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Ambulance redeployment is the practice of dynamically relocating idle ambu-

lances based upon real-time information to reduce expected response times for

future emergency calls. Ambulance redeployment performance is often mea-

sured by the fraction of “lost calls” or calls with response times larger than a

given threshold time. This dissertation is a collection of four papers detailing

results for designing ambulance redeployment policies and bounding the per-

formance of an optimal ambulance redeployment policy.

In the first paper ambulance redeployment is modeled as a Markov decision

process, and an approximate dynamic programming (ADP) policy is formu-

lated for this model. Computational results show that the ADP policy is able to

outperform benchmark policies in two different case studies based on real-life

data. Results of practical concern including how the ADP policy performs with

varying call arrival rates and varying ambulance fleet sizes are also included.

In the second paper we discuss ADP tuning procedures, i.e., the process

of selecting policy parameters to improve performance. We highlight limita-

tions present in many ADP tuning procedures and propose direct-search tun-

ing methods to overcome these limitations. To facilitate direct-search tuning for

ambulance redeployment, we reformulate the ADP policy using the so-called

“post-decision state” formulation. This reformulation allows policy decisions to

be computed without computationally expensive simulations and makes direct-



search tuning computationally feasible.

In the third paper we prove that many ADP policies are equivalent to a sim-

pler class of policies called nested compliance table (NCT) policies that assign

ambulances to bases according to the total number of available ambulances.

Furthermore, we show that if ambulances are not assigned to the bases dictated

by the NCT policy, the ADP-based policies will restore compliance to the NCT

policy without dispatcher intervention.

In the fourth paper we derive a computationally tractable lower bound on

the minimum fraction of lost calls and propose a heuristic bound based upon

simulation data from a reference policy, i.e., a policy we believe to be close to

optimal. In certain circumstances, both bounds can be quite loose so we intro-

duce a stylized model of ambulance redeployment and show empirically that

for this model the lower bound is quite tight.
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CHAPTER 1

INTRODUCTION

1.1 Background

Emergency medical service (EMS) providers are responsible for administering

emergency medical assistance within a given region. Typically this includes

responding to emergency calls, treating the patient at the scene, and transport-

ing the patient to a hospital if necessary. One common metric used to evaluate

EMS performance, both in practice and in research literature, is the fraction of

calls that are not responded to within a given time threshold, i.e., the fraction

of calls for which the time between when the emergency call arrived and the

time when an ambulance first arrived at the scene exceeds the time threshold.

Typically EMS providers are under contract to maintain specified performance

levels and face serious consequences if contracted performance levels are not

met.

To meet these performance requirements EMS providers seek to reduce re-

sponse times by properly allocating ambulances to bases throughout the region.

Early ambulance location models assume ambulances return to their “home”

base, or the base to which they have been assigned, after becoming available

and optimize over all possible ambulance allocations. Typically these models

are designed as integer programs that maximize the fraction of the demand that

is covered, i.e., that can be reached within the time threshold, or some other

simplified performance metric. These policies are often called ambulance loca-

tion policies or static policies. Refinements on the original model formulation

recognize that an ambulance may be busy with a call and unable to respond to

1



another call. One model formulation that incorporates this concept maximizes

the area that is covered by multiple ambulances so that backup ambulances will

be available if one ambulance is busy. Another formulation encourages multi-

ple ambulance to cover a single area by estimating the probability a given am-

bulance will be available and weighting the objective function contribution of

each ambulance by this amount. A more thorough survey of these models can

be found in Swersey (1994) and Brotcorne et al. (2003).

Increasing traffic congestion has made the ambulance allocation problem

even more difficult since congestion leads to longer travel times for ambulances

responding to emergency calls. To compensate for increased travel times am-

bulances must be spaced further apart in an attempt meet the performance re-

quirements. The difficulty arises when an ambulance is dispatched to an emer-

gency call. Since all the ambulances are spread out there may be no ambulance

close enough to respond to the dispatched ambulance’s area in a timely manner.

Consequently, emergency calls arriving in the same area while that ambulance

remains busy are likely to be “lost,” or not responded to within the time thresh-

old.

Ambulance redeployment is one strategy used by EMS providers to improve

performance. Ambulance redeployment, also known as relocation, move up,

system status management, or dynamic repositioning, is the practice of repo-

sitioning idle ambulances according to real-time information to be better pre-

pared to respond to future emergency calls. For example, in response to an am-

bulance being dispatched to an emergency call, an available ambulance may be

assigned to travel to the dispatched ambulance’s previous location in prepara-

tion for future emergencies that may happen in the vicinity. Since these policies

2



depend upon current information they are often called dynamic policies.

This research on ambulance redeployment centers around approximate dy-

namic programming (ADP) policies for ambulance redeployment. Chapter 2

formulates an ADP policy for ambulance redeployment and Chapter 3 inves-

tigates methods that can be used to tune the ADP policy efficiently. Chapter 4

shows that a certain class of ADP policies can be expressed in a simple form that

is easily understood and implemented by dispatchers. Chapter 5 gives lower

bounds on the performance for any redeployment policy and compares these

bounds with the performance of known ADP policies. The remainder of this

chapter explains the contribution of each chapter in more detail.

1.2 Approximate Dynamic Programming for Ambulance Rede-

ployment

In Chapter 2, we give an introduction to ambulance redeployment and ADP

policies for ambulance redeployment. We cover the three main steps in con-

structing an ADP policy: (1) modeling the problem as a Markov Decision Pro-

cess (MDP), (2) choosing a framework, e.g., a linear combination of basis func-

tions, used to approximate the dynamic programming (DP) value function, and

(3) tuning policy parameters to improve performance within the given frame-

work.

After formulating the ADP policy, we show simulated results for two case

studies based on real-life data. These results show that an ADP policy is able

to outperform benchmark polices that do not use real-time state information to
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make redeployment decisions. Additional results of practical importance are

shown such as how ADP policies perform with varying call arrival rates and

ambulance fleet sizes, how ADP policies are able to reduce response times, and

how turn-out time, i.e., the time it takes an ambulance crew to assemble and

leave a base after receiving an emergency call, affects performance.

This chapter is a collaboration of results from myself, Mateo Restrepo, Shane

G. Henderson, and Huseyin Topaloglu. Mateo is credited with developing the

MDP formulation, designing the basis functions, and setting up the simulation

environment for Chapter 2 (Restrepo (2008)).

My contribution in Chapter 2 extends Mateo Restrepo’s work in many ways.

We modified the simulation environment to increase computational efficiency

and remove significant errors that existed. During this modification process,

we fundamentally changed the simulation to facilitate the ability of running

microsimulations, i.e., simulations within simulations. These microsimulations

increased policy performance by providing more information to the ADP when

making decisions. All the computational results in this paper were performed

with the modified simulation environment. Additionally, we performed a com-

prehensive evaluation of each of the basis functions to ensure that they were all

beneficial to the ADP policy.

The contents of Chapter 2 are contained in the paper “Approximate Dynamic

Programming for Ambulance Redeployment” as published in the INFORMS

Journal on Computing (Maxwell et al. (2010c)). A companion paper that high-

lights the simulation model used in the computational results was published

in the proceedings of the 2009 Winter Simulation Conference (Maxwell et al.

(2009)).
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1.3 Tuning Approximate Dynamic Programming Policies for

Ambulance Redeployment via Direct Search

In Chapter 3, we illustrate some limitations of popular methods used to tune

ADP policies. Specifically, we give examples where a properly tuned ADP pol-

icy would result in an optimal policy, but ADP policies tuned via standard ap-

proaches do not.

The reason behind this result is that most ADP-tuning methods attempt to

approximate the DP value function and then use this approximate value func-

tion to make decisions as a DP policy would. Thus, policy parameters that do

not approximate the DP value function well are unlikely to be chosen—even if

they would induce an optimal policy. We suggest the use of simulation-based

direct-search methods to tune the ADP policy parameters directly based on the

performance resulting from these parameters.

A direct-search method is more computationally expensive than value-

function fitting methods. To apply this method to ambulance redeployment, we

reformulate the simulation-based ADP policy around the post-decision state.

Given a state and a feasible action, the post-decision state is the state the system

enters immediately after the action is made—before any time passes or stochas-

tic events occur. Reformulating a problem around the post-decision state can

often reduce the size of the state space and reduce computational requirements

(Powell, 2007, Chapter 4). For ADP ambulance redeployment policies, this re-

formulation greatly reduces the computation needed without sacrificing perfor-

mance. With the reduced computational requirements, we tune an ambulance

redeployment ADP policy via direct search and show empirically that the re-
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sulting policy is superior to that found through a standard tuning method for

the case study considered. The post-decision state formulation also becomes

useful in Chapter 4.

The contents of Chapter 3 are contained in the paper “Tuning Approxi-

mate Dynamic Programming Policies for Ambulance Redeployment via Direct

Search,” which has been submitted for publication (Maxwell et al. (2010b)). An

initial version of this paper was published in the proceedings of the 2010 Winter

Simulation Conference (Maxwell et al. (2010a)).

1.4 Equivalence Results for Approximate Dynamic Program-

ming and Compliance Table Policies for Ambulance Rede-

ployment

In Chapter 4 we define a class of post-decision state ADP policies and show

that this class of policies is equivalent to the class of nested compliance table

(NCT) policies. For a given number of available ambulances, a NCT policy

dictates how many ambulances should be assigned to each ambulance base.

Furthermore, to reduce strain on ambulance crews, NCT policies are designed

so that at most one ambulance must move locations when an ambulance either

becomes busy or becomes free. When ambulances are assigned as a NCT policy

dictates, the system is said to be in a state of compliance.

A NCT policy is a simple and intuitive policy that dispatchers are able to

easily use and understand. We give a set of conditions for post-decision state

ADP ambulance redeployment policies and prove that if these conditions are
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satisfied then the ADP policy is actually a NCT policy as well. With this re-

sult it is possible to use ADP methodology to find redeployment policies that

perform well and transform these policies into NCT policies that can be readily

understood.

Furthermore, we show that if the system is in a non-compliant state an ADP-

based policy will return the system to a state of compliance after a certain num-

ber of redeployment decisions. We give a simple expression for the number of

redeployment decisions needed.

1.5 Performance Bounds for Ambulance Redeployment

In Chapter 5 we derive a computationally tractable lower bound on the fraction

of calls responded to after a given time threshold in a finite simulated time hori-

zon. We model the ambulance system as a queueing system where servers rep-

resent ambulances and arrivals represent emergency calls. We obtain a stochas-

tic lower bound on the service time distribution for this queue using any ambu-

lance redeployment policy, and the lower bound follows from known pathwise

bounding results for queueing systems. This service time lower bound distri-

bution can be computed by solving a finite number of integer programs.

Since an available ambulance may respond to an emergency call from any

location, the lower bound supposes that the ambulances are optimally located

throughout the region. In practice, however, most available ambulances sit idle

at bases awaiting future calls. In such situations the lower bound will generate

a very conservative estimate.
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To refine this lower bound we estimate the distribution of the number of am-

bulances idle at base from a reference policy. Given these estimates we modify

the integer programs used in the lower bound calculation and provide better

bounds on the performance of an optimal policy. Since an optimal policy may

have a different distribution of ambulances idle at base than the reference policy

this new bound is only approximate.

Even after refining the lower bound heuristically the bound may still be

overly conservative. To compensate for this we introduce a stylized model of

ambulance redeployment that assumes ambulances always respond from bases.

For this model we show empirically that the lower bound calculation is quite

tight.
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CHAPTER 2

APPROXIMATE DYNAMIC PROGRAMMING FOR AMBULANCE

REDEPLOYMENT

2.1 Introduction

Rising costs of medical equipment, increasing call volumes and worsening traf-

fic conditions are putting emergency medical service (EMS) managers under

pressure to meet performance goals set by regulators or contracts. Ambulance

redeployment is one strategy that can potentially help. Ambulance redeploy-

ment, also known as relocation, move up, system-status management or dy-

namic repositioning, refers to any strategy by which a dispatcher repositions

idle ambulances to compensate for others that are busy, and hence, unavailable.

The increasing availability of geographic information systems and the increas-

ing affordability of computing power have finally created ideal conditions for

bringing real-time ambulance redeployment approaches to fruitful implemen-

tation.

In this paper, which is an outgrowth of Restrepo (2008), we present an ap-

proximate dynamic programming (ADP) approach for making real-time ambu-

lance redeployment decisions. We begin by formulating the ambulance rede-

ployment problem as a dynamic program. This dynamic program involves a

high-dimensional and uncountable state space and we address this difficulty

by constructing approximations to the value function that are parameterized by

a small number of parameters. We tune the parameters through an iterative and

simulation-based method. Each iteration of this method consists of two steps.

In the first step, we simulate the trajectory of the greedy policy induced by the
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current value function approximation and collect cost trajectories of the system.

In the second step, we tune the parameters of the value function approximation

by solving a regression problem that fits the value function approximation to

the collected cost trajectories. This yields a new set of parameters that charac-

terize a new value function approximation, and so, we can go back and repeat

the same two steps above. In this respect, the idea we use closely resembles the

classical policy iteration algorithm in the Markov decision process literature. In

particular, the first and second steps are respectively analogous to the policy

evaluation and policy improvement step of the policy iteration algorithm.

There are two streams of literature that are related to our work. The first

one is the literature on ADP. A generic approach for ADP involves using value

function approximations of the form
∑P

p=1 rp φp(·), where {rp : p = 1, . . . , P}

are tunable parameters and {φp(·) : p = 1, . . . , P} are fixed basis functions; see

Bertsekas and Tsitsiklis (1996) and Powell (2007). There are a number of meth-

ods to tune the parameters {rp : p = 1, . . . , P} so that
∑P

p=1 rp φp(·) yields a

good approximation to the value function. For example, temporal-difference

learning and Q-learning use stochastic approximation ideas in conjunction with

simulated trajectories of the system to iteratively tune the parameters; see Sut-

ton (1988), Watkins and Dayan (1992), Tsitsiklis (1994), Bertsekas and Tsitsiklis

(1996), Tsitsiklis and Van Roy (1997) and Si et al. (2004). The linear program-

ming approach for ADP finds a good set of values for the parameters by solving

a large linear program whose decision variables are {rp : p = 1, . . . , P}; see

Schweitzer and Seidmann (1985), de Farias and Van Roy (2003) and Adelman

and Mersereau (2008). Both classes of approaches are aimed at tuning the pa-

rameters {rp : p = 1, . . . , P} so that
∑P

p=1 rp φp(·) yields a good approximation

to the value function. The choice of the basis functions {φp(·) : p = 1, . . . , P}, on
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the other hand, is regarded as more of an art form, requiring substantial knowl-

edge of the problem structure. Applications of ADP include inventory control

(Van Roy et al., 1997), inventory routing (Adelman, 2004), option pricing (Tsit-

siklis and Van Roy, 2001), game playing (Yan et al., 2005; Farias and Van Roy,

2006), dynamic fleet management (Topaloglu and Powell, 2006) and network

revenue management (Adelman, 2007; Farias and Van Roy, 2007).

The second stream of literature that is related to our work is the literature on

ambulance redeployment. One class of redeployment models involves solving

integer programs in real-time whenever an ambulance redeployment decision

needs to be made; see Kolesar and Walker (1974), Gendreau et al. (2001), Brot-

corne et al. (2003), Gendreau et al. (2006), and Nair and Miller-Hooks (2006). The

objective function in these integer programs involves a combination of backup

coverage for future calls and relocation cost of ambulances. They are usually

computationally intensive, since they require solving an optimization problem

every time a decision is made. As a result, a parallel computing environment

is sometimes used to implement a working real-time system. A second class

of models is based on solving integer programs in a preparatory phase. This

approach provides a lookup table describing, for each number of available am-

bulances, where those ambulances should be deployed. Dispatchers attempt

to dispatch so as to keep the ambulance configuration close to the one sug-

gested by the lookup table; see Ingolfsson (2006) and Goldberg (2007). A third

class of models attempts to capture the randomness in the system explicitly,

either through a dynamic programming formulation or through heuristic ap-

proaches. Berman (1981a), Berman (1981b) and Berman (1981c) represent the

first papers that provide a dynamic programming approach for the ambulance

redeployment problem, and this approach was revisited recently by Zhang et al.
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(2008) to attempt to gain insight. However, these papers follow an exact dy-

namic programming formulation and, as is often the case, this formulation is

tractable only in oversimplified versions of the problem with few vehicles and

small transportation networks. Andersson (2005) and Andersson and Vaerband

(2007) make the ambulance redeployment decision by using a “preparedness

function” that essentially measures the capability of a certain ambulance con-

figuration to cover future calls. The preparedness function is similar in spirit to

the value function in a dynamic program, measuring the impact of current deci-

sions on the future evolution of the system. However, the way the preparedness

function is constructed is heuristic in nature.

When compared with the three classes of models described above, our ap-

proach provides a number of advantages. In contrast to the models that are

based on integer programs, our approach captures the random evolution of the

system over time since it is based on a dynamic programming formulation of

the ambulance redeployment problem. Furthermore, the decisions made by

our approach in real-time can be computed very quickly as this requires solv-

ing a simple optimization problem that minimizes the sum of the immediate

cost and the value function approximation. In lookup table approaches, there

may be more than one way to redeploy the ambulances so that the ambulance

configuration over the transportation network matches the configuration sug-

gested by the lookup table. Therefore, table lookup approaches still leave some

aspects of dispatch decisions to subjective interpretation by dispatchers. Our

approach, on the other hand, can fully automate the decision making process,

while allowing dispatchers to override recommendations if they wish. In tradi-

tional dynamic programming approaches, one is usually limited to very small

problem instances, whereas ADP can be used on problem instances with realis-
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tic dimensions. Our approach allows working with a variety of objective func-

tions, such as the number of calls that are not served within a threshold time

standard or the total response time for the calls. Furthermore, our approach

allows the possibility of constraining the frequency and destinations of ambu-

lance relocations. This is important since a relocation scheme should balance

improvements in service with the additional redeployment burden imposed on

ambulance crews.

In summary, we make the following research contributions. 1) We develop

a tractable ADP approach for the ambulance redeployment problem. Our ap-

proach employs value function approximations of the form
∑P

p=1 rp φp(·) and

uses sampled cost trajectories of the system to tune the parameters {rp : p =

1, . . . , P}. Since it is based on the dynamic programming formulation of the

problem, our approach is able to capture the random evolution of the system

over time. 2) We develop a set of basis functions {φp(·) : p = 1, . . . , P} that yield

good value function approximations for the ambulance redeployment problem.

This opens up the possibility of using other ADP approaches, such as temporal-

difference learning and the linear programming approach. 3) We provide com-

putational experiments on EMS systems in two metropolitan areas. Our results

indicate that ADP has the potential to obtain good redeployment policies in real

systems. They also show that our approach compares favorably with bench-

mark policies that are similar to those used in practice.

The remainder of this paper is organized as follows. In Section 2.2, we

present a dynamic programing formulation for the ambulance redeployment

problem. In Section 2.3, we describe our ADP approach. In Section 2.4, we

discuss the basis functions that we use in our value function approximations.
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In Section 2.5, we report computational results for two metropolitan areas. We

conclude in Section 2.6.

2.2 Ambulance Redeployment as a Markov Decision Process

This section presents a dynamic programming formulation of the ambulance re-

deployment problem. As will shortly be clear, our model involves an uncount-

able state space. For an excellent account of the basic terminology, notation

and fundamental results regarding dynamic programming in uncountable state

spaces, we refer the reader to Bertsekas and Shreve (1978).

2.2.1 State Space

There are N ambulances in the EMS system. To simplify the presentation, we

assume that we do not keep more than M waiting calls, possibly by diverting

excess calls to another EMS organization. This is not a restriction from a prac-

tical perspective since M can be quite large. The two main components in the

state of the system are the vectors A = (a1, . . . , aN) and C = (c1, . . . , cM), where

ai contains information about the state of the ith ambulance and cj contains in-

formation about the jth waiting call. Naturally, the state of the ambulances and

the calls in the waiting queue evolve over time, but we omit this dependence for

brevity. The state of ambulance i is given by a tuple ai = (σi, `i, di, ti), where σi is

the status of the ambulance, `i and di are respectively the origin and destination

locations of the ambulance and ti is the starting time of any ambulance move-

ment. To serve a call, an ambulance first moves to the call scene and provides
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service at the scene for a certain amount of time. Following this, the ambulance

transports the patient to a hospital, and after spending some time at the hos-

pital, the ambulance becomes free to serve another call. Therefore, the status

of an ambulance σi can take the values “idle at base,” “going to scene of call,”

“serving at scene of call,” “going to hospital,” “transferring patient to hospital”

and “returning to base.” If ambulance i is stationary, then we have `i = di. If

ambulance i is in motion, then ti corresponds to the starting time of this move-

ment. Otherwise, ti corresponds to the starting time of the current phase in the

service cycle. For example, if the status of the ambulance is “transferring patient

at hospital,” then ti corresponds to the time at which the ambulance arrived at

the hospital. This time is kept in the state variable to give a Markov formulation

for the non-Markovian elements in the system, such as non exponentially dis-

tributed service times and deterministic travel times. Similarly, for the jth call

in the waiting queue, we have cj = (δj, pj, ζj, ηj), where δj is the status of the

call, pj is the location of the call, ζj is the time at which the call arrived into the

system and ηj is the priority level of the call. The status of a call δj takes one

of the values “assigned to ambulance i” and “queued for service.” We take a

call off the waiting queue C as soon as an ambulance reaches this call and starts

serving it.

We model the dynamics of the system as an event-driven process. Events are

triggered by changes in the status of the ambulances or by call arrivals. There-

fore, the possible event types in the system are “call arrives and is placed in the

jth position,” “ambulance i departs for scene of call j,” “ambulance i arrives at

scene of call j,” “ambulance i leaves scene of call for hospital,” “ambulance i ar-

rives at hospital,” “ambulance i finishes at hospital” and “ambulance i arrives at

base.” We assume that we can make decisions only at the times of these events.
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Events occur at discrete points in time, so our modeling approach precludes the

possibility of making a decision at any time point. This naturally comes at the

cost of some loss of optimality as it may be desirable to make decisions between

the times of the events. For example, our modeling approach, as stated, does not

allow the possibility of rerouting an ambulance before it reaches its destination.

It may be possible to incorporate such extensions by defining artificial events

such as “consider repositioning” and firing these events while an ambulance is

in transit. Nevertheless, we do not consider these extensions here and rely on

the fact that the events that we work with occur frequently enough to provide

ample decision opportunities.

By restricting our attention to the times of events, we visualize the system

as jumping from one event time to another. Therefore, we can use the tuple

s = (τ, e, A, C) to represent the state of the system, where τ corresponds to the

current time, e corresponds to the current event type, and A and C respectively

correspond to the state of the ambulances and the waiting call queue. In this

case, the state trajectory of the system can be written as {sk : k = 1, 2, . . .}, where

sk is the state of the system just after the kth event occurs. Time is rolled into

our state variable. Throughout the paper, we use τ(s) and e(s) to respectively

denote the time and the event type when the state of the system is s. In other

words, τ(s) and e(s) are the first two components of the tuple s = (τ, e, A, C).

2.2.2 Controls

We assume that calls are served in decreasing order of priority, and within a

given priority level, they are served in first-in-first-out order. Furthermore, the
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closest available ambulance is dispatched to a call. This is not an exact repre-

sentation of reality, but it is close enough for our purposes.

We useR(s) to denote the set of ambulances that are available for redeploy-

ment when the state of the system is s. In our implementation, if the state of

the system is s and the event e(s) is of the form “ambulance i finishes at hos-

pital,” then we let R(s) = {i}. Otherwise, we let R(s) = ∅. As a result, we

consider an ambulance as available for redeployment only immediately after

it finishes transferring a patient to a hospital. Ambulances that are idle at the

bases or moving to different locations are not considered for redeployment. The

appealing aspect of this redeployment policy is that it minimizes disturbance

to the crews, but exploring the benefit of additional redeployments is impor-

tant and we do so in our computational experiments. To capture the decisions,

we let xib(s) = 1 if we redeploy ambulance i to base b when the state of the

system is s, and 0 otherwise. Letting B be the set of ambulance bases and

x(s) = {xib(s) : i ∈ R(s), b ∈ B}, the set of feasible decisions can be written

as

X (s) =
{
x(s) ∈ {0, 1}|R(s)|×|B| :

∑
b∈B

xib(s) = 1 ∀ i ∈ R(s)
}
.

The constraints in this definition simply state that the ambulance considered

for redeployment has to be redeployed to one base. If the event e(s) is not of

the form “ambulance i finishes at hospital,” then we have R(s) = ∅, which

implies that X (s) = ∅ as well. In this case, we simply allow the system to

evolve naturally without any interference from the decision-maker.

An important implication of our definition of R(s) is that the cardinality of

X (s) is small so that an optimization problem that takes place over this feasible

set can be solved by enumerating over all feasible decisions. In other words,
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since we consider only one ambulance at a time for deployment, we can try each

base one by one to find out to which base an ambulance should be redeployed.

In contrast, if we considered K ambulances simultaneously for redeployment,

then the number of possible redeployment decisions would be |B|K , which can

get quite large for moderate values of K and |B|. This is a simplification that

we make to avoid the combinatorial aspects of the problem and focus more on

its dynamic and stochastic nature. Having said that, K = 2 is easily within

our computational grasp if we restrict attention to sensible relocations of short

range, and that will be the subject of future research.

Not considering the ambulances that are in transit as available for redeploy-

ment may have some undesirable affects. For example, we may decide to rede-

ploy an ambulance at the northeast corner of the city to a base at the southwest

corner. As soon as this redeployment starts, an ambulance in the southwest

corner of the city may be available for deployment and this ambulance may be

redeployed to a base at the northeast corner. It may be better to reroute the

first ambulance to the northeast base and redeploy the second ambulance to the

southwest base, although some results of Zhang et al. (2008) suggest that this is

not universally true. The controls that we adopt in this paper miss this kind of

opportunity to improve performance. Nevertheless, our computational experi-

ments indicate that significant improvements are possible even when we ignore

such opportunities, and one would expect that dispatchers monitoring the EMS

system would take advantage of any obvious opportunities.

The set B may include additional locations, other than ambulance bases, at

which ambulance crews can park and rest. As a result, our approach allows

parking and resting at arbitrary locations as long as the list of possible locations
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is not too large. In our computational experiments, work with as many as 88

locations.

2.2.3 Fundamental Dynamics

Call arrivals are generated across the region R ⊂ R2 according to a Poisson

point process with a known arrival intensity {Λ(t, x, y) : t ≥ 0, (x, y) ∈ R}.

As mentioned above, we have a fixed policy for serving calls, but our general

approach does not depend on the particular form of this policy. If there are no

available ambulances to serve a call, then the call is placed into a waiting queue.

An ambulance serving a call proceeds through a sequence of events, including

arriving at the scene, treating the patient, transporting and handing over the

patient at the hospital. The main source of uncertainty in this call service cycle

are the times spent between events. We assume that probability distributions

for all of the activity durations are known.

Besides these sources of randomness, the major driver of dynamics is dis-

patching. As a result, the complete trajectory of the system is given by {(sk, xk) :

k = 1, 2, . . .}, where sk is the state of the system at the time of the kth event and

xk is the decision (if any) made by the dispatcher when the state of the system

is sk. We capture the dynamics of the system symbolically by

sk+1 = f(sk, xk, ω(sk, xk)),

where ω(sk, xk) is a random element of an appropriate space encapsulating all

the sources of randomness described above and f(·, ·, ·) is the transfer function.

One way to visualize ω(sk, xk) is that there is a stochastic process corresponding

to call arrivals and each ambulance. The stochastic process corresponding to call
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arrivals keeps track of when calls arrive, along with the location and priority

of each call. The stochastic processes corresponding to ambulances that are in

transit keep track of the residual travel times. Similarly, the stochastic processes

corresponding to ambulances that are serving calls at call scenes or at a hospital

keep track of the residual service times. The state sk and action xk contain all

of the information necessary to deduce the probability distributions for residual

travel and service times. Therefore, ω(sk, xk) captures the time and type of the

first event in the superposition of all stochastic processes.

2.2.4 Transition Costs

Along with a transition from state sk to sk+1 through decision xk, we incur a cost

c(sk, xk, sk+1). In our implementation, letting ∆ be a fixed threshold response

time that is on the order of 8 minutes, we use the transition cost function

c(sk, xk, sk+1) =



1 if the event e(sk+1) is of the form “ambulance i arrives

at scene of call j,” call j is urgent and the response

time exceeds ∆

0 otherwise.

(2.1)

This cost function counts the number of high-priority calls whose response

times exceed ∆. We are interested in the performance of the system over the

finite planning horizon [0, T ], so let c(s, ·, ·) = 0 whenever τ(s) > T . In our im-

plementation, T corresponds to two weeks. When the state of the system is sk

and we make the decision xk, the transition cost c(sk, xk, sk+1) is still a random

variable since its value depends on sk+1. This does not create any difficulty since
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the Markov decision process framework allows transition costs that depend on

the states before and after the transition.

An appealing aspect of our transition cost function is its simplicity. Fur-

thermore, most contracts and performance benchmarks in the EMS industry are

formulated in terms of the percentage of calls that are reached within a time

standard, and our transition cost function is in alignment with this tradition.

However, this transition cost function does not distinguish between an urgent

call whose response time exceeds ∆ by one second or by one hour. As a result, it

is conceivable that a call might be left unattended for a long period of time. This

is not a huge concern in our approach since high-priority calls are served in first-

in-first-out order within a priority level, but there may still be low-priority calls

that are left unattended for a long period of time. Recent research by Erkut et al.

(2008) incorporates medical outcomes into the objective function, and while we

do not take that path here, our framework is general enough to do so.

2.2.5 Objective Function and Optimality Equation

A policy is a mapping from the state space to the action space, prescribing which

action to take for each possible state of the system. Throughout the paper, we

use µ(s) ∈ X (s) to denote the action prescribed by policy µ when the state of

the system is s. In other words, µ(s) is the action taken in state s given that

we use policy µ. If we follow policy µ, then the state trajectory of the system

{sµk : k = 1, 2, . . .} evolves according to sµk+1 = f(sµk , µ(sµk), ω(sµk , µ(sµk))) and the

discounted total expected cost incurred by starting from initial state s is given
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by

Jµ(s) = E
[ ∞∑
k=1

ατ(sµk ) c(sµk , µ(sµk), sµk+1) | sµ1 = s
]
, (2.2)

where α ∈ [0, 1) is a fixed discount factor. The expectation in the expression

above involves the random variables {sµk : k = 1, 2, . . .} and τ(sµk) is the time at

which the system visits state sµk . The policy µ∗ that minimizes the discounted

total expected cost can be found by computing the value function through the

optimality equation

J(s) = min
x∈X (s)

{
E
[
c(s, x, f(s, x, ω(s, x))) + ατ(f(s,x,ω(s,x)))−τ(s) J(f(s, x, ω(s, x)))

]}
(2.3)

and letting µ∗(s) be the minimizer of the right side above; see Bertsekas and

Shreve (1978). The difficulty with the optimality equation above is that the

number of possible values for the state variable is uncountable. Even if we are

willing to discretize the state variable to obtain a finite state space, the state vari-

able is still a high-dimensional vector and solving the optimality equation (2.3)

through classical dynamic programming approaches is computationally very

difficult. In the next two sections, we propose a method to construct tractable

approximations to the value function.

The discount factor in (2.3) implies that we minimize the total expected dis-

counted number of calls that are not reached within the time threshold, though

one is more likely to be interested in the total expected undiscounted number

of calls. The discount factor is an important computational device when we

move to the ADP framework in the next section. In particular, our value func-

tion approximations invariably have some error, and the role of the discount

factor is to put less emphasis on the value of a future state, as predicted by the
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value function approximation, when compared with the immediate transition

cost. It is quite common in the ADP literature to use a discounted cost formu-

lation when an undiscounted cost formulation may reflect the objectives of the

decision-maker more accurately. For example, Farias and Van Roy (2004) and

Farias and Van Roy (2006) use ADP to construct strategies for playing Tetris.

The authors use a discounted cost formulation, but the objective of the player

is clearly to maximize the undiscounted total expected score. Crites and Barto

(1996) use a continuous-time discounted cost formulation in an application tar-

geted at minimizing elevator wait times, when the real performance measure of

interest is the average wait time per person. Singh and Bertsekas (1996) develop

an ADP method for channel allocation in cellular telephone systems. The objec-

tive of the decision-maker is to minimize the rate of blocked calls per unit time,

whereas the authors use a formulation that minimizes the discounted number

of blocked calls.

2.3 Approximate Dynamic Programming

The ADP approach that we use to construct approximations to the value func-

tion is closely related to the traditional policy iteration algorithm in the Markov

decision processes literature. We begin with a brief description of the policy it-

eration algorithm. Throughout the rest of the paper, the greedy policy induced

by an arbitrary function Ĵ(·) refers to the policy that takes a decision in the set

argmin
x∈X (s)

{
E
[
c(s, x, f(s, x, ω(s, x))) + ατ(f(s,x,ω(s,x)))−τ(s) Ĵ(f(s, x, ω(s, x)))

]}
(2.4)

whenever the state of the system is s. Finding the optimal solution to the prob-

lem above requires computing potentially difficult expectations. We use Monte
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Carlo simulation to compute such expectations and we elaborate on this is-

sue in our discussion of Approximate Policy Iteration. If the state variable took

finitely many values, then the optimal policy could be obtained by using the

following policy iteration algorithm.

Policy Iteration

Step 1. Initialize the iteration counter n to 1 and initialize J1(·) arbitrarily.

Step 2. (Policy improvement) Let µn be the greedy policy induced by Jn(·).

Step 3. (Policy evaluation) Let Jn+1(·) = Jµ
n
(·), where Jµn(s) denotes the ex-

pected discounted cost incurred when starting from state s and using pol-

icy µn, as given in (2.2).

Step 4. Increase n by 1 and go to Step 2.

Even if we were willing to discretize the state variable to obtain a finite state

space, since the state variable is a high-dimensional vector, the number of pos-

sible values for the state variable would be far too large to apply the policy

iteration algorithm above directly. We try to overcome this difficulty by using

value function approximations of the form

J(s, r) =
P∑
p=1

rp φp(s). (2.5)

In the expression above, r = {rp : p = 1, . . . , P} are tunable parameters and

{φp(·) : p = 1, . . . , P} are fixed basis functions. The challenge is to construct the

basis functions and tune the parameters so that J(·, r) is a good approximation

to the solution to the optimality equation (2.3). To achieve this, each basis func-

tion φp(·) should capture some essential information about the solution to the

optimality equation. In Section 2.4, we describe one set of basis functions that

work well for our application. Once a good set of basis functions is available,
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we can use the following approximate version of the policy iteration algorithm

to tune the parameters {rp : p = 1, . . . , P}.

Approximate Policy Iteration

Step 1. Initialize the iteration counter n to 1 and initialize r1 = {r1
p : p =

1, . . . , P} arbitrarily.

Step 2. (Policy improvement) Let µn be the greedy policy induced by J(·, rn).

Step 3. (Policy evaluation through simulation) Simulate the trajectory of policy

µn over the planning horizon [0, T ] for Q replications. Let {snk(q) : k =

1, . . . , K(q)} be the state trajectory of policy µn in replication q and Cn
k (q)

be the discounted cost incurred by starting from state snk(q) and following

policy µn in replication q.

Step 4. (Projection) Compute the tunable parameters at the next iteration as

rn+1 = argmin
r∈RP

{
Q∑
q=1

K(q)∑
k=1

[
Cn
k (q)− J(snk(q), r)

]2}
.

Step 5. Increase n by 1 and go to Step 2.

In Step 3 of approximate policy iteration, we use simulation to evaluate

the expected discounted cost incurred by policy µn. Therefore, {Cn
k (q) : k =

1, . . . , K(q), q = 1, . . . , Q} are the sampled cost trajectories of the system under

policy µn. In Step 4, we tune the parameters r = {rp : p = 1, . . . , P} so that

the value function approximation J(·, r) provides a good fit to the sampled cost

trajectories.

There is still one computational difficulty in the approximate policy itera-

tion algorithm. When simulating the trajectory of policy µn in Step 3, we need

to solve an optimization problem of the form (2.4) to find the action taken by
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the greedy policy induced by J(·, rn). This optimization problem involves an

expectation that is difficult to compute. As mentioned earlier, we use Monte

Carlo simulation to overcome this difficulty. In particular, if the state of the

system is s and we want to find the action taken by the greedy policy induced

by J(·, rn) in this state, then we enumerate over all decisions in the feasible set

X (s). Enumerating over all feasible decisions in the set X (s) is possible since

the cardinality of this set is equal to the number of ambulance bases, which is at

most 88 in our experiments. Starting from state s and taking decision x, we sim-

ulate the trajectory of the system until the next event and this provides a sample

of f(s, x, ω(s, x)). Since this simulation is only until the time of the next event,

it is very quick to run. In particular, sampling a realization of ω(s, x) involves

sampling the residual interarrival time for the next call, and at most N residual

travel times and N residual service times. In this case, we obtain a sample of

f(s, x, ω(s, x)) by generating the state of the system at the next event time. By

simulating multiple samples, we estimate the expectation

E
[
c(s, x, f(s, x, ω(s, x))) + ατ(f(s,x,ω(s,x)))−τ(s) J(f(s, x, ω(s, x)), rn)

]
through a sample average. Once we estimate the expectation above for all

x ∈ X (s), we choose the decision that yields the smallest value and use it as

the decision taken by the greedy policy induced by J(·, rn) when the state of

the system is s. This approach is naturally subject to sampling error, but it pro-

vides good performance in practice. In our computational experiments, we use

10 to 25 replications to estimate the expectation above. This is a small number

of replications, but we use common random numbers when estimating the ex-

pectation for different actions. This allows us to quickly identify whether the

expectation corresponding to a particular action is smaller than the expectation

corresponding to another action.

26



Proposition 6.2 in Bertsekas and Tsitsiklis (1996) provides a performance

guarantee for the approximate policy iteration algorithm. Their result is for

finite state spaces, but it is easily extended to infinite state spaces. This result

provides theoretical support for the approximate policy iteration algorithm, but

its conditions are difficult to verify in practice. In particular, the result assumes

that we precisely know the error induced by using regression to estimate the

discounted total expected cost of a policy, and it assumes that expectations are

computed exactly rather than via sampling as in our case. For this reason, we

do not go into the details of this result and refer the reader to Bertsekas and

Tsitsiklis (1996) for further details.

2.4 Basis Functions

In this section, we describe the basis functions {φp(·) : p = 1, . . . , P} that we

use in our value function approximations. We use six basis functions, some of

which are based on the queueing insights developed in Restrepo et al. (2009).

1. Baseline

The first basis function is φ1(s) = 1. When multiplied by r1 in (2.5), this basis

function shifts the value function approximation to any desired level.

2. Unreachable Calls

The second basis function computes the number of calls in the call waiting

queue for which an ambulance assignment has been made, but the ambulance
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will not reach the call within the threshold response time. This quantity is eas-

ily computable when the travel times are deterministic, which is the case in our

implementation. To see this, let 1(·) be the indicator function and d(`1, `2) be the

travel time between locations `1 and `2. Given that the state of the system is s,

we can count the number of ambulances that are assigned to the jth call in the

call waiting queue but will not reach the call within the threshold response time

via

Gj(s) =
N∑
i=1

1(σi = “going to scene of call j”)1(ti + d(`i, di)− ζj ≥ ∆).

The expression above first checks each ambulance to see if there is one whose

status is “going to scene of call j.” If there is one such ambulance, then it checks

whether the time at which this ambulance arrives at its destination exceeds the

arrival time of the jth call by more than ∆ time units. The second basis function

can now be written as

φ2(s) =
M∑
j=1

Gj(s).

3. Uncovered Call Rate

The third basis function captures the rate of call arrivals that cannot be reached

on time by any available ambulance. To define this basis function precisely,

we need additional notation. Recall that calls arrive across the region R ⊂ R2

according to a Poisson point process with arrival intensity {Λ(t, x, y) : t ≥

0, (x, y) ∈ R}. Partition the region R into L subregions and associate a rep-

resentative point or center of mass location ρl with each subregion l.

The coverage of subregion l is the number of available ambulances that can

reach the center of mass within the threshold time standard. We let A(s) be
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the set of available ambulances when the state of the system is s. This set in-

cludes the ambulances whose status is either “idle at base” or “returning to

base.” Given that the system is in state s, we let ˆ̀
i(s) be the location of am-

bulance i at time τ(s). In this case, the coverage of subregion l can be written

as

Nl(s) =
∑
i∈A(s)

1(d(ˆ̀
i(s), ρl) ≤ ∆).

Using Λl(t) to denote the total rate of call arrivals in subregion l at time t, we can

compute the rate of call arrivals that are not covered by any available ambulance

by

φ3(s) =
L∑
l=1

Λl(τ(s))1(Nl(s) = 0).

The values {Λl(t) : t ≥ 0} in the expression above are part of the problem data

and can be computed in advance.

4. Missed Call Rate

The previous two basis functions respectively capture calls already received that

we know we cannot reach on time and the rate of arriving calls that cannot be

reached on time because they are too far from any available ambulance. We

could also fail to reach a call on time due to queueing effects from ambulances

being busy with other calls. The fourth basis function represents an attempt to

capture this effect. This basis function is of the form

φ4(s) =
L∑
l=1

Λl(τ(s))Pl(s),

where Pl(s) is the probability that all ambulances that could reach a call in sub-

region l on time are busy with other calls. We estimate {Pl(s) : l = 1, . . . , L} by
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treating the call service processes in different subregions as Erlang loss systems.

In Erlang loss systems, calls arriving when all servers are busy are lost. In par-

ticular, in an Erlang loss system with arrival rate λ, service rate µ and n servers,

the steady state probability of losing a call is given by

L(λ, µ, n) =
(λ/µ)n/n!∑n
k=0(λ/µ)k/k!

.

In our EMS system, a call that arrives when all ambulances are busy is queued

and served as ambulances become free, but the time threshold is almost always

missed for such calls, so counting them as lost seems reasonable. The issue that

such calls impose some load on the true system, but are discarded in an Erlang

loss system creates a slight mismatch between our EMS system and the Erlang

loss system, but our computational experiments show that this basis function is

still highly effective.

To characterize the Erlang loss system for subregion l, given that the state of

the system is s, we need to specify the number of servers, along with the arrival

and service rates. Let Nl(s) be the set of available ambulances that can serve a

call in subregion l within the threshold response time so that

Nl(s) = {i ∈ A(s) : d(ˆ̀
i(s), ρl) ≤ ∆}.

We use |Nl(s)| as the number of servers in the Erlang loss system for subregion

l. Let µl(t) be the service rate in the loss system. This is the rate at which an

ambulance can serve a call at time t in subregion l. It is difficult to come up with

a precise value for µl(t). It primarily depends on the time spent at the scene of

a call and any transfer time at the hospital, since the travel times are usually

small relative to these quantities. In our implementation, we use historical data

to estimate the time spent at the call scenes and the hospital, and add a small

padding factor to capture travel times. Finally, let λl(s) be the rate of call arrivals
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that should be served by ambulances in the set Nl(s). Coming up with a value

for λl(s) is even more difficult than devising a value for µl(t). One option is to

let λl(s) = Λl(τ(s)), which is the rate of call arrivals at time τ(s) in subregion l.

However, ambulances in the set Nl(s) serve calls other than those in subregion

l. To attempt to capture this, let

λl(s) =
∑

i∈Nl(s)

L∑
k=1

Λk(τ(s))1(d(ˆ̀
i(s), ρk) ≤ ∆), (2.6)

so that λl(s) reflects the total call arrival rate in subregions that are close to any

of the ambulances in the set Nl(s). We then use the approximation Pl(s) ≈

L(λl(s), µl(τ(s)), |Nl(s)|).

There are at least two shortcomings in our estimate of λl(s) and the approx-

imation that we use for Pl(s). First, there is double counting in the estimate

of λl(s). In particular, if two ambulances i1, i2 ∈ Nl(s) can both reach subre-

gion l′ within the time threshold, then the summation for λl(s) counts Λl′(τ(s))

twice. Second, Λl′(τ(s)) could be counted in the demand rates for multiple sub-

regions. To be more precise, if there are three subregions l1, l2, l′ and two am-

bulances i1 ∈ Nl1(s), i2 ∈ Nl2(s) such that both i1 and i2 can reach subregion l′

within the time threshold, then the summations for λl1(s) and λl2(s) both count

Λl′(τ(s)). These two effects typically cause
∑L

l=1 λl(s) >
∑L

l=1 Λl(τ(s)). How-

ever, any ambulance i may also be required to serve calls in subregions l where

d(l̂i(s), ρl) > ∆. This effect causes our approximation to underestimate the ar-

rival rate λl(s) and hence can cause
∑L

l=1 λl(s) <
∑L

l=1 Λl(τ(s)). To overcome

these problems, we modify the call arrival rates by a factor κ. In particular,

we use the call arrival rate κΛl(τ(s)) in (2.6) instead of Λl(τ(s)) so that we may

roughly have
∑L

l=1 λl(s) =
∑L

l=1 κΛl(τ(s)). We find a good value for κ through

preliminary experimentation. As we demonstrate in our computational experi-
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ments, it is not necessarily the case that the best choice of κ lies in (0, 1).

5. Future Uncovered Call Rate

We do not consider ambulances that are already in transit as available for rede-

ployment. Therefore, from the perspective of covering future calls, the destina-

tions of moving ambulances are as important as their current locations. This is

the motivation underlying the fifth and sixth basis functions.

Our fifth basis function parallels the third one, but it replaces the current

locations of ambulances by their destinations. In other words, the definition of

this basis function is identical to that of φ3(·), but the configuration of the am-

bulances that we use to compute Nl(s) is not the current one, but an estimated

future configuration that is obtained by letting all ambulances in transit reach

their destinations and all stationary ambulances remain at their current loca-

tions. Given that the system is in state s = (τ, e, A, C) with A = (a1, . . . , aN)

and ai = (σi, `i, di, ti), we define a new state ~s(s) = (τ + 1/
∑L

l=1 Λl(τ), e, ~A,C)

with ~A = (~a1, . . . ,~aN) and ~ai = (~σi, di, di, τ + 1/
∑L

l=1 Λl(τ)), where ~σi is the sta-

tus of ambulance i when it reaches its destination di. In this case, the fifth basis

function is

φ5(s) =
L∑
l=1

Λl(τ(~s(s)))1(Nl(~s(s)) = 0).

In the expression above, the time τ(~s(s)) = τ + 1/
∑L

l=1 Λl(τ) is used as an ap-

proximation for the expected time of the next call arrival. The next call may

arrive before or after the ambulances actually reach their destinations, but we

heuristically use the time τ(~s(s)) simply to look into the future. The idea is that

the estimated future configuration of the ambulances ~A is more likely to hold at
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the future time τ(~s(s)) than at the current time τ(s).

We plug J(·, r) into the right side of (2.4) to find the action taken by the

greedy policy induced by J(·, r). Since J(·, r) is computed at the future state

f(s, x, ω(s, x)), we need to compute φ5(·) at this future state as well. To compute

φ5(·) at f(s, x, ω(s, x)), we need to compute the state ~s(f(s, x, ω(s, x))) and this

state peeks even further ahead of the future state f(s, x, ω(s, x)).

6. Future Missed Call Rate

The sixth basis function parallels φ4(·) in that it captures the rate of calls that

will likely be lost due to queueing congestion. As with the fifth basis function,

it uses an estimated future configuration of the ambulances. It is defined as

φ6(s) =
L∑
l=1

Λl(τ(~s(s)))Pl(~s(s)).

Our basis functions are relatively complex and this complexity, coupled with

the expectation in problem (2.4), could make computing the greedy policy in-

duced by the value function approximation J(·, r) quite difficult. Nevertheless,

since the cardinality of the feasible set X (s) is small, we can solve an optimiza-

tion problem that takes place over this feasible set simply by enumerating over

all possible decisions. For very large feasible sets, this approach would not be

practical. We close this section with a brief note on the complexity of comput-

ing our basis functions at a particular state s. The effort required to compute

φ1(s) is clearly O(1). We can compute Gj(s) in O(N) time, which implies that

the effort required to compute φ2(s) is O(MN). It is possible to compute Nl(s)

in O(N) time so that we can compute φ3(s) in O(NL) time. We can compute

Nl(s) in O(N) time. We always have |Nl(s)| ≤ N , so we can compute λl(s)
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in O(NL) time. Since the computation of the Erlang loss function with |Nl(s)|

servers can be done inO(N) time, we can compute Pl(s) inO(N+NL) = O(NL)

time. Therefore, the effort required to compute φ4(s) is O(NL2). The effort

for computing the future state ~s(s) is small when compared to the basis func-

tions. Therefore, we can compute φ5(s) and φ6(s) in essentially the same time

as φ3(s) and φ4(s). As a result, all of our basis functions can be computed in

O(MN + NL2) time. We give specific timing results in our computational re-

sults.

2.5 Computational Results

We now present computational results for two EMS systems. The first EMS

system belongs to the city of Edmonton, Alberta in Canada and was also studied

in Ingolfsson et al. (2003). We are not able to disclose the identity of the second

EMS system due to confidentiality agreements.

2.5.1 Experimental Setup

In this section, we give a description of the data sets along with our assump-

tions.

1. The City of Edmonton

The data we use for the city of Edmonton corresponds to the data set used in the

computational experiments in Ingolfsson et al. (2003). The city has a population
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of 730,000 and covers an area of around 40 × 30 km2. The EMS system has 16

ambulances, 11 bases and 5 hospitals. We assume that all ambulances are of the

same type and operate all day. An ambulance, upon arriving at a call scene,

treats the patient for an exponentially distributed amount of time with mean 12

minutes. After treating the patient at the call scene, the ambulance transports

the patient to a hospital with probability 0.75. The probability distribution for

the hospital chosen is inferred from historical data. The time an ambulance

spends at the hospital has a Weibull distribution with mean 30 minutes and

standard deviation 13 minutes. The turn-out time is assumed to be 45 seconds,

i.e., if an ambulance crew is at a base when notified of a call, then it takes 45

seconds to get on the road. An ambulance crew already on the road does not

incur the turn-out time. A call that is not served within 8 minutes is interpreted

as missed. The road network that we use models the actual road network on

the avenue level. There are 252 nodes and 934 arcs in the road network. Travel

times are deterministic and do not depend on the time of day.

The data we had access to were not sufficient to develop a detailed model

of call arrivals, so we proceed with a representative model that does not exactly

correspond to the actual distribution of calls over the city of Edmonton. The

model maintains a constant overall arrival rate, but the distribution of the lo-

cation of calls changes in time. We divide the city into 20 × 17 subregions and

assume that the rate of call arrivals in subregion l at time t is given by

Λl(t) = Λ
[
γl + βl sin(2πt/24)

]
,

where t is measured in hours. In the expression above, Λ, γl and βl are fixed

parameters that satisfy Λ ≥ 0, γl ≥ |βl|,
∑340

l=1 γl = 1 and
∑340

l=1 βl = 0. We have∑340
l=1 γl+

∑340
l=1 βl sin(2πt/24) = 1 so that we can interpret Λ as the total call arrival

rate into the system and γl + βl sin(2πt/24) as the probability that a call arriving
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at time t falls in subregion l. If βl > 0, then the peak call arrival rate in subregion

l occurs at hours {6, 30, 54, . . .}, whereas if βl < 0, then the peak call arrival rate

in subregion l occurs at hours {18, 42, 66, . . .}. The average call arrival rate over

a day in subregion l is Λγl. We estimated Λ and γl using historical data and Λ

came out to be about 4 calls per hour. We chose appropriate values of βl so that

we have higher call arrival rates in the business subregions early in the day and

higher call arrival rates in the residential subregions later in the day.

2. The Second City

The population of the second city is more than five times that of the city of Ed-

monton and its size is around 180× 100 km2. The EMS system includes up to 97

ambulances operating during peak times, 88 bases and 22 hospitals. The turn-

out times, call-scene times and hospital-transfer times are comparable to those

in Edmonton, but are chosen to be representative rather than realistic to protect

confidentiality. The destination hospital for a call depends on the location of the

call. Calls originating at a given location are transported to any of a small set

of hospitals, usually no more than two or three out of the 22 hospitals in the

system. The corresponding probabilities are inferred from historical data. The

road network that we use models the actual network on the avenue level and

there are 4,955 nodes and 11,876 arcs.

Our call arrival model is quite realistic. The data were collected from one

year of operations of the EMS system and consist of aggregated counts of calls

for each hour of the week and for each of 100 × 100 geographic zones in the

city. Due to the irregular shape of the metropolitan area, roughly 80% of these

zones have zero total call counts and do not intervene in the dynamics. From
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the remaining 20%, a significant number of zones have very low hourly counts

of at most five calls. Therefore, it was necessary to apply a smoothing procedure

for the lowest intensity zones so as to reduce the sampling noise. We classified

the zones into a few groups according to their average intensity over the week.

For the lowest intensity groups, we computed a total intensity for each hour and

then distributed this total intensity uniformly among the zones in this group. In

this way, we were able to obtain an intensity model that combined a uniform

low intensity background with accurate counts on the highest intensity zones.

In the end, the average call arrival rate is 570 calls per day and fluctuates on any

day of the week from a low of around 300 calls per day to a high of around 750

calls per day. These figures represent a modest departure from the true figures

to protect confidentiality.

For both data sets, the simulation horizon is 14 days. We use a discount

factor of α = 0.8, but our results are relatively insensitive to the choice of the

discount factor as long as it is not too close to one. We initialize r1 to zero in Step

1 of the approximate policy iteration algorithm and use Q = 30 replications in

Step 3. A few setup runs indicated that setting Q = 30 provides a reasonable

balance between computational burden and stable performance. We also tried

using different values for κ in the fourth and sixth basis functions. We varied

κ over the interval [0, 3] and setting κ = 0.1 gave the best results for the city

of Edmonton, whereas setting κ = 1.6 gave the best results for the second city.

These setup runs also indicated that tuning the value of κ is quite important for

obtaining good performance from our ADP approach.
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2.5.2 Baseline Performance

The goal of our first set of computational experiments is to give a feel for how

our ADP approach compares with several benchmark strategies. In Figure 2.1,

we begin by showing the performance of our ADP approach on the city of Ed-

monton over 25 iterations. The horizontal axis in this figure gives the iteration

number in the approximate policy iteration algorithm, whereas the vertical axis

gives the expected percentage of calls not reached within the threshold response

time. In other words, each data point in Figure 2.1 gives the expected percentage

of calls missed by the greedy policy induced by the value function approxima-

tion at a particular iteration. We compute the expected percentage of missed

calls by using the undiscounted numbers of calls. Since each iteration of the ap-

proximate policy iteration algorithm requires simulating the performance of the

greedy policy for 30 replications, it is straightforward to estimate the expected

percentage of missed calls at each iteration by using a sample average. From

Figure 2.1, we observe that the apparent-best policy is obtained at the third it-

eration and this policy yields an expected percentage of missed calls of about

25.6%. To test the performance of this policy more carefully, we simulate its

performance for an independent set of 400 replications. From these 400 replica-

tions, the expected percentage of missed calls is estimated to be 25.5% ∓ 0.1%,

where ∓0.1% is a 95% confidence interval.

We use two benchmark strategies. The first benchmark strategy is the my-

opic policy, which is obtained by letting rp = 0 for all p = 1, . . . , P in (2.5) and

using the greedy policy induced by this value function approximation. Step 1

of the approximate policy iteration algorithm initializes r1 to zero, so the first

data point Figure 2.1 naturally gives the performance of the myopic policy. The
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Figure 2.1: Performance of our ADP approach on the city of Edmonton.

expected percentage of calls missed by the myopic policy is about 30.2%.

The second benchmark strategy that we use is the static policy, which preas-

signs a base to each ambulance and redeploys an ambulance back to its preas-

signed base whenever it becomes free after serving a call. We find a good static

policy by simulating the performance of the system under a large number of

possible base assignments and choosing the base assignment that gives the best

performance. The horizontal line in Figure 2.1 shows the performance of the

best static policy we found. The expected percentage of calls missed by the best

static policy is 29.5%∓ 0.1%.

The best policy obtained by our ADP approach improves on the myopic and

static policies respectively by 4.7% and 4.0%. These improvements are obtained

without adding any extra resources and EMS managers would be very inter-

ested in obtaining these kinds of improvements by simply using their existing

resources more carefully. To put the improvement figures in perspective, a quick
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investigation into the data reveals that 18.6% of the overall call volume occurs

in locations that are at least 8 minutes away from the ambulance bases. This im-

plies that 18.6% of the calls would be missed even if there were always at least

one ambulance available at every base. This line of reasoning ignores the fact

that a call may be served by an ambulance that is on the road, but it provides

a sense of a lower bound on what is achievable. Our ADP approach makes a

significant step towards achieving this lower bound.

The CPU time for each iteration of our approximate policy iteration algo-

rithm is 22 minutes. Such runtimes are acceptable given that we run the approx-

imate policy iteration algorithm in an offline fashion to search for a good value

function approximation. Once we have a good value function approximation, it

takes about 45 milliseconds to make one redeployment decision by solving an

optimization problem of the form (2.4). This CPU time includes enumerating

over all feasible decisions and estimating the expectations through Monte Carlo

samples, and is far faster than necessary for real-time operation.

Figure 2.2 shows the empirical cumulative distributions of the response

times for the static (solid line) and ADP (dashed line) policies. Figure 2.2 in-

dicates that our ADP approach not only decreases the expected percentage of

missed calls, but it also shifts the entire distribution of call response times to

the left. It is encouraging that the improvement in the expected percentage of

missed calls is not obtained by letting a few calls wait for a very long time.

Figure 2.3 shows the performance of our ADP approach on the second city.

The observations from Figure 2.3 are very similar to those from Figure 2.1. The

best policy obtained by our ADP approach misses 26.9% ∓ 0.1% of the calls,

whereas the myopic and static policies respectively miss 29.3% and 28.8%∓0.1%
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Figure 2.2: Empirical cumulative distribution of the response times for the
city of Edmonton.

(as estimated through independent runs of 400 replications). The improvements

are smaller for the second city than for Edmonton. Nevertheless, our ADP ap-

proach still improves on the static policy by about 2%.

2.5.3 Contributions of Different Basis Functions

Computation time can potentially be reduced if we can satisfactorily use a sub-

set of the basis functions rather than all six of them. Therefore, it is natural to

ask whether all six of the basis functions are really needed. We repeated the

computational experiments described in the previous subsection by using only

subsets of the basis functions. For the city of Edmonton, we are able to drop all

but the fifth and sixth basis functions. By using only these two basis functions,

our ADP approach identifies a policy that misses 25.4% ∓ 0.3% of the calls. Re-

call that the best policy obtained by our ADP approach with all of the six basis
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Figure 2.3: Performance of our ADP approach on the second city.

functions misses 25.5% ∓ 0.1% of the calls. Therefore, the performance of our

ADP approach with only the fifth and sixth basis functions is pretty close to

the performance with all of the six basis functions. Dropping either the fifth or

sixth basis function provides policies that perform substantially worse than the

myopic policy.

When we tried to carry out a similar set of experiments on the second city,

the results were somewhat mixed. For example, when we dropped the first ba-

sis function, our ADP approach immediately settled on a sequence of policies

that miss about 30.1% of the calls. Noting the computational complexity anal-

ysis at the end of Section 2.4, the computational burden for the fifth and sixth

basis functions is at least as large as the computational burden for the others.

Given that the fifth and sixth basis functions appear to be crucial for the suc-

cess of our ADP approach, we decided to keep the other basis functions in our

approximation architecture as well.
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To conserve space, the remainder of this section reports on our computa-

tional results only for the city of Edmonton. We carried out similar compu-

tational experiments on the second city as well and we obtained very similar

results.

2.5.4 Comparison with Random Search

For a fixed set of basis functions {φp(·) : p = 1, . . . , P}, a set of values for the

tunable parameters r = {rp : p = 1, . . . , P} characterize a value function approx-

imation J(·, r) and this value function approximation induces a greedy policy.

Therefore, a brute-force approach for finding a good set of values for the tun-

able parameters is to carry out a random search over an appropriate subset of

RP , and use simulation to test the performance of the greedy policies induced

by the different sets of values for the tunable parameters.

To implement this idea, we first use our ADP approach to obtain a good

set of values for the tunable parameters. Letting {r̂p : p = 1, . . . , P} be this

set of values, we sample r = {rp : p = 1, . . . , P} uniformly over the box[
r̂1 − 1

2
r̂1, r̂1 + 1

2
r̂1

]
× . . . ×

[
r̂P − 1

2
r̂P , r̂P + 1

2
r̂P
]

and use simulation to test

the performance of the greedy policy induced by the value function approxi-

mation J(·, r). We sampled 1,000 sets of values for the tunable parameters and

this, in turn, provides 1,000 value function approximations. Figure 2.4 gives

a histogram for the expected percentage of calls missed by the greedy policies

induced by these 1,000 value function approximations. The vertical lines cor-

respond to the expected percentage of calls missed by the best policy obtained

by our ADP approach and the static policy. The figure indicates that only 1.2%

43



Figure 2.4: Performance of the 1,000 greedy policies obtained through ran-
dom search.

of the sampled sets of values for the tunable parameters provide better perfor-

mance than the best policy obtained by our ADP approach. On the other hand,

42.3% of the samples provide better performance than the static policy.

The random search procedure we use is admittedly rudimentary and one

could use more sophisticated techniques to focus on the more promising ar-

eas of the search space. Nevertheless, our results indicate that when one looks

at the broad landscape of the possible values for the tunable parameters, our

ADP approach is quite effective in identifying good parameters. Moreover, the

computation time required by the random search procedure is on the order of

several days, whereas we can carry out our ADP approach in a few hours.
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2.5.5 Additional Redeployments

The computational experiments up to this point allow redeployments only

when an ambulance becomes free after serving a call. We now explore the pos-

sibility of improving performance by allowing additional ambulance redeploy-

ments. We define an extra event type “consider redeployment” and schedule

an event of this type with a certain frequency that is detailed below. When-

ever an event of this type is triggered, we consider redeploying any ambulance

that is either at a base or returning to a base, so that R(s) can contain multiple

ambulances at such times. The set R(s) continues to be a singleton when e(s)

corresponds to an ambulance becoming free after serving a call, and at all other

events,R(s) = ∅.

We use two methods to vary the redeployment frequency. In the first

method, we equally space consider-redeployment events to obtain frequencies

between 0 and 10 per hour. In the second method, the frequency of consider-

redeployment events is fixed at 30 per hour, but we make a redeployment only

when the estimated benefit from making the redeployment exceeds the esti-

mated benefit from not making the redeployment by a significant margin. More

precisely, letting ε ∈ [0, 1) be a tolerance margin and using 0̄(s) to denote the

|R(s)|× |B| dimensional matrix of zeros corresponding to the decision matrix of

not making a redeployment, if we have

argmin
x∈X (s)

{
E
[
c(s, x, f(s, x, ω(s, x))) + ατ(f(s,x,ω(s,u)))−τ(s) J(f(s, x, ω(s, x)), r)

]}

≤ (1− ε)E
[
c(s, 0̄, f(s, x, ω(s, 0̄))) + ατ(f(s,0̄,ω(s,0̄)))−τ(s) J(f(s, 0̄, ω(s, 0̄)), r)

]
,

then we make the redeployment decision indicated by the optimal solution to

the problem on the left-hand side. Otherwise, we do not make a redeployment.
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Larger values of ε decrease the frequency of redeployments. We vary ε between

0.1 and 0.001.

Figure 2.5 shows the performance improvement obtained by the additional

redeployments. The horizontal axis gives the frequency of the redeployments

measured as the number of redeployments per ambulance per day. The vertical

axis gives the percentage of missed calls. The solid (dashed) data series cor-

responds to the first (second) method of varying the redeployment frequency.

Recall from Figure 2.1 that we miss 25.5% of the calls without making any ad-

ditional redeployments. By making about six additional redeployments per

ambulance per day, we can decrease the percentage of missed calls to 22.3%.

Beyond this range, we reach a plateau and additional redeployments do not

provide much improvement. Another important observation is that the sec-

ond method tends to provide significantly better performance improvements

with the same frequency of additional redeployments. For example, the second

method reduces the percentage of missed calls to 23.3% with three additional

redeployments per ambulance per day, whereas the first method needs eight

additional redeployments to reach the same level. Therefore, it appears that

making redeployments only when the value function approximation signals a

significant benefit is helpful in avoiding pointless redeployments.

2.5.6 Varying Fleet Sizes

In this section, we explore the effect of the fleet size on the performance of our

ADP approach. Figure 2.6 summarizes our results. The horizontal axis in this

figure gives the number of ambulances in the fleet, whereas the vertical axis
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Figure 2.5: Performance of our ADP approach as a function of the fre-
quency of additional redeployments.

gives the expected percentage of missed calls. For each fleet size, we find the

best policy obtained by our ADP approach by rerunning the approximate pol-

icy iteration algorithm, and the best static policy by enumerating over a large

number of possible base assignments. In Figure 2.6, the dashed data series cor-

respond to our ADP approach, whereas the solid data series correspond to the

static policy.

Our ADP approach performs consistently better than the static policy. The

performance gaps between the two approaches diminish when there are too few

or too many ambulances. Intuitively speaking, if the fleet size is small, then am-

bulances are always busy and there is little opportunity for repositioning. In this

case, using a more intelligent repositioning strategy does not make much differ-

ence. On the other hand, if the fleet size is large, then there is almost always

an available ambulance to respond to a call, and again, using a more intelligent
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Figure 2.6: Performance of our ADP approach and the static policy for dif-
ferent fleet sizes.

repositioning strategy does not make much difference. Another observation

from Figure 2.6 is that if our goal is to keep the percentage of missed calls below

a given threshold, say 30%, then our ADP approach allows us to reach this goal

with one or two fewer ambulances than the static policy. This translates into

significant cost savings in an EMS system.

2.5.7 Varying Call Arrival Rates

In this section, we explore the sensitivity of the policies obtained by our ADP

approach to changes in the call arrival rate. Recall that the original call arrival

rate we used in Edmonton is about 4 calls per hour. Under this call arrival

rate, we run the approximate policy iteration algorithm to find the best policy

obtained by our ADP approach. We then vary the call arrival rate over the

interval [3.2, 4.8], but continue making the redeployment decisions by using the
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Figure 2.7: Performance of our ADP approach and the static policy for dif-
ferent call arrival rates.

policy that was obtained under the call arrival rate of 4 per hour. Our goal is to

show that the policy that was obtained under the call arrival rate of 4 per hour

continues to provide good performance when we perturb the call arrival rates.

As a benchmark strategy, we find the best static policy under the call arrival rate

of 4 per hour and use this static policy as we vary the call arrival rate over the

interval [3.2, 4.8].

The results are summarized in Figure 2.7. The horizontal axis in this fig-

ure gives the call arrival rate, whereas the vertical axis gives the expected per-

centage of missed calls. The results indicate that our ADP approach performs

consistently better than the benchmark policy. Also, the expected percentage of

calls missed by the static policy under the call arrival rate of 3.2 per hour is still

larger than the expected percentage of calls missed by our ADP approach under

the call arrival rate of 4.8 per hour.
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2.5.8 Effect of Turn-out Time

Recall that if the ambulance crew is stationed at a base when it is notified of

a call, then it takes 45 seconds to get ready. This duration is referred to as the

turn-out time. On the other hand, an ambulance crew that is already on the

road does not incur turn-out time. A potential argument against ambulance

redeployment is that any gains are simply due to ambulance crews being on the

road more often, and therefore incurring less turn-out time delays.

To check the validity of this argument, we applied our ADP approach under

the assumption that turn-out time is zero. In this case, the expected percentage

of missed calls for our ADP approach turned out to be 21.08% ∓ 0.1%, whereas

the expected percentage of calls missed by the static policy turned out to be

23.93% ∓ 0.1%. As expected both the ADP approach and the static policy per-

formed better when turn-out time is zero; however, our ADP approach contin-

ues to provide practically significant improvements over the static policy. This

indicates the majority of performance increase from the ADP approach comes

from better ambulance allocation rather than from incurring less turn-out time

delays.

2.6 Conclusions

In this paper, we formulated the ambulance redeployment problem as a dy-

namic program and used an approximate version of the policy iteration algo-

rithm to deal with the high-dimensional and uncountable state space. Com-

putational experiments on two realistic problem scenarios show that our ADP
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approach can provide high-quality redeployment policies. The basis functions

that we construct open up the possibility of using other approaches, such as

temporal-difference learning and the linear programming approach, to tune the

parameters {rp : p = 1, . . . , P}.

Other future research will incorporate additional degrees of realism into our

model. We plan to include stochastic travel times, multiple call priorities, other

cost functions and more realistic ambulance dynamics that involve multiple am-

bulances serving certain calls. Incorporating these complexities may require

constructing additional basis functions.
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CHAPTER 3

TUNING APPROXIMATE DYNAMIC PROGRAMMING POLICIES FOR

AMBULANCE REDEPLOYMENT VIA DIRECT SEARCH

3.1 Introduction

Emergency medical service (EMS) providers are tasked with staffing and po-

sitioning emergency vehicles to supply a region with emergency medical care

and ensure short emergency response times. Large operating costs and increas-

ing numbers of emergency calls make this a demanding task. One method com-

monly used to reduce response times to emergency calls is known as ambulance

redeployment. Ambulance redeployment, also known as move-up or system-

status management, is the strategy of relocating idle ambulances in real-time

according to the state of the system to minimize response times for future emer-

gency calls.

The ambulance redeployment literature contains a number of different ap-

proaches for computing redeployment policies. The first approach is to formu-

late an integer program that models ambulance redeployment and solve this

integer program in real-time whenever a redeployment decision is required; see

Kolesar and Walker (1974), Gendreau et al. (2001), Richards (2007), and Nair

and Miller-Hooks (2009). This approach is computationally intensive and often

requires a parallel computing environment and/or heuristic solution methods

to obtain a redeployment decision within given time constraints. Another ap-

proach is to solve an integer program in a preparatory phase which dictates a

“lookup table”, or the desired ambulance locations given the number of cur-

rently available ambulances; see Gendreau et al. (2006) and Alanis et al. (2010).
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Real-time redeployment is managed by dispatchers who attempt to position

ambulances according to the prescribed locations. Other approaches attempt

to directly incorporate the randomness of emergency calls into the model for-

mulation. For example, Berman (1981a), Berman (1981c), and Berman (1981b)

formulate the ambulance redeployment problem as a dynamic program (DP).

This approach was revisited more recently in Zhang et al. (2010) in an attempt

to gain insight into the problem. The difficulty of working with DP formula-

tions is that computing optimal policies is only tractable in simplified situations

such as those having only one or two ambulances. The work of Andersson

(2005) and Andersson and Vaerband (2007) incorporates random evolution of

the system heuristically through the construction of a “preparedness function”

that attempts to evaluate future states based on their ability to handle incoming

calls.

Another approach, using approximate dynamic programming (ADP), is for-

mulated in Chapter 2 and Maxwell et al. (2009). This approach models am-

bulance redeployment as a Markov decision process (MDP) and defines a pa-

rameterized approximation Jr of the DP value function J . The approximation

architecture Jr is constructed as a linear combination of B “basis” functions,

which map the MDP state space to the real numbers, and weighting coefficients

r = (r1, . . . , rB). For each redeployment decision the ADP policy draws samples

of potential future state realizations and evaluates the relative merit of these

states with Jr. Because of this need to simulate future state realizations, we call

this method a simulation-based ADP approach.

The ADP approach is flexible enough to deal with the random evolution

of the system directly and does not have the computational burden of the in-
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teger programming methods. Similar to the lookup table approach, ADP al-

gorithms require a preparatory tuning process which may be computationally

expensive, but after this initial computation most ADP policies are able to op-

erate in real-time situations without computational concerns. Since the ADP

method only approximates the true value function, the resulting ADP policies

are not necessarily optimal. Nevertheless, given a suitable approximation archi-

tecture, ADP policies have been shown to perform very well in problems that

would be intractable otherwise. Examples of ADP applications include inven-

tory control (Van Roy et al. (1997)), inventory routing (Adelman (2004)), option

pricing (Tsitsiklis and Van Roy (2001)), backgammon (Tesauro (1994)), dynamic

fleet management (Topaloglu and Powell (2006)), and network revenue man-

agement (Adelman (2007) and Farias and Van Roy (2007)).

An effective choice of basis functions in a linear approximation architecture

usually requires expert opinion, accurate intuition of the MDP dynamics, and

significant trial and error. There are no general methods to pick suitable basis

functions; they must be chosen manually to represent the key features of the

system. On the other hand, there are numerous algorithmic methods for tuning

the parameter vector r to obtain good policies given a set of basis functions,

e.g., approximate policy iteration (Bertsekas and Tsitsiklis (1996)), temporal-

difference learning (Sutton (1988)), least-squares temporal-difference learning

(Bradtke et al. (1996) and Boyan (2002)), linear programming (Schweitzer and

Seidmann (1985) and de Farias and Van Roy (2003)), and smoothed approxi-

mate linear programming (Desai et al. (2009)).

The main weakness of these methods is that they attempt to tune r so that Jr

approximates J . In ADP applications it is usually assumed that the true value
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function J does not lie within the span of the basis function comprising Jr. Con-

sequently, much of the value of fitting Jr to J may be lost. For many applica-

tions the more important metric is how the performance of the ADP policy com-

pares with the optimal performance or with other known policies. Optimization

methods such as direct search allow one to optimize over this metric directly

rather than through an indirect and potentially less effective method. The main

contribution of this paper is to illustrate potential shortcomings in typical value

function fitting procedures for ADP and to propose direct search methods as a

suitable alternative. Specifically, we build on Maxwell et al. (2010a) by using

direct search methods to find ambulance redeployment policies that are supe-

rior to previous ADP redeployment policies in terms of both performance and

computational effort required for tuning.

One potential drawback of using direct search methods to tune ADP poli-

cies is that direct search methods are generally more computationally intensive

than value function fitting methods. We mitigate this problem by formulating

our ambulance redeployment policy around the post-decision state formula-

tion. The post-decision state formulation is a general-purpose method for (po-

tentially) decreasing the computational burden in high-dimensional problems

(see Powell and Roy (2004) and Powell (2007)). We further motivate this formu-

lation by showing that the post-decision state ADP formulation is the limiting

policy of a simulation-based ADP policy. This result holds under general con-

ditions not relating to ambulance redeployment.

Section 3.2 introduces ADP and describes the construction of ADP policies.

Section 3.3 uses a sample problem to describe theoretical limitations of com-

mon parameter tuning methods. Section 3.4 describes the ambulance rede-

55



ployment problem in detail, formulates ambulance redeployment as an MDP,

and defines an ADP policy for ambulance redeployment. Section 3.5 illustrates

how the limitations in Section 3.3 can have significant negative effects on pol-

icy performance and how direct search methods are able to provide higher-

performing policies than traditional tuning approaches for the ambulance re-

deployment policy. Section 3.6 introduces the post-decision state formulation

and shows that, coupled with direct search, the post-decision formulation of

ambulance redeployment is an efficient method for tuning ADP parameters in

high-dimensional problems. Section 3.7 contains our concluding remarks.

3.2 Approximate Dynamic Programming

MDPs are commonly used to model the evolution and control of stochastic sys-

tems. A key reason is that DP techniques provide a computational method to

solve for optimal policies in MDPs. The DP optimal policy depends upon the

computation of the DP value function J . Unfortunately, for many MDPs com-

puting the value function J is intractable. One common approach to overcome

this difficulty is to approximate J with a parameterized formulation that is easy

to compute. Section 3.2.1 explains how these approximations are used to create

ADP policies and Section 3.2.2 describes two general approaches used to tune

the ADP approximation parameters.
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3.2.1 ADP Policies

A discrete-time MDP is defined by a state space, a control space, system dynam-

ics, transition costs, and an objective function. A state s ∈ S contains enough

information such that the future evolution of the MDP is independent of the

past evolution given state s. The state space S is the set of all possible states

that may be realized by the MDP. The notation Sk denotes the kth state of the

MDP evolution. For each s ∈ S we define a control space X (s) that dictates

the available actions in state s. The control space for the MDP is defined as

X =
⋃
s∈S X (s) and we assume |X (s)| <∞ for all s ∈ S . Let Uk+1 denote a vec-

tor of iid Uniform(0, 1) random variables (with appropriate dimension) used to

generate all random behavior between states Sk and Sk+1. We denote the MDP

system dynamics as Sk+1 = f(Sk, x, Uk+1) where the next state Sk+1 results from

being in state Sk, choosing action x ∈ X (Sk), and having random effects dictated

by Uk+1.

Let c(Sk, x, Uk+1) denote the (possibly random) transition cost associated

with being in state Sk and choosing action x ∈ X (Sk). One common objective

function for MDPs is to minimize the expected sum of the discounted transition

costs from a given starting state S0, i.e.,

min
π

E

[
∞∑
k=0

αkc (Sk, π(Sk), Uk+1)

]
, (3.1)

where a policy π is a mapping from S toX such that π(s) ∈ X (s) for all s ∈ S and

α ∈ (0, 1) is the discount factor. This expectation is finite if, e.g., c is bounded.

The value function for policy π starting in state S0 is defined as

Jπ(S0) = E

[
∞∑
k=0

αkc(Sk, π(Sk), Uk+1)

]
.
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For an optimal policy π∗ we define the value function J = Jπ
∗ . From the DP

optimality principle we know that

J(Sk) = min
x∈X (Sk)

E [c(Sk, x, Uk+1) + αJ (f(Sk, x, Uk+1))] ∀Sk ∈ S, (3.2)

and that choosing an action x ∈ X (Sk) achieving the minimum in the right-hand

side of (3.2) for every state Sk ∈ S yields an optimal policy Bertsekas and Shreve

(1978). Unfortunately, the complexity of computing J often increases drastically

in the size of S; hence most MDPs with large state spaces are intractable to solve

via DP.

One approach to overcome these computational difficulties is to approxi-

mate J with a simpler function through an approximation architecture and

use the approximation in lieu of the value function when computing policy

decisions. This approach is known as ADP. For example, given “basis func-

tions” φ1, . . . , φB mapping S to R we define a linear approximation architecture

Jr(·) =
∑B

b=1 rbφb(·) where the subscript r denotes the vector (r1, . . . , rB) of tun-

able parameters. Given an approximation Jr for J we define the quantity

Lr(Sk) = min
x∈X (Sk)

E [c(Sk, x, Uk+1) + αJr (f(Sk, x, Uk+1))] ∀Sk ∈ S, (3.3)

and the ADP policy with respect to Lr chooses an action x ∈ X (Sk) achieving

the minimum in the right-hand side. In this manner, Lr defines an ADP policy.

This ADP policy is also known as the greedy policy with respect to Jr; however,

we use the former terminology to distinguish between ADP policies that use the

same approximation architecture Jr but are formulated differently.

One advantage of ADP is that if the basis functions are simple then the ap-

proximate value function can be computed quickly and it can be computed for

individual states as needed, as opposed to computing the value function for all
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states a priori. This allows ADP to solve for policies in MDPs with large and even

uncountable state spaces, such as those arising in ambulance redeployment.

For any given state s ∈ S there may be multiple actions achieving the mini-

mum on the right-hand side of (3.2) or (3.3). In DP any action achieving the min-

imum may be chosen without loss of optimality. However, in an ADP context

these actions may have very different consequences. Nevertheless, it is common

to regard all actions achieving Lr(s) as equivalent choices since they are equiv-

alent insofar as the approximation architecture is able to differentiate. Because

the vector of tunable coefficients r ultimately affects actions chosen and overall

performance these coefficients are referred to as ADP policy parameters. These

coefficients are generally tuned in a preparatory phase before an ADP policy is

implemented.

For further information, see Puterman (2005) for MDPs, Bertsekas (1995) for

DP, and Bertsekas and Tsitsiklis (1996), Powell (2007) for the related ADP con-

cepts.

3.2.2 Tuning ADP policies

Theoretical results show that if Jr(s) ≈ J(s) for all s ∈ S then the performance

of the greedy policy with respect to Jr is not too far from the optimal policy

performance, e.g., (Bertsekas and Tsitsiklis, 1996, Proposition 6.1). As a result,

the standard method for tuning approximation architectures tries to ensure that

Jr ≈ J . In this sense, value function fitting methods attempt to find the coeffi-

cients r which solve

min
r
‖Jr − J‖ ,
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for some distance measure ‖·‖. These methods tune the coefficients based upon

approximating the true value function with the hope of getting good policy per-

formance as result.

Our direct search method instead attempts to find the coefficients r which

solve

min
r

E

[
∞∑
k=0

αkc (Sk, πr(Sk), Uk+1)

]
,

where πr denotes the ADP policy with respect to, say, Lr. Thus the direct search

method tunes the policy coefficients of the value function approximation Jr

based solely upon the performance of the ADP policy using Jr.

This difference with standard tuning methods is significant due to the fact

that ADP policies rely upon the relative magnitude of Jr for future states as op-

posed to the absolute value for making decisions. Thus, an approximate value

function Jr bearing little resemblance to the actual value function J can still in-

duce a good policy. One example of this principle is Szita and Lörincz (2006)

where a noisy cross-entropy method was used to improve performance by an

order of magnitude over value function fitting methods for ADP policies play-

ing the game Tetris. Additionally, as shown in Section 3.3, value function fitting

methods may not always return the coefficients corresponding to the best policy

performance.

3.3 Limitations of Common ADP Tuning Approaches

Two general approaches for value function fitting are regression-based methods

and linear programming-based methods. Both of these methods share a similar
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shortcoming: in situations where there exists a set of coefficients r which induce

an optimal policy, the regression- and linear programming-based methods may

be unable to select such coefficients in the ADP tuning procedure. Section 3.3.1

illustrates this principle for regression-based approaches, and Section 3.3.2 il-

lustrates this principle for linear programming-based approaches.

3.3.1 Limitations of Regression-Based Approaches

Given an initial policy π0, regression-based methods take a noisy estimate,

Ĵπ0(s), of the value function for π0 starting at state s for each s ∈ S (or per-

haps only a subset of S). A new set of policy parameters r∗π0,p are calculated via

regression, i.e.,

r∗π0,p = argmin
r

{∑
s∈S

∣∣∣Ĵπ0(s)− Jr(s)∣∣∣p}, (3.4)

where 1 ≤ p ≤ ∞ indicates the p-norm used in the regression. Commonly in

ADP, the least-squares regression is formulated recursively and used in con-

junction with simulation to update policy parameters after each sampled state

transition; see Bertsekas and Tsitsiklis (1996) and Powell (2007).

Usually the regression-based tuning is iterated with the hope of finding a set

of parameters inducing a policy with good performance. For example, one stan-

dard tuning approach called approximate policy iteration begins with an initial

policy π0 and then simulates state trajectories using π0 that are used to compute

the coefficients r∗π0,2 via (3.4). In the next iteration π1 is set to be the greedy pol-

icy with respect to the approximation architecture using the coefficients from
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the initial iteration, i.e., Jr∗π0,2 , and π1 is used to simulate state trajectories and

compute the coefficients for the next iteration r∗π1,2. This process is repeated un-

til the computational budget is exhausted or a suitable policy is obtained.

Regression-based tuning methods are appealing because they are easily

understood, easily implemented, and fast to compute. Although appealing,

regression-based tuning methods may have drawbacks. Consider the MDP

shown in Figure 3.1 where the objective is to minimize the discounted sum of

the transition costs starting from state 3, where α ∈ (0, 1) is the discounting

factor. In this MDP there are only two deterministic policies: π1 which denotes

choosing to transition to State 1 in State 3 and π2 which denotes choosing to

transition to State 2 in State 3. Consider the case where α > 3/4. In this case π2

is the optimal policy.

3

23

1

0 0

0

4

0

Figure 3.1: Example MDP

Let φ1(s) = s and consider the approximation architecture Jr(s) = r1φ1(s).

For the approximation architecture to induce the policy π2 we must have 3 +

αJr(2) = 3 + 2αr1 < αr1 = 0 + αJr(1) which implies that r1 < −3/α. Thus we

see that the approximation architecture Jr is rich enough to induce an optimal

policy provided that r1 is chosen correctly. Unfortunately, the regression-based

formulation in (3.4) is unable to find such a set of parameters.

Proposition 3.1. LetR =
{
r : r = r∗πi,p for i = 1, 2 and 1 ≤ p ≤ ∞

}
denote the set of

all possible coefficients from a p-norm regression formulation for the MDP in Figure 3.1

(see (3.4)). For all r ∈ R the greedy policy with respect to Jr is π1, i.e., is not optimal.
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Proof. Assume 1 ≤ p <∞. We have that
3∑
s=0

|Jπ1(s)− r1s|p = |0− 0|p + |4− r1|p + |0− 2r1|p + |4α− 3r1|p

= |4− r1|p + 2p |r1|p + |4α− 3r1|p . (3.5)

Note that for any r1 < 0 each term of (3.5) can be decreased by increasing r1

to 0. Hence we know r∗π1,p ≥ 0 and the policy induced by Jr∗π1,p is π1 for any

1 ≤ p < ∞. A similar analysis holds for r∗π2,p as well, and the same argument

works when p =∞.

Thus the regression-based tuning methods with respect to any p-norm will

always return a sub-optimal policy. Further analysis shows that the same result

holds when any subset of S is used in the regression (with the exception of

{0} for which any r1 ∈ R is a valid regression solution). Given any α > 0

we can create a similar MDP for which Proposition 3.1 holds. Additionally,

with minor modifications to the MDP in Figure 3.1, we can create MDPs where

the suboptimal policy is arbitrarily worse than the optimal policy. A similar

example for an MDP without discounting is given in Maxwell et al. (2010a).

3.3.2 Limitations of LP-Based Approaches

LP-based methods are based on the LP formulation of exact dynamic programs

and have the form

max
r

νT J̄r (3.6)

s.t. E [c(Sk, x, Uk+1) + αJr(f(Sk, x, Uk+1))] ≥ Jr(Sk) ∀Sk ∈ S, x ∈ X (Sk)

for minimizing the expected α-discounted transition costs, where ν is a (col-

umn) vector with positive components and J̄r denotes a vector containing
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Jr(Sk) for all Sk ∈ S , see Schweitzer and Seidmann (1985) and de Farias and

Van Roy (2003). This LP formulation is most useful when the expectation in

the constraints can be computed exactly or estimated easily. Also, due to the

number of constraints in this LP, it is often necessary to use techniques such as

constraint sampling to make the LP tractable.

Again consider the MDP shown in Figure 3.1 with discounting factor α >

3/4. Let φ1(s) = 1 and φ2(s) = s and consider the approximation architecture

Jr(s) = r1φ1(s)+r2φ2(s). For the approximation architecture to induce the policy

π2 we must have 3 + αJr(2) = 3 + αr1 + 2αr2 < αr1 + αr2 = 0 + αJr(1) which

implies that r2 < −3/α. Although the approximation architecture Jr can induce

the optimal policy provided r2 is chosen correctly, the LP-based formulation will

not select optimal-policy-inducing coefficients.

Proposition 3.2. The greedy policy with respect to any optimal solution to the LP-based

formulation (3.6) is π1, and hence the LP-based approach results in an ADP policy that

is not optimal.

Proof. The LP formulation for the MDP in Figure 3.1 can be written as

max
r

[
ν1 ν2 ν3 ν4

]


r1

r1 + r2

r1 + 2r2

r1 + 3r2


s.t. (1− α)r1 ≤ 0 (3.7)

(1− α)r1 + r2 ≤ 4 (3.8)

(1− α)r1 + 2r2 ≤ 0 (3.9)

(1− α)r1 + (3− α)r2 ≤ 0 (3.10)

(1− α)r1 + (3− 2α)r2 ≤ 3. (3.11)
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Let qα = (1− α)r1, and rewrite (3.8)-(3.11) as

r2 ≤ 4− qα

r2 ≤
−qα

2

r2 ≤
−qα

3− α

r2 ≤
3− qα
3− 2α

.

Since qα ≤ 0 by (3.7) we know that the feasible region for (r1, r2) contains at least

{(r1, r2) : r1 ≤ 0, r2 ≤ 0}. Given any feasible r = (r1, r2) inducing an optimal

ADP policy (i.e., r1 ≤ 0 and r2 < −3/α) we have that r′ = (r1, 0) is also feasible.

The objective function value for r′ is greater than that of r by−(ν2+2ν3+3ν4)r2 >

0. Consequently, coefficients inducing an optimal ADP policy will not induce an

optimal LP solution, and hence will never be returned via an LP-based tuning

approach.

Given any α ∈ (0, 1], one can find a value for the transition cost from state 1

to state 0 in the example MDP such that Proposition 3.2 holds for that value of

α. Additionally, the difference between the optimal policy performance and that

obtained via the LP tuning methods can be made arbitrarily large by increasing

this transition cost.

The MDP in Figure 3.1 is of course a simple example that is easily solved

exactly, but it is very typical of ADP applications where transition costs must be

balanced with value function approximations of future states given an approxi-

mation architecture that does not contain the true value function. Furthermore,

since the example MDP is deterministic the inability to properly tune the policy

coefficients is a direct consequence of the tuning methods themselves, as op-

posed to sampling-based errors that may arise when dealing with random state
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transitions.

In Sections 3.4 and 3.5 we show that similar issues arise in a realistic appli-

cation of ADP, namely ambulance redeployment.

3.4 Ambulance Redeployment

To model EMS operations we divide the region under consideration into an

appropriate-sized grid and assume that calls in each grid cell arrive according

to independent time-inhomogeneous Poisson processes and are distributed uni-

formly throughout the cell. When an emergency call arrives the dispatcher as-

signs the closest available ambulance to the call. If there are no ambulances

available the call is placed on a waiting list, and these calls are served first-come

first-served as ambulances become available.

In actual EMS operations there may be special situations where the closest

ambulance is not dispatched to an emergency call or when the first call on the

waiting list is not assigned to a newly freed ambulance. Additionally, emer-

gency calls are usually categorized depending upon the severity of the emer-

gency by the dispatcher and emergency response is prioritized according to

these “levels of care.” We do not include this categorization in our model.

If an ambulance assigned to an emergency call is idle at base we assume it

takes 45 seconds for the ambulance crew to get situated in their vehicle. This is

called the “turn-out” time. If the assigned ambulance is not idle at a base it does

not incur turn-out time.

After being assigned to an emergency call, the ambulance travels to the call
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scene. We assume deterministic travel times along the shortest path of a repre-

sentative street network. The distance to emergency calls off the road network

are calculated using the Manhattan distance from the nearest node. Although

not used in our model, random travel times could be incorporated with little

modification.

Paramedics provide preliminary care to the patient at the scene. We model

this “on scene” time as an exponentially distributed random variable having a

mean of 12 minutes. In approximately 25% of the cases the patient does not

need to be transported to a hospital and the ambulance becomes free at the call

scene. Otherwise, the patient is transported to a hospital and transferred to the

hospital staff. The destination hospital is chosen randomly based on historical

data given the location of the emergency, and the transfer time at the hospital is

modeled as a Weibull-distributed random variable with a mean of 30 minutes

and standard deviation of 13 minutes.

Our ADP policy makes redeployment decisions when an ambulance be-

comes available after completing care for the patient, either at the call scene

or the hospital. Thus, when an ambulance becomes available, the redeployment

policy is used to calculate the desired redeployment base for this ambulance.

After the redeployment decision is made, the ambulance travels to this desti-

nation to wait for future calls; however, if an emergency call arrives before this

ambulance has reached its destination it may still be assigned to the call (pro-

vided it is closest to the call). Our goal is to tune the ADP policy such that the

redeployment decisions position ambulances where they may best respond to

future calls. We only consider redeploying ambulances to bases, but other loca-

tions such as convenient street intersections and hospitals could be included as
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well. If there are calls on the waiting list when an ambulance becomes available,

the ambulance is immediately assigned to the first call on the waiting list and

no redeployment decision is made.

Section 3.4.1 gives an MDP formulation for this problem and Section 3.4.2

presents the ADP policy for ambulance redeployment including an explanation

of the basis functions used within the approximation architecture and the meth-

ods used to compute the policy.

3.4.1 Ambulance Redeployment as an MDP

We model the ambulance redeployment problem as a queueing system within

the generalized semi-Markov decision process framework Glynn (1989). In this

setup emergency calls are customers and ambulances are servers. The service

time for a call includes the response time, time at scene, and transport and trans-

fer time to a hospital if needed.

State Space

Let N denote the number of ambulances, and let ci for i = 1, . . . , N denote the

location of the emergency call being served by ambulance i, with ci = ∅ if am-

bulance i is available. Let ai denote the location of ambulance i at the time it

last responded to or completed serving an emergency call. In this queueing sys-

tem, the service time distribution for a call depends upon both ci and ai. Let ri

denote the redeployment base for ambulance i, i.e., the location of the base to

which ambulance i will position itself once ambulance i becomes available. If
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ambulance i is serving an emergency call, then the value of ri does not impact

the system dynamics until the ambulance becomes available. Control actions in

this MDP will set these redeployment values as ambulances become available.

Let wi for i = 1, . . . ,M denote the location of the ith emergency call on the wait-

ing list, with wi = ∅ if there is no ith call waiting. If an emergency call arrives

and there are already M calls on the waiting list we assume the emergency call

is handled by another agency. This assumption has very little practical implica-

tion since one could take M to be quite large to capture EMS operations having

no alternative supporting agencies.

The events in the DEDS are e0 indicating that a call arrival has occurred,

and ei for i = 1, . . . , N indicating that ambulance i has completed serving its

assigned emergency call. Let t denote the current simulation time, t0 denote

the time since the last emergency call arrival, and ti for i = 1, . . . , N denote

the elapsed time since ambulance i was either assigned to an emergency call or

finished serving an emergency call.

Let C = (c1, . . . , cN), A = (a1, . . . , aN), R = (r1, . . . , rN), W = (w1, . . . , wM),

and T = (t, t0, . . . , tN). Thus the state of the DEDS can be denoted as s =

(C,A,R,W, e, T ) where e ∈ {e0, . . . , eN}. Let C(s), A(s), R(s), W (s), e(s), and

T (s) denote the C, A, R, W , e, and T components of state s. Additionally, let

ci(s), ai(s), ri(s), and wi(s) denote the ith component of C(s), A(s), R(s), and

W (s), let t(s) denote the t component of T (s), and let ti(s) denote the ti compo-

nent of T (s).

Ambulance dispatchers typically have more information at their disposal

than that contained within this state space representation. For example, dis-

patchers often know the status of the busy ambulances–whether they are treat-
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ing a patient at the call scene, transporting a patient to a hospital, or at a hospital

transferring a patient. Dispatchers use this information to supplement rede-

ployment decisions. If an emergency call arrives near a hospital at which some

ambulance has almost completed transferring their patient to the hospital staff,

the dispatcher may not assign an ambulance to this call and instead wait for

the ambulance at the hospital to become available. In this sense, the state space

representation is a simplified model of dispatcher information and the simu-

lated dynamics are a simplification of ambulance redeployment dynamics (as is

typical for simulation).

Control Space

We call state s a decision state if there is a redeployment decision to be made in

this state, i.e., if an ambulance just became available, e(s) = ei and ti(s) = 0 for

some 1 ≤ i ≤ N , and there are no calls on the waiting list, w1(s) = ∅. For de-

cision states X (s) is the set of potential locations at which we may position the

newly freed ambulance. We consider this set to be a predetermined set of am-

bulance bases in the proximity of an ambulance’s home base. For “non-decision

states” X (s) = {∅} indicating a “do-nothing” action. We assume that |X (s)| is

finite (and not too large) for all s ∈ S so that the right-hand side of (3.3) can

be estimated via Monte Carlo for each x ∈ X (s) within real-time computation

constraints.

Often in EMS operations more complicated redeployment actions are taken.

For example, when one ambulance becomes free multiple idle ambulances may

be asked to relocate as well as the newly freed ambulance. Such redeployment

policies could also be implemented within our ADP framework; however, we
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do not follow this approach for two reasons. First, as the complexity of potential

redeployment options increases, the time required to compute the policy deci-

sion increases as well. Although more complex redeployment decisions may be

able to increase performance over single ambulance redeployments, we believe

the potential improvement to be marginal. Second, ambulance crews typically

consider relocating from base to base (and perhaps back again later) irritating

and even useless. Given high crew turn-over rates there is a desire to avoid

frustrating crews via perceived-unnecessary redeployments. As such we only

consider redeployment for ambulances that have just finished a call and hence

they must travel somewhere anyway. One modification of our ADP policy is to

consider redeploying idle ambulances to other bases at set time intervals. The

work in Section 2.5 contains empirical data on the performance improvement

for such a modification on a similar ADP policy.

System Dynamics

We denote the MDP system dynamics as Sk+1 = f(Sk, x, Uk+1) where the next

state Sk+1 is a function of being in state Sk, choosing action x ∈ X (Sk), and

having random effects dictated by Uk+1. Define the post-decision state as the

immediate state resulting from being in state Sk and applying the effects of ac-

tion x to the state (before the passage of time). We denote the post-decision state

resulting from state Sk and choosing action x ∈ X (Sk) as S+
k (x). For any deci-

sion state Sk and action x the post decision state S+
k (x) is equal to Sk, except that

the ambulance that became available in state Sk has been dispatched to base x.

Specifically, if e(Sk) = ei then ri(S
+
k (x)) = x and the remaining components of

Sk and S+
k (x) are equal. The pre-decision state and post-decision state are equal
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for non-decision states. When the control taken in state Sk is implicitly under-

stood we use the more concise notation S+
k . A more complete discussion of

post-decision states and associated ADP representations can be found in Powell

(2007).

Given S+
0 ∈ S with t(S+

0 ) = 0 we use the following algorithm to construct

the DEDS:

1. (Initialization) Set the event counter k = 0.

2. (Residual time generation) For each event ei ∈ E(S+
k ) generate a resid-

ual time zi conditional upon the current state S+
k where E(S+

k ) = {e0} ∪{
ei : ci(S

+
k ) 6= ∅ for i = 1, . . . , N

}
denotes the set of active events for state

S+
k , i.e., the set of events that may cause a transition out of state S+

k . With-

out loss of generality we assume zi is generated by inversion from the ith

component of Uk+1 which we denote Uk+1(i). Thus zi = F−1
i

(
S+
k , Uk+1(i)

)
where F−1

i

(
S+
k , ·
)

is the quantile function for the residual event time for

event ei in state S+
k .

3. (Select next event) Let Ek+1 be an event with minimal residual time from

step 2, and let ∆k+1 denote that residual time.

4. (Select next state) Generate Sk+1 conditional upon S+
k , Ek+1, and ∆k+1 via

Uk+1.

5. (Update clocks) Set t(Sk+1) = t(Sk) + ∆k+1. Set ti(Sk+1) = 0 where i is the

index of event Ek+1. Additionally, set ti(Sk+1) = 0 if there is an emergency

call arrival in state Sk+1, i.e., Ek+1 = e0, and ambulance i is assigned to

respond to the arriving call. For all other clocks set ti(Sk+1) = ti(Sk)+∆k+1.

6. (Redeployment Decision) Let S+
k+1 = Sk+1. If Sk+1 is a decision state

then choose a desired ambulance base for redeployment, x ∈ X (Sk+1), for
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server i and set Ri(S
+
k+1) = x, where i denotes the server that just became

idle, i.e., the index i such that Ek+1 = ei.

7. (Repeat) Set k = k + 1 and repeat from Step 2.

Given this DEDS formulation, we define the continuous-time queueing pro-

cess S(t) of the DEDS for t ≥ 0 by defining

C(t) =
∞∑
k=0

C(S+
k )1{t(Sk)≤t<t(Sk+1)}

A(t) =
∞∑
k=0

A(S+
k )1{t(Sk)≤t<t(Sk+1)}

R(t) =
∞∑
k=0

R(S+
k )1{t(Sk)≤t<t(Sk+1)}

W (t) =
∞∑
k=0

W (S+
k )1{t(Sk)≤t<t(Sk+1)}

e(t) =
∞∑
k=0

e(S+
k )1{t(Sk)≤t<t(Sk+1)}, and

T (t) =

(
t,
∞∑
k=0

(
t0(S+

k ) + t− t(Sk)
)
1{t(Sk)≤t<t(Sk+1)}, . . . ,

∞∑
k=0

(
tN(S+

k ) + t− t(Sk)
)
1{t(Sk)≤t<t(Sk+1)}

)
.

By this construction S(t) is a piecewise constant function in the C, A, R, W ,

and e components and piecewise linearly increasing in the T component with

jumps occurring only at event times. Additionally, S(t) is right continuous with

left limits.

Transition Costs and Objective Function

Given a state Sk, an action x ∈ X (Sk), and Uk+1 we incur a transition cost of

c(Sk, x, Uk+1). Let D be a given threshold time of 8 minutes for satisfactory re-
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sponse times. The transition cost is 1 if an ambulance is assigned to a call which

it cannot reach within D minutes and 0 otherwise. In other words,

c(Sk, x, Uk+1) =


1 if ∃ i s.t. ti(Sk+1) = 0, ci(Sk+1) 6= ∅, and

d(ai(Sk+1), ci(Sk+1)) > D

0 otherwise

where ti(Sk+1) = 0 and ci(Sk+1) 6= ∅ together indicate that ambulance i has just

started responding to an emergency call and d(ai(Sk+1), ci(Sk+1)) is the travel

time between ambulance i’s location at the time of the arrival, ai(Sk+1), and the

call location ci(Sk+1) (including any turn-out time).

We are interested in the expected number of “lost calls,” or calls not re-

sponded to within the time threshold D, over a finite planning horizon T which

is usually between one and two weeks. Thus, given the initial state S0, we use

the objective function in (3.1) where c (Sk, π(Sk), Uk+1) = 0 for all Sk such that

t(Sk) > T . Discounting future lost calls has no clear significance or meaning in

an ambulance redeployment context, so α would typically be chosen to be very

close to one.

The transition cost we use is chosen both for simplicity and because EMS

provider contracts are usually written in terms of the percentage of calls not re-

sponded to within the given threshold. One consequence of this transition cost

definition is that emergency calls responded to just after the threshold D and

those responded to much later than D are weighted equally for optimization

purposes although the medical outcome of such response times are likely to be

quite different. The work in Erkut et al. (2008) acknowledges this discrepancy

and optimizes for “maximum survivability.” Although we do not incorporate

this into our work, the ADP framework we use is versatile enough to allow
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these modifications. Regardless, Maxwell et al. (2009) shows that ADP policies

using the given transition costs are able to reduce overall response times, and

not just for emergency calls with response times near or below the threshold.

3.4.2 ADP Policy for Ambulance Redeployment

To define an ADP policy for ambulance redeployment using the form of (3.3) we

must first define the basis functions φ1, . . . , φB and the policy parameters r that

form the approximation architecture Jr (Section 3.4.2). By assumption |X (s)|

is not too large for any s ∈ S , so we can compute the minimization in (3.3)

by calculating the value of the right-hand side for each x ∈ X (s) and taking

the minimum. We cannot, however, compute the expectation on the right-hand

side in closed form, so we must estimate it by using Monte Carlo simulation

(Section 3.4.2).

Erlang Basis Function

The approximation architecture used in our ADP policy decouples the region

into smaller, independent regions each containing only a single ambulance base.

Each of these regions is modeled as an Erlang loss system having exponential

interarrival time distributions and general service time distributions. The basis

functions in our approximation architecture represent the Erlang loss for each

of these smaller regions. Thus B represents both the number of basis functions

in our approximation architecture and the number of ambulance bases.

Let Γ denote the collection of grid cells into which the call arrival pro-
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cess is discretized. Define l(γ) for γ ∈ Γ to be the centroid of cell

γ and l(b) for b = 1, . . . , B to be the location of base b. Let Γb =

{γ ∈ Γ : d(l(γ), l(b)) ≤ d(l(γ), l(b′)) for all b′ = 1, . . . , B} denote the set of grid

cells that have centroids closer to base b than to any other base.

Define λ(γ, t) to be the call arrival rate in cell γ at time t and Λ(t) =∑
γ∈Γ λ(γ, t) to be the total call arrival rate at time t. Let λb(s) =

∑
γ∈Γb

λ(γ, t(s))

denote the arrival rate to Γb, and let nb(s) =
∑N

i=1 1{ci(s)=∅}1{ri(s)=l(b)} denote the

number of ambulances either idle at base b or redeploying to base b in state s.

Thus for b = 1, . . . , B, we define the basis function for base b in state s to be

the Erlang loss for an M/G/nb(s)/nb(s) queue with arrival rate λb(s) and service

rate µb weighted according to how likely call arrivals are within Γb:

φb(s) =
λb(s)

Λ(t(s))

(λb(s)/µb)
nb(s)/nb(s)!∑nb(s)

k=0 (λb(s)/µb)k/k!
.

The average service time 1/µb is a sum of the average response time, scene

time, hospital transport time, and hospital transfer time for calls arriving in Γb.

The scene time and hospital transfer time are generated from distributions with

known means. The average response time and hospital transport time are esti-

mated via simulation as the average response time from base b to calls arriving

in Γb and the average transport time from calls arriving in Γb to their destination

hospitals respectively. Repeating this procedure for b = 1, . . . , B we approxi-

mate the service rates µ1, . . . , µb prior to running the DEDS and include them as

input to the simulation.

The Erlang loss is the steady state proportion of arrivals refused service in

a queue having limited queueing capacity. This quantity is relevant for am-

bulance redeployment because it can be viewed as an approximation for the
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steady state proportion of arrivals that cannot be served by the ambulance base

nearest their call location. As a consequence, these emergency calls must either

be placed on a waiting list or served by an ambulance assigned to a base fur-

ther away. In either situation the response time for the call is likely to increase

significantly and the majority of such calls will not be served within the given

threshold. For this reason the Erlang loss calculation is closely related to the

value function for a particular state, i.e., the proportion of lost calls resulting

from being in a given state.

As is common in ADP applications, the basis functions φ1, . . . , φB are not in-

tended to represent the value function exactly. Our approximation architecture

ignores the state dependent service rates as well as the more complex dynamics

involved when ambulances serve emergency calls outside their respective area.

Nevertheless, the basis functions in combination with the tuning coefficients

r1, . . . , rB are effective for designing policies that perform well. For example,

this approximation architecture is able to significantly improve upon the ambu-

lance redeployment policies in Chapter 2 and Maxwell et al. (2009).

Simulation-Based ADP Policy

For a given decision state Sk ∈ S, the ADP policy selects a redeployment base

by choosing the redeployment base x ∈ X (Sk) that minimizes the right-hand

side of (3.3). Because we cannot compute the expectation in the right-hand

side of (3.3) analytically, we estimate it through Monte Carlo simulation. Let

U
(1)
k+1, . . . , U

(G)
k+1 denote G iid uniform random vectors of appropriate dimension.
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We approximate the ADP policy as

argmin
x∈X (Sk)

1

G

G∑
g=1

(
c(Sk, x, U

(g)
k+1) + αJr

(
f(Sk, x, U

(g)
k+1)

))
. (3.12)

We call this approach simulation-based ADP due to the use of Monte Carlo sim-

ulation, as opposed to other methods that do not need to estimate the expec-

tation via simulation (e.g., the post-decision state policy in Section 3.6). Tech-

niques such as ranking and selection and common random numbers can also

be used to select the minimum instead of using naı̈ve Monte Carlo sampling for

each x ∈ X (Sk).

3.5 Simulation Optimization Tuning Results

The limitations of value function fitting methods as illustrated in Section 3.3 ex-

tend beyond sample problems such as that depicted in Figure 3.1. We consider

the problem of tuning the simulation-based ambulance redeployment ADP pol-

icy for use in Edmonton, Alberta, Canada. Edmonton is the 5th largest city in

Canada with a population over 700,000. We model the ambulance operations of

Edmonton using a discrete event simulation having 16 ambulances, 11 ambu-

lance bases, and 5 hospitals. The emergency call arrival model has a flat arrival

rate of 6 calls/hour with a higher density of calls in the metro areas during the

day and a higher density of calls in rural areas in the evening and early morn-

ing. The travel model used in the simulation is a deterministic shortest-path

calculation on a network consisting of major roads in the Edmonton area.

Before proceeding with simulation results we wish to stress that since the

emergency call arrival process, ambulance redeployment policies, and travel
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network are all stylized, our simulation results should not be interpreted as

indicative of actual performance in Edmonton, nor should the results in Sec-

tion 3.6.3 be interpreted in that way. Rather, these computational results show-

case the performance of different ADP policies in realistic but not real scenarios

with realistic but not real dynamics.

Figure 3.2 shows the performance of three different tuning methods for the

simulation-based ADP policy in Section 3.4.2 using the value function approx-

imation architecture given in Section 3.4.2. Each point in the graph represents

an unbiased estimate of policy performance for the ADP policy with respect to

Lr for a given set of coefficients r. The coefficients used in each iteration are

dictated by the tuning method (based upon the results of previous iterations),

and policy performance is estimated from 20 two-week simulations of ambu-

lance operations using the specified policy. The policy performance estimation

for one set of coefficients is considered to be one function evaluation, and the

sequence of these function evaluations are indicated along the x-axis. The esti-

mated policy performance for each policy, as measured by the percent of calls

that are lost, is indicated along the y-axis.

The least-squares method is a value function fitting method described in Sec-

tion 3.3.1, the Nelder-Mead method is a black box unconstrained local optimiza-

tion heuristic for deterministic functions (Nelder and Mead (1965)), and the

Noisy UOBYQA algorithm is a derivative-free unconstrained local optimiza-

tion algorithm based on quadratic approximation adapted from Powell (2002)

for use with noisy data (Deng and Ferris (2006)). Each function evaluation used

the same random number seed and simulations were synchronized via the sub-

stream functionality of the RngStream random number generator (see L’Ecuyer
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et al. (2002)).

We chose the initial policy coefficients used by the tuning methods via a

“static” policy, or a policy where every ambulance is assigned a home base to

which the ambulance returns each time it becomes available. Specifically, we

selected the static policy π0 yielding the best performance as estimated through

Monte Carlo simulation over a large set of static policies. We then used π0 to

generate 30 two-week sample paths and collected the noisy estimates of the

value function for π0, Ĵπ0(s), for every s in the sample paths. Given the values of

Ĵπ0(·) from the simulation, we used (3.4) to calculate the policy coefficients r∗π0,2

(e.g., a single regression-based iteration) and these coefficients were used as the

initial policy coefficients for the tuning methods. We also use the static policy π0

as a benchmark policy to evaluate the potential benefits of using a redeployment

policy over a policy which does not redeploy ambulances dynamically.

Each iteration along the x-axis of Figure 3.2 yields a different set of coef-

ficients r, and one can pick the r that gives the best performance. Although

each point is an unbiased estimate of performance using the associated coeffi-

cients, selecting the coefficients with the best performance introduces a selec-

tion bias. Consequently, each of these “minimizing” policies were reevaluated

using independent random number streams to estimate their performance. The

performance of these policies, expressed as 95% confidence intervals, are 28.6%

± .1% for least squares, 26.7% ± .1% for Nelder-Mead, and 24.8% ± .1% for

NUOBYQA. The performance of the inital static policy was 28.4% ± .1%.

The least squares method found reasonable policies very quickly, but the

performance of these policies did not significantly decrease with further tuning.

Overall, the least squares method was unable to find a policy with better per-
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Figure 3.2: ADP Coefficient Tuning Results for Edmonton, Canada

formance than the initial static policy. The Nelder-Mead method also found a

policy with good performance early on; however, ultimately this method con-

verges to a local minimum having inferior performance to the policies found

by the NUOBYQA method. The best policies were found with the NUOBYQA

method and provide a 3.5% decrease in the percentage of lost calls as compared

to the initial static policy.

A city-wide decrease of just 1% of lost calls is quite a significant improve-

ment in the context of ambulance redeployment. A city the size of Edmonton

would have to purchase, maintain, and staff an additional ambulance at a cost

of approximately 1 million dollars a year to sustain such an improvement over

baseline performance. Hence a reduction of 3.5% is quite a sizable difference
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to EMS providers and indicates the large potential benefits of ambulance rede-

ployment.

These results may appear to contradict those found in Section 2.5, which

found policies out-performing the best known static polices via regression-

based techniques, but the key difference between the results in Section 2.5 and

our results is the approximation architecture used. Repeating the same analysis

in this paper with the approximation architecture in Chapter 2 shows that all

three methods find policies having about a 2-3% improvement over the static

policy consistent with the results of Section 2.5. Furthermore, in this simulation

the least squares method is able to identify such a policy well before the other

two methods. As indicated by Section 3.3.1, the ability to properly tune an ADP

algorithm through regression-based methods is highly dependent upon the ap-

proximation architecture used. The approximation architecture in Chapter 2 is

perhaps more amenable to regression-based techniques, but ultimately the ap-

proximation architecure detailed in Section 3.4.2 is able to provide significant

additional improvement to the ADP policy.

The time taken for the simulation-based ADP algorithm to make a single re-

deployment decision is about .07 seconds on a 2.66 Ghz processor. This time

allotment is certainly within real-time operational feasibility for ambulance re-

deployment purposes. Unfortunately, the computational burden of this tuning

procedure is quite extreme. Each function evaluation consists of 20 two-week

simulations of ambulance redeployment and requires about 1 hour of compu-

tation time. The total tuning process required nearly 12 days of computation

time for each method. Since ADP parameters only need to be tuned once before

implementing an ADP policy, this is still a feasible method for ambulance rede-
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ployment, but these tuning methods for simulation-based ADP are not likely to

scale well for larger cities.

There may be situations where the dimension of r or other factors make di-

rect search computationally prohibitive and regression- or LP-based methods

must be used. Because of these extreme cases we feel that simulation opti-

mization methods are marginalized and often ignored. This situation persists

even though examples such as that in Section 3.3 and Maxwell et al. (2010a)

show that there are limitations of standard methods not present in simulation-

optimization methods and the gains from using simulation-optimization tech-

niques can be enormous; see e.g., Szita and Lörincz (2006).

The key drawback of simulation-optimization methods is the computation

associated with tuning. In Section 3.6 we show how this disadvantage can be

overcome in the context of ambulance redeployment in a major metropolitan

region.

3.6 Post-Decision State Formulation

Suppose that for any state Sk we can rewrite the immediate cost function

c(Sk, x, Uk+1) and the system dynamics function f(Sk, x, Uk+1) in terms of the

post-decision state S+
k (x) as c(S+

k (x), Uk+1) and f(S+
k (x), Uk+1) respectively. Let

the post-decision value function be defined as

J̃(S+
k (x)) = E

[
c(S+

k (x), Uk+1) + αJ(f(S+
k (x), Uk+1))

]
. (3.13)

Then we have that J(Sk) = minx∈X (Sk) J̃(S+
k (x)).

Let J̃r denote a linear approximation architecture for the post-decision state
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where r represents the set of coefficients, and define

L̃r(s) = min
x∈X (s)

J̃r(s
+(x)) ∀ s ∈ S. (3.14)

The ADP policy with respect to L̃r is called the post-decision state ADP policy.

The computational benefits of (3.14) over (3.3) are that the expectation opera-

tor is contained within the approximation J̃r. Consequently, this formulation

trades the computational burden of Monte Carlo simulation with a heavier re-

liance on the (post-decision) value function approximation. The post-decision

state approximation J̃r is separate from the pre-decision state approximation Jr,

and the two approximation architectures need not be similar. For ambulance re-

deployment, we have found that the approximation architecture in Section 3.4.2

works well for both approximations although the tuned coefficient parameters

are unique to the respective approximation.

In Section 3.6.1 we define a generalization of the ADP policy, in Section 3.6.2

we show that the post-decision state policy is a limiting case of this general-

ization, and in Section 3.6.3 we show computational results for a direct search

tuning method using the post-decision state policy.

3.6.1 Truncated Microsimulation Policy

An ADP policy in state Sk uses (3.3) to choose an action x ∈ X (Sk) based upon

the expected value of the sum of the transition cost to Sk+1 and the value func-

tion at state Sk+1 given action x. However, if state Sk+1 is similar to Sk there

may be little new information contained in state Sk+1. For example, if Sk+1

corresponds to an emergency call arrival occurring almost immediately after

a service completion, state Sk+1 does not contain very much information on the
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evolution of the system after state Sk. As mentioned in Section 3.4.1, it is often

convenient when creating MDP models to include non-decision states s where

X (s) = {∅}. For situations where Sk+1 corresponds to a non-decision state, (3.3)

can be extended to capture more information on the evolution of the system by

evaluating the expectation around the next decision state.

Let Q = Q(Sk, x) denote a random variable indicating the number of non-

decision states between state Sk and the next decision state given that we choose

decision x is state Sk. Then the value function for Sk can be rewritten as

J(Sk) = min
x∈X (Sk)

E

[
Q∑
j=0

αjc(Sk+j, xj, Uk+j+1) + αQ+1J (f(Sk+Q, xQ, Uk+Q+1))

]
(3.15)

for all Sk ∈ S, where x0 = x and xj = ∅ for 1 ≤ j < Q (see Appendix A.1). Using

this formulation we define

Lr,∞(Sk) = min
x∈X (Sk)

E

[
Q∑
j=0

αjc(Sk+j, xj, Uk+j+1) + αQ+1Jr (f(Sk+Q, xQ, Uk+Q+1))

]

for all Sk ∈ S, and denote the ADP policy with respect to Lr,∞ as the microsim-

ulation ADP policy. The idea behind the microsimulation ADP policy is that

instead of estimating the expectation through Monte Carlo samples of the next

state as in (3.12), we use short simulations or “microsimulations” to sample tran-

sition costs and future state evolutions up until a decision state is reached. One

practical drawback of this policy is that it is not known how long each microsim-

ulation must run before reaching a decision state. When large values of Q are

observed the computation time required to compute this policy may be pro-

hibitive for real-time implementation even if the standard ADP policy can be

computed rapidly. To overcome this drawback we select a deterministic time

τ > 0 and truncate each microsimulation at τ if it has not already stopped due

to reaching a decision state.
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Since the truncation time may occur at a non-event time we must ap-

peal to the continuous version of the DEDS to express this ADP policy (see

Section 3.4.1). Let Sk(τ, x) denote the random state S(t(Sk) + τ) given that

S(t(Sk)) = S+
k (x) and let S+

k (τ, x) denote the deterministic state Sk(τ, x) given

that t(Sk+1) > t(Sk) + τ , i.e., S(t(Sk) + τ) given that the last event before time

t(Sk) + τ was in state Sk and that action x was chosen in Sk. Thus on the event

that there are no decision events within τ time units after state S+
k (x) the system

will be in the random state Sk(τ, x). If there are no events within τ time units

after state S+
k (x) the system will be in the deterministic state S+

k (τ, x).

Let γ1 = t(Sk+1) − t(Sk) and γQ+1 = t(SQ+1) − t(Sk) denote the time before

the next event and the time before the next decision event respectively. Let

Qτ = Qτ (Sk, x) denote a random variable indicating the number of non-decision

states between Sk and the next decision state or the threshold time t(Sk) + τ

(whichever comes first) given that we choose decision x is state Sk. Then the

truncated microsimulation value function for all Sk ∈ S can be expressed as

J(Sk)=minx∈X (Sk)
P (τ≤γ1)J̃(S+

k (τ,x))

+P (γ1<τ≤γQ+1)E

[∑Qτ
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQτ+1J̃(Sk(τ,x))

∣∣∣γ1<τ≤γQ+1

]

+P (γQ+1<τ)E

[∑Q
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQ+1J(f(Sk+Q,xQ,Uk+Q+1))

∣∣∣γQ+1<τ

]
.

The derivation of this formulation can be found in Appendix A.2. For all Sk ∈ S,

let

Lr,r′,τ (Sk)=minx∈X (Sk)
P (τ≤γ1)J̃r(S

+
k (τ,x)) (3.16)

+P (γ1<τ≤γQ+1)E

[∑Qτ
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQτ+1J̃r(Sk(τ,x))

∣∣∣γ1<τ≤γQ+1

]

+P (γQ+1<τ)E

[∑Q
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQ+1Jr′ (f(Sk+Q,xQ,Uk+Q+1))

∣∣∣γQ+1<τ

]
.

The ADP policy with respect to Lr,r′,τ is called the truncated microsimulation
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policy. Two different sets of coefficients r and r′ must be used with this policy

to account for the approximations of J̃ and J respectively.

3.6.2 Limiting Behavior of the Truncated Microsimulation

Value Function Approximation

The truncated microsimulation policy attempts to balance the more precise es-

timation of longer microsimulations with the computational effort required by

such simulations. Since the computational effort required to compute the trun-

cated microsimulation policy generally increases with the threshold time τ it is

natural to ask how the policy performs with reduced computational effort, i.e.,

as τ goes to zero.

The idea behind the limiting behavior argument is that the truncated mi-

crosimulation value function approximation Lr,r′,τ should be very close to that

of the post-decision value function approximation L̃r when τ is small because

the system has had little time to change between the two evaluation points.

This idea holds provided that we can show that the probability of having an

event in the interval [t(Sk), t(Sk) + τ) goes to zero as τ goes to zero. Indeed, if

we consider all sample paths starting at S+
k , then we can always find a τ > 0

such that τ is less than the time of the next state transition t(Sk+1) provided that

t(Sk+1) 6= t(Sk).

There are, however, some states where this is not true. If a clock ti(Sk) has

reached the maximal value of the support of the associated distribution, then

an immediate event will occur. Let B denote the set of states in S where this
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happens. Assuming non-atomic interarrival distributions and service distribu-

tions, we can show that the probability of getting an immediate event starting

from any state not in B is zero, and we can further show the following result,

the proof of which is in Appendix A.3.

Proposition 3.3. Assume the interarrival distributions and service distributions of the

DEDS are non-atomic. If P (S0 /∈ B) = 1 then P (∃k : t(Sk+1) = t(Sk)) = 0, i.e., if S0

is not in B w.p.1 then the probability of any two events occurring at the same time is

zero.

Proposition 3.3 implies that, assuming P (S0 /∈ B) = 1, t(S0) < t(S1) <

t(S2) < . . . with probability 1. Whenever the event times are strictly increas-

ing we can find a time τk s.t. t(Sk) + τk < t(Sk+1) for any k ≥ 0. Thus

limτ↓0 P (t(Sk) + τ < t(Sk+1)) = 1 for all Sk ∈ S.

Assuming J , J̃ , and c are bounded, we can bound the two expectations in

Lr,r′,τ (see (3.16)) by a function of E [Q], the expected number of non-decision

events in (t(Sk), t(S − k) + τ). We further assume that the rate function of the

arrival process is bounded, and hence, the expected number of arrivals on any

finite interval is finite. The number of events on any interval can be bounded

by twice the number of arrivals (one event for the arrival and one event for the

service completion) plus a finite constant depending on the initial state. Thus

the two expectations in Lr,r′,τ must be finite. This is sufficient to state and prove

our final result, the proof of which is given in Appendix A.3.

Theorem 3.4. Assume that P (S0 /∈ B) = 1, that J̃r, for a fixed r, and c are bounded,

and that J̃r(·) is continuous in T (·) (for any fixed remaining state components). Then

for any bounded ADP approximation architecture Jr′

lim
τ↓0

Lr,r′,τ (s) = L̃r(s) ∀s ∈ S.
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Thus the function defining the post-decision state policy is the limit of the function

defining the truncated microsimulation policy as the truncation time goes to zero (for

any bounded ADP approximation architecture).

The key arguments in the proof of Theorem 3.4 are as follows. Since Lr,r′,τ is

a minimum over a finite number of convergent sequences we can interchange

the order of the limit and the minimum in Lr,r′,τ . By Proposition 3.3 and the fact

that the expectations of Lr,r′,τ are finite,

lim
τ↓0

Lr,r′,τ (Sk) = min
x∈X (Sk)

lim
τ↓0

J̃r(S
+
k (τ, x))

= min
x∈X (Sk)

J̃r(lim
τ↓0

S+
k (τ, x)) by the continuity assumption on J̃

= min
x∈X (Sk)

J̃r(S
+
k (x)) by the construction in Section 3.4.1.

Thus as the simulation threshold time goes to zero the function defining the

truncated microsimulation policy converges to the function defining the post-

decision state policy. This theorem holds under very general conditions that are

not specific to the ambulance redeployment problem.

The post-decision state ADP policy has the overwhelming computational

advantage of not needing to perform Monte Carlo microsimulations to approx-

imate expectations. Given an approximation architecture J̃r, the only computa-

tion required to make a decision is computing the minimum of J̃r over a finite

(and reasonably small) set. Consequently, tuning post-decision state policies

with direct search methods becomes computationally feasible even with much

higher dimensional problems than those of Section 3.5.
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3.6.3 Computational Results

Melbourne is the second largest city in Australia with about 4 million residents.

We model the ambulance operations of Melbourne using a discrete-event simu-

lation having 97 ambulances, 87 ambulance bases, and 22 hospitals. The emer-

gency call arrival model divides the Melbourne area into 10,000 grid cells and

time-dependent arrival rates are based on historical data. Additionally, the am-

bulances follow shift schedules similar to those found in practice. The travel

model used in the simulation is a deterministic shortest-path calculation on a

detailed road network. Again, this model is realistic but not real.

The ADP policies used in this section are defined by the post-decision state

ADP formulation defined in (3.14). The parameterized approximation architec-

ture J̃r used by the post-decision state ADP has the same form as the approxi-

mation architecture Jr (as described in Section 3.4.2); however, the coefficients

for these two approximation architectures are distinct.

Figure 3.3 shows the results of the least squares and Nelder-Mead tuning

methods for Melbourne using the post-decision state ADP formulation. Since

this approximation architecture has one basis function per ambulance base there

are 87 basis functions used in the approximation architecture, and the ADP

policy parameter tuning problem is an 87 dimensional problem. In this high-

dimensional space the NUOBYQA method is computationally infeasible and

hence it is not included in the results. The static policy used to generate the

initial policy for the tuning approach has 26.7% ± .1% lost calls. The best pol-

icy found by the least squares based fitting procedure has 31.3% ± .1% lost

calls which is significantly worse than the inital static policy. The Nelder-Mead

search method was able to find a policy with 25.8%± .1% lost calls, a practically
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significant improvement over the static policy of about 0.9%.
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Figure 3.3: ADP Coefficient Tuning Results for Melbourne, Australia

The direct search tuning in Figure 3.3 required approximately 12.5 hours of

computation time on a 2.66 Ghz processor whereas one function evaluation of

the simulation-based ADP policy on Melbourne requires over 5.5 hours. With-

out the post-decision state formulation such an extensive tuning process would

have required over one year of computation time given the same processing ca-

pacities. Thus a direct search tuning method coupled with a post-decision state

formulation is able to decrease the computational effort used to tune the ADP

policy while simultaneously finding superior policies.
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3.7 Conclusion

Ambulance redeployment policies can improve EMS response times within cur-

rent resources. By altering the positioning of ambulances in real-time EMS

providers are better able to respond to gaps in coverage that occur due to inher-

ent uncertainties involved in emergency services. ADP is an appealing frame-

work for implementing ambulance redeployment because it directly accounts

for the randomness in the system while maintaining computational feasibility

for real-time decision support.

Unfortunately, standard tuning approaches for ADP policies have limita-

tions that may prevent the resulting ADP policies from performing as well

as possible within a given approximation architecture. These limitations were

shown both theoretically for a sample problem and empirically for two differ-

ent ambulance redeployment scenarios. In both of these scenarios direct search

methods were able to find ADP policies with significantly better performance

than the best policies found otherwise.

The benefit of direct-search tuning is that it tunes ADP policy parameters

based directly on the performance resulting from those parameters, rather than

indirectly through value-function fitting. This benefit, however, comes with the

cost of higher computational requirements than typically required for other ap-

proaches. Using a post-decision state representation the computational burden

for tuning associated ADP policies is within computational limitations–even in

high-dimensional tuning problems.

The post-decision state formulation of a problem may seem foreign and

perhaps forced at first, but we show that, under general conditions, the post-
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decision state ADP policy is actually the limit of a general truncated microsim-

ulation policy which is based on the standard simulation-based ADP formula-

tion. As such, the post-decision state ADP policy can be viewed as the limiting

policy of simulation-based ADP policies when the computational budget for

simulations goes to zero.
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CHAPTER 4

EQUIVALENCE RESULTS FOR APPROXIMATE DYNAMIC

PROGRAMMING AND COMPLIANCE TABLE POLICIES FOR

AMBULANCE REDEPLOYMENT

4.1 Introduction

Ambulance redeployment is the practice of repositioning ambulances based

on real-time information to provide better emergency medical service (EMS)

throughout a given region. One example of this practice would be relocating

an idle ambulance to an area with no ambulances currently available so that the

EMS provider could respond quickly to an additional call that may arrive in

that area.

One common method used for ambulance redeployment is a compliance ta-

ble (CT) policy. A CT policy dictates the number of ambulances that should

be assigned to each base given the number of ambulances currently available.

The system is said to be in compliance (with respect to a given CT policy) when

each base has the appropriate number of ambulances assigned to it. In prac-

tice, a system is considered compliant when the ambulances are actually located

at the designated bases, but for simplicity we consider the system to be com-

pliant as soon as ambulances are assigned to the designated bases although the

ambulances may still be in transit.

The underlying idea behind a CT policy is to ensure ambulances are posi-

tioned to achieve the best performance possible given the number of currently

available ambulances. One shortcoming of this approach is that each time an
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ambulance becomes busy or becomes free all available ambulances may be re-

quired to move to reach compliance. Ambulance crews find frequent reloca-

tions extremely frustrating. Consequently, nested compliance table (NCT) poli-

cies, CT policies designed so that at most one ambulance must relocate to reach

compliance when the number of available ambulances changes, are used. NCT

policies based upon deterministic models of ambulance redeployment can be

obtained using integer programming; however, the integer programs are hard

to solve for large EMS operations (Gendreau et al. (2006)). Alanis et al. (2010)

gives another approach that approximates the performance of a fixed NCT pol-

icy quickly and can be used within a search procedure.

An alternative method uses approximate dynamic programming (ADP) to

compute redeployment decisions dynamically as ambulances become busy or

free as in Chapters 2 and 3. The ADP method models ambulance redeploy-

ment as a Markov decision process and approximates the value function of this

model. Similar to a dynamic programming (DP) policy, an ADP policy makes

redeployment decisions to minimize the sum of immediate costs and expected

future costs, as represented by the approximate value function. ADP policies

have the advantage of being able to use full state information, including the

location and status of each ambulances (e.g., at call scene, transporting patient

to hospital), when making redeployment decisions as opposed to CT policies

which only use the number of ambulances assigned to each base when making

redeployment decisions. Disadvantages of implementing ADP policies include

the necessity of approximating the value function and the complexity of the re-

sulting policies as compared to NCT policies.

Bridging the gap between these two methods, we define a class of ADP poli-
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cies for ambulance redeployment called ADP-CT polices and show that they

are equivalent to the class of NCT policies. The equivalence of these two classes

of policies, and the transformations between them, are important because they

provide a means to design NCT policies using standard ADP tuning methods

such as approximate linear programming (Schweitzer and Seidmann (1985) and

de Farias and Van Roy (2003)), temporal-difference learning (e.g., Sutton (1988)),

and others, or direct-search simulation optimization methods on a continuous

space (e.g., as in Chapter 3). Once an acceptable ADP-CT policy has been found,

the equivalent NCT policy can be readily computed and used as a policy that is

intuitive, easy to use, and easy to implement.

It is not uncommon for an EMS system to be out of compliance for a pe-

riod of time at a dispatcher’s discretion due to information that may not be

contained within the ambulance redeployment model (e.g., heavy traffic condi-

tions, special events, additional ambulances that will be available soon). NCT

policies provide no systematic way to return to a compliant state. Often EMS

dispatchers must rely on their own intuition to return the system to compliance.

In contrast, if started in a non-compliant state (i.e., there is at least one base that

does not have the appropriate number of ambulances assigned to it), we show

that an ADP-CT policy will return to a compliant state after at mostD redeploy-

ments, where D has a simple expression.

In Section 4.2 we formally define the NCT and ADP-CT policies. In Sec-

tion 4.3 we show that, provided the system is in compliance, the two classes of

policies are equivalent, and we define procedures that can be used to transform

between an ADP-CT policy and the equivalent NCT policy. In Section 4.4 we

examine the conditions required to define an ADP-CT policy and show that if
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the system is out of compliance an ADP-CT policy will naturally return to a

state of compliance. Section 4.5 concludes.

4.2 Problem formulation

Consider an ambulance redeployment problem having N ambulances and B

bases, or locations at which an ambulance may sit idle waiting for future calls.

Although unnecessary for our results, we believe it worthwhile to under-

stand how a typical ambulance redeployment model may be constructed. When

a call arrives it is assigned to the closest available ambulance. If a call arrives and

there are no ambulances available the call is placed on a waiting list. Calls on

the waiting list are served in the order of arrival by ambulances as they become

free. After being assigned a call the ambulance travels to the call location and

spends a random amount of time treating the patient at the scene. Some patient

treatments will be completed at the scene, while others will require transport to

a hospital. In the former case the ambulance becomes available to serve other

calls. In the latter case, the ambulance transports the patient to a hospital and

spends time transferring the patient to the hospital staff. After this is completed

the ambulance becomes available to serve other calls. In either case, the newly

freed ambulance will travel to a base as dictated by the redeployment policy if

there are no calls waiting.

One main goal of EMS providers is to reduce the response time, i.e., the

time elapsed from when an emergency call was received to the time when an

ambulance arrives on scene.
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Chapter 2 provides additional details on an ambulance redeployment model

formulation, and Maxwell et al. (2009) gives additional information on simula-

tion procedures.

4.2.1 NCT policy formulation

To formalize the concept of an NCT policy we let the allocation

An = (an(1), . . . , an(B)) s.t.
B∑
b=1

an(b) = n

denote the number of ambulances, an(b), assigned to base b (either idle at b or

traveling to b) where n is the number of ambulances available. An NCT is de-

fined as a collection of allocations {An}Nn=0 satisfying

B∑
b=1

|an(b)− an−1(b)| = 1 for 0 < n ≤ N, (4.1)

and an NCT policy redeploys ambulances according to a given NCT. Condition

(4.1) ensures that if an ambulance becomes busy or becomes free, then at most

one ambulance must move for the system to remain in compliance. For simplic-

ity, we assume that the NCT policy makes redeployment decisions involving as

few ambulances as possible (i.e., at most one ambulance is redeployed at each

decision point).

4.2.2 ADP-CT policy formulation

The ADP-CT policy formulation requires a post-decision state representation of

approximate dynamic programming. We keep the amount of detail given be-

low on this formulation brief, but Powell (2007) gives an extensive explanation
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of the topic and Chapter 3 gives a formulation specific to ambulance redeploy-

ment. The post-decision state S+
t (x) at a time t is the state the system enters

immediately after choosing action x ∈ X (St) from state St. We then choose the

action x that achieves the minimum in

min
x∈X (St)

K∑
k=1

γkfk(S
+
t (x)). (4.2)

Here fk are basis functions that attempt to capture the essence of the problem,

and γk are tunable parameters.

We wish to establish a relationship between ADP policies and NCT policies,

so we assume that the ADP policy only makes decisions when an ambulance

becomes either free or busy. We refer to these two decisions as assignment and

redeployment decisions respectively.

Let (n1, . . . , nB) denote the number of ambulances assigned to base b =

1, . . . , B when the system is in state St. Suppose we can rewrite (4.2) so that

we have one basis function φb for each base b, and each basis function only de-

pends upon the number of ambulances assigned to base b in state S+
t (x). Thus

for assignment decisions we can rewrite (4.2) as

min
r∈{1,...,B}

B∑
b=1

αbφb(nb + 1{b=r}), (4.3)

where φb(nb) represents the basis function for base b for any state in which nb

ambulances are assigned to base b, r denotes the base to which the ambulance

will be assigned, and αb are tunable parameters. Similarly, for redeployment

decisions we can rewrite (4.2) as

min
ro,rd∈{1,...,B}

B∑
b=1

αbφb(nb − 1{b=ro} + 1{b=rd}), (4.4)
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where ro denotes the base from which we redeploy an ambulance (the redeploy-

ment origin) and rd denotes the base to which we redeploy the ambulance (the

redeployment destination). Chapter 3 gives an example of a post-decision state

ADP policy for ambulance redeployment satisfying these conditions on φb and

discusses a method to tune the αb parameters.

For the assignment decision, (4.3), nb denotes the number of available ambu-

lances assigned to base b before the newly freed ambulance has been assigned to

a base, and for the redeployment decision, (4.4), nb denotes the number of avail-

able ambulances assigned to base b after the ambulance assigned to the new call

becomes busy but before any redeployment decision is made. If there are mul-

tiple optimal solutions in (4.3) we assume a lexicographical ordering on nr then

r and in (4.4) we assume a reverse lexicographical order on nro then ro and then

a lexicographical ordering on nrd then rd. If the optimal solution of (4.4), say, r∗o

and r∗d, satisfies r∗o = r∗d then no redeployment is made (as no improvement in

the approximate value function can be attained through redeployment). Let

φ+
b (nb) = αb (φb(nb)− φb(nb + 1)) ,

and assume that φ+
b (nb) is non-increasing in nb for each b. For convenience we

let φ+
b (nb) =∞ for nb < 0. An ADP policy satisfying these assumptions is called

an ADP-CT policy.

The assignment and redeployment decisions made by an ADP-CT policy

may be rewritten in terms of φ+
b . For the assignment decision, (4.3) can be writ-

ten as
B∑
b=1

αbφb(nb)− max
r∈{1,...,B}

φ+
r (nr), (4.5)
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and for the redeployment decision, (4.4) can be written as

B∑
b=1

αbφb(nb)− max
ro,rd∈{1,...,B}

y(ro, rd) (4.6)

where

y(ro, rd) =


0 if ro = rd

φ+
rd

(nrd)− φ+
ro(nro − 1) otherwise

.

4.3 Equivalence of ADP-CT and NCT policies

To establish the equivalence of ADP-CT and NCT policies we define a new am-

bulance redeployment policy, the total ordering (TO) policy. The TO policy is

not of interest on its own, but will prove useful in showing the equivalence of

ADP-CT and NCT policies. Next, we define transformations that convert an

NCT policy to a TO policy (and vice versa) and an ADP-CT policy to a TO pol-

icy (and vice versa). These transformations allow us to show that when starting

in compliance, a policy is an ADP-CT policy if and only if it is an NCT policy.

To define the TO policy, we let the TO matrix T = [ti,j] denote a B × N

matrix such that each row is non-increasing, i.e., tb,n ≥ tb,n′ for all n′ > n. Let

g(k) ∈ {1, . . . , B} denote the row containing the kth largest element of T (as-

sume lexicographical ordering on b then n for ties).

Similar to the ADP-CT policy, the TO policy makes an assignment decision

when an ambulance becomes free and a redeployment decision when an ambu-

lance becomes busy. For a TO policy these decisions are made as follows.

• Assignment: If there are n < N ambulances available and another ambu-

lance becomes free, assign it to base g(n+ 1).
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• Redeployment: If there are n > 0 ambulances available and an ambulance

assigned to base b becomes busy (leaving n− 1 available ambulances) and

g(n) 6= b then redeploy an ambulance from base g(n) to b.

4.3.1 NCT and TO policy transformations

Let J denote the transformation from a TO policy p to an NCT policy J(p) de-

fined as follows:

1. Set A0 = (0, . . . , 0),

2. For n = 1, . . . , N , set

An = (an−1(1) + en(1), . . . , an−1(B) + en(B))

where en(b) = 1{g(n)=b}.

Since
∑B

b=1 an(b) = n for 0 ≤ n ≤ N and
∑B

b=1 |an(b)− an−1(b)| = 1 for 0 < n ≤

N , {An}Nn=1 defines an NCT policy. Let J−1 denote the transformation from an

NCT policy p to a TO policy J−1(p) defined as follows:

1. Initialize T as a B ×N matrix of zeros,

2. For n = 1, . . . , N , set tb,kb = N − n+ 1 where b satisfies an(b) > an−1(b) and

kb is the smallest integer such that tb,k = 0.

Since the rows of T are non-increasing we have that T is a total order matrix

which defines a TO policy. The system is said to be in compliance with respect

to a TO policy p when it is in compliance with respect to the NCT policy J(p).

102



Lemma 4.1. Provided the system starts in compliance, a redeployment policy is an

NCT policy if and only if it is a TO policy.

The key argument in Lemma 4.1 is that the transformations J and J−1 pro-

duce equivalent policies so that given any NCT or TO policy we can find an

equivalent TO or NCT policy respectively by applying the appropriate transfor-

mation. The proof of Lemma 4.1 is contained in B.1.

4.3.2 ADP-CT and TO transformations

LetK denote the transformation from an ADP-CT policy p to the TO policyK(p)

defined by setting

T =


φ+

1 (0) . . . φ+
1 (N − 1)

...
...

φ+
B(0) . . . φ+

B(N − 1)

 .

Since the φ+
b are non-increasing we have that the rows of T are also non-

increasing, hence T is a total order matrix and defines a TO policy. Let K−1

denote the transformation from a TO policy p to the ADP-CT policy K−1(p) de-

fined by setting all αb = 1 and setting φb(n) =
∑N

i=n+1 tn,i for b = 1, . . . , B,

n = 0, . . . , N . Then

φb(0)− φb(1) = φ+
b (0) = tb,1

...

φb(N − 1)− φb(N) = φ+
b (N − 1) = tb,N

φb(N) = 0.

Since the entries of each row of T are non-increasing we have that φ+
b is non-

increasing. Thus this definition of αb and φb define an ADP-CT. The system
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is said to be in compliance with respect to a ADP-CT policy p when it is in

compliance with respect to the NCT policy J(K(p)).

Lemma 4.2. Provided that the system starts in compliance, a redeployment policy is an

ADP-CT policy if and only if it is a TO policy.

The TO policy ensures that if there are n ambulances available they are as-

signed to the bases corresponding to the n largest elements of the TO matrix.

The ADP-CT policy makes decisions by maximizing specific functions of φ+
b

and nb. The key concept of Lemma 4.2 is showing that the ADP-CT maximiza-

tions result in the same decisions as the TO policy. The proof of Lemma 4.2 is

contained in B.1.

4.3.3 Equivalence results

Using the policy transformations in Section 4.3.1 and Section 4.3.2 we can show

the following equivalence result for ADP-CT and NCT policies.

Theorem 4.3. Provided the system starts in compliance, a policy is an ADP-CT policy

if and only if it is an NCT policy.

Proof. Follows directly from Lemma 4.1 and Lemma 4.2.
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4.4 Additional results

4.4.1 Interpreting φ+b values

As illustrated by (4.5) and (4.6), decisions in an ADP-CT policy are determined

by maximization over φ+
b values. Intuitively φ+

b (nb) represents the expected ben-

efit achieved by assigning an additional ambulance to base b when there are

already nb ambulances stationed there, where benefit is measured by the basis

function φb and weighted by αb.

This interpretation of φ+
b is somewhat limited because any ADP-CT policy

with an identical ordering of φ+
b (nb) values for b = 1, . . . B and nb = 0, . . . N

would be an identical policy—even if some or all of the φ+
b values were negative.

On the other hand, it is always possible to add a constant to each φb function to

obtain an equivalent policy where the φ+
b values are all non-negative.

4.4.2 Necessity of non-increasing φ+b

Consider relaxing the constraint that φ+
b (nb) be non-increasing for an ADP-CT

policy. Then consider an ADP-CT policy defined by the matrixφ+
1 (0) φ+

1 (1) φ+
1 (2)

φ+
2 (0) φ+

2 (1) φ+
2 (2)

 =

2 4 1

3 1 1

 .

Starting from zero available ambulances we assign the first ambulance to

base 2, the second ambulance to base 1, and the third ambulance to base 1 as

well. In particular, this implies that the NCT policy J(K(p)) has allocations
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A1 = (0, 1), A2 = (1, 1), and A3 = (2, 1).

Now consider the case when there are three ambulances available in the

compliant allocation A3 = (2, 1) and an ambulance from base 1 is assigned to

a call. So n = 2 and (n1, n2) = (1, 1). At this point the ADP-CT policy makes

a redeployment decision to move an ambulance from base 2 to base 1 since

φ+
1 (1)− φ+

2 (0) = 4− 3 = 1 > 0. This results in both ambulances at base 1 which

contradicts A2 . Hence this policy does not define an NCT policy.

The key point is that since the ADP-CT policy only maximizes over a subset

of the corresponding TO matrix at each decision (rather than considering the

total ordering of the elements in the matrix) we must require that each row of

the TO matrix be non-increasing.

4.4.3 Convex functions φb satisfy non-increasing φ+b (nb)

Assume αb > 0. We must show φ+
b (nb) ≥ φ+

b (nb + 1), i.e.,

αb(φb(nb)− φb(nb + 1)) ≥ αb(φb(nb + 1)− φb(nb + 2))

⇐⇒ φb(nb)− φb(nb + 1) ≥ φb(nb + 1)− φb(nb + 2)

for 0 ≤ nb ≤ N − 2. If φb is a convex function (or midpoint convex function) we

know that

φb(nb + 1) ≤ φb(nb) + φb(nb + 2)

2
,

and the desired result holds. Likewise, if αb < 0 a concave φb will satisfy non-

increasing φ+
b (nb).
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Messerli (1972) shows that the Erlang loss of a queue B(n, a) with n servers

and offered load a satisfies

B(n, a)−B(n+ 1, a) > B(n+ 1, a)−B(n+ 2, a).

Thus for φb(nb) = B(nb, ab), where ab denotes the offered load for base b, and

non-negative αb we have that that φ+
b (nb) is non-increasing. In particular, this

implies that if we assume emergency calls arrive according to a homogeneous

Poisson process and that the call location is randomly chosen according to a

fixed probability distribution, then the ADP policy in Maxwell et al. (2010a) is

an ADP-CT policy and hence equivalent to an NCT policy.

4.4.4 Out-of-compliance robustness

If started from a compliant state, the NCT and ADP-CT policies, as defined in

Section 4.2, will always remain in a compliant state. In practice, however, it is

quite common that EMS dispatchers do not strictly follow compliance table rec-

ommendations and the system enters a state of non-compliance. After a period

of time of non-compliance it is often desirable to return to a compliant state.

Unfortunately, an NCT policy does not prescribe a systematic way of reach-

ing compliance; hence dispatchers are often left to use their own judgment to

return to compliance. On the other hand, when initiated out of compliance an

ADP-CT policy will return to a state of compliance after at most N redeploy-

ments.

Theorem 4.4. Given a current allocation (h1, . . . , hB) where
∑B

b=1 hb = n and the

compliant allocation for n free ambulances (n1, . . . , nB), an ADP-CT policy returns to
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compliance after at most D redeployments, where D =
∑B

b=1 [nb − hb]+ is the total

number of ambulances needed to bring the under-staffed bases into compliance.

Proof. The current allocation can only change through an assignment or rede-

ployment decision.

• Assignment: When an ambulance becomes free it will be sent to the base

r achieving maxr φ
+
r (hr). If D > 0 we know that r corresponds to a base

that has fewer ambulances assigned to it than the compliance allocation

dictates. By performing the assignment we reduce D by one; however,

since there are now n + 1 ambulances available a new compliance allo-

cation is used, and this new allocation may cause D to increase by one if

dg(n+1) ≤ ng(n+1), i.e., if the base to which the (n + 1)th ambulance would

normally be assigned to under compliance is not currently over-staffed.

Hence the number of discrepancies from an assignment either decreases

or stays the same.

• Redeployment: When an ambulance becomes busy by responding to a

call an ambulance will be redeployed to base rd from ro where rd and r0

achieve the maximum of (4.6). If D > 0 we know that φ+
rd

(hrd) will be

maximized by a base rd with too few ambulances assigned to it (i.e., hrd <

nrd), and φ+
ro(nro − 1) will be minimized by a base ro having too many

ambulances assigned to it (i.e., hro > nro). With the ambulance becoming

busy, the compliance allocation moves from having n ambulances to n− 1

ambulances; however, this change cannot cause a base to become more

under-staffed than it already is–D either decreases by one or remains the

same. Thus, as a result of the redeployment,D is decreased by at least one.
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Hence after at most D redeployments we have that D = 0 and the system is in

compliance.

4.5 Future Work

The equivalence relationship between ADP-CT and NCT policies opens up a

number of possibilities for future work including designing specific search pro-

cedures for NCT policies via ADP tuning methods and for adapting NCT poli-

cies to time-dependencies inherent in actual systems. For example, when con-

sidering two sets of ADP coefficients, one may check a simple system of inequal-

ities to determine if the coefficients induce the same NCT. This verification pro-

cess could be integrated into simulation optimization routines to guide search

procedures and stopping rules. Similarly, given a specified NCT policy, one may

solve a system of linear inequalities to find ADP-CT coefficients that induce that

NCT policy (if feasible) for a given set of basis functions. One may also choose

to optimize over a set of partial NCT policies. For example, local regulations

or political concerns may dictate the positions of the first five ambulances in

the NCT or specify that a given base must have at least as many ambulances as

some other base. These restrictions can be added as additional linear inequali-

ties to test the feasibility of operating such a system as an ADP-CT (for a set of

basis functions), and if feasible, the set of solutions to the inequalities dictates

a search space for optimization procedures to find the best NCT satisfying the

constraints.

Additionally, the result of Theorem 4.4 provides an elegant way to handle

the time-dependent call arrival process of actual EMS systems. One common
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approach for such systems is to formulate different NCTs for different periods

of the day or week. However, as in out-of-compliance situations, dispatchers

are left to their best judgment on how to move from one NCT to another at the

appropriate time. The behavior of multiple NCTs can be duplicated by changing

the coefficients in an ADP-CT value function approximation, and Theorem 4.4

guarantees that the system will return to compliance after a small number of

redeployments without dispatcher intervention. Alternatively, one may design

time-dependent basis functions and formulate a set of linear inequalities to find

a single set of coefficients (if any) that will induce the appropriate NCTs at the

appropriate times.
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CHAPTER 5

PERFORMANCE BOUNDS FOR AMBULANCE REDEPLOYMENT

5.1 Introduction

Emergency medical service (EMS) providers are responsible for responding to

emergency calls, providing medical assistance to patients, and transporting pa-

tients to hospitals as necessary. Typically, EMS providers are required by con-

tract to respond to a certain percentage of emergency calls within a specified

time threshold. A common measure of performance is the percent of “lost”

calls, or calls having response times, i.e., the time between when an emergency

call is received and the time an ambulance first arrives at the call scene, greater

than the performance threshold, say 8 minutes, in a set time interval, say one

month. One method used by EMS providers to reduce response times is that of

ambulance redeployment. Ambulance redeployment is the practice of reposi-

tioning idle ambulances based on real-time information in an attempt to reduce

expected response times for future calls.

The ambulance redeployment literature provides multiple methods to com-

pute ambulance redeployment policies. Gendreau et al. (2001) use a determin-

istic model to formulate a mixed-integer program that is solved in real-time

whenever a redeployment decision is required (see also Brotcorne et al. (2003),

Richards (2007), and Nair and Miller-Hooks (2009)). Solving this mixed-integer

program can be computationally intense and a parallel computing system or

heuristic solution method is typically used to make redeployment decisions

within real-time constraints.
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Another approach is to calculate recommended locations for ambulances

conditional on how many ambulances are available. Dispatchers can then use

these pre-computed solutions to assign ambulances in real-time. One disad-

vantage of this approach is that the entire fleet of available ambulances may be

required to move each time an ambulance becomes free or becomes busy. Con-

sequently, the solutions are usually constructed so that no more than one am-

bulance must move during each redeployment. Policies of this type are called

nested compliance table (NCT) policies. Gendreau et al. (2006) uses an integer

program formulation to compute optimal NCT policies based upon a determin-

istic ambulance redeployment model; however, the complexity of the integer

program limits the application of this approach to large EMS systems. Alanis

et al. (2010) gives a method to approximate the performance of an NCT pol-

icy quickly, and this approximation could be used within a search procedure

to identify potential policies to evaluate further using highly detailed discrete-

event simulation models.

Berman (1981a,c,b) formulates the ambulance redeployment problem as a

dynamic program (DP) and solves for an optimal redeployment policy. One ad-

vantage of the DP approach is that it models the stochastic nature of the system

directly; however, due to computational difficulties arising from computing DP

policies in large state spaces this approach is only feasible for very small appli-

cations (e.g., one or two ambulances). More recent work further develops the

DP formulation in an attempt to gain insight into the structure of an optimal

policy (Zhang et al. (2010)) and to extend these results to larger systems (Zhang

(2010)).

To construct computationally tractable redeployment policies, Chapter 2 and
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Chapter 3 formulate ambulance redeployment as a Markov decision process

and use approximate dynamic programming (ADP) to compute a redeployment

policy. Andersson (2005) and Andersson and Vaerband (2007) use a similar ap-

proach via a heuristic “preparedness” function.

One difficulty common to all these approaches is obtaining a lower bound on

an optimal ambulance redeployment policy performance for reasonably sized

EMS systems. With the absence of a lower bound, policies are often compared

to benchmark policies to evaluate improvement. This is an effective way to

compare alternative policies but does not give any indication on how far these

policies may be from optimality.

A useful guide when evaluating the performance of a policy is the propor-

tion of “unreachable” calls, or the proportion of call arrivals that are too far from

all ambulance bases to be reached within the time threshold. Although useful

as a guide, the proportion of unreachable calls does not provide a lower bound

because an ambulance may respond to an emergency call while it is on the road

(i.e., not located at a base) and hence may respond to an unreachable call within

the time threshold.

Apart from using a lower bound as a benchmark to evaluate policies, a lower

bound on performance can also be used to calculate the minimal amount of re-

sources required to reach desired performance levels. Typically EMS providers

are required to bid on contracts that specify the maximum fraction of lost calls

allowed for different call types over a given time interval. To accurately submit

a bid, an EMS provider must estimate the resources required, e.g., ambulances

and ambulance crews, to meet the specified performance levels. Lower bound

calculations on the number of resources needed can then be used to guide the
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EMS provider in evaluating their resource requirements. Such lower bounds

could also be used by municipalities to evaluate the feasibility of bids submit-

ted by different EMS providers seeking the EMS contract.

In this paper, we formulate a computationally tractable lower bound on the

expected fraction of lost calls over a finite simulated time horizon. As far as we

are aware, this paper gives the first such lower bound. We derive this bound by

modeling the ambulance redeployment system as a multiserver queue where

servers represent ambulances and arrivals represent emergency calls. We then

construct a stochastic lower bound on the response time distribution of any am-

bulance redeployment policy and use this “optimistic” response time distribu-

tion to estimate the expected fraction of call arrivals when there are a given

number of ambulances available. We calculate the ambulance placements that

maximize coverage, i.e., the probability of reaching the next call within the

time threshold, conditional on the number of available ambulances, and apply

known comparison results for multiserver queues to show that the weighted

sum of these quantities is a lower bound on the performance of any redeploy-

ment policy.

The lower bound calculation supposes that ambulances are always posi-

tioned throughout the city to maximize coverage when in reality ambulances

are often stationed at only a few locations, e.g., ambulance bases. We tighten the

lower bound by incorporating information on the number of ambulances sta-

tioned at base. Specifically, we calculate the ambulance placements that maxi-

mize coverage for every possible number of available ambulances and available

ambulances stationed at bases. Since some of the ambulances are constrained to

be at bases the maximum coverage will be less than those in the unconstrained
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case. Because we cannot estimate the fraction of time that we have a given num-

ber of available ambulances and available ambulances stationed at bases for an

optimal policy, we estimate these quantities for a reference policy. As a result

we obtain a heuristic lower bound that is tighter than the previous bound.

Both the lower bound and the heuristic bound can be quite loose because the

lower bound calculation supposes that all ambulances that are not assigned to a

base are optimally located throughout the city to maximize coverage, which is

unlikely to be the case in practice. Consequently, we develop a stylized model of

ambulance redeployment where emergency calls are always responded to from

ambulance bases. This model is justified by empirical computations indicating

that the fraction of calls responded to from bases is quite large for the realistic

model. For the stylized model we show empirically that the lower bound is

quite tight.

The lower bound and heuristic bound may be used to get a lower bound

on the number of ambulances necessary to perform at a specified performance

level, but since these bounds are frequently quite loose, they are not likely to

be useful when trying to evaluate how much additional improvement might be

possible with ambulance redeployment policies. However, the performance of

ambulance redeployment policies on the stylized model are often very similar

to the performance on the more realistic model. Since the lower bound is quite

tight for the stylized model, it seems reasonable that this bound can be used as

an indication on what performance gains may be possible through improved

ambulance redeployment polices.

The rest of the paper is organized as follows. In Section 5.2 we develop

a model of ambulance redeployment. In Section 5.3 we construct a stochastic
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lower bound on the response time distribution for any redeployment policy,

and in Section 5.4 we formulate the lower bound and illustrate its performance

on a realistic case study. In Section 5.5 we heuristically improve the lower bound

by explicitly considering the proportion of ambulances idle at base conditional

on the number of ambulances available. Section 5.6 introduces the stylized

model of ambulance redeployment and shows that the lower bound calcula-

tion is fairly close to what can be achieved through known policies. Simulation

results from this stylized model are also compared with those of the model in

Section 5.2.

5.2 Problem Formulation

Consider an EMS region serviced by a fleet of N ambulances. When an emer-

gency call arrives the closest available ambulance is dispatched to the call. Am-

bulances that are traveling but not currently assisting a patient (e.g., an ambu-

lance has finished at the hospital and is returning to a base) are also considered

available and included in the calculation of the closest available ambulance. If

there are no ambulances available the call is placed on a waiting list and served

in the order they were placed on the list.

Upon arriving at the emergency scene, the paramedics give preliminary care

to the patient on scene. If the patient is unable to be successfully treated at the

scene the paramedics transport the patient to a nearby hospital and transfer the

patient to the hospital staff. The total service time for a patient is calculated as

the sum of the response time, on-scene time, transport time, and transfer time.

Example distributions for the on-scene time, transport time, transfer time, and
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destination hospital (if any) are described in Chapter 2. These times may de-

pend upon the location of the emergency call, but we require that, except for the

response time, they are independent of the location from which the ambulance

responded. For example, the choice of the destination hospital may be chosen

to be near the emergency scene but not the location the ambulance responded

from.

When an ambulance finishes assisting the patient, either at the scene or after

transferring the patient to a hospital, it becomes available to serve other calls.

If there are calls on the waiting list the ambulance is immediately dispatched

to serve the call that has been waiting the longest. If there are no calls on the

waiting list, an ambulance redeployment policy dictates which base the ambu-

lance should travel to. Upon reaching the destination base, the ambulance will

remain idle at that location until it is dispatched to an emergency call.

In addition to assigning destination bases when ambulances become avail-

able, an ambulance redeployment policy may also initiate “additional” rede-

ployments. Specifically, a redeployment policy may assign an available ambu-

lance that is idle at base or returning to a base to a new destination. The ambu-

lance will then travel to this new destination and wait for emergency calls there.

Although ambulance crews are often frustrated by frequent redeployments, for

purposes of constructing a lower bound we allow the ambulance redeployment

policy to make redeployment decisions to all ambulances as frequently as de-

sired. As such our lower bound results apply to any ambulance redeployment

policy.

We assume travel times are deterministic and non time varying. These as-

sumption are reasonable over short time intervals, say on the order of a few
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hours long, but are unlikely to be reasonable for extended periods of time or

during exceptional situations such as rush hour traffic. As such our lower

bound results apply over time intervals with similar travel times and must be re-

computed using different travel time models to incorporate time-varying travel

times.

We calculate travel times according to a network-based travel model. Specif-

ically, the path between any two points on the travel network is calculated to

have the minimal travel time. We allow call arrivals to occur off the network

and calculate the off-network travel time using the Manhattan distance from

the closest node on the network and a specified “off-network” driving speed.

Every path between two points must go through at least one network node and

may only have off-network travel at the beginning and end of the path.

We model ambulance redeployment following the approach in Section 3.4.1

without the requirement of a finite waiting list. Specifically we model the am-

bulance redeployment as anMt/G/N queue where theN ambulances are repre-

sented by servers and emergency calls are represented by arrivals to the queue.

We allow the rate of the arrival process to change over time but require that the

distribution governing the location of call arrivals be fixed. The service time

distribution depends upon the state of the queue at the time an ambulance is

dispatched to a call and the location of the call arrival (see Section 3.4.1 for a

detailed description of the state space).
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5.3 Stochastic Lower Bound on the Response Time

The motivation for the lower bound stems from the idea that if we could in-

stantaneously relocate all the available ambulances to new locations we could

ensure that the ambulances are always positioned to minimize the probability

that the next arriving call will be lost (as in Zhang (2010)). The performance of

such a policy, however, is not sufficient as a lower bound for any ambulance re-

deployment policy because optimizing the probability of reaching the next call

within the time threshold may lead to ambulance placements having very large

response times for certain call locations. Consequently, optimizing the proba-

bility of reaching the next call may increase service times which results in fewer

ambulances available and degrades performance.

To illustrate this concept consider a situation illustrated in Figure 5.1 where

there are two ambulance bases (squares), two demand points (circles) with the

first one having a slightly larger arrival rate than the second one, and one ambu-

lance serving the region. Assume that the travel time between the first base and

the first demand point is equal to the time threshold for lost calls, ∆, and that

the travel time from the second base to the first demand point is slightly larger

than the time threshold, say ∆ + ε. Assume that the travel time between the

second base and the second demand point is essentially zero and that the travel

time between the first base and the second demand point is slightly larger than

twice the time threshold, 2∆ + ε.

Given this situation the ambulance will always be positioned in the first base

since this allocation maximizes coverage. However the average response time

in this allocation is approximately 1.5∆. If the ambulance was positioned in the
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1 1 2 2

Figure 5.1: Two base maximum coverage example.

second base the average response time would be approximately .5∆. Thus by

allocating the ambulance to maximize coverage we have significantly increased

the utilization of the ambulance and have increased the amount of time that

there are no ambulances available to respond to emergency calls. If the ambu-

lance were placed in the second base the utilization of the ambulance would be

much less and the amount of coverage would only be slightly less than optimal.

Consequently the optimal allocation in this situation is likely to be at the second

base.

To overcome this limitation we construct an Mt/G/N queue with a service

time distribution that is a stochastic lower bound on the service times experi-

enced for any call, any number of ambulances available, and any location of

those ambulances at the time the call was received. We obtain this stochastic

lower bound by constructing a stochastic lower bound on the portion of the ser-

vice time that depends upon the ambulance locations, i.e., the response time,

and then convolving this lower bound with the remaining components of the

service time.

Let the random variable Rn denote an “optimistic” response time that is

stochastically smaller than the response time of any redeployment policy when

there are n ambulances available. We construct the cumulative distribution

function (cdf) of Rn, Fn(·), piecewise such that for any time t, the probability
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that a call is responded to within t minutes for any redeployment policy is no

larger than Fn(t).

To construct Fn we use an integer program (IP) formulation of ambulance

coverage to select ambulance locations that will maximize the region covered,

i.e., maximize the probability of reaching the next call within a given time

threshold t. To formulate this IP we first divide the EMS service region into

a set of disjoint regions R (e.g., a grid of equally sized cells), and let dr denote

the probability an arriving call will arrive in region r ∈ R.

Let K denote the total number of nodes in the travel network. Let c(k, r, t) =

1{δ(k,r)≤t} be a binary parameter that equals one if the travel time between node

k and region r, δ(k, r), is within t minutes (i.e., node k “covers” region r) and

0 if not. To construct a lower bound δ(k, r) must denote the distance from the

node k to the closest point in region r; however, for computational ease we use

sufficiently small regions and interpret δ(k, r) to be the distance from node k to

the centroid of region r.

Assume available ambulances are located at nodes of the travel network.

The maximal coverage IP for n ≥ 1 ambulances and a time threshold t ≥ 0 is

121



defined as

Ln(t) = max
∑
r∈R

drwr

s.t.
K∑
k=1

xk ≤ n

wr ≤
K∑
k=1

c(k, r, t)xk ∀ r ∈ R

xk ∈ {0, 1} for k = 1 . . . K

wr ∈ {0, 1} ∀ r ∈ R

where the decision variable xk indicates if an ambulances is stationed at node k.

The first constraint ensures that no more than n ambulances are used to calculate

the coverage probability, and the second constraint allows wr to be 1 only if

region r is covered by an ambulance located at node k with δ(k, r) ≤ t. Since

dr ≥ 0 for all r ∈ R we know that there is an optimal solution where wr = 1

if and only if region r is covered by an ambulance. Thus Ln(t) denotes the

maximal probability that a call will be responded to within t minutes when

there are n ambulances available.

Note that Ln(t), for n = 1, . . . N , satisfies the required condition on the cdf

of Rn at time t to ensure that Rn is stochastically smaller than the response time

of any ambulance redeployment policy facing any state (in terms of ambulance

location and status). Setting Fn(t) to Ln(t) for all t ≥ 0 would yield a suitable cdf

forRn, but is computationally intractable since there are an uncountable number

of response times t that must be considered. Instead assume we calculate Ln(t)

at a finite number of points t ∈ {t1, t2, . . . , tD} and construct a piecewise bound
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Figure 5.2: Stochastic Bound on Response Time for n ambulances.

on the cdf of Rn as follows:

Fn(t) =



Ln(t1) if t ≤ t1

...

Ln(tD) if t ≤ tD

1 if t > tD

.

Figure 5.2 illustrates this bound. The solid dots, Ln(ti), correspond to the opti-

mal objective value of the maximal coverage IP given the time threshold ti and

n available ambulances. The piecewise constant lines show the value of Fn(t)

for all t, and the dotted lines are representative response time distributions that

may occur through various placement of n ambulances.

Since Fn(t) ≥ Ln(t) for all t, Rn ∼ Fn is stochastically smaller than the re-

sponse time of any ambulance redeployment policy when there are n ambu-
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lances available. Furthermore, if additional computational power is available,

this bound can be refined by increasing the number of points at which the IP is

solved.

If there are no ambulances available when the call arrives it is placed upon

a waiting list and served when an ambulance becomes free and all calls preced-

ing it on the waiting list have had an ambulance dispatched to them. Conse-

quently, the response time distribution for the situation when there are no am-

bulances available is stochastically larger than the situation when there is one

ambulance available. To complete the lower bound response time distribution

we set L0(t) = L1(t) for all t ≥ 0 and hence R0 = R1 in distribution.

Consider an optimal redeployment policy, and let Q denote the ambulance

redeployment queueing system under this policy. Let Q̃ denote the ambulance

redeployment system when response times are given by Rn. Let pn and p̃n de-

note the expected fraction of calls that arrived when there were n ambulances

available in a finite time horizon of Q and Q̃ respectively. Since the response

time of Q̃ is stochastically smaller than the response time of Q we can show

that the number of available ambulances in Q̃ is stochastically larger than the

number of available ambulances in Q.

Lemma 5.1. Let the random variables X and X̃ denote the number of available am-

bulances at the time of a call arrival in a finite simulated time horizon of Q and Q̃

respectively, i.e., X and X̃ take value n with probability pn and p̃n respectively. Then

X � X̃ .

Proof. The response time is the only element of the service time that depends

on the ambulance’s location at the time it was dispatched to a call. Hence the
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response time is the only element of the service time that depends upon the re-

deployment policy used. Since the response time in Q̃ is stochastically smaller

than the response time in Q, the service time distribution for Q̃ is stochastically

smaller than that of Q. As a consequence, the number of calls in Q̃ is stochas-

tically smaller than the number of calls in Q for all time by Theorem 6.2.3 in

Stoyan (1983). Hence the number of available ambulances in Q̃ is stochastically

larger than that in Q at all times. Under Poisson arrivals, the probability n am-

bulances are available when a call arrives in a finite simulated time horizon is

equal to the time-average of the number of ambulances available in the queue.

Hence the desired result holds.

5.4 Lower Bound

Consider a finite simulated time horizon with response time threshold ∆. Let r

denote the expected fraction of lost calls and rn denote the expected fraction of

lost calls that arrived when there were n available ambulances in this simula-

tion. Let vn = 1−Ln(∆) denote the minimal expected fraction of lost calls when

there are n ambulances available achievable by any redeployment policy.

Theorem 5.2. The expected fraction of lost calls in a finite simulated time horizon can

be bounded below by
N∑
n=0

vnp̃n. (5.1)

Proof. Let X and X̃ be as defined in Lemma 5.1. Define the function v :
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{0, 1, . . . , N} → R by v(i) = vi and note that v is a non-increasing function.

r =
N∑
n=0

rnpn

≥
N∑
n=0

vnpn since rn ≥ vn for all n

= E [v(X)]

≥ E
[
v(X̃)

]
see, e.g., Proposition 9.1.2 in Ross (1996)

=
N∑
n=0

vnp̃n.

The values {p̃}Nn=0 can be estimated from a Mt/G/N queueing simulation

where the response time is given by Rn and the on-scene time, transport time,

and transfer time distributions are unchanged. Calculation of {vn}Nn=0 requires

solving at most N maximal coverage IPs. (If the threshold time ∆ was a value

used to compute the optimistic response time cdf then these IPs have already

been solved and vn can be computed from the optimal objective function value

of these IPs.) Consequently, the bound in Theorem 5.2 can be calculated by

solving multiple IPs to construct a stochastic bound on the response time and

simulating a queue to estimate the fraction of calls that arrive for each number

of available ambulances.

To illustrate the lower bound we consider the case study of Edmonton,

Canada as in Section 2.5. Note that the input parameters for this case study are

representative and are no indication of realistic conditions in Edmonton. Fig-

ure 5.3 illustrates the lower bound for each call arrival rate (solid curve) and the

performance of a sample policy (dashed curve) for a response time threshold of

8 minutes. We fixed the distribution of the call arrival locations and varied the
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call arrival rate along the x axis. The y axis represents the average proportion of

“lost calls” from 300 two-week simulations. The sample policy is an ADP rede-

ployment policy that was tuned for a call arrival rate of 6 calls/hr (see Chapter 3

for further details on the construction and tuning of the ADP policy). A call

arrival rate between 4 and 6 calls/hr is reasonable for this case study, but we in-

clude call arrival rates as low as 1 call/hr and as high as 12 calls/hr to illustrate

how the lower bound and sample policies perform in extreme situations.

The horizontal dashed line in Figure 5.3 represents the proportion of calls

that are “unreachable” given the base locations and the call location distribu-

tion, i.e., the proportion of calls that are more than 8 minutes from any base. At

a rate of 6 calls/hr empirical results from the ADP policy show that approxi-

mately 80% of calls are responded to from bases. Consequently, although the

level of unreachable calls does not give a lower bound on the proportion of calls

lost, it is unlikely the optimal policy will have performance significantly better

than this level.

As seen in the graphic, the gap between the lower bound and the sample

performance is quite wide (15% - 25%). The lower bound begins very near zero

and, as expected, increases as the call arrival rate increases, but the lower bound

does not surpass the level of unreachable calls until the very extreme call arrival

rate of 12 calls/hr. This indicates that the lower bound is probably quite conser-

vative.
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Figure 5.3: Sample Performance and Bounds on a Realistic Simulation
Model.

5.5 Heuristic Lower Bound

One reason the lower bound may be overly conservative is that the maximum

coverage IP formulation allows ambulances to be placed at any node in the

travel network. This is appropriate since ambulances may answer calls while

traveling between two locations, and hence an ambulance might respond to

an emergency call from any location. In practice, however, ambulances are

frequently stationed at only a relatively small number of network nodes cor-

responding to ambulances bases. According to our simulation results for call

arrival rates similar to what would occur in practice, the majority of emergency

calls are answered by ambulances idle at base. Restricting the maximum cover-

age IP to the set of bases would likely tighten the results, but it would no longer

bound the actual performance.
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One option is to use a reference policy to estimate the distribution of the

number of ambulances idle at bases conditional on the number of ambulances

available. A modification of the maximal coverage IP allows one to calculate

the maximum probability of reaching the next call within a time threshold t ≥ 0

when there are n ≥ 1 ambulances available and b ≤ n ambulances are idle at

base:

Ln(t, b) = max
∑
r∈R

drwr

s.t.
K∑
k=1

xk ≤ n

B∑
k=1

xk = b

wr ≤
K∑
k=1

c(k, r, t)xk ∀ r ∈ R

xk ∈ {0, 1} ∀ k = 1 . . . K

wr ∈ {0, 1} ∀ r ∈ R

where we assume without loss of generality that the firstB nodes in the network

correspond to bases. The second constraint is the only modification from the

original maximal coverage IP. This constraint requires that b ambulances must

be located at bases. Similar to Theorem 5.2 we can construct a bound via,

N∑
n=0

min{B,n}∑
b=0

(1− Ln(∆, b))p̃n,b, (5.2)

where p̃n,b denotes the expected fraction of calls that arrived when there were

n ambulances available of which b were idle at base in a finite simulated time

horizon of Q̃ under a reference redeployment policy.
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To compute (5.2), we first solve Ln(t, b) for n = 1, . . . , N , b = 0, . . . , n, and

for a finite set of times to construct a response time distribution Rn,b that is

stochastically smaller than the response time distribution for any ambulance

redeployment policy when there are n ambulances available of which b are sta-

tioned at bases (similar to the construction of the lower bound in Section 5.4).

We set L0(·, 0) = L1(·, 0) and hence R0,0 = R1,0. Then p̃n,b can be estimated (by

the fraction of call arrivals that arrived when there were n ambulances available

of which b were idle at base) from a finite time horizon simulation in which am-

bulances are redeployed according to a reference policy and response times are

distributed according to Rn,b.

The bound in (5.2) is only a heuristic lower bound on performance because

an optimal redeployment policy may have a different conditional distribution

for the number of ambulances idle at base than that of the reference policy. For

Edmonton, Canada this bound is shown as the green line in Figure 5.3. The ref-

erence policy used to estimate p̃n,b is the ADP policy shown in the same figure.

For a call arrival rate of 1 call/hour, this heuristic bound is near 12% lost

calls–about 3% below the proportion of unreachable calls. As the call arrival

rate increases, this bound surprisingly decreases. The bound drops to about 5%

at a call arrival rate of 6 calls/hour and then it increases at about the same rate as

the lower bound. The reason for the dip in the heuristic bound is that as the call

arrival rate increases the number of available ambulances in transit increases as

well. Consequently, fewer ambulances are idle at bases and the bound becomes

weaker. Although this heuristic bound is greater than the lower bound it is still

well below the level of unreachable calls for nearly the entire span of call arrival

rates. This indicates that, although it appears to improve on the lower bound,
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the heuristic bound is likely too conservative as well.

5.6 Stylized Model Bounds

We developed the heuristic bound by assuming the optimal policy had prop-

erties similar to a known policy and then using these properties to tighten the

bound. As an alternative approach we assume that all emergency calls are re-

sponded to from ambulances stationed at a base. To accommodate this assump-

tion without significantly reducing the number of ambulances available to serve

incoming calls we assume that ambulances arrive at their destination base as

soon as they are assigned to the base.

As mentioned earlier, when simulating the ADP policy with a call arrival

rate of 6 calls/hr about 80% of calls were served from ambulances idle at base.

This implies that assigning ambulances to the “right” bases is especially impor-

tant for good performance. The fact that calls can be responded to by an ambu-

lance already on the road does provide some improvement in performance, but

these improvements are likely to be smaller in magnitude than those achieved

by proper positioning of ambulances at bases.

Since the majority of calls are served from bases, the assumption that am-

bulances always respond from bases is likely to still provide a fairly good esti-

mate of policy performance. Additionally, assuming that ambulances arrive at

their destination base immediately after being assigned to it is likely to improve

the performance of a redeployment policy since ambulances will be positioned

in the “right” locations more rapidly than would occur otherwise. Empirical

results showing these improvements are illustrated later in this section (Fig-
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ure 5.5).

The maximal coverage IP for the stylized model is identical to that of the

original simulation model except that ambulances may only be assigned to the

first B nodes of the network travel model (i.e., the bases):

Λn(t) = max
∑
r∈R

drwr

s.t.
B∑
k=1

xk ≤ n

wr ≤
B∑
k=1

c(k, r, t)xk ∀ r ∈ R

xk ∈ {0, 1} ∀ k = 1 . . . B

wr ∈ {0, 1} ∀ r ∈ R,

and the lower bound for the stylized model is given by

N∑
n=0

(1− Λn(∆))ρ̃n,

where ρ̃n is estimated in an analogous manner as the other two bounds.

Figure 5.4 compares this lower bound with the sample performance of the

ADP policy in Figure 5.3 on the stylized model. The bound in this model is

much tighter than we observed with the original ambulance redeployment sim-

ulation model. In the region of practical importance, about 4 to 6 calls/hr, the

bound is only about 1% lower than the ADP policy.

It is worthwhile to understand how the lower bound depends on the two

aspects of our bounding technique. Recall that these two assumptions are as

follows:
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Figure 5.4: Sample Performance and Bounds on a Stylized Simulation
Model.

1. The optimal coverage assumption in which we assume ambulances are

always placed to maximize the probability of responding to the next call

within the time threshold

2. The optimistic response time assumption in which we assume response

times are stochastically smaller than the response times of any policy.

We can separate the effects of these two assumptions by calculating the bound

using only the first assumption. Specifically, we estimate the expected fraction

of call arrivals that occurred when there were n available ambulances in a finite

time horizon simulation of the ADP policy on the stylized model, ρn, and use

these estimates instead of ρ̃n when calculating the bound:
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N∑
n=0

(1− Λn(∆))ρn. (5.3)

The thin dashed curve in Figure 5.4 illustrates the bound decomposition (5.3)

over the call arrival range and shows the relative impact of each of these as-

sumptions. The first assumption contributes the most to the discrepancy be-

tween the ADP policy and the bound; but, the second assumption becomes

increasingly important as the call arrival rate increases. Additionally, as the

call arrival rate increases the gap between the ADP policy and the lower bound

increases. This is partially attributed to the growing impact of the second as-

sumption. It is likely that some of this discrepancy can also be attributed to the

fact that the ADP policy has not been tuned for such high call arrival rates. An

appropriately tuned ADP policy would likely perform better in this range of

call arrival rates.

Figure 5.5 compares the ADP policy performance and lower bound for the

stylized model (dotted and solid curves respectively) versus the observed per-

formance of the ADP policy on the realistic simulation model (dashed curve).

The results in the graph show that the performances of the ADP policy on

the realistic model and on the stylized model are very similar across a variety of

arrival rates. Based upon this relationship it seems reasonable to expect that the

fraction of lost calls in the realistic model are close to, and slightly larger, than

those of the stylized model. The performance of the ADP policy on the stylized

model is, in turn, bounded by the lower bound computation for the stylized

model. In this sense both the ADP policy performance and the lower bound

calculation for the stylized model are practically relevant.
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Figure 5.5: Comparison between the Performance in the Realistic and Styl-
ized Models.

Due to the assumption that ambulances can instantaneously move to new lo-

cations in the stylized model, there are some policies that work extremely well

in the stylized model but would perform very poorly on the realistic model

(e.g., policies that never place more than one ambulance at the same base). Con-

sequently, near-optimal performance in the stylized model does not necessarily

indicate near-optimal performance in the realistic model. Nevertheless, given

a policy designed for the realistic ambulance redeployment model, it is reason-

able that the performance of this policy on the stylized model can give some

indication on how close to optimal the policy may be for the realistic ambulance

redeployment model.
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APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Microsimulation Value Function Derivation

Let Q = Q(Sk, x) denote a random variable indicating the number of non-

decision states between state Sk and the next decision state given that we choose

decision x is state Sk. For all Sk ∈ S

J(Sk)=minx∈X (Sk)
E[c(Sk,x,Uk+1)+αJ(f(Sk,x,Uk+1))]

=minx∈X (Sk)
P (Q=0)E

[
c(Sk,x,Uk+1)+αJ(f(Sk,x,Uk+1))

∣∣∣Q=0

]

+P (Q=1)E

[
c(Sk,x,Uk+1)+αJ(f(Sk,x,Uk+1))

∣∣∣Q=1

]
+...

=minx∈X (Sk)
P (Q=0)E

[
c(Sk,x,Uk+1))+αJ(f(Sk,x,Uk+1))

∣∣∣Q=0

]

+P (Q=1)E

[
c(Sk,x,Uk+1)+αc(Sk+1,∅,Uk+2)+α2J(f(Sk+1,∅,Uk+2))

∣∣∣Q=1

]
+...

=minx∈X (Sk)

∑∞
q=0 P (Q=q)E

[∑q
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αq+1J(f(Sk+q ,xq ,Uk+q+1))

∣∣∣Q=q

]

=minx∈X (Sk)
E[

∑Q
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQ+1J(f(Sk+Q,xQ,Uk+Q+1))]

where x0 = x and xj = ∅ for j ≥ 1.

A.2 Truncated Microsimulation Value Function Derivation

Let Q = Q(Sk, x) denote a random variable indicating the number of non-

decision states between state Sk and the next decision state given that we choose

decision x is state Sk. Given a deterministic time τ > 0 letQτ = Qτ (Sk, x) denote

a random variable indicating the number of non-decision states between Sk and
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either the next decision state or the threshold time t(Sk) + τ (whichever comes

first) given that we choose decision x is state Sk.

Let Sk(τ, x) denote the random state S(t(Sk)+τ) given that S(t(Sk)) = S+
k (x)

and let S+
k (τ, x) denote the deterministic state Sk(τ, x) given that t(Sk+1) >

t(Sk) + τ , i.e., S(t(Sk) + τ) given that the last event before time t(Sk) + τ was

in state Sk and that action x was chosen in Sk. Thus on the event that there are

no decision events within τ time after state S+
k (x) the system will be in the ran-

dom state Sk(τ, x). Furthermore, if there are no events at all within τ time after

state S+
k (x) the system will be in the deterministic state S+

k (τ, x).

Let γ1 = t(Sk+1) − t(Sk) and γQ+1 = t(SQ+1) − t(Sk) denote the time before

the next event and the time before the next decision event respectively. For all

Sk ∈ S,

J(Sk) = min
x∈X (Sk)

E [c(Sk, x, Uk+1) + αJ(f(Sk, x, Uk+1))]

= min
x∈X (Sk)

P (τ ≤ γ1)E
[
c(Sk, x, Uk+1) + αJ(f(Sk, x, Uk+1))

∣∣∣τ ≤ γ1

]
+ P (γ1 < τ ≤ γQ+1)E

[
c(Sk, x, Uk+1) + αJ(f(Sk, x, Uk+1))

∣∣∣γ1 < τ ≤ γQ+1

]
+ P (γQ+1 < τ)E

[
c(Sk, x, Uk+1) + αJ(f(Sk, x, Uk+1))

∣∣∣γQ+1 < τ
]
.

We see that

E
[
c(Sk, x, Uk+1) +αJ(f(Sk, x, Uk+1))

∣∣∣τ ≤ γ1

]
= E

[
0 + c(Sk(τ, x), Uk+1) + αJ(f(Sk(τ, x), Uk+1))

∣∣∣τ ≤ γ1

]
= E

[
J̃(Sk(τ, x))

∣∣∣τ ≤ γ1

]
by (3.13)

= J̃(S+
k (τ, x)).

The first term of the expectation in right-hand side of the first equation is the

immediate cost incurred from state Sk to Sk(τ) (given decision x was chosen

137



in Sk), the second term is the immediate cost incurred from state Sk(τ) to Sk+1

(by definition of c(·, ·)), and the third term is the value function at state Sk+1

(by definition of f(·, ·)). The last equality holds because on the event τ ≤ γ1,

Sk(τ, x) = S+
k (τ, x) and J̃(S+

k (τ, x)) is a deterministic function of Sk, τ , and x.

Similarly,

E

[
c(Sk,x,Uk+1)+αJ(f(Sk,x,Uk+1))

∣∣∣γ1<τ≤γQ+1

]

=E

[∑Qτ
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQτ+1c(Sk+Qτ+1,xQτ+1,Uk+Qτ+2)

+αQτ+2J(f(Sk+Qτ+1,xQτ+1,Uk+Qτ+2))

∣∣∣γ1<τ≤γQ+1

]
via Appendix A.1

=E

[∑Qτ
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQτ+1J̃(Sk(τ,x))

∣∣∣γ1<τ≤γQ+1

]
.

Thus, for all Sk ∈ S,

J(Sk)=minx∈X (Sk)
P (τ≤γ1)J̃(S+

k (τ,x))

+P (γ1<τ≤γQ+1)E

[∑Qτ
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQτ+1J̃(Sk(τ,x))

∣∣∣γ1<τ≤γQ+1

]

+P (γQ+1<τ)E

[∑Q
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQ+1J(f(Sk+Q,xQ,Uk+Q+1))

∣∣∣γQ+1<τ

]

where the last line follows from (3.15).

A.3 Proof of Theorem 3.4

We assume that the rate function of the arrival process is bounded, and hence,

the expected number of arrivals on any finite interval is finite. We also assume
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that the interarrival time distribution and the service time distributions are non-

atomic. Let I(s) = {i : ei ∈ E(s)} denote the index set of active events E(s). For

any s ∈ S let Mi(s) for ei ∈ E(s) denote the (possibly infinite) supremum of the

support of the residual time distribution for event ei. Define

B = {s ∈ S : ∃ ei ∈ E(s) where Mi(s) = 0}

as the set of states that have an immediate service or arrival due to a clock equal-

ing the maximum value in the support of its distribution.

Lemma A.1. If P (Sk /∈ B) = 1 then

P (t(Sk+1) = t(Sk)) = 0,

i.e., if Sk is not in B w.p.1, then the probability of getting an immediate event is zero.

Proof. Recall that F−1
i

(
S+
k , ·
)

denotes the quantile function for the residual event

time for event ei in state S+
k . We have

P (t(Sk+1) = t(Sk)) = P (t(Sk+1) = t(Sk)|Sk /∈ B)P (Sk /∈ B)

+ P (t(Sk+1) = t(Sk)|Sk ∈ B)P (Sk ∈ B)

= P (t(Sk+1) = t(Sk)|Sk /∈ B) by assumption

= P

(
min
i∈I(Sk)

F−1
i

(
Sk, Uk+1(i)

)
= 0
∣∣∣Sk /∈ B) .

Conditional upon I(Sk) = I , we have

P
(

min
i∈I

F−1
i

(
Sk, Uk+1(i)

)
= 0
∣∣∣Sk /∈ B, I(Sk) = I

)
≤
∑
i∈I

P
(
F−1
i

(
Sk, Uk+1(i)

)
= 0
∣∣∣Sk /∈ B, I(Sk) = I

)
=
∑
i∈I

P (Uk+1(i) = 0)

= 0
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where the second to last equality holds due to the fact that Sk /∈ B which im-

plies that for each i ∈ I the residual time distribution is non-atomic and hence

F−1
i

(
Sk, Uk+1(i)

)
= 0 if and only if Uk+1(i) = 0.

Since there are a finite number of realizations of I(·) we have that

P

(
min
i∈I(Sk)

F−1
i

(
Sk, Uk+1(i)

)
= 0
∣∣∣Sk /∈ B) = 0,

and the desired result holds.

Lemma A.2. If P (Sk /∈ B) = 1 then

P (Sk+1 /∈ B) = 1,

i.e., if Sk is not in B w.p.1 then Sk+1 is not in B w.p.1.

Proof. We have

P (Sk+1 ∈ B) = P (Sk+1 ∈ B|Sk /∈ B)P (Sk /∈ B) + P (Sk+1 ∈ B|Sk ∈ B)P (Sk ∈ B)

= P (Sk+1 ∈ B|Sk /∈ B) by assumption

= P (∃ i ∈ I(Sk+1) such that Mi(Sk+1) = 0|Sk /∈ B)

≤ P
(
∃ i ∈ I(Sk) such that F−1

i

(
Sk, Uk+1(i)

)
= Mi(Sk)|Sk /∈ B

)
.

The third equality holds by definition of B and the first inequality holds because

a necessary condition to satisfy Mi(Sk+1) = 0 is that F−1
i

(
Sk, Uk+1(i)

)
be equal

to Mi(Sk) (a sufficient condition would also require that F−1
i

(
Sk, Uk+1(i)

)
=

F−1
i′

(
Sk, Uk+1(i′)

)
where ei′ = e(Sk+1)). Conditional upon I(Sk) = I , we have

P
(
∃ i ∈ I such that F−1

i

(
Sk, Uk+1(i)

)
= Mi(Sk)|Sk /∈ B, I(Sk) = I

)
≤
∑
i∈I

P
(
F−1
i

(
Sk, Uk+1(i)

)
= Mi(Sk)|Sk /∈ B, I(Sk) = I

)
=
∑
i∈I

P (Uk+1(i) = 1)

= 0
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where the second to last equality holds due to the fact that Sk /∈ B which im-

plies that for each i ∈ I the residual time distribution is non-atomic and hence

F−1
i

(
Sk, Uk+1(i)

)
= Mi(Sk) if and only if Uk+1(i) = 1.

Since there are a finite number of realizations of I(·) we have that

P
(
∃ i ∈ I(Sk) such that F−1

i

(
Sk, Uk+1(i)

)
= Mi(Sk)|Sk /∈ B

)
= 0,

and the desired result holds.

Proof of Proposition 3.3. If P (S0 /∈ B) = 1 then

P (∃k : t(Sk+1) = t(Sk)) = 0,

i.e., if S0 is not in B w.p.1 then the probability of any two events occurring at the same

time is zero.

Proof. Given P (S0 /∈ B) = 1 and Lemma A.2 we know that P (Sk /∈ B) = 1 for all

k by induction. Thus by Lemma A.1 we know that P (t(Sk+1) = t(Sk)) = 0 for

all k.

The number of events is bounded by twice the number of arrivals (one for

arrival and one for service completion) plus a constant factor depending on the

initial state S0. Since the number of arrivals are countable the number of events

are also countable, and we have that

P (∃k : t(Sk+1) = t(Sk)) ≤
∞∑
k=0

P (t(Sk+1) = t(Sk))

= 0.
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Lemma A.3. If |Jr′(s)| ≤ HJ <∞ and |c(s, x, ·)| ≤ Hc <∞ for all s ∈ S, x ∈ X (s)

then

lim
τ↓0

E

[∣∣∣ Q∑
j=0

αjc(Sk+j, xj, Uk+j+1) + αQ+1Jr′(f(Sk+Q, xQ, Uk+Q+1))
∣∣∣ ∣∣∣∣γQ+1 < τ

]
<∞

where x0 ∈ X (Sk) and xj = ∅ for 1 ≤ j ≤ Q.

Proof. For any τ > 0

E
[∣∣∣ Q∑

j=0

αjc(Sk+j, xj, Uk+j+1) + αQ+1Jr′(f(Sk+Q, xQ, Uk+Q+1))
∣∣∣ ∣∣∣∣γQ+1 < τ

]

≤ E

[∣∣∣ Q∑
j=0

Hc

∣∣∣ ∣∣∣∣γQ+1 < τ

]
+HJ

≤ HcE
[
Q+ 1

∣∣∣γQ+1 < τ
]

+HJ

<∞.

The quantity Q is bounded by the total number of events in (t(Sk), t(Sk) + τ)

which is bounded by twice the number of arrivals in (t(Sk), t(Sk) + τ) (one for

arrival, one for service completion) plus a constant number of events depend-

ing upon the state Sk. By assumption on the arrival rate function, the expected

number of arrivals in any finite time period is finite. As τ ↓ 0 the time pe-

riod (t(Sk), t(Sk) + τ) decreases and hence the expected number of arrivals in

(t(Sk), t(Sk) + τ) decreases as well, giving the desired result.

Corollary A.4. If |J̃r(s)| ≤ HJ̃ < ∞ and |c(s, x, ·)| ≤ Hc < ∞ for all s ∈ S ,

x ∈ X (s) then

lim
τ↓0

E

[∣∣∣ Qτ∑
j=0

αjc(Sk+j, xj, Uk+j+1) + αQτ+1J̃r(Sk(τ, xQτ ))
∣∣∣ ∣∣∣∣γ1 < τ ≤ γQ+1

]
<∞

where x0 ∈ X (Sk) and xj = ∅ for 1 ≤ j ≤ Qτ .
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Proof of Theorem 3.4. Assume that P (S0 /∈ B) = 1, that J̃r, for a fixed r, and c

are bounded, and that J̃r(·) is continuous in T (·) (for any fixed remaining state compo-

nents). Then for any bounded ADP approximation architecture Jr′

lim
τ↓0

Lr,r′,τ (s) = L̃r(s) ∀s ∈ S.

Thus the function defining the post-decision state policy is the limit of the function

defining the truncated microsimulation policy as the truncation time goes to zero (for

any bounded ADP approximation architecture).

Proof.

limτ↓0 Lr,r′,τ (Sk)=limτ↓0

(
minx∈X (Sk)

P (τ≤γ1)J̃r(S
+
k (τ,x))

+P (γ1<τ≤γQ+1)E

[∑Qτ
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQτ+1J̃r(Sk(τ,x))

∣∣∣γ1<τ≤γQ+1

]
+P (γQ+1<τ)E

[∑Q
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQ+1Jr′ (f(Sk+Q,xQ,Uk+Q+1))

∣∣∣γQ+1<τ

])

=minx∈X (Sk)
limτ↓0

(
P (τ≤γ1)J̃r(S

+
k (τ,x))

+P (γ1<τ≤γQ+1)E

[∑Qτ
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQτ+1J̃r(Sk(τ,x))

∣∣∣γ1<τ≤γQ+1

]
+P (γQ+1<τ)E

[∑Q
j=0 α

jc(Sk+j ,xj ,Uk+j+1)+αQ+1Jr′ (f(Sk+Q,xQ,Uk+Q+1))

∣∣∣γQ+1<τ

])
The interchange of the minimum and limit above is justified because we have

a minimization over a finite number of convergent sequences and hence the

sequence of the minimums converges uniformly. Interchange of the mini-

mum and limit for uniformly convergent sequences is justified in, for example,

(Shapiro, 2003, Proposition 5).

A consequence of Proposition 3.3 is that limτ↓0 P (τ ≤ γ1) = 1 and

limτ↓0 P (γ1 < τ ≤ γQ+1) = limτ↓0 P (γQ+1 < τ) = 0. From Lemma A.3 and
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Corollary A.4 we know that the limits of the expectations above are bounded.

Thus we have that

lim
τ↓0

Lr,r′,τ (Sk) = min
x∈X (Sk)

lim
τ↓0

J̃r(S
+
k (τ, x))

= min
x∈X (Sk)

J̃r

(
lim
τ↓0

S+
k (τ, x)

)
(A.1)

= min
x∈X (Sk)

J̃r
(
S+
k (x)

)
(A.2)

= L̃r(Sk)

where (A.1) follows because, by definition, the T component of S+
k (τ, x) is the

only component that varies as τ ↓ 0 (see Section 3.4.1) and J̃r(·) is continuous

in T (·) by assumption, and (A.2) follows from the definition of the continuous-

time system dynamics in Section 3.4.1.
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APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Equivalence of ADP-CT and NCT policies

Proof of Lemma 4.1. Let n denote the number of ambulances free. Since we as-

sume the system is in a state of compliance we know the NCT policy is well-

defined.

TO⇒ NCT

Let p denote a TO policy (hence J(p) is an NCT policy). The proof is based on

showing that p and J(p) make the same decisions at every decision point.

If n < N and an ambulance becomes free, p will assign this ambulance to

the base r = g(n + 1) and J(p) will assign this ambulance to base r′ satisfying

an+1(r′) > an(r′). By the definition of J we know that an+1(r′) > an(r′) implies

that en+1(r′) = 1 which implies that g(n + 1) = r′. Hence r = r′ and the two

policies make the same assignment decision.

If n > 0 and an ambulance from base rd (the redeployment destination base)

becomes busy, p will redeploy an ambulance from base ro = g(n) to base rd. If

ro = rd no redeployment is made. Similarly, J(p) will redeploy an ambulance

from base r′o satisfying an(r′o) > an−1(r′o) to rd provided that r′o 6= rd, otherwise

no redeployment is made. By the definition of J we know that an(r′o) > an−1(r′o)

implies that en(r′o) = 1 which implies that g(n) = r′o. Hence ro = r′o and the two

policies make the same redeployment decision.

NCT⇒ TO
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Let p denote an NCT policy (hence J−1(p) is a TO policy).

If n < N and an ambulance becomes free, p will assign this ambulance to the

base r satisfying an+1(r) > an(r) and J−1(p) will assign this ambulance to base

g(n+ 1) = r′. By the definition of J−1 we know that (n+ 1)st largest element of

T is in the row corresponding to the base r′ satisfying an+1(r′) > an(r′). Hence

r = r′ and the two policies make the same assignment decision.

If n > 0 and an ambulance from base rd becomes busy, p will redeploy an

ambulance from the base ro satisfying an(ro) > an−1(ro) to base rd. If ro = rd

no redeployment is made. Similarly, J−1(p) will redeploy an ambulance from

base g(n) = r′o to rd provided that r′o 6= rd, otherwise no redeployment is made.

By the definition of J−1 we know that the nth largest element of T is in the row

corresponding to the base r′o satisfying an(r′o) > an−1(r′o). Hence ro = r′o and the

two policies make the same redeployment decision.

Proof of Lemma 4.2. Let n denote the number of ambulances free.

ADP-CT⇒ TO

Let p denote an ADP-CT policy (hence K(p) is a TO policy).

If n < N and an ambulance becomes free, p will assign this ambulance to the

base arg maxr φ
+
r (nr) and K(p) will assign this ambulance to r′ = g(n + 1). By

the compliance assumption we know that the entries
⋃
b {tb,l for l = 1, . . . , nb}

comprise the largest n entries of T . Since the rows of T are non-increasing

we also know
⋃
b {tb,nb+l for l = 2, . . . , N − nb} are entries that are no larger

than the (n + 1)th largest entry of T . Hence g(n + 1) is the row r′ satisfying

maxr′ tr′,nr′+1 = maxr′ φ
+
r′(nr′). Thus r = r′ and the two policies make the same

assignment decision.
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If n > 0 and an ambulance from base b becomes busy, p will choose ro and rd

to achieve the maximum in (4.6). The policy K(p) will redeploy an ambulance

from base g(n) = r′o to b unless r′o = b in which case no redeployment will be

made. Note, φ+
rd

(nrd) ≤ minro φ
+
ro(nro − 1) for any rd except potentially rd = b

because otherwise there exists some ro such that
∑n

k=1 1{g(k)=ro} 6= nro . Thus the

maximum in (4.6) can only be positive if rd = b.

We further know that the smallest φ+
ro(nro − 1) value is achieved when ro =

g(n). Thus, assuming g(n) 6= b, p redeploys an ambulance from base g(n) = ro =

r′o to b and both policies make the same redeployment decision. If g(n) = b, by

definition of g(n) we know that, φ+
b′(nb′) ≤ φ+

ro(nro−1) for all b′ thus choosing any

other ro would result in a non-positive value for y(ro, b). Hence in this situation

ro = rd = b maximizes y(ro, rd) at zero, and no redeployment is made. This too

agrees with policy K(p), hence the two policies make the same redeployment

decisions.

TO⇒ ADP-CT

By the construction of K−1 we know that ti,j = φ+
i (j − 1). Hence the same

arguments apply, and the two policies make the same decisions.
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