ∩

Fix(Pa(H)) for each a ∈ Γ0. Suppose w ∈ Γ0 is a neighbor of both v and u,

both in Γ0. Then both Min(A[w]) ⊂ Tlk(v) and Min(A[w]) ⊂ Tlk(u) are fixed by

Pv(H)|A[w]
∼= Pu(H)|A[w]

respectively. While the two minimal subtrees, one in

Tlk(v) and the other in Tlk(u) need not be equivariantly isometric, they can be

made equivariantly isometric, either using the White’s morphism and Skora

path (Section 1.4.3) or even more simply, by replacing Gw
u by Gw

v in Gu. This

is possible because Pu(H) and Pv(H) strongly preserve Alk(u) and Alk(v) respec-

tively. Hence the intersection of Gw
u with the closure of Gu \Gw

u is a single point,

and so is the intersection of Gw
v with the closure of Gv \Gw

v .

Thus all Min(A[a]), for all a ∈ Γ0, can be made equivariantly isometric in all

trees Tlk(v), a ∈ lk(v), producing a point in S(AΓ).
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Unfortunately our ability to produce separated fixed points in each individ-

ual outer space S(Alk(v)), using sphere system surgery, exceeds in power our

ability to put them together to produce a point in S(AΓ). This is due to the

challenge of controlling the behavior of non-maximal subgroups—those gener-

ated by elements outside Γ0—since in general, axes of elements in non-maximal

subgroups may intersect minimal trees T[a] for a ∈ Γ0.
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