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The flight of insects is a beautiful example of an organism’s complex interac-
tion with its physical environment. Consider, for example, a fly’s evasive dodge
of an approaching swatter. The insect must orchestrate a cascade of events that
starts with the visual system perceiving information that is then processed and
transmitted through neural circuits. Next, muscle actions are triggered that in-
duce changes to the insect’s wing motions, and these motions interact with fluid
flows to generate aerodynamic forces. Though not as obvious to appreciate,
simply flying straight and keeping upright require similarly complex events in
order to overcome unexpected disturbances and suppress intrinsic instabilities.
Here, I present recent progress in dissecting the many layers that comprise ma-
neuvering and stabilization in the flight of the fruit fly, D. melanogaster. My
emphasis is on aspects of flight at the interface of biology and physics, and I
seek to understand how physical effects both constrain and simplify biological
strategies.

This body of work roughly divides into three thrusts: the development of
experimental and modeling methods, studies of actuation and control of ma-
neuvering flight, and studies of control during flight stabilization. In Chapter 2,
I discuss the experimental techniques we have developed for gathering many
three-dimensional high-speed videos of insect flight. In addition, I outline our
approach for automated extraction of body and wing motions from such videos.

In Chapter 3,  show how experimental observations can be combined with aero-



dynamic models to reveal that fruit flies use paddling motions to drive forward
flight. In Chapter 4, I review our work on turning maneuvers with an emphasis
on how the wing motions themselves arise through an actuation mechanism. In
Chapter 5, I outline a set of experimental and modeling techniques for under-
standing how insects recover from in-flight perturbations to their heading. In
Chapter 6, I use a similar approach to analyze the intrinsic instability of body
pitch and predict the reaction time needed to stabilize flight. In Chapter 7, I
include work on the hydrodynamic interactions between flapping bodies in a

fluid flow.
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CHAPTER 1
BACKGROUND AND OVERVIEW

1.1 Introduction

The flight of insects is a beautiful example of an organism’s complex interaction
with its physical environment. Consider, for example, a fly’s evasive dodge of
an approaching swatter. The insect must orchestrate a cascade of events that
starts with the visual system perceiving information that is then processed and
transmitted through neural circuits. Next, muscle actions are triggered that in-
duce changes to the insect’s wing motions, and these motions interact with fluid
flows to generate aerodynamic forces. Though not as obvious to appreciate,
simply flying straight requires similarly complex events in order to overcome
unexpected disturbances and suppress intrinsic instabilities. Here, I present our
recent progress in dissecting the many layers that comprise maneuvering and
stabilization in the flight of the fruit fly, D. melanogaster. Our emphasis is on as-
pects of flight at the interface of biology and physics, and we seek to understand

how physical effects both constrain and simplify biological strategies.

1.2 Is Flying Easy?

When searching for food, flies exhibit a stereotyped exploratory behavior in
which straight flight paths are separated by rapid turns called saccades [12, 44].
Fruit flies turn when triggered by specific visual stimuli, and a typical saccade

through 90° is completed in 50 milliseconds, or about 10 wing-beats. Given that



a blink of an eye is about 250 ms, these maneuvers are impressively fast. In
reaching angular speeds of about 2000 °/s, these insects certainly out-perform
what is capable in man-made aircraft. But is it difficult for a fly to perform a

saccade?

Physically, one might address this question by comparing the torque needed
to turn its body with the torque exerted simply to keep the body aloft. The turn-
ing torque is approximately I ~ (107" kg - m?)(90°/(50 ms)?) ~ 107! Nm. To
hold its body weight up, the millimeter-scale wings must exert about Mgr =~
(107° kg)(10 m/s*)(1 mm) ~ 10™® Nm. This back-of-the-envelope calculation
shows that remarkably weak torque is needed to turn, on the order of a few per-
cent that needed to simply keep aloft. Counter-intuitively, even extreme flight

maneuvers seem easy.

However, what appears to be effortless in terms of torque exertion is difficult
in nearly all other respects. For example, the changes in wing motions needed to
induce such a maneuver are also expected to be a few percent, which amounts
to adjustments in wing orientation on the scale of a few degrees! What modu-
lations to wing motions do insects make, and how small are these changes? Of
course, such minuscule adjustments demand precise muscular actuation. How

do muscle actions lead to subtle modulations of wing motions?

Further, the time-scales involved in such maneuvers are so fast that the turn
is complete within the visual system reaction time [30]. How are these wing

motions orchestrated if the insect is effectively blind during the maneuver?

Armed with knowledge of these force scales, one can now also appreciate the

difficulty of simply maintaining straight flight. Air is a messy and unpredictable



environment, and small external torques will knock the insect off its intended
path. Inlight of this, it seems that it is not difficult to turn, but rather it is difficult
to not turn. How do fruit flies resist unwanted body rotations and keep on-
course? What are the roles of sensory and neural systems in determining how

flies respond to disturbances?

In this work, I take a tour through our investigations into some of these re-
markable aspects of flight behavior of fruit flies. In the remainder of this open-
ing chapter, I briefly review relevant areas of research related to the material in
this thesis. Given the wide-ranging fields involved, I will largely summarize the
current state of the field and point to specific papers that contain more thorough
reviews of the literature. Below, I offer reviews of the experimental techniques
and aerodynamic models and simulations used in understanding the wing mo-
tions, flows, and forces involved in insect flight. I then give summaries of the
physical and biological aspects of flight control and stability in fruit flies. This
background information will provide the context for the overview that ends the

chapter.

1.3 Experimental Approaches

To the naked eye, as an insect darts through the air, its wings are only a blur.
The curiosity of what’s in that blur inspired the early investigations into insect
flight. In fact, the French physiologist Etienne-Jules Marey invented high-speed
cinematography in the mid-1800s in order to resolve the fast motions involved
in animal locomotion [37]. In his studies of insect flight, Marey used high-speed

cameras to capture the wing motions of insects under tethered conditions, that



is, held in place but free to beat their wings.

But it was not until 1956 that Jensen and Weis-Fogh performed the first se-
rious study of insect flight with the express intent of understanding its aero-
dynamic basis [53, 52, 31]. They tethered locusts in a wind tunnel and used
high-speed films to characterize the flapping wing motions. The goal was to see
if conventional aerodynamic theory could account for the expected fluid forces
generated, and the authors concluded that steady aerodynamics was indeed

satisfactory.

Research in this tradition continued over the next several decades, with the
work of Charlie Ellington serving as another hallmark. In 1984, Ellington pub-
lished the results of an exhaustive study of the flapping motions of many freely-
flying insects and suggested that there is some evidence to believe conventional
aerodynamic theory may not work well for insect flight [16, 17, 18, 19, 20, 21].
The most recent study prior to the work presented here was that of Michael
Dickinsons group [27, 28]. These authors examined turning and hovering flight
in fruit flies using multiple high-speed video cameras, and suggested that much
of the flight forces and torques could be estimated by conventional aerodynamic

calculations.

The use of high-speed video continues to the present day, but this approach
has generated precious few complete data sets that accurately describe the com-
plete body and wing motions during free flight. Most data sets before 1980 cor-
respond to tethered flight — see Weis-Fogh [52] and Vogel [48] as examples —and
it is now clear that this restriction affects the wing kinematics employed. Most
flight data also contain incomplete information due to limited number of cam-

era views or inability to extract important parameters such as wing inclination



or angle of attack [54, 22].

Perhaps most importantly, we note that all studies prior to 2008 used manual
motion tracking techniques to extract kinematic data from high-speed movies
[27, 24, 29, 35, 49]. Manual tracking relies entirely on human input to get coor-
dinate information and has uncharacterized errors. It also is tedious and slow,
and the lack of automated methods for motion tracking has severely limited the

number of data sets available.

Further, much of the insect flight investigations have been observational
studies rather than true experiments. In such studies, insects simply fly as they
wish and some aspects of flight behavior are recorded. In contrast to these ob-
servational studies, researchers interested in the visual system have examined
the response of insects to moving patterns [47], but these insects were tethered
and only a few aspects of the wing motions were measured [30]. Similarly, the
response of insects to mechanical stimulation has been investigated by tether-
ing insects within an arena that can rotate [11]. Fruit flies have been shown to

exhibit stereotyped changes in wing motions in response to such rotations.

Unfortunately, I am not aware of a comprehensive review of experimental
methods used insect flight studies. Two recent reviews seem to select topics of
particular interest to the authors [32, 46]. Perhaps the best introduction to such
methods can be found in Jane Wang’s recent work [50], though experimental

approaches are not the emphasis of this review.

Given that adjustments to wing motions are expected to be subtle, our ex-
perimental emphasis is on developing precision techniques for gathering large

quantities of free flight data. In the following chapters, we present three exper-



imental advances needed to address flight maneuverability and stability. First,
we show how to automate the high-speed video capture process in order to
obtain many free-flight sequences. Second, we elicit specific behaviors by pre-
senting insects with visual stimuli and by mechanically perturbing their flight.
Third, we outline our algorithm for automatically extracting wing and body

motion data from flight videos.

1.4 Flapping-Wing Aerodynamics

Historically, many insect flight studies have been motivated by the desire to un-
derstand whether the aerodynamic force generation mechanisms for flapping
wings are fundamentally different from those of fixed wings. This question has
good scientific grounding but, in the hands of the popular media, has become
somewhat of an over-inflated ordeal. This is epitomized by the “bumblebees
cannot fly” myth which purports that conventional aerodynamics does not ac-
count for sufficient force when applied to the insect wing. The myth appears to
stem from a 1933 work by Magnan and Sainte-Lagué, though their calculations
are at best order-of-magnitude estimates of the fluid forces [36]. Nonetheless,
this motivation has driven seminal studies such as those of Jensen and Elling-
ton, as mentioned above. Different studies have come out on different sides of

the issue.

These early studies aimed at elucidating flapping-wing aerodynamic mech-
anisms likely came to different conclusions because of the many sources of er-
ror involved in animal experiments. However, the last 20 years has seen rapid

progress in our understanding due to more refined approaches. The key ad-



vance in elucidating mechanisms of force generation has been to remove the
insect either through dynamically-scaled flapping wing experiments or in com-

putational flow simulations.

An experimental approach involves mechanized wings that allow one to
prescribe flapping motions while measuring fluid forces and visualizing flow
structures. In the 1970s, Bennett used a mechanized wing to show that rotation
along its axis during translation could lead to elevated flight forces [6]. Dickin-
son and Goetz [13] and later Ellington et al. [23] used dynamically-scaled flap-
ping wing experiments to reveal the influence of unconventional aerodynamic
effects, and the most important effect involves the stable attachment of a vortex

on the leading edge of the wing.

The novelty of the stable leading-edge vortex (LEV) is best appreciated by
first considering the translation of a fixed wing, as in airplane flight [50]. At
low angles of attack, a steady flow over the inclined wing leads to steady and
predictable forces. At higher angles of attack, strong vorticity builds up on top
of the wing and then sheds into the wake, leading to decreased forces and stall
of the wing. For insect wings, which revolve about a root, the leading-edge
vortex does not shed but remains attached even though angles of attack are
quite large [23, 14, 9]. The stable LEV acts as a low-pressure region that elevates
fluid forces. Though the attachment mechanism is not completely understood,
it is clear that the stable LEV enhances forces for low-aspect ratio wings under

revolution at insect-like Reynolds numbers [34].

Further, unsteady effects associated with wing rotation and wake interfer-
ence can significantly influence aerodynamic forces. Both influences are clearly

shown in the study of Dickinson et al. [14]. However, we note that the motions



used in these mechanical wing experiments appear to exaggerate the impor-
tance of the wings rotation about its long axis. Nonetheless, rotation during
translation does enhance lift. Wing-wake interference is an inherently unsteady
effect present when a wing reverses into its own wake. Unfortunately, there
appears to be no clear consensus as to the degree of this influence for differ-
ent wing motions. Certainly, wing-wake interference would appear to be more

important for short amplitude motions [2].

Similar flow and force features have now been reproduced in computational
fluid dynamics (CFD) simulations that also allow one to prescribe motions, mea-
sure forces, and visualize flows [40]. Interestingly, even 2D simulations of flap-
ping wings seem to show good agreement with 3D mechanical wing experi-
ments despite the apparent 3D nature of the stable LEV [51]. It may be that LEV
stability due to wing revolution is not so crucial since the wings flip over before

the vortex is shed anyway [50].

An interesting alternative to the mechanical wing experiments and simula-
tions is to examine passive systems that nonetheless exhibit rich aerial behav-
iors. Falling paper provides an everyday example of unsteady aerodynamics
[38, 4, 3]. By capturing video of the fluttering and tumbling dynamics of a de-
scending plate, Pesavento et al. extracted the fluid forces and torques that must
be acting on the plate without the need to measure forces directly. Falling plates
have been used to reveal the importance of unconventional mechanisms such as
rotational lift, and these data have been used to formulate a quasi-steady force

model for complex motions at intermediate Reynolds numbers.

A quasi-steady model approximates the fluid forces in a form that depends

only on the state variables for the wing, that is, its orientation, velocity, and



acceleration [16]. Thus, any history-dependence of the flow is lost in such an
approximation. Flapping wing and falling paper experiments have revealed
that such models capture stroke-averaged fluid forces to within about 10% [4,
42]. Despite the intermediate Reynolds numbers associated with insect flight
(Re = 10" — 10*), these studies indicate that the high Re law in which forces are

quadratic in velocity serves as a good approximation.

Different quasi-steady models have been formulated by different groups, but
all share a few essential ingredients [4, 42]. First, high Reynolds number lift and
drag provide the largest contribution to the fluid forces. The models incorporate
the effect of the LEV by simply increasing the lift and drag coefficients on the
velocity-squared force laws. Thus, although the LEV stability is complex, its net
effect is predictable and leads to increased forces. Second, the effect of added
mass is included, which accounts for the acceleration of the mass of air near the
wing. Third, the effect of wing rotation is modeled by adding a rotational lift
term that is proportional to wing speed times rotation rate. For 3D motions, the
blade-element approach is used: 2D forces are integrated along the length of the

wing.

For recent reviews on the aerodynamics of insect flight, see those by Sane,

Lehmann, and Wang [41, 33, 50].

Previous efforts from the Wang group have been devoted to the formulation
of a quasi-steady model for the aerodynamics of flapping wings. Please see the
dissertations of G. J. Berman and A. J. Bergou for further modeling details [8, 7].
The works reviewed here show that such models can be used to make general

predictions that capture trends in maneuvering flight of actual insects.



1.5 Physical Aspects of Stability and Control

Since well before the Wright brothers, stability and control have been central
issues in flight [1]. The stability of a physical system refers to its behavior near
a point of equilibrium. For example, the damped pendulum is stable about its
down position since it tends to return to that position when perturbed, while the
inverted position is unstable. Stability can be evaluated by mathematical tech-
niques if a description of the system can be formulated in terms of differential

equations.

How do we define stability for insect flight? Physical stability refers to the
tendency to return to a given flight state if wing motions remain fixed. Given
that flapping flight is intrinsically unsteady, stability might be generalized to

refer to a return to a periodic orbit that describes the body motion.

Alternatively, conventional stability can be analyzed if flight dynamics can
be approximated by systems of differential equations. Recent works, includ-
ing several of the papers comprising this thesis, have taken the first steps to-
ward showing that reduced-order mathematical models capture much about
insect flight dynamics and stability. These models average wing forces over
each wing-beat and couple these forces to the body motion using the Newton-
Euler equations of motion. Several groups are converging on this approach as a

tractable route toward understanding insect flight.

Is insect flight intrinsically stable? Theoretical work indicates that, for some
specific cases, flight is not stable. In particular, the works of Sun, Deng, and
Humbert all suggest that different species of hovering insects possess an in-

trinsic instability in body pitch orientation [43, 25, 26, 10]. We present similar
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findings for the fruit fly in our evaluation of the pitch stability.

Can we use actual insects to experimentally evaluate the intrinsic physical
stability of flight? It seems unlikely. No quantitative stability experiment can be
conducted, because insects have sensory-neural control loops that will surely
lead to adjustments in the wing motions. Thus, animal experiments not only

reflect physical stability or instability but also active control.

For insect flight, the physical essence of active control is how changes in
wing motions lead to changes in flight forces. What types of changes have been
observed in insects? Taylor’s 2001 review summarizes these findings in an ex-
haustive search of the literature [45]. For fruit flies, it has been shown that many
aspects of the wing motions are modulated, though most of these observations
are qualitative, anecdotal, and have been witnessed under conditions of teth-
ered flight. Zanker observed some free-flight wing modulations in fruit flies
but was unable to measure the wing angles of attack [54]. The work of Fry et al.
showed that flies modulate wing amplitude and stroke-plane angle [27], though
the central results of this paper have since come under some question. In short,
prior to the works presented here, there was precious little data on how fruit

flies modulate wing motions during free-flight maneuvering or stabilization.

Our understanding of the stability and control of insect flight is progressing
rapidly, and reviews that contain the most recent progress do not exist. For an
introduction see Taylor’s now-outdated 2001 review of some aspects of flight

mechanics [45].
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1.6 Biological Aspects of Stability and Control

Flight represents an extreme behavior that is accompanied by a host of interest-
ing adaptations. Much research has focused on the muscular, anatomical, neu-
ral, and sensorial adaptations that determine how wings beat. Here, I review
some of the highlights from these studies, and suggest how the framework of
control theory can combine these biological aspects of stability and control with

the physical ones described above.

The calculation that opens this chapter indicates that a tiny torque is needed
to maneuver in comparison to that needed to stay aloft. The musculature of the
fly reflects these different demands through a remarkable division of labor into

large power muscles and fine control muscles [12, 15].

Power is supplied by two sets of large muscles that drive deformations of
the thorax which in turn lead to the gross flapping motions of the wings. The
muscle action communicates to the wing through an immensely complex hinge.
The anatomy of the hinge has been somewhat mapped out, but at present there
is no consensus on what are the relevant features that comprise the mechanism.
We can only say that the hinge is a complex transmission system that transforms

muscular inputs into wing motions.

Many groups of tiny “steering” muscles inject directly at the base of the wing
and subtly modulate these motions. Thus, when probing wing modulations
during maneuvering and stabilization, we are probably witnessing the action of

these steering muscles.

At a deeper level, the fly uses sensory feedback to direct the muscles that
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give rise to the wing motions. Vision in insects is well studied and dictates many
fascinating flight behaviors [47]. In addition to a host of other sensory systems,
the fruit fly possesses curious mechanosensory organs called halteres [39]. The
halteres are a pair of tiny knob-shaped structures that are vestigial hind wings.
In flight, halteres flap up and down at the same frequency as the wings. When
the insect body is rotated, the motion of each haltere is altered, leading to strains
at its base. The deformations are sensed and provide the fly with information
about the rate of rotation of its body. Evidence from rotational experiments on
tethered flies suggests that the halteres are fast-acting in comparison to vision

[11].

In this work, we will show how these different levels of control and stability
can be united using the framework of dynamical systems or control theory [5].
A central idea is that information flow can be organized as following a loop:
sensors to neurons to muscles to hinge to wing motions to aerodynamic forces
to body dynamics and back to sensors and so on. Our contribution will focus
on applying ideas from dynamical systems to formulate mathematical models

of maneuvering and stabilization of flight.

1.7 Overview

In this work, we take a tour through some of these remarkable aspects of flight
behavior of fruit flies. We will analyze flight behavior at several levels and from
the outside inward. First, we review our recent developments in techniques for
motion tracking of flying insects. We then apply these tools to understanding

how subtle adjustments to wing motions drive sideways, forward, and turn-
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ing maneuvers. For turning flight, we touch on results that indicate how mus-
cle action is communicated through the wing hinge biomechanics to generate
wing motions. We then examine the fruit fly’s “autostabilizer”, a sensory-neural
scheme that uses feedback to maintain body orientation during straight flight.

Next, we show that insects” neural response times are tuned to handle a fast

flight instability in body pitch orientation.

Additionally, we include a chapter on the fluid-mediated interactions be-
tween flapping flags. I conducted this project in the summer 2007 when I vis-
ited NYU’s Courant Institute. This work is inspired by schooling of fish, and we
use flapping flags as a model system to understand the interactions of flapping

bodies in a flowing fluid.

Each of the following six chapters correspond to a paper that is published
or will be submitted soon for publication. In the order of the chapters, these

papers include:

e L. Ristroph, G. J. Berman, A. ]J. Bergou, Z. ]. Wang, I. Cohen, Automated
hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of

free-flying insects, Journal of Experimental Biology 212:1324-1335 (2009).

e L. Ristroph, A.]. Bergou, ]. Guckenheimer, Z. ]. Wang, I. Cohen, A paddling

mode of forward flight in insects, accepted for Physical Review Letters (2011).

e A.]. Bergou, L. Ristroph, ]. Guckenheimer, Z. ]. Wang, I. Cohen, Fruit flies
modulate passive wing pitching to generate in-flight turns, Physical Review

Letters 104:148101 (2010).

e L. Ristroph, A. J. Bergou, G. Ristroph, K. Coumes, G. J. Berman, J. Guck-

enheimer, Z. J. Wang, 1. Cohen, Discovering the autostabilizer of fruit flies by
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inducing aerial stumbles, Proceedings of the National Academy of Sciences

107:4820-4824 (2010).

e L. Ristroph, G. Ristroph, S. Morozova, A. J. Bergou, J. Guckenheimer, Z. J.
Wang, I. Cohen, Small, sleek, and in control: The body plan, neural control, and

flight stability of insects, to be submitted (2011).

e L. Ristroph, ]J. Zhang, Anomalous hydrodynamic drafting of interacting flap-
ping flags, Physical Review Letters 101:194502 (2008).

Additionally, in finishing up this thesis, I have written a review of insect flight
dynamics and co-written a paper on the effect of center-of-mass location on

flight stability:

e L. Ristroph, A. J. Bergou, G. J. Berman, J. Guckenheimer, Z. J. Wang, L
Cohen, Dynamics, control, and stability of turning flight of fruit flies, accepted
for IMA Series (2011).

e S. Morozova, L. Ristroph, G. Ristroph, J. Guckenheimer, Z. ]J. Wang, 1.
Cohen, Center-of-mass location and the stability of insect flight, to be submitted
(2011).
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CHAPTER 2
AUTOMATED VIDEOGRAPHY AND HULL RECONSTRUCTION
MOTION TRACKING

2.1 Summary

Flying insects perform aerial maneuvers through slight manipulations of their
wing motions'. Because such manipulations in wing kinematics are subtle, a
reliable method is needed to properly discern consistent kinematic strategies
used by the insect from inconsistent variations and measurement error. Here,
we introduce a novel automated method that accurately extracts full, three-
dimensional body and wing kinematics from high-resolution films of free-flying
insects. This method combines visual hull reconstruction of the insect, princi-
pal components analysis, and geometric information about the insect to recover
time series data of positions and orientations. The technique has small, well-
characterized errors of under 3 pixels for positions and 5 degrees for orienta-
tions. To show its utility, we apply this motion tracking to the flight of fruit flies,
D. melanogaster. We find that fruit flies generate sideways forces during some
maneuvers and that strong lateral acceleration is associated with differences be-
tween the left and right wing angle of attack. Remarkably, this asymmetry can
be induced by simply altering the relative timing of flips between the right and
left wings, and we observe that fruit flies employ timing differences as high as

10% of a wing beat period while accelerating sideways at 40% g.

!The work presented in this chapter is modified with permission from Ristroph et al., ]. Exp.
Biol., 212, 1324-1335 (2009).
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2.2 Introduction

The swimming of fish and the flight of insects are impressive feats of nature.
These locomotor displays are the collective result of genetic, evolutionary, neu-
rological, sensorial, and biomechanical influences and, when quantified, pro-
vide a window into the inner workings of these animals. Behavioral studies
generally follow one of two approaches [24]. In the first, organisms are put in
artificial environments and given a small number of choices in response to a
stimulus, sacrificing richness of behavior for added experimental control. In the
second, the animal is observed “in the wild”, in which case a broad spectrum of
behavior can be observed but not easily characterized due to limited measure-
ment capabilities. For investigations of insect flight, this dichotomy is exempli-
tied by studies of wing motions in tethered and wild insects. Tethered flight
allows for detailed measurement of kinematics but does not allow for studying
maneuvers. Studies of insects in the wild allow for studying complex behav-
iors but sacrifice control and measurement capabilities. Missing is an approach
that would marry the beneficial aspects of these methods and would allow for
recording of complex behaviors while giving full access to the locomotor met-
rics. Such an approach would significantly increase the range of behaviors that

can be investigated quantitatively.

State-of-the-art approaches for capturing the motion of locomoting animals
involve high-speed, three-dimensional videography combined with digitization
of the captured sequences [18]. Most present techniques for extracting three-
dimensional body and wing kinematics of flying animals rely on manual motion
tracking. One approach involves positioning a computer model of an organism

so that it overlays the image of the filmed organism [13, 14, 19]. Another method
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requires tracking through time the position of representative marker features on
the organism [17, 20, 29, 16, 26, 5, 23, 15]. Unfortunately, these techniques de-
mand significant human input, resulting in poorly characterized or uncharac-
terized errors, limited throughput, and red-eyed researchers. More automated
methods, similar to those developed for motion tracking of cockroaches and fish
[22, 11], require development of morphologically-appropriate wing and body
models when applied to flying animals [12]. Thus, there remains a need for
accurate, automated, and versatile methods that do not require morphological

inputs.

The study of insect flight in particular stands to benefit from high through-
put and accurate tracking techniques. Asymmetries in flight kinematics appear
to be quite subtle, even for wing motions that bring about extreme maneuvers.
For instance, it has been reported that fruit flies execute rapid changes in yaw,
or saccades, by inducing differences between the amplitude of the left and right
wings of about 5 degrees and shifting the stroke plane by about 2 degrees [13].
Further exploration of the myriad maneuvers performed by insects will require
large data sets that allow for identification of slight kinematic manipulations. In
addition to addressing maneuverability, such data would offer insight into the

roles of aerodynamics, efficiency, control, and stability in insect flight [27].

Here, we outline a novel approach to motion capture of flying insects. Rather
than restricting the flight behavior, we film the rich free-flight repertoire of in-
sects. This, by necessity, sacrifices much of our control over the maneuvers the
insects perform. However, by automating our apparatus and recording many
such events, we can identify common strategies used in similar maneuvers.

Most importantly, our experimental arrangement is designed to yield films that
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contain time-resolved, three-dimensional information about the motion of the
insect body and wings during flight. In this work, we focus on a novel motion
tracking technique we term Hull Reconstruction Motion Tracking (HRMT). We
demonstrate that subtle, yet statistically-significant, differences in flight modes
can be clearly discerned using this method. More specifically, we examine side-
ways flight of fruit flies, and show that the generation of lateral acceleration is
associated with changes in the timing of the rapid flipping of the wings. Over-
all, this approach is a key step toward a quantitative description of the rich flight

behavior of insects.

2.3 Materials and Methods

Generally, an analysis of insect flight requires a method for recording the flight
events and a method for recovering the flight kinematics. Here, we describe
techniques that allow for the automation of both high-speed videography and

motion tracking.

2.3.1 High-speed, three-dimensional videography

We have assembled an automated, versatile system for capturing many video
sequences of flying insects. The apparatus is composed of three high-speed
cameras focused on a cubical filming volume contained within a large plexiglas
flight chamber (Fig. 1A). The cameras are orthogonally-arranged using preci-
sion rails mounted on an optical table. We use Phantom v7.1 CMOS digital

cameras (Vision Research, Wayne, New Jersey, USA) that are sensitive to visi-
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Figure 2.1: An experimental assembly for filming free-flying insects. (A) Three
orthogonal cameras C aim toward a focal volume in a flight chamber FC, mag-
nifying the image with bellows B and zoom lens L. Opposite each camera is
a film slide projector P that illuminates the chamber. (B) The cameras are trig-
gered to begin filming when crossed laser beams are broken by the flying insect.
A laser L emits a beam that diverges at a beam-splitter BS and is re-routed by
mirrors M to intersect through the flight chamber. Beam expanders BE inflate
the beam to the size of the focal volume, and photodiodes PD detect the beam
breakage. Simultaneous breakage of the beams initiates filming via a modified
Schmitt trigger switching circuit (not shown).

ble light. We find that filming at 8,000 frames per second (fps) at a resolution
of 512 x 512 pixels is a suitable compromise in temporal and spatial resolution.
At this rate, we capture about 30-35 wing orientations per wing-stroke of the
fruit fly (D. melanogaster), which beats its wings approximately 250 times per

second. The cameras are event-triggered, as described below, and are synchro-

nized electronically. In our experiments, the cameras automatically save the
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images on an internal memory buffer. Once a recording sequence is finished,
the cameras dump the images onto an external computer hard drive and then

become available for recording more flight events.

Because fruit flies are small, measuring about 3 mm in body length, we
magnify with an optical bellows (Nikon PB-5, Nikon USA, Melville, New York,
USA) and a zoom lens (Nikon Macro-Nikkor, 28-105 mm) attached to each cam-
era, as shown in Fig. 1A. The bellows can be expanded or contracted to achieve
varying magnification and thus accommodate different-sized filming volumes.
For D. melanogaster, typical cubical volumes described in this paper measure 1.5
cm in side length. This filming arrangement insures that perspective distortion

between the near and far portions of the chamber is less than 5%.

Achieving crisp images of fruit flies in flight requires short exposure times (<
30us), high magnification, and large depth-of-field (high f-stop values). These
requirements all reduce the light available for filming. To avoid heating the
tilming volume, we use three slide projectors (Kodak Ektagraphic series, Kodak,
Rochester, New York, USA) that provide infrared-filtered intense white light.
Each lamp is directed toward its opposing camera, as in Fig. 1A. Thus, our

films consist of silhouettes or shadows of the flying insect (Fig. 2A).

2.3.2 Variable sensitivity event-triggering

When released in the flight chamber, flies rarely enter the filming volume, which
corresponds to only 0.05% of the chamber. To capture films only when a fly is
in the volume, we assembled an optical detection system [21, 8, 9]. A schematic

of this system is shown in Fig. 1B. A laser (red HeNe, Thorlabs, Newton, New
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Jersey, USA) emits a 2 mm-diameter beam that is split and re-routed to intersect
the filming volume through the sides of the flight chamber. Each beam passes
through a Galilean expander, crosses the filming volume, and impinges on a
photodiode. The photodiodes are connected to a custom-made switching circuit
that signals to the cameras when both beams are simultaneously intercepted.

This triggers the cameras to initiate recording.

The beam expanders in our assembly allow us to match the triggering vol-
ume to the filming volume, thereby maximizing the number of captured flight
sequences. This versatility also accommodates filming of insects of varying
sizes. We generally expand the beam to 1-2 cm in diameter. Since the fly body
area is on the order of 2 mm?, our circuit is designed to reliably trigger on beam

intensity disturbances of only a few percent.

In a typical experiment, we release between one and 20 flies in the filming
chamber. When interested in flight statistics, we release up to 20 flies and film
for up to three hours. In these experiments we obtain up to 10 events per hour.
The flight chamber measures 13 cm on each side, so the flies are more than 20
body lengths from the nearest wall, indicating that the walls have negligible

influence on the aerodynamics.

2.3.3 Automated tracking of flight kinematics

In order to analyze the vast amounts of data collected with our apparatus, we
have developed a method for automatically extracting the wing and body posi-
tions from flight films. This method is accurate, fast, model-independent, and

broadly applicable. Our tracking algorithm neatly divides into four steps: im-

27



Figure 2.2: Aligned silhouettes are rendered by image processing and registra-
tion. (A) The three orthogonal cameras provide images of a fruit fly in flight
(top). To obtain silhouettes from these raw images, a background picture is sub-
tracted and the resulting image is thresholded (bottom). (B) Because the cam-
eras are not perfectly aligned, the pixel coordinates in different views may not
correspond to the same spatial coordinate. In order to register the images, we
form a minimal bounding rectangle around the shadow in each view and then
shift and scale the images such that the rectangle corners are consistent between
views.

age processing and registration, hull reconstruction, “dissection” of the hull re-
construction into a body and two wings, and extraction of positions and orien-
tations. We implement all stages using custom-written MATLAB code that is

available as supplementary material.
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Our hull reconstruction method requires crisp silhouettes of the flies and ac-
curate registration of the pixels in the images. To achieve registration, we first
precisely align the cameras by fine adjustment of translation stage mounts. This
procedure positions the center of each camera view to within a few pixels of a
common point in space and also establishes the global, orthogonal coordinate
system employed throughout this work. The procedure achieves equal mag-
nification to better than 1%, as measured by imaging a ruled microscope slide
that also determines the pixel-to-distance conversion. Next, we use the images
from each flight movie itself to more precisely adjust the alignment and mag-
nification. To obtain image silhouettes, we first subtract a background image
from each picture. The resulting image is thresholded so that the insect shadow
appears black on an otherwise white background (Fig. 2A, bottom). In order to
calibrate the pixels so that their coordinates are aligned and properly scaled, we
use a registration algorithm. We first enclose the silhouette from each view in
the minimal bounding rectangle (Fig. 2B). We then scale and translate the im-
ages so that the pixel coordinates of the bounding rectangle corners match. For
example, to register the pixels along the vertical direction, we shift and scale im-
ages from one of the horizontal cameras such that its vertical coordinate is con-
sistent with images from the second, reference horizontal camera. We vertically
shift the image from the first view such that the top of its bounding rectangle
has the same vertical coordinate value as that of the reference view. Then, we
scale the image from the first view such that the bottom of its bounding rect-
angle has the same vertical coordinate as that of the reference view. The same
procedure is used to register the other image coordinates. Typically we find that
the images need to be scaled by less than 1% and shifted by about 5 pixels to

achieve registration. To insure consistent registration for each movie, we find
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Figure 2.3: Visual hull reconstruction forms a 3D shape that is consistent with
the three silhouettes. Our implementation seeks 3D volume pixels, voxels, that
project onto the silhouette in each view. Hull reconstruction is equivalent to
the exercise of first forming extended 3D shadows from the silhouettes (A), and
then finding the intersection in space of these extended shadows (B). The re-
sulting object is the visual hull of the insect, the largest volume shape that is
consistent with the three silhouettes. The hull data consists of an array of voxel
coordinates.

the average shift and scale values for the entire image sequence and apply these
values to all images. The resulting thresholded and registered image sequences

are fed into the hull reconstruction algorithm.

In the context of our experiments, the method of visual hull reconstruction
[1] entails using the three sets of 2D silhouettes to construct a 3D shape. Specif-
ically, our algorithm identifies volume pixels, or voxels, in 3D whose 2D projec-
tions map onto black pixels in all three images. More intuitively, this procedure
is equivalent to the geometric exercise of placing the images on three adjacent
sides of a rectangular prism and extending each shadow in a direction perpen-
dicular to the image (Fig. 3A). Here, simple extension of each shadow is justified
by the rather small perspective distortion. In this scenario, the hull volume cor-
responds to the intersection of the 3D extended shadows. An example of the
resulting shape is shown Fig. 3B. This collection of voxels forms a convex vol-

ume that envelops the 3D shape corresponding to the real insect. We show that,
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by using three cameras to image the insect, we obtain a visual hull that is suf-
ticiently close in shape to the real insect so that wing and body positions and

orientations can be extracted.

To identify the hull, the reconstruction algorithm must systematically scan
through and analyze voxels in the filming volume. For typical images, the
bounding rectangle side length is only one-fifth of the image side length. Conse-
quently, this procedure is sped up one hundred fold by only considering voxels
corresponding to pixels located within the bounding rectangles [4]. In addition,
we find that a coarse-graining optimization leads to an additional factor of four
reduction in the run time [4] while maintaining accurate coordinate extraction,
as assessed in the next section. This procedure entails grouping sets of eight
unit voxels into coarse-grained voxels each of size 2 pixels x 2 pixels x 2 pixels.
A subsampling routine is used to determine whether the coarse-grained voxel
should be included in the hull. Two of the eight voxels are randomly picked and
analyzed to determine whether their projections are contained within all three
shadows. If both sampled voxels correspond to shadows, the coarse-grained
voxel is included in the hull. The final output of these procedures is a collection
of coordinates specifying the coarse-grained voxels that are part of the visual
hull (Fig. 3B). We find that using MATLAB on a desktop computer, our im-
plementation of this algorithm rapidly constructs a 3D hull (see supplementary

code).

Portions of the hull that correspond to the body, right wing, and left wing
form well-defined groups of voxels. To collect voxels that are near one another,
we use a k-means clustering algorithm with a Euclidean distance metric (MAT-

LAB). We find that identifying four clusters (k = 4) neatly isolates two separate
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Figure 2.4: The body, right wing, and left wing of the insect are identified by
applying a clustering algorithm. The top view, (A), and two side views, (B) and
(C), show that the right (red) and left (dark blue) wings are well distinguished
from the body (light blue).

groups of voxels corresponding to the left and right wings and two additional
larger groups of voxels that correspond to the anterior and posterior of the in-
sect body. These two larger clusters are merged to identify all the voxels corre-
sponding to the body, and the smaller clusters correspond to the wings. In Fig.
4, the wing voxels are shown slightly separated from the body voxels in order

to illustrate how well these groupings are identified.

From these voxel groupings, we recover the positions and orientations of
the body and wings using a combination of centroid determination, principal
components analysis (PCA), and geometric information about the insects. The
centroids of the body, right wing, and left wing correspond to the mean of the
voxel coordinates in each grouping. PCA finds each voxel grouping orientation
by determining the principal axis of the moment of inertia (MATLAB). Perform-
ing PCA on the body voxels, we extract the principal body axis vector, A, that
identifies the Euler angles for the body pitch, 8, and yaw,  (Fig. 5A). To deter-
mine the third Euler angle for the body roll, p, we perform a second round of
clustering on the body voxels with k = 3 and find three clusters, corresponding

to the head, thorax, and abdomen (Fig. 5B). The centroids for these clusters con-
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Figure 2.5: The positions and orientations are extracted for each the body, right
wing, and left wing. The centroid is defined to be the mean of the voxel coordi-
nates for each respective grouping. (A) and (B) To identify the three Euler angles
of the body, we define two vectors on the body. The first is the axial unit vec-
tor, A, which is found by applying principal components analysis (PCA) to the
body voxel coordinates and gives the yaw angle, ¢, and the pitch angle, 8. The
second is the lateral unit vector, L, that runs from the insect’s right to left and is
identified as the normal to the plane formed by the centroids of the head, tho-
rax, and abdomen clusters. (C) The roll angle, p, is the angle between L and the
unit yaw vector, §. (D) For each wing, the span vector, S, is identified by PCA
and gives the stroke angle, ¢, and the stroke deviation angle, 6. (E) The chord
vector, C, is parallel to the longest diagonal of the parallelogram cross-section
of the wing hull. (F) The wing pitch, 7, is the angle between € and unit stroke
vector, . We note that this choice body and wing orientation angles are simi-
lar to conventional spherical coordinates. For the wing, for example, ¢ defines
azimuth, 6 elevation, and n rotations about the long axis.
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stitute three points that define the plane of bilateral symmetry for the body. We
take the roll p to be the angle between the normal vector to this plane, L, and ¥.

The definitions of these body orientation angles are shown in Fig. 5C.

Because each wing is thin, rigid, and often occluded in one camera view
by the insect body, its visual hull resembles a parallelepiped whose long axis
is parallel to the wing span vector, S. To determine S, we apply PCA to the
wing hull voxels. This vector allows for determining the Euler angles for the
stroke, ¢, and deviation, 6 (Fig. 5D). The hull cross-sections perpendicular to
S form parallelograms (Fig. 5E, right). The wing chord vector, C, is parallel
to the longer diagonal of the parallelograms. The third Euler angle for each
wing is the pitch angle, 77, and is defined to be the angle between C and the
unit stroke vector, ¢. To determine C, hull voxels near the mid-span (within 2
voxel side lengths) are projected onto a plane normal to §, and the chord is the
vector connecting the two voxel projections with the greatest separation. The

definitions of all wing orientation angles are detailed in Fig. 5F.

These procedures lead to a full kinematic description consisting of 18 coor-
dinates: three centroid coordinates and three Euler angles each for the body,
right wing, and left wing. These coordinates are computed independently for
each time step in the movie and checked visually for mistakes. Together, these
techniques constitute a Hull Reconstruction Motion Tracking (HRMT) method
for extracting 3D kinematics from several 2D views of a flying insect. While the
data in this paper pertain to insect flight, this method is applicable with suit-
able modifications for a variety of three-dimensional motion studies of other

complex-shaped, moving objects in space.
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2.3.4 Assessing errors of the HRMT method

Discerning subtle differences in flight modes requires clear knowledge of er-
rors in the data recovery method. Such errors cannot be determined from the
movies of insects alone, since the actual kinematics are not known beforehand.
Instead, we estimate the measurement error by running HRMT on a computer-
generated model insect and comparing the extracted positions and orientations
of the body to those we impose. The model of the insect consists of five ellip-
soids: three for the head, thorax, and abdomen and one for each wing (Fig. 6A).
We orient the ellipsoids in a given configuration, use a ray tracing algorithm to
determine the three orthogonal shadows, and run our analysis routine to extract
the positions and orientations of the body and wings. Compared with the model
insect volume, the hull volume is larger and contains extra protrusions that vary
in size and location for different insect orientations. These protrusions arise be-
cause of occluded regions that are blocked from the view of all three cameras.
The protrusions ultimately cause errors in the recovered coordinates, and these
errors depend on the orientation of the body and the positions and orientations
of the wings. Thus, though validating HRMT using such simulated data does
not account for image registration errors, it does account for occlusion defects,
which appear to be the primary source of error for the method. However, deter-
mining the error dependence on all relevant coordinate variables is not feasible.
Since fruit flies typically assume a limited set of orientations and use a typical
wing-stroke pattern for flight, we perform an analysis that determines errors for
realistic insect configurations. Our synthetic data corresponds to a fixed body
and thirty-four wing configurations obtained by applying a manual tracking
program to a single stroke from a movie of a hovering fruit fly. Our manual

tracking software relies on overlaying images of a virtual fly and is similar to
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Figure 2.6: A test of the automated tracking algorithm on a computer model
of a flapping fly. (A) A morphologically-appropriate model fly consists of five
ellipsoids. Three ellipsoids form the head, thorax, and abdomen of the body,
and two flat plates represent wings. The wings act as three degree-of-freedom
hinges that rotate about a point on the surface of the thorax. (B) Measured
flapping motions are imposed on the wings of this model fly, the shadows in
each of three views are generated, and finally the tracking algorithm is run on
these shadows. For this case, the body is held fixed at a typical orientation of
W,B,p) = (0,59,0) degrees. (C) A comparison of the imposed body position
(open circles) and the measured position (filled circles) for the centroid (x,y, 2).
A histogram of the residuals, measured value less the actual value, is shown
to the right for each coordinate. The reconstruction method measures the body
centroid to within the voxel size of 2 pixels. (D) A similar comparison for the
body orientation angles reveals an accurate recovery, with errors of a few de-
grees. (E) The right wing centroid is recovered to within 2 pixels. (F) The right
wing orientation angles can be resolved to better than five degrees. The left
wing shows similar statistics.
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other implementations [13, 19]. We estimate errors for all wing positions within
this stroke as well as the errors associated with viewing this stroke from differ-

ent angles.

To obtain measurement errors for a typical viewing configuration, we fix
the virtual fly body in an orientation of (,8,p) = (0,59,0) degrees and plot
the imposed time series data (white dots) and measured values (black dots) for
body and wing positions and orientation angles (Fig. 6C-F). The errors for each
variable are concisely displayed as a histogram of the residual, defined as the
difference between the measured value and the imposed value. For both the
body and wing centroids, errors are within the coarse-grained voxel size of 2
pixels. The body orientation is also accurately recovered, generally to within a
few degrees. The wing orientation angles and associated residuals for the right
wing are shown in Fig. 6F, and the errors for the left wing have similar statistics.

Errors for the wing orientations are typically under 5°.

The time series and residual data of Fig. 6 reveal several features of the hull
reconstruction method. Most of our measurements average over the voxels in
the hull and thus result in subvoxel resolution. Also, the residuals are nearly
always centered around zero, indicating that there are only small systematic
deviations. Further, the residuals have standard deviations of less than 2 pixels

in the positions and 4° in the orientations.

Furthermore, we find that in nearly all the cases we have examined, the
mean residuals remain under 3 pixels and under 5°, regardless of both wing
position during the stroke and viewing configuration. To summarize the de-
pendence on wing position during the stroke, we plot the residuals for ¢, 6, and

n as a function of stroke angle in the body frame of reference, ¢, for 16 different
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Figure 2.7: Errors in the wing angles are nearly independent of phase in the
wing-stroke. To arrive at the displayed mean and standard deviation of residu-
als, we orient the model fly, impose wing motions, and measure errors in each
wing orientation angle. Left and right wing residuals are similar, so we lump
these data together. Residuals in each angle are plotted as a function of the im-
posed stroke angle. The stroke angle ¢, is measured in the body frame such that
#» —90° at the dorsal flip and ¢, 50° at ventral flip.

viewing configurations (Fig. 7). The configurations range in ¥ from 0° to 45°, in
B from 54° to 90°, and in p from 0° to 60°. In total, this analysis comprises 544
different postures of the insect, and the use of a single wing-stroke in the analy-
sis is justified by the fact that the basic wing motion varies in subtle ways even

during extreme maneuvers (Fry et al., 2003). The residuals show no obvious

trend with ¢, and all have standard deviations of less than 5°.

To summarize the dependence on viewing configuration, we plot the resid-

uals averaged over an entire stroke as a function of body orientation (¢, 3, p)
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Figure 2.8: Errors in the recovered coordinates depend on the body orientation
relative to the cameras. To reveal this dependence, we set the model fly of Fig.
6A in various orientations and measure the residuals in all coordinates. (A) De-
pendence of body position error on typical values of ¢, 8, and p. The errors show
little dependence on orientation and are generally smaller than the voxel size of
2 pixels. (B) Errors in body orientation as a function of orientation. The body
roll p is more difficult to resolve than y and 8 and becomes particularly error-
prone when the body is rolled considerably. As might be expected, heading v is
highly inaccurate when the insect is pitched up vertically near 8 = 90°. (C) The
right wing position is generally resolved to within 2 pixels. (D) The right wing
orientation is accurate to within 3 degrees for most typical orientations of the
body. For high pitch g and high roll p, the wing pitch, 7, is not as well resolved.
The left wing has similar error statistics.
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relative to the viewing configuration (Fig. 8). The residuals for the body and
wing positions are all centered within two pixels of zero (Fig. 8A,C). With the
exception of highly pitched (8 90°) or highly rolled (o > 15°) body orientations,
the residuals for body and wing orientation angles are also centered within 2° of
zero. The increased errors at high 8 and p are not expected to affect most aero-
dynamic analyses since the fluid force is generated almost entirely by the wings,
whose motions are very accurately resolved. Thus, because HRMT tracks each
of the body, right wing, and left wing independently in the lab frame of refer-
ence, the accuracy of coordinate extraction in any one component is indepen-
dent of any other. Collectively, these results indicate that HRMT is an accurate

method for motion capture of flying insects.

2.4 Results

In order to show the utility of the HRMT method, we apply it to two different
recorded maneuvers that exemplify how insects use lateral forces in flight. In
particular, we emphasize aspects of these maneuvers performed by insects that
differ from similar maneuvers performed by fixed-wing aircraft. In fixed-wing
flight, lateral forces are usually generated by rolling or banking the aircraft and
inducing a horizontal component to the lift force on the wings. This force en-
ables an airplane or a helicopter to make a turn [10]. Insects on the other hand,
could take advantage of the unique features of flapping flight to generate lat-
eral motions. Here, we present an analysis that shows fruit flies can indeed
manipulate their wing strokes to generate lateral forces in a manner that is dif-
ferent from simple banking. In addition, we propose a simplified mechanism

describing how these kinematic manipulations contribute to the lateral force
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Figure 2.9: Fruit flies undergo lateral acceleration during two maneuvers. Lat-
eral acceleration is the horizontal component of acceleration that is pointed per-
pendicular to the insect yaw direction. (A) Top view of a “dodge” maneuver.
The fly yaw orientation is indicated by the black arrowheads, and the horizon-
tal component of acceleration is shown as the red vectors. During the dodge, the
insect moves from one forward trajectory to a nearly parallel forward trajectory.
(B) To execute the dodge maneuver, the fly accelerates leftward and then right-
ward while moving forward. (C) and (D) In this “sashay” maneuver, the fly
initially generates a large rightward acceleration that switches to become left-
ward near the end of the maneuver. Here, the lateral acceleration is as large as
0.4 g. Lateral acceleration is calculated from the body position and orientation
data using a window-averaging method for differentiating noisy data (Bergou
et al., manuscript in preparation).

production. This mechanism takes advantage of several features of flapping
flight, including the large arc-like trajectory of the wings and the independent

control of the left and right wing rotation.

2.4.1 Measurement of flight kinematics

In Fig. 9A,C, we show top views of trajectories of two maneuvers. In the first, a
fly performs a “dodge” maneuver in which its yaw orientation remains nearly
constant while it moves from one straight trajectory to another parallel trajec-

tory (Fig. 9A). In the second trajectory, a fly performs a “sashay” maneuver in
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Figure 2.10: Wing orientation angles for two maneuvers. In both cases, the lat-
eral acceleration crosses through zero, and we display wing orientations near
such a transition. For the dodge maneuver, the lateral acceleration is leftward
before time ¢ 0.075 s and rightward thereafter. For the sashay maneuver, the
lateral acceleration is rightward before ¢ 0.033 s and leftward thereafter. (A),
(B), and (C) The time course of ¢, 6, and 7 for the dodge. In order to facilitate
comparison of the right and left wings, we have plotted the body frame stroke
angle, ¢,. (E), (F), and (G) The time course of ¢,, 6, and 7, for the sashay. In both
maneuvers, the kinematic data reveal that the wing motion consists of a flipping
motion of the wings superposed on the flapping back-and-forth. Asymmetries
in the right (red) and left (blue) wing motions are associated with lateral accel-
eration. (D) and (G) These asymmetries lead to differences in the aerodynamic
angle of attack, ¢, the angle between the chord and the instantaneous wing ve-
locity. This angle is calculated from the other wing orientation angles and has
typical errors of 5 to 8 degrees.

which it continuously reorients to face the inside of a turn (Fig. 9C). For this
sashay, the body velocity is nearly perpendicular to the yaw direction of the
insect. In both of these recorded maneuvers, we see that the insects undergo
significant lateral acceleration, that is, the insects produce forces perpendicu-

lar to the yaw direction (Fig. 9B,D). See supplementary materials for movies of

these two maneuvers.
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These forces originate from the detailed wing motions. In Fig. 10 we plot
the stroke angle, ¢, the deviation angle, 6, and the wing pitch angle, n, versus
time for the left (blue) and right (red) wings throughout the maneuvers. The
flapping wing-stroke consists of an upstroke and a downstroke, which are sep-
arated by rapid flipping of the wing at stroke reversal. During the downstroke,
the wings move roughly horizontally in the lab frame and toward the head of
the insect, and during the upstroke the wings move backward. Thus, the mo-
tion of the wings is primarily back-and-forth, so ¢ is a nearly sinusoidal function
with high amplitude (Fig. 10A,E). Deviation from the horizontal is captured in
the angle 6. Because the wings tend to rise slightly at both stroke reversals, 6
has two peaks per wing-stroke (Fig. 10B,F). Throughout this motion the wings
also rotate about the span axis. The wing pitch angle, 5, captures this rotation.
During the downstroke, the wing moves forward and 5 45°. At stroke rever-
sal,  rapidly increases to nearly 180°. During the upstroke, the wing moves
backwards and n 135°. Finally, at the rear stroke reversal,  rapidly decreases to

nearly 0° before returning to the downstroke angle of 45° (Fig. 10C,G).

This general flapping and flipping motion is maintained throughout the
flight for both maneuvers. We observe symmetric wing motion when the fly
undergoes no lateral acceleration, near ¢ 0.075 s for the dodge and 7 0.033 s for
the sashay (Fig. 9B,D). When the fly accelerates sideways, however, asymme-
tries appear between the motion of the left and right wings. Maximal sideways
acceleration is about 15% g for the dodge and 40% g for the sashay, and all ori-
entation angles exhibit measurable differences between the wings during this
lateral force generation. These asymmetries lead to differences in both the tra-
jectory of the wing tips as well as in the wing angles of attack, ¢, an important

variable in determining aerodynamic forces. We define « as the angle between
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the chord of the wing and the instantaneous wing velocity and calculate it from
the wing orientation angles, (¢, 8, 17). We plot « versus time for the right (red) and
left (blue) wings for each maneuver in Fig. 10D,H. In general, the time course of
« is marked by periods of relative constant values near 45 degrees at mid-stroke
punctuated by rapid increases and decreases as the wing flips at each stroke re-
versal. Just as for the orientation angles, we observe asymmetries in a for the

left and right wings when lateral accelerations are large.

2.4.2 A lateral force generation mechanism

The generation of sideways forces can be rationalized by considering how dif-
ferences in the motions of the right and left wings lead to asymmetric fluid
forces. For example, in both maneuvers, when the fly generates rightward force,
the left wing stroke deviation angle, 6, is greater than the right wing stroke de-
viation angle, 0. Likewise, for leftward accelerating flight, 6z > 6,. These ob-
servations are consistent with the generation of lateral force by sideways tilting
the wing stroke planes, in much the same way as a helicopter executes a banked
turn. In essence, the lift force, which is normal to wing velocity, is redirected
to have a horizontal component. To estimate the magnitude of the lateral ac-
celeration from the redirected lift, we make the approximation that the vertical
acceleration is about g and this is redirected by an angle |6 —6,|/2. For the dodge
maneuver, this calculation yields that the redirected lift force accounts for about
8% g, or about half of the lateral acceleration. For the sashay, a similar calcula-
tion shows that lift accounts for 30% g, or about 70% of the lateral acceleration.
These estimates suggest that the mechanism of lateral force production is not

entirely due to the redirected lift force on the wings. An additional mechanism
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Figure 2.11: A drag-based mechanism of lateral force generation. Fruit flies pri-
marily flap their wings back-and-forth with the upstroke and downstroke sepa-
rated by rapid wing flips at the stroke reversal. (A) Four snapshots of the wing
orientations near stroke reversal for flight with no lateral acceleration. When no
lateral force is produced, the wing motions are nearly symmetric between left
and right wings. (B) When the insect is accelerating to its left, the right and left
wings have different angles of attack, as evidenced by the different projected
areas of the wings in this top view. (C) An idealized representation of the wing
motion that generates leftward force. By selecting different angles of attack for
the two wings near stroke reversal, asymmetric drag forces lead to a lateral force
imbalance. (D) This asymmetry can be simply actuated by having the left wing
rotate prior to the right, consistent with the timing difference observed in the
angle of attack data for laterally accelerating fruit flies. Angle of attack is wing
inclination relative to wing velocity.

for producing lateral forces may be associated with the consistent asymmetries

in the wing angles of attack.

Generating lateral forces from asymmetries in & can be understood by con-

sidering the time-lapsed top view images in Fig. 11A,B. In these images, the
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angle of attack is related to the projected area of each wing. Since the wings
are primarily moving in the horizontal plane, a large projected area in the top
view corresponds to a low angle of attack and a small projected area is associ-
ated with a large angle of attack. The nearly horizontal, arc-like wing motion
suggests that the drag forces, which act anti-parallel to wing velocity, have a
significant lateral component. This is consistent with the fact the wings sweep
out a large arc in ¢, and thus have a lateral component to their trajectories near
stroke reversals. When the wings move symmetrically, these drag forces cancel
out (Fig. 11A). For motions with asymmetric angles of attack near stroke rever-
sal, the wing with the larger a generates a larger drag force. This imbalance in

drag forces induces a lateral acceleration (Fig. 11B).

A schematic representation of the asymmetric wing motion is shown in Fig.
11C. The bottom image shows the fly at the beginning of a downstroke. As the
wings begin to move forward, the projected area of the right wing is smaller
indicating that ay is greater than ;. This asymmetry results in a net drag force
that points to the left. Similarly, leftward drag forces are induced near the end
of the downstroke where @, > ak, at the start of the upstroke where g > @, and
at the end of the upstroke where a; > ak. Remarkably, as the schematic in Fig.
11D shows, this seemingly complicated sequence of events can be generated
simply by having identical curves for a; and ay that are shifted in time. In fact,
we do observe timing differences in the measured curves for @, and ax for both
the dodge and sashay maneuvers (Fig. 10D,H). These observations indicate that

such time shifts in wing rotation are important for lateral force generation.

To quantify this idea, we determine the time shift by calculating the correla-

tion integral I(At) = fOT dtaga(t — At) over a wing beat period, T, and choosing
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Figure 2.12: Lateral acceleration is correlated with the timing difference in the
angle of attack of the right and left wings. Each point represents a single wing-
stroke during the dodge (open circles), sashay (solid circles), and three addi-
tional sideways flight maneuvers (other symbols). The timing difference, At, is
the shift in time between the right and left wing angles of attack, e and a,, and
has been normalized by the flapping period, T. The value of the lateral accel-

eration, a, is the average during each wing-stroke and has been normalized by
gravitational acceleration, g.

the Ar that maximizes I(Af). We plot lateral acceleration versus the normalized
At/T in Fig. 12 and find that these variables are strongly correlated and that
larger time shifts correspond to more extreme lateral accelerations. Included
in the plot are individual wing-strokes from the dodge and sashay maneuvers
discussed above, as well as kinematic data from three additional captured se-
quences of sideways flight. In total, over 70 wing-strokes and 45,000 individual
kinematic measurements were extracted. Remarkably, we find a strong overlap
in the data for these maneuvers. This indicates that the timing difference be-

tween right and left wing rotation may be a general feature in the mechanism
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of lateral force generation of fruit flies.

Finally, we note that that the steep functional form of a near stroke reversal
allows slight timing differences to generate large differences in angle of attack.
For example, in the dodge maneuver, a time shift of 0.1 ms (2% T') is associated
with an instantaneous angle of attack difference of up to 20 degrees. In the
sashay maneuver, a time shift of 0.5 ms (10% T') corresponds to an a difference
of up to 60 degrees. This suggests that lateral forces are particularly sensitive to

slight manipulations of wing rotation timing.

2.5 Discussion

We introduce a new method called Hull Reconstruction Motion Tracking
(HRMT) for automated, fast, and accurate extraction of kinematic data from
films of flying insects. In particular, we show that with appropriate morpho-
logical considerations, three camera views of each flight event are sufficient for
extracting the full wing and body kinematics. Our implementation of HRMT
is a unique form of motion tracking that combines and builds on image regis-
tration, hull reconstruction, clustering, and several geometric and analytic tech-
niques. The main source of error associated with the technique arises from re-
gions outside the fly that are included in the hull because they are blocked from
all camera views. Despite these occluded regions, we find that when we test the
accuracy of this method by running the algorithm on synthetic data, errors are
very small, on the order of 1-3 pixels for centroid positions and 1-5 degrees for

the orientation angles.

The HRMT system has many directions for future improvements. For exam-
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ple, increasing the number of viewing directions will increase accuracy. Cur-
rently the analysis does not make use of intensity differences that can be used
to differentiate between various components of an object. The analysis algo-
rithms can be sped up through optimization, exporting portions of the code to
programming languages which are faster than MATLAB, and making the code
parallel. Also, our implementation does not resolve the roll of the body well,
a notoriously difficult task due to the symmetry of the insect body. To better
resolve roll, HRMT may be supplemented with marker-based feature tracking
or with the imposition of a morphologically-appropriate body model [11]. Fur-
ther, our current implementation of HRMT uses a simple image registration
procedure that takes advantage of the orthogonal filming arrangement and low
distortion due to perspective. Calibration of images from more general cam-
era orientations and larger distortions due to perspective would require the
use of more general photogrammetric techniques, such as the Camera Calibra-
tion Toolbox available for MATLAB. The small errors associated with HRMT for
coarse-grained reconstruction also suggests that our method will remain accu-
rate for arrangements that would require such modifications to the registration
procedure. Finally, our current implementation does not quantify wing defor-
mations. For D. melanogaster such deformations are small. We estimate that the
wing camber is largest at stroke reversal and measures about 15%. Such de-
formations, however, are known to be significantly more prominent in larger
insects and are important for understanding aeroelasticity [5]. In order to adapt
HRMT to aeroelastic studies, the implementation described in this paper could
be combined with other photogrammetric techniques in order to better resolve

such deformations [25].

Overall, however, HRMT offers several improvements over present motion
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capture techniques. Automation eliminates the need for a researcher to manu-
ally perform motion tracking. This allows errors to be characterized in a reliable
way, and we show that these errors are small and generally have no systematic
dependence on relevant variables. Also, our implementation is fast, easy to im-
plement, and not memory-intensive; it can be run on a commonly-available per-
sonal computer. This allows for rapid extraction of flight data and determina-
tion of statistically-significant trends. Because the kinematic data are measured
entirely in the lab frame of reference, the recovered coordinates are also directly
suited for aerodynamic analyses such as computational fluid flow solvers or nu-
merical force models. Finally, HRMT is versatile and may be readily modified
for other locomotion studies in which the motion of many components impor-

tant.

To illustrate the utility of this technique, we use the HRMT method to per-
form a comprehensive analysis of sideways flight maneuvers of fruit flies. Be-
cause our automated filming apparatus was used to capture hundreds of free-
flight movies, we were able to then select five films showing unambiguous side-
ways flight. The HRMT method was used to automatically recover 45,000 kine-
matic measurements for over 70 wing-strokes. By having access to all of these
data, we show that flies are able to generate lateral forces in a manner that takes
advantage of the unique features of flapping flight. In particular, we show that
sideways-flying insects induce differences in the right and left wing angles of
attack near stroke reversal. Based on these data, we propose a model for gen-
erating lateral forces by accounting for unbalanced drag due to the difference
between the wing angles of attack. Our simplified model predicts that asymme-
tries in the drag forces can be generated by having identical curves for a; and

ar that are shifted in time relative to one another. This mechanism is consis-
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tent with measurements in dynamically-scaled flapping wing experiments that
showed drag is extremely sensitive to the timing of wing rotation at stroke re-
versal [7]. To test this model, we use the HRMT method to analyze many fruit
fly wing-strokes associated with different values of lateral acceleration. We find
that there is a strong correlation between the measured lateral acceleration and
the measured time shift between the curves for oy and ¢, (Fig. 12). These ob-
servations indicate that free-flying fruit flies alter wing rotation timing during
maneuvers. This manipulation may be actively controlled by steering muscles
[6] or passively influenced by fluid, inertial, or elastic forces [2]. Future stud-
ies may elucidate the fluid force generation mechanism in more detail, perhaps
using dynamically-scaled experiments [7], fluid force models [3], or computa-
tional fluid dynamics algorithms [28]. Irrespective of the detailed force mech-
anism, our free-flight data suggest manipulation of wing rotation timing is a
robust way to control forces during flapping flight. Exotic aerial maneuvers
might be implemented in flapping, flying robots using such simple actuation

strategies.

2.6 Appendix: Comparison of HRMT to a manual tracking

method

Since we present HRMT as an automated alternative to manual tracking tech-
niques, it is important to compare the two approaches. To make this compari-
son, we first designed a graphical user interface program in MATLAB that has
the user position a model insect so that its shadows overlay on the movie im-

ages of the actual insect. Our manual tracking program is similar to that of other
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Figure 2.13: Comparison of coordinates tracked by the HRMT method and a
manual method. Over 200 frames from the dodge sequence are tracked by both
methods, and the differences in the measured coordinates are plotted as a his-
togram. Comparisons are displayed for the body centroid position (A), the body
orientation (B), the right wing centroid position (C), and the right wing orien-
tation (D). The left wing shows similar statistics to the right wing. The mean
differences in position coordinates are as high as eight pixels. With the excep-
tion of the roll angle, orientation angles recovered by the two approaches are
similar, with no mean difference greater than four degrees.
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groups [13, 19]. We then performed manual tracking for over 200 frames of a
flight sequence. The particular flight sequence captures the dodge maneuver
that is discussed in detail above. We also ran HRMT on the same frames and
computed the differences between the coordinates extracted by each method
(Fig. Al). In general, we find a strong similarity in the two methods, with
all mean differences in position coordinates less than eight pixels and all mean
differences in angular coordinates less than five degrees. There are small, but
systematic differences in the two methods. The differences are likely due in part
to inaccuracy in the morphology and connectivity of the model insect needed
for manual tracking. There may also be additional occlusion errors in the HRMT
method due to morphological differences between the real and model flies.
Nonetheless, the similarity of the results obtained by HRMT and by the manual
tracking program suggests that both methods are capturing the key features of

the wing and body motion.
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CHAPTER 3
A PADDLING MODE OF FORWARD FLIGHT IN FRUIT FLIES

3.1 Summary

By analyzing high-speed video of the fruit fly, we discover a swimming-like
mode of forward flight that is characterized by paddling motions of the wings'.
These insects generate drag-based thrust by slicing their wings forward at a
low angle of incidence and pushing backwards at a higher angle. We use fluid
force models and computer simulations to show that the law for flight speed is
determined by these wing motions but is insensitive to material properties of the
fluid. Thus, paddling locomotion is as effective in air as in water and represents

a common strategy for propulsion through aquatic and aerial environments.

3.2 Swimming and Flying

We do not typically think of fish as flying underwater or insects as swimming
through the air. However, flapping fins in water generate thrust from lift as ef-
fectively as flapping wings in air [12, 3], and a broad class of swimming and fly-
ing animals use their appendages as hydro- or air-foils during lift-based propul-
sion [21, 18]. Here, we present a complementary convergence for a drag-based
propulsion mode that has previously been associated with swimming [4, 21] but
now must be included among the strategies for flight. We combine experimen-
tal observations of flying insects and fluid force modeling to reveal a mode of

insect flight in which the wings operate as paddles that push off the air.

!The work presented in this chapter has been submitted for publication to Phys. Rev. Lett.
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Figure 3.1: Reconstruction of forward flight of a fruit fly (body length 2.5 mm).
The sequence is recorded using three high-speed video cameras, and snapshots
from each camera are displayed on the side panels. The positions and orienta-
tions of the insect body and wings are extracted, and these data are displayed
on the reconstructed insect for a single frame. The wings beat in horizontal arcs

about the body, and wing-tip trajectories for several wing-beats are shown in
dark blue.

3.3 Forward Flight in Fruit Flies

We use three orthogonal high-speed video cameras to capture many flight se-
quences of the fruit fly, D. melanogaster [17]. We then select sequences of forward
flight and use a motion tracking algorithm to extract the time-resolved, three-
dimensional motions of the body and wings. Images selected from one flight
sequence are shown on the side panels of Fig. 3.1, and the measured posture
of the insect is visualized by the computer-generated reconstruction. To deter-
mine the aerodynamic basis of the thrust generation, we analyze the flapping

motions of its wings. Previous studies of forward flight in insects have empha-
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sized the nose-down tilting of the wing stroke planes [21, 6, 19, 20, 8, 9, 26], a
mode in which thrust is generated by re-direction of lift. In addition to this lift-
based mode, we discover a new mode in which the wings primarily beat in a
horizontal plane, as during hovering. The wing-tip trajectories of Fig. 3.1 show
that the wings beat back-and-forth as they progress with the forward motion of
the insect body. To drive flight at different speeds, the insects make adjustments

to these wing motions.

These adjustments can be discerned by contrasting the wing motions associ-
ated with low- and high-speed flight. In both cases, each wing sweeps along a
globe centered about its root on the body [Fig. 3.2(a)]. The wing motions are vi-
sualized by the stroke diagrams associated with hovering flight [Fig. 3.2(b)] and
fast forward flight [Fig. 3.2(c)]. These diagrams show that both slow and fast
flight are characterized by a horizontal stroke plane with the forward and back-
ward sweeps separated by rapid wing flips. These kinematics can also be quan-
tified by the time-course of three orientation angles: the stroke angle measured
in the horizontal plane, the vertical deviation angle, and the pitch angle. In Fig.
3.2(d-f), we compare the measured angular data for sequences at flight speeds
of 2 cm/s (blue) and 43 cm/s (red). Differences can be seen for the time-course
of all three angles, suggesting that all three degrees of freedom may contribute

to the thrust generation.

3.4 Modulation of Wing Pitch

Recent studies of fruit flies have shown that changes in wing pitch play an im-

portant role in generating turning maneuvers [16, 1]. In the case of forward
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Figure 3.2: Comparison of wing motions for hovering (forward body speed
u = 2 cm/s) and fast forward flight (« = 43 cm/s). (a) Each wing sweeps
a path along a globe centered about its root on the body. (b and c) The mo-
tions are unwrapped in wing-stroke diagrams which represent the wing as a
line segment with a ball at the leading edge (scale bars, 30°). Beginning with
the forward sweep, the wings are colored darker with time and displayed at the
camera acquisition rate of 8000 Hz. (d-f) Wing orientation angles for hovering
(blue, wing-beat period T = 4.0 ms) and forward flight (red, T = 4.8 ms). Stroke
angle is measured in the horizontal plane, deviation angle is the vertical excur-
sion, and pitch angle is measured between the wing chord and the horizontal
plane. Experimental measurements (circles) are phase-averaged, and right and
left wing data are pooled and used to form the Fourier fits (solid lines). Mean
values of wing pitch are shown as dashed lines in ().
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flight, we also observe changes in pitch for flight at different speeds. In partic-
ular, the curve for pitch during fast flight is shifted downward relative to pitch
during slow flight [(Fig. 3.2(f)]. This downward shift can be rationalized by
considering its effect on aerodynamic forces on the wings. During the forward
stroke, the low value of wing pitch indicates the wing is more horizontal and
thus slices through the air. During the backward stroke, the low value of pitch

indicates the wing is more vertical, in effect pushing off the air with a broad

60



area exposed to the flow. Thus, a uniform decrease in wing pitch angle gener-

ates rowing or paddling motions that propel the insect forward.

To determine the degree to which the forward motion is generated by pad-
dling, we use a computational simulation that determines the body motion from
aerodynamic forces on the wings [1]. Flapping wing motions are prescribed, a
quasi-steady model is used to compute wing forces, and the body motion is
calculated from the thrust produced. Computed flight velocities are typically
within 10 cm/s of the measured values [Fig. 3.3(a)]. To systematically evalu-
ate the relative importance of the measured changes in the stroke, deviation,
and pitch angles, we use the simulation to determine the flight speed for hy-
brid wing motions. In Fig. 3.3(b), we compare the simulations of the complete
hovering (blue) and fast flight (red) kinematics to simulations in which the wing
kinematic angles are selected from a mix of these two data sets. For example, the
color scheme blue-red-blue indicates that the stroke, deviation, and pitch angles
are taken from the hovering sequence, the fast flight sequence, and the hovering
sequence, respectively. Simulations of the six possible hybrid kinematics divide
into two distinct groups according to speed. Slow flight speeds are associated
with kinematics in which the wing pitch is selected from the hovering sequence,
regardless of the sources of the stroke and deviation angles. Conversely, high
speeds are associated with pitch selected from the fast flight sequence. These
results indicate that the changes in wing pitch of Fig.3.3(f) are crucial to deter-

mining flight speed.

Further, we find that the mean value of pitch in particular correlates with flight
speed. When the complete hovering kinematics are modified only by shifting

the curve for pitch downward so as to have the same mean as that of the fast
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Figure 3.3: Dependence of flight speed on wing orientation angles. (a) When the
measured wing motions for hovering (blue) and fast flight (red) are played in
simulation (top), the computed speeds are comparable to experimental values
(bottom). (b) Simulations of hovering and fast flight kinematics (top) are com-
pared to hybrid kinematics (bottom). For hybrid simulations, wing motions are
formed by selecting each orientation angle — stroke, deviation, and pitch — from
either the hovering or fast flight data sets. Slow speeds are associated with pitch
from the hovering sequence, and high speeds are associated with pitch from
the fast flight sequence. (c) Simulations of hovering and fast flight kinematics
(top) are compared to simulations in which the mean values of pitch have been
swapped (bottom). For example, blue stripes on the otherwise red kinematics
indicate that the fast flight kinematics have been modified only by shifting the
pitch curve upward so as to have the hovering sequence’s mean value (dashed
line of Fig. 2f).
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flight sequence, the simulation yields a speed close to that of the fast flight sim-
ulation [Fig. 3.3(c)]. Conversely, shifting the wing pitch for fast flight upward
causes the speed to slow to near zero. Thus, although the wing motions are com-
plex, much of this flight mode is accounted for by the stroke-averaged value of

wing pitch.

3.5 Aerodynamic Model of Paddling Flight

These findings inspire a minimal model that includes only changes in average
pitch to drive flight at different speeds. In this model, each wing sweeps for-
ward and backwards at constant speed w relative to the insect body. In hov-
ering, both wings are inclined symmetrically during the forward and back-
ward strokes, with angles of attack between the wing chord and its velocity
of ar = ag = @y = 45° [Fig. 3.4(a)]. The wing drag, which points opposite to the
wing velocity at any instant, cancels over each complete wing-beat, and the in-
sect hovers. Forward flight results from asymmetric attack angles, ar = @) — Aa
and ag = @ + Aa, and the insect flies faster by increasing the wing paddling
angle A« [Fig.3.4(b)]. For these idealized paddling motions, Aa corresponds to
the downward shift in pitch relative to 90°. Physically, paddling causes larger
wing drag for the backward sweep than for the forward sweep [21, 2], and this
unbalanced drag propels the insect forward. As the insect progresses forward,
the wing velocities relative to air are modified, causing a resistive drag. Even-
tually, the drag arising from paddling balances drag due to the forward motion,

and the insect achieves a speed u.

To quantify these dynamics, we average drag over a wing-stroke and ap-
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Figure 3.4: Paddling wing motions drive forward flight. (a) During idealized
hovering, each wing assumes equal inclination relative to the flow for the for-
ward and backward sweeps. (b) During idealized paddling forward flight, the
wing inclination is adjusted by uniformly shifting the pitch downward by the
paddling angle Aa (here, 30°). (c) The flight speed u, normalized by wing speed
w, correlates with paddling angle for 16 sequences of forward flight (circles).
The trend is consistent with predictions of a simple aerodynamic model (Eq. ??,
dashed line) and simulation (solid line). Simulations confirm that the relation
between flight speed and paddling angle is insensitive to changes in the density
of the fluid (d) and the drag coefficient (e).

proximate the coefficient of drag, Cp(a) ~ CJ* sin’(@) [5]. For a wing of area
S moving at speed v relative to a fluid of density p, the high Reynolds number
pressure drag law is D = pS Cp(a)v?/2 [12, 3], and the steady-state force balance

for a pair of wings moving with the body is:

D= %pS [~Cp(ar) - (W + u)* + Cplas) - (w — u)’] = 0. (3.1)

As each wing sweeps forward, wing speed relative to air is large but the attack
angle, and thus Cp, is small. As each wing sweeps backward, its airspeed is
small but Cp, is large. To derive a control law for flight speed, we assume small
Aa and thus linearize the drag coefficient about «y, Cp(@) = Cp(ap) - (1 +2 -
Aa/ tan(ay)), which for a = 45° becomes Cp(a) ¥ Cp™ - (1 + 2 - Aa)/2. For slow
body speeds, second-order terms (u/w)* are negligible, and we use Eq. 3.1 to

derive a law that relates forward flight speed to wing speed and paddling angle:
u=w-Aa. (3.2)

Thus, flight speed is expected to depend strongly on the degree of wing pad-
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dling.

To validate this control law, we gather flight sequences with predominantly
forward motion, steady motion (acceleration < 0.15g), and a horizontal stroke
(stroke-plane angle < 5°). For each movie, we measure the full wing kinemat-
ics [17] and then extract the paddling angle, the mean speed of the wings, and
the mean forward speed of the body. In Fig. 3.4(c), we plot the ratio of the
body speed to wing speed versus the paddling angle for 16 sequences of pad-
dling flight. The prediction of the minimal model is shown by the dashed line
that is in qualitative agreement with the overall trend in the data but somewhat
under-predicts the expected flight speed. Playing idealized wing-strokes in sim-
ulation (solid line) also captures the trend. Collectively, these physically-based
models and experimental observations confirm that wing paddling produces

drag-based thrust in this flight mode.

3.6 Paddling in Air and Water

The minimal model, which assumes steady wing and body motions within a
wing-beat, predicts that flight speed during paddling does not depend on the
fluid medium. In particular, fluid density and drag coefficient do not appear in
the law of Eq. 3.2. To evaluate the influence of unsteady effects on the flight
speed law, we again simulate idealized paddling strokes [Fig. 3.4(a,b)], vary the
fluid density and coefficient of drag, and measure the resulting flight speed. Fig.
3.4(d) summarizes the dependence of flight speed on A« for different density
fluids. Paddling in air (black curve) and in lower density fluids such as the

Martian atmosphere (red) give rise to similar flight speeds. Paddling in water
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(blue), which is a thousand times denser than air, leads to a slightly slower
speed. Thus, changing the fluid density, and hence the fluid forces, by 5 orders
of magnitude leads to changes in flight speed of only about 50%. Similarly,
increasing or decreasing the drag coefficient by a factor of 10 leads to modest

changes in the speed law [Fig. 3.4(e)].

These simulations indicate that the changes in speed for varying densi-
ties and force coefficients result from unsteady wing and body oscillations.
Nonetheless, the simple law of Eq. 3.2 provides a good rule-of-thumb for es-
timating body speed over a wide range of fluid densities and force coefficients.
This insensitivity of locomotion speed to material properties typically stems
from a common physical origin of the driving and resisting forces [4, 21]. In
the case of flapping flight, these forces are associated with pressure drag on the
wings. Doubling the density, for example, doubles both the propulsive and re-
sistive forces, leaving the velocity at which force balance is achieved unchanged.

Thus, paddling locomotion is as effective in air as in water.

3.7 Implications

Because of its prevalence among swimmers — from ciliated micro-organisms
[12, 3] to semi-aquatic birds and mammals [10] and fish that use pectoral fins
[22] — paddling has largely been viewed as an aquatic phenomenon [4, 21].
However, recent work indicates drag is important in hovering flight of some in-
sects [23, 24], and our experimental observations and aerodynamic simulations
suggest that drag-based paddling propulsion may be common among flyers.

We have highlighted pure paddling flight in the fruit fly, and more generally
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forward flight is driven by both lift and drag which are associated with stroke-
plane tilting and wing pitching, respectively. Though considered less effective
than lift-based locomotion [21, 2, 22], pure paddling offers several advantages
for forward flight. It requires no re-orientation of the body and is dictated by
a linear relation (Eq. 3.2) that could simplify the flight speed control strategy
[11] and actuation of wing motions [1]. Perhaps most importantly, paddling re-
cruits drag for thrust while largely maintaining the lift needed to support body

weight.

The use of common mechanisms for locomotion in different media suggests
that swimmers and flyers share similar adaptations for generating and control-
ling movement [4]. The similarities between locomotion in water and in air may
also shed light on the very origin of flight in insects. One evolutionary theory
contends that the aerodynamic function of flapping appendages emerged from
their use in underwater ventilation or swimming [25, 14]. However, the seem-
ingly great differences between swimming and flying have previously been
viewed as evidence against this theory [6, 7]. Instead, we interpret the use of
common strategies as offering physical plausibility to the swimming-to-flying
transitional scenario. In particular, the characteristics adapted for swimming
could have been readily co-opted for use in flight, and swimming would pro-
vide a context to evolve flapping appendages without the demands of weight
support and stability. The physical plausibility of this transition is also sup-
ported by observations of insects that use their wings for both swimming and
flying [13, 15] as well as by insects that row their wings while skimming on the

surface of water [14].
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CHAPTER 4
PADDLING DRIVES YAW TURNING MANEUVERS

4.1 Summary

Flying insects execute aerial maneuvers by subtly modulating the flapping mo-
tions of their wings'. Here, we examine how such changes in wing motions lead
to body motion and also how the wing motions themselves arise. We elicit free-
flight turning maneuvers of fruit flies, capture these events using high-speed
video cameras, and use a new motion tracking algorithm to extract the wing
and body motions through time. We find that these insects generate drag-based
torque by adjusting wing inclination to push off or slice through the air. We use
aerodynamic models to show how these paddling wing motions determine the
rotational dynamics of the body. Further, we present a biomechanical model
that shows how these motions arise from the interaction of active modulation

and passive dynamics.

4.2 Turning Flight as a Paradigm of Complex Behavior

When searching for food, flies display a characteristic foraging behavior:
straight flight paths are separated by rapid changes in heading called saccades
[5]. For fruit flies, a typical saccadic turn is through 90 degrees and is complete
in about 50 ms, or 10 wing-beats. Since Collett and Land first investigated sac-

cades in detail in 1975 [4], these flight maneuvers have emerged as an archetype

!The work presented in this chapter is modified with permission from Bergou, Ristroph et
al., Phys. Rev. Lett., 104, 148101 (2010) and includes portions based on material published in
Ristroph et al., PNAS, 107, 4820-4824 (2010).
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of complex animal behavior. The primary goal of these investigations has been
to dissect the many layers to such maneuvers. This approach seeks to under-
stand how the sensory, neural, and muscular systems interact with aerodynam-

ics in orchestrating the turn.

The earliest studies of in-flight turns involved preparations in which the in-
sects were tethered or fixed in place. Though these insects cannot physically
turn, they can be made to generate yaw torque by presentation of visual stimuli
[8]. For example, a tethered fly flapping its wings will attempt to turn along
with a rotating pattern of stripes. This gaze stabilization response serves to
eliminate optical flow in the visual field of the insect. Though such studies have
been important in showing this stereotyped and robust behavior, they do not

allow for a full understanding of turning behavior.

As a next step, some researchers developed loose-tether preparations. One
involves the tethering of flies to a loose fiber, allowing for some rotation [11]. A
second involves a magnetic tether, in flies are held in place but allowed to swivel
about a magnetic pin [1]. However, for both such approaches, the distribution
of turning angles shows a marked difference from that seen in free-flying insects

[14]. This suggests that loose-tether preparations influence flight behavior.

In 2003, the Dickinson group studied free-flight turns in fruit flies [7]. Sac-
cades were filmed with three high-speed cameras aimed near a vinegar-laced
dark cylinder. Attracted by the smell, flies approach the cylinder and perform
collision avoidance turns. By measuring the complete wing and body kinemat-
ics, this study aimed to rationalize the aerodynamic basis of the generated yaw
torque. To do so, the wing kinematics were replayed on a dynamically-scaled

mechanical flapping wing. The researchers found that the wing motions indeed
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generated sufficient yaw torque to drive the turn, and they implicated changes
of about 2° in stroke-plane angle and 5° in wing-beat amplitude. The central
conclusion of the study indicates that the torque associated with these changes

in wing motions primarily has to overcome inertia of the insect body.

Here, we revisit free-flight turns in fruit flies. We show two key results that
are at odds with these previous findings. First, the modulation of wing inclina-
tion or angle of attack is an important parameter in driving yaw turns. Second,
the torque generated must not only overcome body inertia but also an effective
damping of body rotations due to aerodynamic forces on the flapping wings. In
addition, we show that high quality kinematic data can even be used to eluci-
date how the wing motions arise from an interaction of actuation biomechanics

and aerodynamics.

4.3 Eliciting and Capturing Turning Maneuvers

To elicit free-flight turns, we take advantage of the gaze stabilization response
of flies. We display a rotating striped pattern of lights that induces saccade-
like turns in the direction of rotation. The apparatus used is shown in Fig. 4.1.
Three high-speed cameras aim toward the central point in a clear flight chamber
[12]. Inside the chamber and just above the filming volume is a ring of panels
that are covered in an array of light-emitting diodes. A micro-controller is used
to play computer-generated patterns on the arrays. In these experiments, we
light up alternate panels and have this striped pattern rotate when a fly breaks
two-crossed laser beams. The breakage trips a circuit that initiates rotation and

signals the cameras to record.

72



(a)

(b) ’ \
BS g
CM Q\ FC (%) 'J % M

Figure 4.1: Schematic of the apparatus used to elicit and capture video of turn-
ing maneuvers. (a) Three high-speed cameras (C) focus on a cubic volume ( 2
cm side length) in a larger plexiglas flight chamber (FC). The chamber contains
a panel of light-emitting diode arrays in which patterns of light can be played.
Each camera is fitted with a magnifying bellows (B) and a zoom lens (Z), and
each view is back-lit by a bright red light-emitting diode source (S) that is fo-
cused using a simple convex lens (L). (b) An optical triggering system detects
the presence of an insect in the filming volume and signals the cameras to record
and a striped pattern of lights to rotate. A red laser (L) emits a beam that is di-
vided by a beam splitter (BS), re-routed by mirrors (M), passed through Galilean
beam expanders (BE) and the chamber, and focused on photodiodes (PD). When
an insect flies through the intersection of the beams, it is detected by the photo-
diodes, and a triggering circuit (not shown) initiates recording. (c) As an insect
flies through the beams, the cameras capture the portion (red) of its trajectory
that includes the insect’s response to the rotating pattern.
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4.4 Turning Kinematics

To rationalize the physical basis of turning maneuvers, we analyze an extreme
turn in detail. In Fig. 4.2(a), we display several snapshots taken from a saccade
through about 120 degrees. The insect starts from hovering on the right, rapidly
changes yaw or heading while drifting leftward, and then flies forward and
away. The turn is complete in about 80 ms or 15 wing-beats. We use our motion
tracking program to extract the wing and body positions and orientations over
time, and we display the configuration of the insect for several snapshots during

the maneuver.

The motion of each wing is described by the time-course of three Euler an-
gles [Fig. 4.2(b)]. The stroke angle describes the orientation in the horizontal
plane. Because the wings continually flap back-and-forth, the stroke angle is
similar to a sinusoidal function of time, as shown in Fig. 4.2(c). The deviation
angle describes the vertical excursion of the wing. The small oscillations in de-
viation correspond to heaving motions up and down [Fig. 4.2(d)]. Finally, the
pitch angle is the inclination of the wing relative to the forward horizontal. The
wing pitch is near 45 deg for the forward sweep of the wings, flips over, and
then is near 135 deg for the backward, flips over again, and repeats. The time

course of wing pitch is shown in Fig. 4.2(e).

During the turn, these flapping and flipping motions are maintained but
modified with respect to all three Euler angles. In seeking the aerodynamic ba-
sis of turns, we first look for differences between the motions of the right and
left wings. Because differences appear in all angles, we make use of an insect

flight simulation to evaluate the relative importance of these changes [2]. First,
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Figure 4.2: Body and wing motions during an extreme turning maneuver. (a)
Reconstruction of the turn. The wing and body configuration for the fruit fly are
captured by the three high-speed cameras, and selected snapshots are displayed
on the side panels. We use a motion tracking algorithm to extract the wing and
body posture for each frame, and these data are used to render the model in-
sect. The insect is initially hovering on the right, and performs a rightward turn
through about 120° while drifting to the left in this image. (b) Representation of
wing motion. Each wing sweeps a path along a globe centered about its root on
the body. (c-e) Wing orientation angles throughout the maneuver. Stroke angle
is measured in the horizontal plane, deviation angle is the vertical excursion,
and pitch angle is measured between the wing chord and the horizontal plane.

75



we use the simulation to compute the average torque during the initial wing-
beats of the turn. We compare this torque to those generated by symmetrized
kinematics. Two of three Euler angles are symmetrized to their right-left aver-
age, thus isolating the asymmetry in the third angle. This procedure indicates

that changes in wing pitch account for the yaw torque generated to within about

10%.

To physically interpret how changes in pitch lead to yaw torque, we first
note that the curve for right wing pitch is shifted upward relative to that of the
left wing during the turn [(Fig. 4.2(e)]. This upward shift can be rationalized
by considering its effect on aerodynamic forces on the right wing. During the
forward stroke, the high value of wing pitch indicates the wing is more vertical
and thus pushes off the air with a broad area exposed to the flow. During the
backward stroke, the higher value of pitch indicates the wing is more horizon-
tal, in effect slicing through the air. Thus, a uniform shift in wing pitch angle

generates rowing or paddling motions that rotate the insect body.

4.5 Minimal Model of Turning Flight

We construct a physics-based model of turning dynamics. Combining all rele-

vant yaw torques, the body rotational dynamics are described by
1Y = Nyero (4.1)

where [ is the yaw moment of inertia of the insect body and N, is the aero-
dynamic torque on the insect. For wings that beat in a horizontal stroke plane,
only the aerodynamic drag on the wings contributes to yaw torque. In general,

the drag on each wing is proportional to the wings drag coefficient, Cp(«), times
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Figure 4.3: Minimal model of turning dynamics. (a) Paddling drives turns. In
this top view schematic, a fly turns rightward by inclining its wings at different
angles, thus generating differential drag (red arrows) on its wings. (b) Passive
damping resists body rotations. As the wings beat during body rotation, their
airspeeds are modified and thus induce a resistive drag on the wings. (c) Testing
the model. The model predicts that the body turn angle is equal to the paddling
parameter, a quantity related to the wing motions. By measuring the wing and
body motions for 10 maneuvers, we verify the model. See text for model details.
the square of its speed relative to air. We consider the general case in which
the right and left wing angles of attack may be different, and each wing beats
with mean angular speed w relative to the body. For an insect body rotating

at angular velocity ¢, the stroke-averaged net aerodynamic torque is found by

summing each wings contribution:
Naero ~ —Cp(ar)-(w+§)* +Cplar) - (w—)* ~ —Cp(p)-dw-Jr+Ch(a) w*-Aa. (4.2)

Here, we have kept leading order terms in » and taken advantage of the linear-
ity of the coefficient dependence on attack angle [6]: Cp(@) =~ Cp(ap)+Cp(ap)-(a—
@), where ay = 45° and Cj () is the slope at a,. This aerodynamic torque has
two components. The first is a damping torque, and it is proportional to the yaw

velocity ¢ with a damping coefficient 3 that depends on aerodynamic proper-
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ties of the wings. The second is the torque due to the asymmetric wing motions,
Ngy = v - Aa, and it is proportional to A with a second aerodynamic constant 7.

Combining Egs. 4.1 and 4.2, we arrive at the yaw dynamical equation

Iy = B +7y - Aa. (4.3)

Thus, the active torque exerted by the fly must act in concert with aerodynamic

damping and inertia to generate body rotation.

As the insect drives the turn, its wings beat asymmetrically, as shown in
Fig. 4.3(a), and torque is generated from unbalanced drag on the wings. For
example, to turn rightward, the fly employs a higher average attack angle «
on the right wing for the forward stroke and a higher @ on the left wing for
the backward stroke [2]. These rowing motions generate differential drag on
the wings and thus produce the yaw torque, Ny, that drives the body rotation.
To stop the rotation, the insect need not apply an active counter-torque. If the
wings beat symmetrically, Ao = 0, so that Ny, = 0. The induced body rotation,
however, introduces a difference in the wing velocities and hence a difference
in the drag forces acting on the wings [13, 9, 10], as illustrated in Fig. 4.3(b).
Then Eq. 4.3 reduces to Iy = —py. Thus, an induced yaw rotation exponentially
decays with a characteristic damping time of about two wing-beat periods, 1/ =

2T.

4.6 Testing the Model

To provide a general test of the aerodynamic model, we ask how the paddling

wing motions relate to the rotation of the body. In particular, to derive the total
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turn angle of the body, we integrate Eq. 4.3 over the entire turn.

LA¢=#M¢+yfﬁma (4.4)

Here, the symbol A indicates the net change in each quantity. Once the maneu-
ver is complete, the change in yaw velocity Ay = 0. Solving Eq. 4.4 for the total

angle through which the body turns yields

szzfﬁma=wjﬁmm (4.5)

where w is mean angular speed of the wings relative to the body. Thus, the
model predicts that the stronger the paddling and the longer such motions are

applied, the greater the body rotates.

To test this prediction, we use our videography apparatus to capture many
instances of saccadic turns. We then use our motion tracking algorithm to ex-
tract the complete wing and body kinematics for 10 such sequences, and use
these data to distill the paddling parameter, w f dfAa, during turns and the body
turn angle, Ay. In Fig. 4.3, we plot the body turn angle against the paddling pa-
rameter and find that the model captures the overall trend in the relationship.
This indicates that paddling and damping are the key physical factors in the

dynamics of turning maneuvers.

4.7 Paddling Actuation Mechanism

At a level deeper, we next investigate how the paddling wing motions them-
selves arise. The following analysis was performed by Attila Bergou [2], and
we point to our paper for modeling details. To address this, we combine our

measurements of the wing pitching motion, an aerodynamic force model, and

79



15 15

-15 ¢

pitch torque (NNm
o

paddling angle (o)
(6)]

-10}+ hovering

turning
-15 L /.’0/ _25 . ! L
0 90 180 25 -15 -5 5 15

pitch (o) actuation angle (o)

Figure 4.4: A biomechanical model of wing actuation. (a) Stress-strain relation
for wing pitch. The pitch torque that the insect exerts is plotted against the
pitch angle itself. During both hovering and turning flight, the torque exerted
by the insect primarily acts like a viscoelastic brake that resists flipping due to
inertial and aerodynamic forces. During turning, the mean pitch angle is biased
to a pitch angle greater than 90°. (b-c) Biomechanical interpretation. The wing
hinge or musculature acts like a viscoelastic (damped torsional spring) element
that is biased to generate paddling motions. (d) The degree of paddling varies
with the bias applied. The paddling angle is approximately one-half the bias
angle (dashed line).

the Newton-Euler equations for the wing in order to extract the torque that the
insect must exert to pitch its wing. As an analogy to a stress-strain curve for a
material, this torque can be plotted against the pitch angle itself, as in Fig. 4.4(a).
For the symmetric wing motions in hovering and the asymmetric paddling mo-
tions, this relation forms a loop which is traversed in a counter-clockwise sense.
This direction of traversal indicates that work is being done on the insect to
drive wing pitching rather than the insect doing work on the fluid. The energy
extracted is equal to the area of this work-loop. With regard to wing pitching
motions, this indicates that the wing hinge and musculature act as a brake that

resist the inertial and aerodynamic torques that would flip the wing over. The

wing pitching motions arise passively.

The difference between wing pitching during hovering and during a turn

corresponds to a shift in the loop toward greater values of pitch [4.4(a)]. As
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discussed above, greater pitch corresponds to paddling motions. In the context
of wing actuation, this shift corresponds to a biasing of the angular position
of the pitch brake. To couch this idea in a more quantitative model, consider
the wing hinge and musculature as a damped torsional spring, as shown in
the schematic of Figs. 4.4(b) and (c). The torque exerted by the insect is then 7 =
—k-(n—n0)—C-1, where nis the wing pitch angle, « is the torsional spring constant,
1o is the rest angle of the spring, and C defines the degree of damping. This
viscoelastic behavior is called a Voigt model in the context of the mechanics of
biological tissues . For hovering, 17 = 90° so that the wings pitch symmetrically
back and forth, as in 4.4(b). For turning, n, # 90° and asymmetric paddling

motions drive body rotations, as shown in 4.4(c).

To test the validity of this picture, we combine the biomechanical model and
the aerodynamic simulations to derive a relationship between the adjustment
of the spring rest angle 1y and the paddling motions this induces. The paddling
angle quantifies the deviation of the wing pitch or angle of attack itself from
90°, while the actuation angle corresponds to the bias of 7, from 90°. In Fig.
4.4(d), we plot the predicted relationship between these quantities as a dashed
line, and data points correspond to experimentally measured wing-strokes. The

theory is able to quantitatively account for the trend in the data.

Physically, this actuation model can be interpreted as a transmission system
that converts flapping motions to flapping-plus-flipping motions. It is an active-
passive hybrid system. It is passive in the sense that the insect need not invest
power directly to the pitching degree-of-freedom but instead harvests power
from the flapping motions. It is active in the sense that pitching motions can be

modulated in a simple way to drive maneuvers.
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The transmission system has two other nice properties. First, it eliminates
the need to actuate on the time-scales of a wing-beat, a convenience and perhaps
necessity for such animals in which the wing-beat period is as fast as neural
time-scales. Though the wing motions themselves change within a wing-beat,
the actuation need only be applied on the scale of an entire maneuver, say 10-
20 wing-beats. Second, the system takes a relatively large actuation to a finer
change in wing motion. The data and theory shown in Fig. 4.4(d) shows that
is the base of the wing is biased by 10° then paddling motions of about 5° re-
sult. This down-gearing may be important considering the precision required

for such a sensitive dependence of torque on wing motion modulation.

4.8 Why Paddle?

Given that their are numerous ways in which flies could generate yaw torque,
what advantages does paddling offer? A possible answer is clear when one
considers both lift and drag forces on flapping wings. If wing pitch or angle of
attack is modulated, as during the idealized paddling shown in Fig. 4.5(a), drag
becomes unbalanced but lift is not changed much. This becomes clear when one
views the dependence of lift and drag coefficients on angle of attack, as plotted
in Fig. 4.5(b) from a dynamically-scaled experiment [6]. Fruit flies typically beat
their wings near an angle of attack of 45°, exactly where drag is most sensitive
to changes in angle and lift is least sensitive. Thus, modulating attack angle
recruits a large difference in drag while largely maintaining the lift needed to

keep aloft.
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Figure 4.5: Paddling recruits drag to maneuver while largely maintaining lift.
(a) Idealized paddling motions involve slicing and pushing. Each wing sweeps
forward at low angle of attack and sweeps backward at a higher angle. (b) Lift
and drag coefficients as a function of angle of attack [6]. By operating near an
angle of attack of 45/circ and adjusting this angle, insects can generate large
drag differentials while largely keeping a constant lift.

4.9 Revisiting Previous Work

It is difficult to evaluate why our results differ from the previous study [7] of
free-flight yaw turns in fruit flies. However, I have some thoughts on these dif-
ferences that may shed light on the subtleties involved in understanding such
problems. First, the lower time resolution and much lower spatial resolution of

the earlier flight videos, combined with a manual motion tracking method, cer-
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Figure 4.6: Re-evaluation of the 2003 study of saccadic turns in fruit flies [7].
The data in these plots have been manually digitized from the original study.
(a) Yaw velocity during a representative saccade versus time measured in wing-
beat periods T. (b) Difference between right and left stroke amplitudes. (c)
Stroke amplitudes for the right (red) and left (blue) wings.

tainly made the kinematic data of lower quality than those presented here. The
reported changes in stroke-plane angle and amplitude of 5° and smaller would
certainly be difficult to resolve reliably. Second, these changes may well have
occurred, but that does not mean that these changes are important to the aerody-
namic mechanism driving turns. The previous study simply found some kine-
matic correlates between wing and body motion. Third, the previous study did

suffer from one subtle but serious procedural flaw. In determining the torque

generated by given wing motions, the researchers had the mechanical wings
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flap as in the body frame, not as in the lab frame. Thus, the wing-body coupled
motion was ignored. Our results show that this coupling is crucial in dictating

the body dynamics and gives rise to a resistive torque during turns.

In an attempt to understand some of these differences in more detail, I re-
viewed some of the kinematic data gathered in the earlier study. The central
claim of the paper is that the torque that these insects exert must primarily over-
come the inertia of the body. The researchers confirm this in part by showing
that the modulation of the wing-strokes correlates with yaw torque and with
yaw acceleration. I have been unable to confirm this in analyzing the maneuver-
ing kinematics presented in the paper. Fig. 4.6(a-c) shows data I have digitized
from the earlier work. Though the data is noisy, the difference in wing-stroke
amplitudes seems to correlate with yaw velocity, not yaw acceleration. This is
indicative of a heavily damped system in which driving torque must overcome

resistive torque that is proportional to velocity.

Finally, in revisiting the wing angle of attack data, I find that the original data
does show paddling-like wing motions. In particular, as in our data sets, the
curve for the right wing angle of attack is consistently shifted upwards relative
to that for the left wing. However, given the uncertain errors, it is difficult to

evaluate this idea more quantitatively.

410 Supporting Information

The lighting used in these experiments is chosen so as to avoid over-stimulating
the insects. The spectral data of Fig. 4.7 shows that the back-lighting LEDs are

peaked to emit light at a frequency band to which insects are insensitive [3] but
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Figure 4.7: Spectral response for (a) the house fly [3] and (c) the Phantom v7.1
high-speed camera. (b) The emission spectrum for the high-power LED lights
(Diamond Dragon, OSRAM). Though complete spectral data is not available for
fruit flies, the house fly and fruit fly have receptor cells of similar spectral sensi-
tivity [3]. Notice that the cameras are most sensitive to red, while the fly visual
sensitivity rapidly drops off above 600 nm. The lighting for these experiments
is done with LEDs that peak at about 630 nm and have dropped to less than 5%
of their maximal sensitivity by 600 nm.
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the cameras are highly sensitive. This may be important in future studies aimed

at exploring the visual control of flight.
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CHAPTER 5
YAW STABILIZATION IN FRUIT FLIES

51 Summary

Just as the Wright brothers implemented controls to achieve stable airplane
flight, flying insects have evolved behavioral strategies that ensure recovery
from flight disturbances'. Pioneering studies performed on tethered and dis-
sected insects demonstrate that the sensory, neurological, and musculoskeletal
systems play important roles in flight control. Such studies, however, cannot
produce an integrative model of insect flight stability since they do not incorpo-
rate the interaction of these systems with free-flight aerodynamics. We directly
investigate control and stability through the application of torque impulses to
freely-flying fruit flies (Drosophila melanogaster) and measurement of their be-
havioral response. High-speed video and a new motion tracking method cap-
ture the aerial “stumble”, and we discover that flies respond to gentle distur-
bances by accurately returning to their original orientation. These insects take
advantage of a stabilizing aerodynamic influence and active torque generation
to recover their heading to within 2° in less than 60 milliseconds. To explain this
recovery behavior, we form a feedback control model that includes the fly’s abil-
ity to sense body rotations, process this information, and actuate the wing mo-
tions that generate corrective aerodynamic torque. Thus, like early man-made
aircraft and modern fighter jets, the fruit fly employs an automatic stabilization

scheme that reacts to short time-scale disturbances.

1The work presented in this chapter is modified with permission from Ristroph et al., PNAS,
107, 4820-4824 (2010).
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Figure 5.1: Three-dimensional reconstruction of a recovery maneuver. Three
orthogonal high-speed cameras capture 35 frames per wing-beat, and the still
images shown on the side panels are spaced by about four wing-beats. The
corresponding three-dimensional wing and body configurations extracted from
the images are displayed on a computer-generated model of the fruit fly (body
length 2.5 mm). As the fly descends from left to right, we apply a magnetic
tield (red looped arrow) for one wing-beat that torques the ferromagnetic pin
(bronze rod) glued to its back and reorients the insects flight heading. The insect
responds to the flight perturbation by making a corrective turn that lasts several
wing-beats.

5.2 Insect Flight Stability and Control

Locomotion through natural environments demands mechanisms that maintain
stability in the face of unpredictable disturbances. Behavioral strategies play a
particularly important role in controlling the flight of insects [10, 32, 24, 15, 16,
23, 7], because even gentle air currents can cause large disruptions to the in-
tended flight path. Insects must also contend with the intrinsic instability of

flapping flight [33, 30] and the large fluctuations in aerodynamic forces caused
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by slight variations in wing motions [12, 13]. Corrective behavior often takes ad-
vantage of vision [10, 32]. For fruit flies, however, reaction time to visual stimuli
is at least 10 wing-beats [17], so these insects must employ faster sensory cir-
cuits to recover from short time-scale disturbances and instabilities. To probe
this fast control strategy, we devised an experimental method that imposes im-
pulsive mechanical disturbances [23, 20] to flying insects while allowing us to
measure relevant aspects of flight behavior. We first glue tiny ferromagnetic
pins to fruit flies and image their free flight using three orthogonally-oriented
high-speed video cameras. See Methods and online Supporting Information
(SI). When a fly enters the filming volume, an optical trigger detects the insect,
initiates recording, and activates a pair of Helmholtz coils that produce a mag-
netic field. The field and pin are both oriented horizontally, so the resulting
torque on the pin reorients the yaw, or heading angle, of the insect (Fig. 5.1).
We then use a new motion tracking technique to extract the three-dimensional
body and wing motions [25]. The videos and extracted flight data reveal that
these insects respond to such mechanical perturbations by attempting to correct

their course, and this reaction depends on the strength of the disturbance.

5.3 Stabilization Response of the Fruit Fly

By conducting experiments at various values of the applied torque, we induce
different maximal deflections in the yaw angle, Ay,.x. As diagrammed in the
inset of Fig. 5.2, we characterize the response by measuring the error, Ay, ,
which is the difference between the final and initial yaw angles. In all 23 tri-
als, the insects exhibit corrective responses such that Aye,, < Aymax, as shown in

Fig. 5.2. Impressively, for gentle disturbances, the insects correct their heading

92



1001
yaw, y
APmax
err

80+ time, t

Error, Aerr (°)

0 20 40 60 80 100

Maximum deflection, Agmax ()

Figure 5.2: Accuracy of the corrective response. Inset: For each trial, the er-
ror Ay, (final minus initial yaw) and maximum induced deflection Ay, are
measured from the yaw dynamics. Main figure: The error is plotted against
the deflection for 23 experiments. The dashed blue horizontal line is the pre-
dicted perfect correction from a linear control model, and the solid blue line is
the result of a nonlinear model. See text for details of both models.

nearly perfectly, with a mean of 2° (15 trials with Ay < 45°). For stronger
perturbations, however, the corrective responses are not sufficient to return the
flies to their original heading. For cases of both inaccurate and accurate correc-
tion, the insects exhibit a stereotypical response in which specific changes in the

motions of the wings drive the reorientation of the body.

The yaw dynamics, ¥(f), for a case in which the fly accurately corrects its
heading is visualized in Fig. 5.3A and plotted in Fig. 5.3B. At time ¢ = 0, the field

is turned on for 5 milliseconds (vertical pink stripe), or about one wing-beat pe-
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Figure 5.3: Body and wing motions for a case of accurate correction. (A) Top-
view images of the insect before the perturbation, during the induced rightward
rotation, during the corrective turn leftward, and after accurate recovery. The
yaw angle, or heading, is shown as a red arrow, and the wings are moving
forward in each image. The differences in right and left wing area in the third
image indicate differences in angles of attack that drive the corrective turn. (B)
Yaw angle as a function of time measured in wing-beat periods, T = 4.5 ms.
The red stripe indicates the 5 ms during which the perturbing torque, Nex =
0.8 x 107 N'm, is applied. The yaw is experimentally measured (open circles),
and a control model (blue curve) is fit to the experimental data. The parameters
used for the fit are: 1 = 0.6 X 107" kg'm?, 8 = 1.0 x 107" kgm?s™!, Ar = 2.5 T,
Kp =5.0x 1079 kg-m?s7%, Kp = 4.1 x 107'? kg:m?-s™!. See text for description of
the model (Egs. 1-4). (C) The attack angle difference between wings averaged
over each wing-beat, Ac, is plotted in black (mean and standard error of the
mean). These data are compared to the torque predicted by the model (blue
curve).
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riod, T = 4.5 ms. In about three wing-beats, the fly experiences its maximal
deflection of Ay = 19°, and by the recovery time At = 10 T or 45 ms, it has
recovered its orientation to within 2° of the original yaw. To reorient its body,
the fly induces differences between the right and left wing motions, thus gen-
erating aerodynamic torque A recent analysis of free-flight turning maneuvers
of fruit flies indicates that these insects generate yaw torque by asymmetrically
adjusting the wing angles of attack, @, defined as the inclination angle of each
wing relative to its velocity [5]. Qualitatively, these differences can be seen in
the top-view stills from the flight videos, as shown in Fig. 5.3A. The insect beats
its wings back-and-forth, and these images capture the wings as they move for-
ward. In the third image, the right and left wings have different projected areas
due to different attack angles. When the attack angle on one wing is greater than
the other, the larger area presented to the flow induces a greater drag force, and
this unbalanced drag causes the insect to rotate [5]. We quantify the asymmetric
rowing wing motions by measuring the complete wing kinematics [25], and we
verify that fruit flies drive yaw corrective maneuvers by differentially varying
wing angle of attack. Specifically, in Fig. 5.3C, we plot the difference between
the right and left wing attack angles averaged over each wing beat, A« (black
data). Prior to the perturbation and for the first three wing-beats after the dis-
turbance, Aa = 0, indicating that the wings beat symmetrically. After this initial
delay, asymmetries in the wing motions appear for about five wing-beats, in-
dicating the insect is actively generating corrective torque. The accuracy of the
recovery indicates that a refined control strategy underlies the response of fruit

flies to in-flight perturbations.
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5.4 Aerodynamic Model of Response

To reveal this strategy, we construct a physics-based model of the observed be-
havioral response. Combining all relevant yaw torques, the body rotational dy-
namics are described by

1Y = Nyero + Next 56.1)

where [ is the yaw moment of inertia of the insect body, N, is the aerodynamic
torque on the insect, and N is the applied torque due to the magnetic field.
For wings that beat in a horizontal stroke plane, only the aerodynamic drag
on the wings contributes to yaw torque. In general, the drag on each wing is
proportional to the wings drag coefficient, Cp(a), times the square of its speed
relative to air. We consider the general case in which the right and left wing an-
gles of attack may be different, and each wing beats with mean angular speed
w relative to the body. For an insect body rotating at angular velocity ¢, the
stroke-averaged net aerodynamic torque is found by summing each wings con-

tribution (SI):
Naero ~ —Cp(ar) - (w+§)* +Cplar) - (w—)* » —Cp(ay)-dw-J+Cha) w’-Aa. (5.2)

Here, we have kept leading order terms in Jr and taken advantage of the linear-
ity of the coefficient dependence on attack angle: Cp(a) = Cp(ay)+Cp (o) (@—ap),
where @) = 45° and C}, () is the slope at a(. This aerodynamic torque has two
components. The first is a damping torque, and it is proportional to the yaw ve-
locity ¢ with a damping coefficient g that depends on aerodynamic properties
of the wings. The second is the torque due to the asymmetric wing motions,
Npy = v - Aa, and it is proportional to Aa with a second aerodynamic constant .

Combining Egs. 5.1 and 5.2, we arrive at the yaw dynamical equation

IJ = =B +v - Aa + Ny (5.3)
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Thus, the active torque exerted by the fly must act in concert with aerodynamic

damping and inertia to restore body orientation.

To physically interpret these results, first consider the scenario just after the
perturbation is applied. Here, the wings beat symmetrically, Aa = 0, so that
Ngy = 0. The induced body rotation, however, introduces a difference in the
wing velocities and hence a difference in the drag forces acting on the wings
[29, 18, 19], as illustrated in Fig. 5.4A,B. Then Eq. 5.3 reduces to Ity = —fy. Thus,
an induced yaw rotation exponentially decays with a characteristic damping
time of about two wing-beat periods, /8 ~ 2T (SI). This time-scale is consis-
tent with the decay of yaw velocity during the few wing-beats after the applied
perturbation (Fig. 5.3B). As the insect recovers, its wings beat asymmetrically,
as shown in Fig. 5.4C,D, and torque is generated from unbalanced drag on the
wings. For example, to turn rightward, the fly employs a higher average attack
angle « on the right wing for the forward stroke and a higher « on the left wing
for the backward stroke [5]. These rowing motions generate differential drag on
the wings and thus produce the yaw torque, Nyy, that drives the corrective body

rotation.

5.5 Feedback Control Model of Response

The ability to adjust their response for perturbations of different strengths (Fig.
5.2) suggests that these insects sense their body motion and use this informa-
tion to determine the corrective response. In fact, flies are equipped with a
pair of small vibrating organs called halteres that act as gyroscopic sensors

[24]. Anatomical, mechanical, and behavioral evidence indicates that the hal-
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Figure 5.4: Physical and biological elements of the flight control model. (A and
B) Aerodynamics of symmetric flapping flight during body rotation. Top-view
images of the fly as it is rotated to its right by the perturbing torque show that
the insect continues to beat symmetrically. The imposed rotation induces differ-
ences in wing velocity that generate unbalanced drag on the wings. (C and D)
Active steering is driven by differences in wing angles of attack. To turn right-
ward, the insect assumes different pitch angles for the right and left wings that
generate an unbalanced drag-based torque. (E) The haltere organs (S) sense
body rotations, the neural controller (C) processes this information, and the
flight motor (M) drives the wing motions that generate corrective aerodynamic
torque (A). (F) Information flow diagram for the insect flight control model. The
upper circuit describes the feedback loop used for correction, and the lower cir-
cuit shows the detailed control model. After an initial time delay, a term that is
proportional to the sensed yaw rate signal and a term that integrates this signal
are added to determine the output torque exerted by the fly.
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teres serve as detectors of body angular velocity that quickly trigger muscle
action [24, 7, 27]. These findings suggest that these insects drive their corrective
response using an auto-stabilizing feedback loop in which the sensed angular
velocity serves as the input to the flight controller. As diagrammed in Fig. 5.4E,
the velocity is sensed by the halteres (S), processed by a neural controller (C),
and transmitted by the flight motor (M) into specific wing motions that gener-
ate aerodynamic torque (A). In the top control diagram of Fig. 5.4F, the loop is
triggered when an external torque, Ny, induces a yaw velocity, i, that is deter-
mined by the physics (P) of a damped, inertial body. The active torque exerted
by the insect, Ny, feeds back to determine the yaw dynamics (Eq. 5.3) and thus

closes the loop.

A minimal linear control model [3] that guarantees perfect correction
(dashed blue horizontal line in Fig. 5.2) in response to short-lived disturbances
requires that the exerted torque contain a term proportional to the integral over
time of the sensed angular velocity (SI). However, we find that a pure integra-
tor fails to account for the fast recovery time observed in the flight data. By
adding a term that is proportional to the angular velocity itself, we arrive at a
good match to the yaw data, as shown by the model fit shown in Fig. 5.3B (blue
curve). This model is a proportional-derivative (PD) scheme [3] that controls

yaw angle using a yaw-rate sensor, and the corrective torque can be written as:
Ny (1) = Kpy(t — A1) + Kpii(t — A). (5.4)

Here, Kp and Kp are gain constants and At is the response delay time that we
measure to be 2-5 wing-beat periods. This loop delay may reflect both neural
latency and inertia of the sensors and motor [27, 8]. A diagram of this control
scheme is shown in the bottom of Fig. 5.4F. In Fig. 5.3C, we overlay the torque,

Npy, predicted by Eq. 5.4 on the measured Aa data and find a strong agreement
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between the model and experiment. Furthermore, both curves remain positive
throughout the corrective maneuver, which reflects a simple strategy for linearly
damped systems: to recover, the fly need only counter the perturbing impulse
with an impulse of equal strength but opposite direction. To prove this, we

integrate Eq. 5.3 over time to arrive at

I Ay = —BAY + f dtNgy + f dtNey (5.5)

where the symbol A indicates the net change in each quantity. Because the sys-
tem is damped and all torques act over finite periods of time, the change in
yaw velocity Ay = 0. Perfect recovery implies Ay = 0, which requires that
f dtNgy = — f dfNex. Thus, accurate recovery simply requires a counter-impulse
of equal magnitude to the perturbing impulse. These insects employ this strat-
egy and do not brake the perturbing rotation nor their self-induced corrective
rotation but instead take advantage of aerodynamic damping to come to each

stop.

5.6 Testing the Control Model

The interplay of active and passive torques also sets the overall time-scale for
recovery. Using the flight control model with average system parameters At,
T, I, Kp, and Kp, the control model predicts that the total recovery time, At..,
rises sharply and then plateaus for increasing imposed deflections, as shown by
the dashed blue curve in Fig. 5.5. The experimentally measured recovery times
confirm this trend, and this agreement indicates that the model is robust, with

system parameters varying by +15% among individuals.
Finally, the increasing error for stronger disturbances (Fig. 5.3) may reflect
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Figure 5.5: Recovery time, At increases for stronger perturbations. Here, At
is plotted for cases of accurate correction, and the model prediction is the dashed
blue curve. The theoretical curve marks the total time to return to within 2°
of the original yaw angle and is generated using the mean parameter values
extracted from fits to trials of accurate recovery: I = 0.9 x 107" kg:m?, 8 =

0.9 x 107" kgm?s™!, Ar = 35T, Kp = 5.9 x 107'° kgm?s™?, Kp = 5.3 x 10712
kg-m?s~!

sensor saturation. Specifically, we form a model that modifies the controller of
Eq. 5.4 such that the sensors can only register velocities up to a maximum of
¥ = 2500°/s, a hypothesis consistent with the strong nonlinear mechanical re-
sponse of vibratory gyroscopes [2]. This nonlinear model gives the solid blue
error curve in Fig. 5.2 that accounts for both the accurate and inaccurate re-
sponses. The agreement between the model prediction and the experimental
data indicates that this simple model based on sensor saturation is sufficient to
explain why fruit flies are unable to accurately recover from strong perturba-

tions.
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5.7 Discussion and Predictions

These models reveal the physical and biological aspects of yaw auto-
stabilization in fruit flies. Future experiments that modify the orientations of
the magnetic coils and pin will investigate the control of pitch and roll. Stud-
ies that combine such perturbations will elucidate how these insects coordinate
their response to complex disturbances. Aerodynamically, these experiments on
freely-flying insects demonstrate the critical importance of considering the cou-
pled wing and body motions for studies of flight behavior. In particular, this
coupling gives rise to a strong damping of yaw rotation [18, 19], and our results
show that auto-stabilizing fruit flies use this damping rather than active brak-
ing to stop body rotation. This important effect is, of course, entirely removed in
studies that rigidly tether insects [17]. Even in experimental preparations that
loosely confine the motion of insects [21, 4], turning kinematics are different
from those observed in free-flight studies [12, 5, 31]. These discrepancies indi-
cate that restrictive preparations interfere with flight behavior, and the results

of such studies must be interpreted in light of this influence.

Biologically, our findings lead to novel hypotheses regarding the roles of the
systems that underlie flight control in the fruit fly. First, our results suggest that
the halteres are unable to detect high rotation rates of the body, and recordings
from sensory neurons should reflect this limitation [11]. Second, we predict
that the neural circuitry between the halteres and wing muscles [8] transmits
a position- and rate-driven signal. Determination of the wiring and firing of
these neurons would offer insight into the neurological basis of signal integra-
tion and summation [26]. Third, we find that wing orientation adjustments dur-

ing auto-stabilization are remarkably similar to those used for voluntary turns
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[5] and hypothesize that they result from the same musculoskeletal elements [8].
We stress, however, that our experiments strictly address the fruit fly’s reflexive
turning response to mechanical stimuli rather than visually-induced turning be-
havior. The interaction between the haltere control loop and visual system loops
in structuring such voluntary turns remains an open problem [8]. Nevertheless,
we expect that the aerodynamic and behavioral models presented here will be

key components of general flight navigation models for the fruit fly.

5.8 Broader Implications

Flight control principles uncovered in this model organism may also apply
more broadly, and this work provides a template for future studies aimed
at determining if other animals employ flight auto-stabilization. The control
strategies across different animals are likely to share common features, because
the physics of body rotation is similar across many animals during flapping-
wing flight [19]. Additionally, animals that lack halteres may use functionally-
equivalent mechanosensory structures such as antennae [28]. Finally, the con-
trol architecture of the fruit fly offers a blueprint for stabilization of highly-

maneuverable flapping-wing flying machines [34].

For fixed-wing machines, the need to overcome instabilities spurred the in-
vention of auto-stabilizing systems by 1912, only 9 years after the Wright broth-
ers first manually controlled airplane flight [1, 35]. The development of such au-
tomatic steering systems also led to the first formal description of proportional-
integral-derivative (PID) control schemes [22] and advanced gyroscopic sensor

technology [1]. The fruit flys auto-stabilization response is well-modeled by a
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simple PD scheme that receives input from gyroscopic halteres, and, like air-
planes [29, 1], uses fine adjustment of wing orientation to generate corrective
torques. Roughly 350 million years after insects took flight [14], man converged

to this solution for the problem of flight control and joined animals in the skies.

5.9 Summary of Methods

Videography. As described in our earlier paper [25], three synchronized, or-
thogonal high-speed cameras record at 8000 frames per second. Each camera is
back-lit by a bright red light-emitting diode. Recording is initiated by an optical

detector system that triggers when an insect flies in the region of interest.

Magnetic torque perturbation. The optical detector also triggers a circuit
that drives a 4-amp direct current pulse of width 5 ms through paired Helmholtz
coils placed inside a clear flight chamber. The magnetic field strength is on the

order of 1072 Tesla, or 10? times stronger than the Earth’s field.

Motion tracking. The three-dimensional body and wing coordinates are ex-
tracted from the flight videos using a recently-developed method [25]. The yaw
angle is measured directly, and we extract the wing angle of attack difference,
Ac, from the measured wing coordinates with an accuracy of about 3°. Though
the corrective turns are accompanied by changes in other aspects of the wing
motions (i.e., stroke amplitude), a recent analysis implicates attack angle differ-
ence as the aerodynamically relevant parameter [5]. We average this parameter
over each wing-beat, because the modulation of Aa occurs over longer time-
scales [5]. For the Aa data of Fig. 5.3C, the vertical bars indicate the standard er-

ror of the mean taken over the 35 measurements per wing-beat and thus reflect
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both measurement error and actual intra-wing-beat variation. The magnitude,
duration, and variation of the Aa data in these experiments are similar to those

measured for free-flight turns [5].

Animal preparation. During each day of experiments, about 40 common
fruit flies (D. melanogaster) from out-bred laboratory strains are first selected for
strong flight capability. A carbon steel wire 1.5 mm long and 0.006 inch in di-
ameter is carefully glued to the notum, the dorsal surface of the insect’s thorax.
The attached pins weight is 15-20% that of the typical fly, and we analyze only

sequences in which the pin does not interfere with the motion of the wings.

Control experiments. Videos that capture the flight of insects whose pins
had fallen off show no change in behavior upon application of the magnetic
tield. Also, videos captured in a darkened laboratory show no qualitative or

quantitative difference in corrective behavior.

Models. The Simulink software package for MATLAB (The Mathworks Inc.,
Natick, MA USA) numerically integrates the linear and nonlinear delay differ-
ential equations. For each sequence, we calculate approximate values for the
morphological and aerodynamic parameters / and 8. The value of the delay
time At is determined directly from the time-course of the measured Aa data.
We then select the value of N that yields the measured maximal deflection of
yaw. Finally, the best-fit match to the complete time-course of yaw determines
the values of the free parameters Kp and Kp. All model parameters vary by

+15% among different individuals.
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Figure 5.6: A common fruit fly (D. melanogaster) with ferromagnetic pin glued
to the dorsal surface of its thorax is suspended by a magnetized sewing needle.
The pin is 1.5 mm long. In free-flight, the insect is perturbed by application of a
magnetic field that induces a torque on the pin.

510 Supporting Information

Animal preparation and protocol. During each day of experiments, about 40
common fruit flies (D. melanogaster) from out-bred laboratory strains are first
selected for strong flight capability. Each fly is then chilled for 1 to 2 minutes,
and a 1.5 mm cutting of 0.006 in.-diameter carbon steel wire (Gordon Brush
Co., Commerce, CA USA) is carefully glued to the dorsal surface of the insects
thorax. The adhesive (Norland Optical, New Brunswick, NJ USA) is cured for
20 s under ultraviolet light. See Fig. 5.6 for a photograph of a pinned fly. The
insects are then deprived of food and water for approximately 2 hours before
being inserted into the flight chamber. Filming is then conducted for up to 6

hours.
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Figure 5.7: Schematic of the flight perturbation and videography apparatus. (A)
Three high-speed cameras (C) focus on a cubic volume ( 2 cm side length) in a
larger plexiglas flight chamber (FC). The chamber contains a pair of Helmholtz
coils that generate a magnetic field. Each camera is fitted with a magnifying
bellows (B) and a zoom lens (Z), and each view is back-lit by a bright red light-
emitting diode source (S) that is focused using a simple convex lens (L). (B) An
optical triggering system detects the presence of an insect in the filming volume
and signals the cameras to record and the magnetic field to turn on. A red laser
(L) emits a beam that is divided by a beam splitter (BS), re-routed by mirrors
(M), passed through Galilean beam expanders (BE) and the chamber, and fo-
cused on photodiodes (PD). When an insect flies through the intersection of the
beams, it is detected by the photodiodes, and a triggering circuit (not shown)
initiates recording and the application of a magnetic field. (C) As an insect flies
through the beams, the cameras capture the portion (red) of its trajectory that
includes the application of the perturbing field.
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Automated high-speed, three-dimensonal videography. See our earlier pa-
per [25] and Fig. 5.7 for descriptions of the filming apparatus. Three synchro-
nized, orthogonal high-speed cameras (Phantom v7.1, Vision Research, Inc.,
Wayne, NJ USA) record at 8000 frames per second (fps) when triggered by an
optical detection system. This frame rate captures about 35 images during each
wing-stroke, and the magnification is such that the insect body is typically about
80 pixels long. The experimental set-up described in ref. 1 is modified by chang-
ing the back-lighting and introducing the magnetic field system. Specifically,
in place of slide projectors, we use bright red light-emitting diodes (LEDs, Dia-
mond Dragon, OSRAM Opto Semiconductor, Sunnyvale, CA USA) to back-light
each camera. The back-lighting and laser (HeNe, Thorlabs, Newton, NJ USA)
are chosen to be red (wavelength > 600 nm) in order to minimize the visual
stimulus to the insects, which have poor sensitivity to light of long wavelength
[6]. The magnetic field system includes paired Helmholtz coils placed inside
the flight chamber that pass a direct current from a power supply for 5 ms when
triggered (Fig. 5.7). The number of windings in each coil, size and spacing of
the coils, and magnitude of the current are chosen to generate a magnetic field

strength of about 1072 Tesla.

Automated motion tracking. The three-dimensional information contained
in the flight videos is analyzed using a recently-developed method called Hull
Reconstruction Motion Tracking [25]. HRMT uses the silhouette information
captured in the movies to directly reconstruct a representation of the insect’s
three-dimensional shape. This reconstruction is analyzed in order to recover
the position and orientation of the insect body and wings through time. The
difference in the right and left wing angles of attack is used a measure of the

wing-beat asymmetry and indicates active torque generation. The angle of at-
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tack a is defined to be the orientation of the wing measured relative to its veloc-
ity. We take the convention that the angle is signed, assuming about 45 degrees
for the down-stroke and about 135 degrees for the up-stroke. Here, the angle is
averaged over each wing-stroke and is approximated by the pitch angle  mea-
sured relative to the horizontal. Hence, Ao =< ngr — . >, where 7 is the wing
pitch angle as measured directly by the HRMT method [25]. The approxima-
tion is exact in the limit of no stroke plane deviation and is justified by the small

deviation for fruit fly wing motions [25, 12].

Control experiments. Movies that capture the flight of insects whose pins
had fallen off show no change in behavior upon application of the field, indi-
cating the field alone does not alter flight behavior. Further, experiments con-
ducted with laboratory room lights off show no clear difference from those con-
ducted with lights on. This supports the hypothesis that the mechanosensory
halteres, and not visual system, are responsible for the observed recovery be-

havior.

Passive rotational damping of symmetrical flapping flight. As dia-
grammed in Fig. 5.4A,B of the text, unbalanced drag forces on the flapping
wings cause rapid damping of the yaw motion [29, 18, 19]. Consider an insect
of yaw moment of inertia /, average wing-beat angular speed w, wing area S,
and wing span length R. The body itself is rotating with yaw angular velocity .
Because the Reynolds number Re = 100, we use an approximate high-Re fluid

force law for the drag force on each wing,

1
D = EpS u*Cp(a), (5.6)

where p is the density of air, u is the wing speed relative to air, « is the angle

of attack of the wing (orientation of wing relative to its velocity), and Cp is the
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drag coefficient which depends on a. In a 2D approximation for rotary, flapping
wings, we evaluate the drag force at two-thirds span length. Then, the average

drag forces on the right and left wings act to give the yaw torque:

3

3
%ps Cp(a) (%R) -+ ¥+ (w—¥)] =2 (%) pS Cp(@)R* wyr. (5.7)

Thus, the yaw dynamics are exponentially damped with a damping coefficient

B that depends on wing properties:

L 2\’
Iy ==pb.p = 2(5) pS Co()R w. (5.8)
The damping occurs with a characteristic time of about 2 wing-beat periods:

T= B ~ 2T. (5.9)

In the above calculation, we use approximate morphological and kinematic val-
ues obtained from measurements on fruit flies (D. melanogaster). For the body:
I = MR}, with body mass M = 107° kg and body radius Rg = 5- 10 m. For
the wings: wing area S = 2 - 10°° m? and span length R = 2 - 10 m. The drag
coefficient (7) near @ = 45° is Cp ~ 2 and the average flapping angular speed is
w = 1100 s~'. This speed corresponds to a wing flapping with total amplitude
sweep of about 140° and with wing-beat period of T = 4.5 ms. The fly flaps in

air of density p = 1.2 kg-m™.

Active rotational motion by paddling. As diagrammed in Fig. 5.4C,D of the
text, the insect actively turns by inducing differences between the right and left
wing angles of attack. The insect initially has equal angles of attack ag = a1 =
@y = 45°. Then, during drag ratcheting on the down-stroke (left images in Fig.
5.4C,D), the insect induces differences in the attack angles so that ag —a1. = Aa >

0. During the up-stroke, the angles then switch in order to maintain rightward
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torque (right images in Fig. 5.4C,D). On average, the drag-based yaw torque

sums to give:

. 1 2 . .
Iy = 5pSGRI=(@+4)" - Colen) + (@ = §)” - Colaw)]
1 2 . .
~ 5,os(§R)3[—4wlpCD(a0) + W’Ch(ap) - Aa]l = =B + Npy.  (5.10)

This calculation approximates the coefficient of drag dependence on angle of
attack as Cp(a) = Cp(ap) + Ch(ao) - (@ — ap) near ay = 45°, which is justified by
drag measurements in a dynamically-scaled experiment [9]. In addition, the
terms that are second-order in are negligible because the wing speed is much
greater than the body rotational speed: (y/w)2 < 0.01, so the neglected terms are
less than 1% of the retained terms. Thus, the yaw dynamics are again damped
with the same damping constant as above and an additional, constant torque is

generated by the paddling mechanism:
Iy = =By + Npy(Aa),

3
B= 2(%) pSCp(@R’w,

12\’
Nﬂy = 5 (5) pS C],D(CY())R30)2 - Aa. (511)

The torque Npy is thus directly proportional to the angle of attack asymmetry
Aa.

Perfect correction for integral response. The complete yaw dynamics in-
cludes inertia, passive rotational damping, drag ratcheting torque generation,

and the disturbing torque:

Ijy = —Byr + Ny(¥h) + Nex:. (5.12)

Here, we assume that the insect responds by outputting a torque that depends

on its sensory measurement of body angular velocity. If the response is a linear
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operator on angular velocity, then we can analyze the system using the Laplace
transform [3]. Taking advantage of the fact that the Laplace transform of the

derivative of a function is the frequency times that function, we obtain:

Isyr(s) = =Br(s) + Nay(s)() + Nexi(s)- (5.13)

where all functions are now in frequency space and s is the Laplace frequency
variable. Assuming a stable system, the Laplace transform of angular velocity

is then:

Nexi(s)

T Is+B— Ny(s) (514)

U(s)
The requirement for accurate correction is that the total change in yaw angle

over all time is zero:
Ay =0 = f dnj = lin(l) dre "y = ling U(s). (5.15)
0 S 0 S—

Hence, the low-frequency limit of the Laplace transform of angular velocity
must be zero. Now, N (s) can be expressed as a series containing terms pro-
portional to s" with n > 0 for disturbances that last a finite period of time. With
regard to recovery, the “worst-case scenario” is that of an impulse: N is a con-
stant (n = 0). [A disturbance of N.y(s) ~ 5", for any n > 1, would move the insect
and then return it and would thus require no response from the insect.] The
simplest controller that guarantees correction after an impulsive disturbance
must then have Ny (s) ~ 1/s in order satisfy Eqs. 5.14 and 5.15. Performing
the inverse transform, this operation is the integration over time of the angu-
lar velocity [3]. Thus, the minimal controller integrates velocity. Note that this
argument is unaffected by the presence of delay, which does not alter the long-

time (low-frequency) behavior of the system.
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CHAPTER 6
SMALL, SLEEK, AND IN CONTROL: THE BODY PLAN AND FAST
FLIGHT STABILIZATION OF INSECTS

6.1 Summary

Flying insects have evolved sophisticated sensory-neural systems, and here we
argue that their fast reaction times reflect the need to overcome an intrinsic
flight instability '. We formulate a theory that shows how the body morphology
and flapping-wing aerodynamics determine the instability growth rate, which
in turn dictates the response time needed to suppress it. We experimentally val-
idate this model by manipulating the flight, sensors, and body plan of fruit flies.
Finally, a generalization of this theory provides stability criteria for a broad class

of hovering insects, hummingbirds, and flapping-wing robots.

6.2 Stability or control?

Flight of both animals and machines requires not only generating aerodynamic
force sufficient to counter gravity but also maintaining balance while aloft
[14, 1, 40]. For fixed-wing aircraft, the need for balance has led to solutions
ranging from passenger airliners that are stable by design to fighter jets that
require active control of wing surfaces to overcome intrinsic instabilities [50].
More generally, the intrinsic dynamics of an aircraft imposes demands on its
control strategies, with faster-growing instabilities demanding faster active re-

sponses [39, 5]. For the flapping-wing flight of animals, this interplay of control

IThis work will soon be submitted for publication.
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and stability remains largely unexplored. While recent aerodynamic simula-
tions indicate that body pitch orientation is intrinsically unstable for some spe-
cific insects [41, 42, 19], it is unclear whether this is a generic feature of insect
flight. Further, the impact of instabilities on the sensory-neural systems that
must suppress their growth has not been investigated, and there is little experi-

mental work to corroborate theoretical studies [44].

6.3 Fast flight stabilization in fruit flies

We investigate insect flight stability and control by mechanically perturbing the
flight of fruit flies, D. melanogaster. In these experiments, we glue small mag-
nets to the backs of flies and apply a magnetic field that perturbs the body pitch
orientation while capturing the wing and body motions with high-speed video
cameras [34, 33]. The observed flight trajectory for a representative experiment
is shown in Fig. 6.1(a). The insect is rotated nose-down by the perturbation
but quickly recovers its orientation and thus keeps upright. The insect drives
this recovery by adjusting its wing motions, most notably by increasing the for-
ward sweep of its wings [Fig. 6.1(b)]. These measurements are consistent with
a strategy in which shifting the aerodynamic center of lift towards the front of
the insect generates a nose-up pitch torque that counters the nose-down pertur-

bation [55, 43].

To quantify the recovery dynamics, we use a motion-tracking method that
extracts the body and wing positions and orientations through time [34]. The
measured pitch dynamics for the sequence shown in Fig. 6.1(a) are shown in

(c) and the stroke center angle of the wings in (d). Data from twelve such
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Figure 6.1: Fruit flies quickly overcome in-flight perturbations. (a) Reconstruc-
tion of a flight perturbation filmed with three high-speed cameras. Selected
images from each camera are shown on the side panels, and the measured con-
tigurations of the insect (body length 2.5 mm) are displayed on the model. A
black bar on the insect body highlights its pitch orientation. As the insect as-
cends from left to right, a magnetic field (blue arrow) induces a torque on the
ferromagnetic pin glued to its back. (b) The insect responds by sweeping its
wings further in front thus generating a nose-up corrective torque. (c) Body
pitch orientation. The magnetic torque perturbation (blue stripe) tips the insect
downward, and the insect responds by correcting its orientation. (d) The aver-
age wing stroke center angle. After a reaction time of At = 12 ms (red stripe),
the fly initiates corrective wing motions.

experiments reveal that these insects make corrective actions after a reaction
time Ar = (13 + 2) ms, or about 3 wing-beats. Remarkably, this reaction time
approaches the fastest behavioral responses in the animal kingdom [8, 38, 36]

and is only an order-of-magnitude longer than the time-scales typical of neural

synapses [26].

6.4 Theoretical stability analysis

Understanding the need for a fast response requires knowledge of the time-
scales associated with pitch dynamics during flight. The relevant physical

mechanisms can be illustrated most simply for hovering. The wings beat back-
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Figure 6.2: Fruit fly flight is intrinsically unstable and requires a fast control
response. (a) During hovering, wings flap back-and-forth to produce lift that
balances body weight. A perturbation to the pitch orientation causes the the
insect to move forward, drag on the wings then becomes unbalanced and tips
the insect over. (b) Because flight is intrinsically unstable, feedback control is
needed. The reaction time Ar of the control response must be fast compared to
the instability growth rate. The growth rate itself depends on physical time-
scales (Tp, Tpp, Trp) relevant to the pitch dynamics.

and-forth, the average lift is directed upward to balance body weight, and drag
points horizontally but cancels for the two half-strokes [Fig. 6.2(a)]. If pitched
forward, the re-directed lift drives the insect forward. This leads to a net drag
on the wings, because the wing airspeed on the forward sweep is now greater
than the airspeed on the backward sweep. If the wings are located above the
body center of mass, as is the case for flies and many other insects [16], this drag
creates a pitch torque that rotates the insect backward. In effect, the insect is
flipped over or, “clothes-lined”, by drag on its wings. If left uncontrolled, this
clothesline instability rocks the insect back-and-forth with growing amplitude

and ultimately causes it to tumble from the air.

These ingredients — weight, lift, drag, and drag-based torque — can be com-
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bined to form a reduced-order dynamical model of the insect’s forward velocity
u, pitch angle 6, and pitch rate w = 6.

1
Il=—-—— u+g-0 6.1
T g (6.1)

1 1
—_—— w — 2 . u
TPD gTFDTP

(6.2)

W=
Physically, the first term in Eq. 6.1 indicates that wing drag slows translational
motion with a characteristic forward damping time Tgp that depends on the
wing aerodynamic characteristics. The second term accounts for the forward
acceleration produced by re-directed lift in the small pitch angle limit. Simi-
larly, the first term in Eq. 6.2 indicates that fluid resistance slows rotations with
a characteristic pitch damping time of Tpp that depends on body drag. The sec-
ond term describes the drag-based torque that arises from the displacement of
the wing attachment point from the body center-of-mass as well as the result-
ing pendulum-like dynamics. Combining these equations, we arrive at a single

differential equation for pitch in the absence of external torques:
Tep 6 + (1 + Tep/Tep)8 + (1/Tpp)0 + (1/T3)6 = 0. (6.3)

Written in this form, the third physical time-scale Tp = \/L_/g can now be seen
to correspond to a pendulum oscillation time. The pendulum length L = I/Mh
results from that fact that the insect body (moment of inertia / and mass M) is
similar to a compound pendulum with its wings a distance & above the center-

of-mass [16].

The dynamics described by Eq. 6.3 indicate that an uncontrolled insect is
analogous to a damped rotational oscillator with a destabilizing driving term
represented by the third-order derivative. Using measurements of the body

morphology and wing aerodynamic characteristics for fruit flies, we determine
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Tp, Trp, and Trp and find that perturbations to Eq. 6.3 grow exponentially with

a time-scale of 60 ms, or about 14 wing-beats.

6.5 Active stabilization

To manage this instability, fruit flies employ a feedback control scheme that
senses body rotations using organs called halteres [30] and thus determines the
appropriate sweep angles for the wings [Fig. 6.2(b)]. As anyone who has tried
balancing an upright stick knows, the challenge in controlling such an unstable
system is reacting at a time-scale Ar that is fast relative to the instability growth
time [39, 5]. Feedback control theory provides a quantitative criterion for assess-
ing the performance of such a time-delayed response in controlling an unstable
process [5, 4, 21]. Applying this theory to the fly, we find that the measured
reaction time confers robust stability, suggesting that the nervous system and

body plan co-evolved to produce good flight performance [35].

This control model also predicts that stabilization performance depends sen-
sitively on the reaction time Ar as well as on the physical time-scales. To test this
prediction, we employ classic techniques that manipulate both the sensors and
body plan of insects [20]. First, we disable the sensory function of the halteres
by gluing them down [Fig. 6.3(a) and (b)] and find that the fly loses stabil-
ity, as shown by the tumbling flight trajectory shown in the left inset of Fig.
6.3(d). To quantify this loss of flight capability, we release flies in air and mea-
sure their flight angle, which is always less than 10° for sensor-disabled insects.
In a second experiment, we find that stability can be reinstated if body drag is

increased. We glue dandelion seed fibers to haltere-disabled insects [Fig. 6.3(c)]
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Figure 6.3: Testing the flight control model by manipulating sensors and body
plan. (a) Fruit flies use fast gyroscopic sensors called halteres to mediate flight
control. (b) Each haltere vibrates during flight and is sensitive to changes in
body orientation. If glued down, the haltere no longer properly functions. (c)
Dandelion seed fibers add drag to the insect body, thus increasing passive sta-
bility. (d) Disabling the halteres destroys flight stability while adding fibers
restores stability. Inset: Flight trajectories of a fly with halteres disabled (left)
and then with fibers added on (right). Main figure: Probability distributions
of flight angle for haltere-disabled and fibered insects. (e) Theoretical interpre-
tation: Normal fruit flies (white square) can control flight because of their fast
sensory response time. The haltere-disabled insects (gray) cannot control flight
with slower sensors, such as eyes. If fibers are added (black), flight can be con-
trolled with slower sensors or passively stabilized.
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and observe a recovery in flight capability: a typical trajectory is shown in the

right inset of Fig. 6.3(d), and these insects now fly with a mean angle of 45°.

In Fig. 6.3(e), we use the control model to interpret these observations as
transitions in stability. The plot characterizes stability as a function of reaction
time Ar and pitch damping time Tpp. Plotted are regions in which flight is pas-
sively stable due to high body drag (small Tpp, blue region) and intrinsically
unstable but actively controllable given a sufficiently fast response. An unmod-
ified fly (white square) has little damping and thus lacks passive stability but in-
stead relies on a fast control response. When the fast sensors are disabled (gray
square), the fly must rely on slower modalities, such as vision which has At ~ 50
ms [25]. Our model predicts that slower sensors encounter severe difficulty in
controlling flight, and indeed these insects tumble from the air. If high-drag
tibers are added to the body (black square), body drag increases, pitch damp-
ing time drops dramatically, and flight can be stabilized either passively or with

slower sensors.

6.6 Generalization to other insects and robots

The success of this model for the fruit fly suggests that it can be used as a general
framework for understanding the control of flapping-wing flight. According to
our model, the various body plans of hovering insects, birds, and robots will
determine the necessary response time needed to stabilize flight [Fig. 6.4(a)-(c)].
In Fig. 6.4(d), we show how this response time At (colored contours) changes
as a function of the pitch damping time Tpp (horizontal axis) and the pendulum

time Tp (vertical axis), which are the two time-scales that dominate the pitch
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Figure 6.4: Control requirements for insects and flapping-wing robots. (a) Many
insects share a similar body plan but vary in size: the wasp is 0.6 mm in body
length, honey bee 16 mm, and hawkmoth 46 mm. (b) Insects of similar size (few
mm in body length) have varying degrees of body drag: mosquitoes fly with
legs extended, and the woolly aphid has a fibrous covering. (c) Flapping-wing
robots with different stability strategies: Harvard robot (15 mm) is externally
stabilized with wire guides; Cornell robot (220 mm) has large sails; Mentor robot
(360 mm) has gyroscope-based feedback control. (d) Predicted reaction time
needed to stabilize flight. Contours are the reaction time needed, and the two
physical time-scales Tp and Tpp can be estimated from body morphological data.
Represented are insects with compact body plans (squares), high-drag insects
(diamonds), hummingbirds (circles), and robots (stars).

dynamics. Short Tpp and long Tp correspond to high body drag and large body
size, respectively, and lead to linear stability of Eq. 6.3 and thus passive stabil-
ity of flight (blue region). By compiling morphological and flight data for many
flyers, we estimate these physical time-scales and thus predict the required reac-
tion time. Our theory predicts, for example, that honeybees must respond faster
than 23 ms, and recent behavioral measurements confirm that bees react to gusts
of wind with a speed of (25 + 5) ms [49]. Further, we predict that hawkmoths

need a 32 ms reaction time, and simulations have indicated that stabilization is

difficult with controllers slower than one wing-beat (38 ms) [24].
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Our comparative analysis reveals that, with respect to stability, a wide vari-
ety of insects have scaled versions of a similar body plan that is compact and
devoid of damping surfaces [Fig. 6.4(a)]. Isometric scaling of these insects in-
dicates that 7Tp ~ TPI,]/;, which captures observed trend shown as the dashed line
in Fig. 6.4(d). Further, our model predicts that for these insects, the required
reaction time depends primarily on the pendulum time-scale: At ~ Tp = +/L/g,
where L = I/Mh is the pendulum length of the insect. Thus, bigger animals
require slower sensors, while the smallest insects, such as the parasitic wasp

Encarsia formosa, are predicted to require the fastest reaction times.

This analysis also provides design criteria for flapping-wing robots, such as
those shown in Fig. 6.4(c), and these flyers have been included as stars in (d).
The Cornell micro-air vehicle provides an interesting test case for the theory
[31]. Without the sail-like surfaces (C1), this robot is unstable, consistent with
our model predictions. Fitting it with sails (C2) instills passive stability, and
our model accounts for this stabilization by damping and also indicates that an

alternate strategy would involve the use of a 30 Hz active controller.

As a final comparative study, we identified similarly-sized insects that have
different degrees of damping, as shown in Fig. 6.4(b). The fruit fly, mosquito,
and woolly aphid are all millimeter-sized. Relative to the fly, the mosquito has
long legs that are extended in flight, providing inertial and damping stabiliza-
tion and permitting slower response times. The woolly aphid’s fibrous covering
represents a bizarre extreme in damping, and our model indicate that the aphid

may be one of the few intrinsically stable flying insects.
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6.7 Stability, control, and the evolution of flight

This strategy of passive stabilization may have been employed by the first flying
insects. In particular, the first flyers are unlikely to have had the fast and sophis-
ticated sensory-neural systems of modern insects and may instead have relied
on body plans that confer intrinsic stability [35]. Though the palaeontological
record is too incomplete to fully support this conjecture, fossil insects do include
damping features such as plate-like lobes, abdominal fibers, and long, hair-like
cerci [27]. In most modern insects, damping structures are conspicuously ab-
sent, which may reflect an adaptation toward maneuverability and evasiveness

in Nature’s increasingly crowded airspace.

6.8 Supporting Information

Dynamical model of body pitch. Recent aerodynamic simulations indicate that
body orientation is intrinsically unstable for some insects [41, 42, 19]. These sim-
ulations include both computational fluid dynamics (CFD) codes that numeri-
cally solve the Navier-Stokes equations as well as quasi-steady models that ap-
proximate aerodynamic forces on the flapping wings. Both couple fluid forces
to the rigid-body dynamics of the insect body. These simulations show that
body pitch is subject to diverging oscillations, and this instability appears for
simulations of flies, bees, and moths. Its presence in a variety of computational
implementations using a variety of insect body forms suggests that pitch insta-

bility is a generic feature of flapping-wing flight.

The CFD work of Sun’s group inspires a simplified physical picture of the in-

126



stability [41]. The relevant physical mechanisms can be illustrated most simply
for hovering flight. The wings beat back-and-forth, the average lift is directed
upward to balance body weight, and drag points horizontally but cancels for
the two half-strokes. If pitched forward, the re-directed lift drives the insect
forward. This leads to a net drag on the wings, because the wing airspeed on
the forward sweep is now greater than the airspeed on the backward sweep. If
the wings are located above the body center of mass, as is the case for flies and
many other insects [16], this drag creates a nose-up pitch torque that rotates the
insect. In effect, the insect is flipped backwards by the drag on its wings. If
left uncontrolled, this instability rocks the insect back-and-forth with growing

amplitude and ultimately causes it to tumble from the air.

These observations suggest a minimal set of ingredients to be included in
a reduced-order model. The insect body is an extended rigid body of mass
M and pitch moment of inertia /. We will evaluate longitudinal motion of this
body, that is, the dynamics of the forward speed, upward speed, pitch angle and
pitch rate, (u,v,6,w = ). The body orientation during hovering defines 6 = 0.
So-called “normal hovering” insects beat their wings back-and-forth [51], and
average lift points upward and balances body weight: L = Mg. We assume the
wings co-move with the body, so the average lift vector is of fixed position and
orientation with respect to the body [16, 17]. As we will show, the distribution of
drag is critical to the flight dynamics. For the sake of generality, we assume the
insect body has distributed sources of linear drag D at displacements 7 from the
center-of-mass. Such drag sources include the wings, which have been shown
to give rise to drag linear in body velocity [32], as well as viscous forces on
the body itself and on other damping surfaces such as legs. Drag is directed

opposite to the velocity ¥ for each drag source, dD = —7- du. Here, du represents
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the dependence of drag on aerodynamic characteristics of the source (such as
size and coefficient of drag) as well as on fluid properties (such as density and

viscosity).

We next write down a general linear model of the longitudinal dynamics.
If the insect is pitched, horizontal body acceleration & = L/Msin6 ~ g0 results
from the re-directed lift. Vertical body acceleration v stems from the loss of lift,
but this is a second-order effect. Thus, vertical dynamics are unchanged in the
linearized system leading us to evaluate the simplified (u,6, w) system. Drag
causes both translational or angular velocities to couple to both translational
and angular accelerations. Thus, the general system can be described using the

linearized Newton-Euler equations:

u=a-0-p-u-06-w (6.4)
0=w (6.5)
W=—€W—Y - U+T (6.6)

Here, @ = g is the re-directed lift-based acceleration, the coefficients (8,7, 6, €)
define how the sources of drag give rise to accelerations, and 7 is the net external
pitch torque divided by the body moment of inertia. Evaluation of the drag
sources distributed at displacements 7 from the body center-of-mass leads to
the following relations: g8 = %, € = @, v = @, and ¢ = % with §

the vertical unit vector. Thus, coefficients in this dynamical system appear as

ratios of moments of the drag distribution and moments of the mass distribution

(M= [dmand = [r’dm).

Taking the Laplace transform of the above system reveals some simplifica-

tions. The transfer function from external torque to pitch angle can be shown to
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be
Lo+ 1
:ls3+(1+f)l‘;2+(€_5_y)s+ﬂ’ (67)
B B B B

where ~ represents the Laplace transform and s is the frequency variable. This

~N | D

form reveals that some variables appear only as combinations, and this inspires
a physical interpretation of these combinations. The quantities § and e appear
alone, and their inverses are simply characteristic time-scales for which forward
and pitch motions are damped by drag. To evaluate the other variables, it is
convenient to define a center-of-drag vertical displacement from the center-of-

[

?‘Ad M ]
7 ;ﬂ” . Then, one can show that % — Msh

1 4

mass, h = which is similar to squared
oscillation frequency for a compound pendulum supported at a distance & from

the center-of-mass (positive upwards). Further, it can be shown that the term

4

5 = MThz,B. Considering only nearly symmetric drag distributions allows one to

linearize in /& and thus drop this term.

These findings suggest interpretations of all quantities in terms of physical
time-scales. Forward motion is damped with a characteristic time of Trp = 1/,
and pitch rotations are also damped over a time-scale of Tpp = 1/€. The insect
body will have an inherent pendulum-like oscillation time of Tp = \/ﬂ/—ay =
\I/Mglhl. The Laplace transform of the simplified system now becomes

T 1
- FDS ¥ . 6.8)

B 3 Tepye2 o L
Teps® + (1 + 72)8% + -85 =

~N | D

The distinction of + correspond to the cases 1 > 0 (high center-of-drag)and & <
0 (low center-of-drag), respectively. The corresponding system of differential

equations is given by:
1
h=g-0——-u 6.9
g0 7— (6.9)

0=w (6.10)
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1
. a) + 2 .
Tpp gTwo T}

u+Tt (6.11)

Algebraic elimination of u and w for 6, yields a single differential equation that

applies in the absence of external torques 7 = 0:
TFDH + (1 + TFD/TPD)é + (1/TPD)9 + (1/TI2’)8 =0. (612)

This equation is similar to a damped rotational oscillator but the presence of for-
ward damping leads to two modifications. First, the effective moment of inertia
is enhanced by the ratio Trp/Tpp. Second and more importantly, the presence
of the third-derivative term acts as a driving source that injects energy into the

oscillator and can destabilize it.

Assessing intrinsic stability of body pitch. The inherent stability of body
pitch during flight can be formally evaluated by assessing the mathematical
stability of Eq. 6.12. This procedure considers solutions of the form 6 ~ e,
where 1 is a complex eigenvalue of the system. This leads to the characteristic
equation:

TepA® + (1 + Tep/Tpp)A* + (1/Tpp)d + (1/T5) = 0. (6.13)

The equation has three roots which correspond to three eigenvalues. If the real
part of any root greater than zero, then deviations grow exponentially and the
system is unstable. Although analytical solutions for the roots of Eq. 6.13 can be
obtained, their mathematical forms offer little insight since they are generally
complicated functions of the time-scales (7», Tpp, Trp). For values of these time-
scales for most insects, there exist a pair of complex conjugate eigenvalues with
positive real parts. In control theory terms, the system is said to have a pair
of right-half-plane (rhp) poles. Physically, this indicates that body pitch during

flight exhibits an oscillating, diverging instability.
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The Routh criterion provides a general relationship among the physical
time-scales necessary to furnish inherent stability. If the center-of-drag is low,
then we are dealing with the negative form of Eq. 6.13 and this criterion in-
dicates that flight is unstable for all values of the physical time-scales. If the
center-of-drag is high, then we are dealing with the positive form of Eq. 6.13

and the Routh criterion for stability is:

( LI ) L1 (6.14)

+ 2
Tep  Tep)Teo Tp

This result confirms some physical intuition: generally, more damping (smaller
Tpp or smaller Trp) and larger body sizes (larger T»p) tend to offer more stability.
As shown the paper, however, the physical time-scales for most insects are such

that flight is intrinsically unstable.

Reaction time needed to suppress the instability. Unstable processes are
inherently difficult to control, especially in cases in which this control response
is delayed in time [39]. Control theory provides a quantitative assessment of
control performance in such a scenario [21, 4, 5]. The key idea is that perfor-
mance suffers when there is a phase shift, or phase loss, for a disturbance signal
that propagates through a controller and physical process. Intuitively, this can
be seen by considering how sinusoidal disturbances are affected by different
phase losses under the action of negative feedback. A phase loss of 0, for ex-
ample, results in exact cancelation of a disturbance signal. A phase loss of 7, on
the other hand, reinforces the disturbance and leads to instability of the com-
bined controller-process system. Thus, controllers and physical processes that
induce phase loss are generally undesirable. The phase loss due to both insta-
bilities (poles in the physics) and time delays can be rigorously evaluated and

then compared to standards for acceptable control performance.
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The qualitative reasoning given above has been formalized into the so-called

design inequality [5]:
—arg Lyp(iwg) < m— ¢y + ngcg = ¢y, (6.15)

with good rules-of-thumb requiring that the constants ¢,, ~ n/4 and n,. = -0.5
and thus ¢, ~ n/2. Here, L = PC is the open-loop transfer function for a physical
process P and controller C, and L,,,,, is its so-called non-minimum phase portion,
which includes the effects of poles and delays. The gain-crossover frequency wg,

is the frequency for which |[L| = 1.

A pure delay of At corresponds to L,,,(s) = exp(—s - Ar) which then gives
—arg Lyy,(s = iwy) = wg - At [4]. Thus, long delays are troublesome since
they correspond to a pure loss of phase. For a pure real pole (or eigenvalue)
of 1 = 0 > 0, Lyny(s) = (s + 0)/(s — o) which then gives —arg L,,,,(s = iw,.) =
2 arctan(o/wy,) [4]. Thus, fast instabilities (large o) are also troublesome because

of the large phase loss.

For the case of insect flight, we have a pair of complex conjugate poles, 1 =
o + ip, with o > 0 signifying instability of the pitch dynamics. In this case, the
phase loss each pole can be shown to be: —arg L,,,(s = iw,.) = 2 arctan(o/(wge F
p)). Combining the two poles and delay together gives the following design
inequality:

+ 2 arctan
Wee — P Wgc +p

For typical values of o and p, very large values of the reaction time Az render

Wge - At + 2 arctan

< 7/2. (6.16)

the inequality untrue for all gain-crossover frequencies w,. > 0. If At is then
decreased, at some point the relation becomes exactly equal for a single value of
wg.. The value of At for which this occurs is the slowest delay time that confers

the desired control performance. To compute this slowest permissible reaction
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time, we wrote a program in MATLAB that first computes o and p from the
values of the physical time-scales. The program then finds the value of At that
satisfies the equality of the above equation for at least one value of the frequency

wg.. Thus, the permissible At is computed as a function of Tp, Tpp, and Trp.

Estimating values for the physical time-scales. To assess stability of many
insects, hummingbirds, and robots, we must estimate the physical time-scales
Tp, Tep, and Trp. To provide an estimate of the pendular time 7Tp = \/m,
we need to know the morphological parameters M, I, and . Body mass M
is taken from the literature directly and moment of inertia is estimated as I =
M(L* + 3/4D?)/12 by approximating an insect’s body as a cylinder of length L
and diameter D. The center-of-drag distance / is taken to be the distance from
the center-of-mass to the wing attachment point. This approximation is valid
if the wings dominate other drag sources [32], such as the body itself or legs,
or if these other sources are distributed nearly symmetrically about the wings.
These morphological distances L, D, and / are available in the literature for some

insects and can be estimated visually from photographs for others.

The forward damping time-scale Tgp is largely determined by wing drag
[32]. To evaluate the resistance to forward motion, we approximate the in-
stantaneous drag on the two wings by the high Reynolds number law D =
2 X pSCpv?*/2, where p is the fluid density, S is the wing area, Cp is the coef-
ficient of drag, and v is the wing-speed relative to air. For forward flight, the
resistive damping force arises from the faster wing-speed and thus greater drag
on the forward sweep than on the backward sweep. For wings that beat at speed

w relative to the body and a body moving with speed u, the forward dynamics
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can be determined by averaging the drag for the two half-strokes:

D

1 1
2% 5pSCp X 5 |-+ 1) + (w = )’

=2pSCpw - u = M. (6.17)

X

The approximation considers small body speeds and thus drops second-order
terms, (u/w)?. Thus, the wings act as a source of drag that is linear in body ve-
locity. The forward damping time represents the characteristic time that motion
is slowed and is given by:

M C
P Y.L (6.18)
u 20SCpw 2g¢ Cp

Tep =
Here, the final equality is a simplification that makes use of the hovering con-
dition that body weight is balanced by lift: Mg = L = 2 X pSC,w?/2, with a
lift coefficient of C;. Thus, we estimate the forward damping time-scale for dif-

ferent animals by determining the typical wing-speed w and lift-to-drag ratio

C;/Cp from the literature.

Finally, we must provide an estimate of the pitch damping time Tpp. Pitch
rotational damping stems from different sources for different flyers. Most in-
sects lack conspicuous damping sources, and the body itself thus provides weak
damping due to viscous resistance [22]. Approximating the body as a cylinder
of length L and diameter D, the torque 7 is is linearly related to angular velocity
w,

nul?

T:m-w:h}), (619)

where u = 1.8 x 107> kg/m:s is the viscosity of air [22]. This formula applies to
a slender cylinder rotated about its center, perpendicular to its long axis. The
pitch damping time is thus given by

w 1
= = (6.20)
31n(L/2D)

TPD =
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where the moment of inertia can be estimated using the cylindrical-body ap-
proximation, I = M(L* + 3/4D*)/12. Thus, pitch damping time can be estimated

from the body dimensions.

In some cases there are additional, more conspicuous sources of pitch damp-
ing, such as the legs of some insects and the sail-like plates of flapping-wing
robots. For long-legged insects, these sources generally dominate the rotational
damping. To simplify the calculation of viscous drag on the 6 legs, we consider
the drag on 3 legs that are twice as long and rotated about their centers. This
allows us to make use of Eq. 6.19 to arrive at

1

8aul’ ’
In(L/D)

(6.21)

TPD =

where [ is the total body and leg inertia. Here, L and D now refer to the charac-

teristic leg length and diameter.

For robots with large sails that damp body rotations, it is likely that the aero-
dynamic force on these structures is dominated by high Reynolds number, or
quadratic, drag. To obtain a linear estimate of drag, we assume that the sails
vibrate slightly in flight. In this case, the drag will be linear in velocity, just as
is this case for flapping wings. By considering a sail as a point source of drag
located a distance r from the center-of-mass, we find that

I/

Top = ————
T S Chw’

(6.22)

where [ is the total body and sail moment, S is the sail area, Cp = 1 is the drag
coefficient for a flat plate, w is the angular vibration speed of the sail, and p = 1.2

kg-m™ is the density of air.

Morphological and aerodynamic data for insects, hummingbirds, and

robots. The calculations above allow us to estimate the relevant physical time-
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scales given relatively few parameters for hovering insects, birds, and flapping-
wing robots. This information is compiled in Tables 6.8 and 6.8. Table 6.8 in-
cludes all insects that lack clear damping surfaces, and Table 6.8 includes high-

drag insects, hummingbirds, and robots.

As outlined above, the body length L and diameter D are needed to estimate
Tp. Trp can be estimated from the body mass M, the lift-to-drag ratio C; /Cp, and
rms wing speed at approximately two-thirds span: w ~ ¢o(21f)R/2, where ¢, is
the stroke amplitude, f the wing-beat frequency, and R the wing span length.
Finally, for most flyers, Tpp can be calculated from the body morphological pa-
rameters M, L, and D. For some insects and robots, there are additional damping
surfaces that must be included in the calculation of Tpp. These flyers are marked

with a note in Table 6.8.

For the compact insects of Table 6.8, we note that 7p ~ VL while Tpp ~ L2 for
isometrically-scaled insects of body length-scale L. Thus, we expect Tp ~ T,

which is consistent with our observations presented in the paper.

To our knowledge, reliable C;./Cp measurements have only been performed
recently and are available for the fruit fly, hawkmoth, honeybee, and Rufous
hummingbird. For each of the other animals and robots, we assume a value that
corresponds to one of these animals that is closest in size. Body dimensions were
not measured in the studies of orchid bees and hummingbirds, and these values
have thus been estimated from photographs. Kinematic data is not available for
the woolly aphid, so fruit fly parameters have been used. The elytra of ladybirds
[37] and the hindlegs of bees [9] may serve to stabilize forward flight, but our
calculations show that these structures contribute little to pitch damping during

hovering.
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Due primarily to estimates of morphological parameters, the forward damp-
ing and pendulum time-scales are expected to be accurate to better than a factor
of 2 for most of these flyers. Pitch damping calculations are order-of-magnitude
estimates because of the approximate drag laws used. The computation of reac-

tion time, however, is rather insensitive to these errors.
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CHAPTER 7
INVERTED DRAFTING OF INTERACTING FLAPPING FLAGS

71 Summary

In aggregates of objects moving through a fluid, bodies downstream of a leader
generally experience reduced drag force!. This conventional drafting holds for
objects of fixed shape, but interactions of deformable bodies in a flow are poorly
understood, as in schools of fish. In our experiments on “schooling” flapping
flags we find that it is the leader of a group who enjoys a significant drag re-
duction (of up to 50%), while the downstream flag suffers a drag increase. This
counterintuitive inverted drag relationship is rationalized by dissecting the mu-
tual influence of shape and flow in determining drag. Inverted drafting has
never been observed with rigid bodies, apparently due to the inability to de-

form in response to the altered flow field of neighbors.

7.2 Aero- and Hydro-Dynamic Interactions Between Moving

Bodies

Groupings of bodies moving through a fluid often exhibit collective behav-
ior. Locomotion provides well-known examples including the maneuvering
and clustering of racing automobiles [15] and bicyclists [12] and the queuing

of lobsters during ocean floor migrations [7]. These phenomena are explained

'The work presented in this chapter is modified with permission from Ristroph and Zhang,
Phys. Rev. Lett., 101, 194502 (2008).

145



by conventional hydrodynamic drafting, for which rigid bodies enjoy drag re-
duction when situated behind a leader in a flow [22]. Though the flow field
around drafting bodies is complicated, the effect is qualitatively understood by
considering that the downstream body sits in the lower velocity wake of the
leader. The resulting force arrangement leads to passive aggregation and offers

net drag reduction for locomotors.

Does this rationalization of interactions among rigid objects extend to aggre-
gates of flexible, shape-changing bodies? Schooling fish [21] and flocking birds
[9] are striking examples in which fluid and dynamic structures conspire to sup-
port long length-scale coherent motion [18]. Understanding such phenomena is
challenging because of the mutual influence of deformability and unsteady fluid
flow [20, 4, 23]. The flapping of a flag is an everyday example that serves as an
archetype of interactions between flow and deformable structure [23]. Certainly,
the changing shape of a flexible body affects the resistive force it must overcome
when moving through a fluid [4]. Moreover, when deformable bodies condense
into an aggregate state, fluid-mediated interactions may lead to modifications
of shape and, hence, modifications in force. Here, we reveal an instance of the

dramatic effect of deformability in the interaction of flapping flags in a fast flow.

7.3 "Schooling” of Flapping Flags

To experimentally model the interaction of shape-changing bodies, we insert
thin flexible filaments into a flowing soap film [1]. Each filament is fixed at
its upstream end to a thin wire, a flagpole that extends out of the film, while

the rest of the thread hangs free in the film. Because the filaments are suffi-
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Figure 7.1: A pair of tandem flags undulate in a downward, flowing soap film.
(a), (c) At different separations G, instantaneous flow patterns around the flap-
ping flags are visualized by thin-film interferometry. (b), (d) The periodic mo-
tion is captured by long time exposure photographs. When the separation gap
is zero (G/L = 0), the wakes of the two flapping bodies are united into a coher-
ent structure (a) which is similar to the wake of a single flag [23]. The flags take
on different lateral amplitudes (b), small for the leading flag and large for the
trailing one. At a larger separation (G/L = 0.6), the flag wakes disentangle (c)
and both amplitudes increase (d).

ciently flexible and inertial, they spontaneously flap under the fluid forcing,
as one-dimensional flags fluttering in a two-dimensional breeze [23, 17, 6].
These threads have diameter 0.03 cm, length L = 2.0 cm, bending modulus
0.34 g-cm?/s?, and mass per unit length 4.8 x 10 g/cm; they flap in a flow of far-
field speed U = 200 cm/s. First, consider the undulations of a lone flag. In a uni-
form flow, the flapping motion is well-described by a traveling wave of increas-
ing spatial envelope [23]. For the above material properties and flow speed, the

undulatory motion of a flag exhibits maximum amplitude Ay = 1.36 cm (the to-
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tal excursion of the free end) and flapping frequency f, = 35.8 Hz. In addition
to these kinematic quantities, we measure the time-averaged stream-wise fluid

force, Dy = 5.2 g - cm/s?, the drag on an isolated flag [2].

We then insert a second flag into the flow. Depending on the relative location
of the bodies, each may be presented with a modified flow field. Hydrodynamic
interactions will, in general, alter both the form of the flapping motion [23, 8, 11],
captured as amplitude A and frequency f on each body, as well as the fluid
force, D. At the high Reynolds number (Re ~ 10*) studied here, the primary
influence of an object on a flow is downstream, yielding the complex wake of
the body [19]. Thus, the queuing of bodies in the direction of flow is the simplest

arrangement that is likely to lead to strong fluid-mediated interactions.

7.4 Interactions Between Tandem Flapping Flags

To study these interactions, we arrange a tandem pair of identical flags and vary
the gap between the two. The gap G is the stream-wise distance between the tail
end of the leading flag and the flagpole of the following flag, or, equivalently,
the distance between flagpoles less one body length L. The instantaneous form
of the two filaments for non-dimensional gap G/L = 0 and the corresponding
wake structure are captured in the photograph of Fig. 7.1(a). The two bodies
assume the same frequency of flapping but take on different amplitudes, as re-
vealed in the long time exposure photograph of Fig. 7.1(b). For G/L = 0, the
flags flap out-of-phase. At a greater separation of G/L = 0.6, flapping ampli-
tudes increase [Fig. 7.1(d)], the phase difference is nearly zero, and the wake

structure [Fig. 7.1(c)] becomes more complex. We found that the tandem flags
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Figure 7.2: Stream-wise fluid force D for two tandem flags as a function of non-
dimensional separation G/L. At all separations investigated, the leading flag
(open triangles) experiences a lower drag than the follower (solid triangles).
In particular, at small separations, the drag on the leader is significantly lower
than that of a single, isolated flag (D,, as indicated by the lower dashed line). In
contrast, the follower experiences a higher than usual drag. Compared to the
total drag of two independent flags (the upper dashed line), the total drag for
our tandem flags (solid circles), which is the sum of the data from two lower
curves, is reduced for small gaps and amplified at larger separations.

synchronize even when separated by several body lengths. This correlated mo-

tion suggests that the fluid-coupled interactions may also lead to altered forces

that persist over long lengths.

We first compare the drag force for each member of the pair. The individual
flag forces as a function of gap are shown in Fig. 7.2. In surprising opposition
to static objects, we find that the leader always suffers less drag than the down-
stream body. In particular, the leading body experiences less drag than that of
an isolated flag, Dy, including a reduction to half at G/L = 0. The downstream
body has drag greater than D,. Defying intuition based on fixed bodies, flexible

flags experience inverted drafting, in which flapping in front reduces fluid forces.
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How does this anomalous allotment of drag arise? One might conceive of
a scenario in which each flag modifies its surrounding flow and also in turn in-
duces changes in the form of motion of the other flag. The latter effect is not
possible for rigid objects and is thus a good candidate to explain our new re-
sults. Indeed, the flags do have altered dynamics in the aggregate, as is clear
from Fig. 7.1. In particular, detailed measurements of frequency and amplitude
reveal two consistent observations. First, the frequency, though somewhat dif-
tferent from the value for the lone flag, is the same for each flag as long as the
two were placed within a few body lengths of one another. Second, we find that
amplitude is strongly dependent on position and is smaller for the leader than

the follower, as is evident in Fig. 7.1(b) and (d).

For this two-flag interaction problem, drag might assume a complicated
form that is dependent on the undulatory flag motion and the unsteady near-
body flow. We decouple shape and flow by considering the drag on an object
of fixed shape and then estimate how this force depends on the ever-changing
shape. For high Reynolds number steady flows, the form drag [19] on a static
body is CppU?S/2. Here, p is the fluid density, S the area the object presents
to the flow, and C), the drag coefficient, a shape-dependent parameter of order
unity. Thus, shape appears both through the area S and the coefficient Cp. A
scaling approximation for S can be obtained by taking the area presented to the
flow to be the product of the film thickness d and flapping amplitude A, so that

S ~ dA. If the drag coefficient is relatively constant, then Drag ~ Amplitude.
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Figure 7.3: Two-dimensional maps of the drag and amplitude for two flapping
flags. Here, the flagpole of one flag is fixed at the origin (black dot) while the
second flag is displaced laterally and stream-wise. The stream-wise drag (a) and
the flapping amplitude (b) are measured for the second flag. The force map (a)
shows a robust drag reduction for the second flag when placed upstream of the
first. The second flag experiences, over a greater area, an increased drag when
downstream of another flag. There is a strong correlation of the lateral flapping
amplitude (b) with the drag (a), as indicated by the more uniform map of drag
normalized by amplitude (c). (All maps are normalized by the corresponding
values for an isolated flag at the same flow conditions.)

7.5 Generalization to Arbitrary Locations

We verify that drag and amplitude are correlated for two flags of both stream-
wise and lateral displacement. To demonstrate this, we fix a flag at the origin
and measure the drag on a second, nearby flag at varying relative locations.
Here, position indicates the displacement between flagpoles. Fig. 7.3(a) shows

the map of drag on the flag that is displaced laterally and stream-wise, and
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Fig. 7.3(b) shows the amplitude map. By comparison, the amplitude of flap-
ping is seen to correlate quite well with the fluid force experienced. In fact, the
quantity Drag/Amplitude yields the nearly uniform map of Fig. 7.3(c). Am-
plitude alone seems to capture the essential shape-dependence of drag. Thus,
for tandem flags, inverted drafting reveals itself in the small amplitude for the
leading body and considerably broader envelope for the downstream flag, as in

Fig. 7.1(b) and (d).

Notice also that the inverted drafting of tandem flags is robust to moderate
lateral displacement of the flags. Specifically, significant drag reduction for the
leader extends upstream over one body length from the origin and more than
a half body length to each side [Fig. 7.3(a)]. The region of higher drag persists
four flag lengths downstream and nearly one body length laterally. Taken to-
gether, these results indicate that inverted drafting is not sensitive to the exact
alignment of the flags but is a result of a broad change in the near-body flow

tield of the flags.

7.6 Inverted Drafting as a Fluid-Structure Resonance

We then ask how the flow field induces changes in the amplitude of flapping.
We first address how the amplitude of the leading flag is reduced, considering
the introduction of its downstream neighbor and the flow-flag interaction. Be-
cause the downstream flag is held fixed by a flagpole, this follower serves to
suppress lateral flow near the trailing end of the leading flag. The free end of
the leading flag can be viewed as part of the overall flow structure, namely a

concentrated vortex sheet [17, 6], and is thus indirectly confined in the lateral
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direction. As a result, the leading flag presents a smaller cross-sectional area
to the oncoming flow, which in turn yields a drag that is less than that on an
isolated flag. Here, the role played by the downstream flag is similar to that of

a wake-splitter, a longitudinal plate that reduces drag on an upstream cylinder

[5].

Next, consider the flow field near the downstream flag. This follower undu-
lates in the oscillating wake of the leader. Because the flags beat in synchrony,
the following flag flaps at the same frequency at which its oncoming flow os-
cillates. The resonance effect thus drives the lateral amplitude to increase. The

broad amplitude presented to the flow thus yields higher drag for the follower.

Though the follower bears the greater drag burden, the pair as a whole
can have a drag reduction or increase. This again differs from rigid objects:
studies on tandem cylinders reveal that the total drag is always less than that
of two independent bodies [22]. For interacting flags, the pair drag (Fig. 7.2)
shows an unusual dependence on gap. For gaps G/L < 0.2, the total force
on the pair is less than that of two independent flags, but at greater separa-
tions (0.2 < G/L < 3) drag is considerably amplified. The flow visualization
of Fig. 7.1(a) and (c) offers additional clues to the underpinning of the drag re-
duction for the aggregate. When tandem flags are close enough to yield drag
reduction, the wake of the pair is united into a sinuous, narrow ribbon of vor-
tices that resembles the wake of a single flag [23]. For larger separations, the
wake disentangles and widens, and the drag reduction for the pair vanishes.
Here the wake width serves as an indicator of drag, which is equal to the rate of

removal of fluid momentum.
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Figure 7.4: Drag measurements of six tandem flags at different separations. (a),
Photograph of flapping motion for G/L = 0, where flow is from left to right.
(b), (c) Drag for each individual flag is shown for two separations. The first
tflag enjoys a drag reduction compared to the second, meaning inverted drafting
persists in these larger aggregates. The group experiences a drag reduction as a
whole, as most individuals have drag less than D.

7.7 Generalization to Many Flags

Having investigated pairs of flags, we generalize to larger tandem aggregates.
In Fig. 7.4(a), we show six serial flags at G/L = 0 photographed under strobe
lighting. In this larger aggregate, all bodies flap at the same frequency but as-
sume different phases and amplitudes. Across different separation distances,
the leading flag enjoys a lower drag than its downstream neighbor, as is detailed
in Fig. 7.4(b) and (c). However, we find that flapping amplitude no longer gives
a clear indication of force, perhaps because the local flow speed deviates consid-
erably from the far-field value of U. Nevertheless, that inverted drafting persists
in these larger groupings suggests that our rationalization of the two-flag prob-
lem offers general insight into the forces on interacting, passively deformable

bodies.

154



7.8 Implications

It is unknown whether inverted drafting appears in interactions of actively flap-
ping bodies, as schooling fish. Though a flag flaps passively and a swimming
tish undulates by muscular activation, both motions involve the interplay of
fluid forcing, elasticity, and inertia [23, 10, 14]. In fact, fish do make use of pas-
sive hydrodynamics in unsteady flows for energetic advantage [13]. Presently,
nearly all rationalizations of grouping energetics of flapping animals assume no
advantage for leading members [21, 9]. Such models do not consider any mod-
ified dynamics in an aggregate; the motion of a fish, for example, is assumed to
be the same in a school as it is during isolated swimming. However, it is known
that the form of flapping motion varies according to position in a school and
flock [9]. In light of our findings, the altered collective dynamics may lead to
dramatic deviations from these models that simply superpose isolated locomo-

tors.

Another class of models describe collective behavior of living organisms by
considering forces of interactions between individuals [3]. Often without ex-
plicit reference to an underlying mechanism, some models combine a short-
range repulsive force and longer-range attraction, yielding an equilibrium sep-
arating distance between members of an aggregate. For tandem flags, inverted
drafting directly suggests hydrodynamic repulsion between flags. Because the
follower has higher drag, the pair will tend to separate further. This is unlike
rigid objects, for which conventional drafting implies attraction in the tandem
arrangement. Thus, the individual forces on tandem flags are such that aggre-
gation is unstable. Notice also that these forces are so arranged as to hinder

a flapping “predator” flag in its pursuit of “prey”, the leader. If racecars had
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flexible spoilers, for example, then the leading car might make use of inverted
aerodynamic drafting to maintain its position. In this case, it is better to be

chased than to chase.
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CHAPTER 8
CONCLUSIONS AND OUTLOOK

8.1 Synthesis

Collectively, these investigations provide a template for dissecting the prob-
lems involved in maneuvering and stabilization of flight in insects. We have
put together experimental and analytical techniques that quantify the nature of
these remarkable flight behaviors and reveal some of the solutions that insects
have evolved in interacting with their aerial environment. Having dissected the
many levels involved, the next step is to put these elements back together. Here,
I will outline how this synthesis is done for the specific case of yaw stabilization

in fruit flies.

A description of yaw stabilization must include the roles of several key play-
ers: the mechanosensory halteres, neural circuits, wing muscles and hinge, mo-
tion of the wings, aerodynamic forces, and the resulting body rotational dynam-
ics. The interaction of these elements forms a closed loop of information flow.
At each step in the loop, a given process can be viewed as a transfer function
that converts one quantity into another. In the context of our simplest reduced-
order models, these transfer functions are linear operators, and the entire feed-

back loop can be written as a system of linear differential equations.

The individual transfer functions will take on simple forms. For the halteres,
we model their complex dynamics as faithfully recording yaw rate, ¢ [5]. This
signal feeds into a neural circuit that drives a time-delayed position and rate

muscular response [6]: Ang ~ y(r — Ar) + J(t — Ar). Here, An, is the difference
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in spring rest angles in the biomechanical wing hinge model and At is a neural-
sensory delay time. The actuation bias leads to paddling motions [1]: Aa = Ap =
U - Any with u =~ 0.6. These wing motions give rise to a torque on the insect body
which then must overcome the damped, inertial dynamics [6, 1]. Finally, the
yaw rate is again sensed by the halteres and the information flow continues in

this loop.
Combining these elements into a single differential equation, we arrive at
Iy = =B + Ny + Nex (8.1)
where N,y is the externally-imposed torque and
Niy(?) =y - Aa(t) = yp - Ango(r) = Kpy(t — Ar) + Kpipr(t — Ar) (8.2)

is the response torque. Here, we have written the fly’s response torque in several
equivalent ways to emphasize the roles of the different systems that generate it.
At the level of the wing motions, the torque is proportional to the paddling
angle Aa. At the actuation level, the torque is also proportional to the bias angle
Ano. At the sensory and neural levels, the response is proportional to the time-

delayed yaw plus yaw-rate.

This stabilization model could also be implemented in the more-inclusive
computational simulations. In this case, the physical processes would be de-
termined by the simulation instead of modeled with reduced-order equations.
With regard to the neural controller and muscular strain, there are different
ways to implement these elements in simulation. For example, the instanta-
neous yaw might be used directly or the stroke-averaged value might serve as
the input to the neural controller. At this time, this full simulation is in progress

and may be presented in complete form elsewhere.
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More generally, the general structure to this problem of yaw control in fruit
flies may be shared by many complex behaviors of animals. Our approach

should provide a template for understanding this rich class of problems.

8.2 Extensions and Expansions

Within the insect flight field of research, this work naturally leads in several
directions. One avenue would be to extend the analyses presented here to other
degrees-of-freedom in the motion of the insect. A second avenue would be to
conduct similar studies on other insects. Finally, I believe some of the most
powerful results will come from experimental manipulation of the body plans,

wings, and sensors of actual insects.

It is natural to build on the yaw control and stabilization work in order to
investigate the pitch and roll response of fruit flies. For body pitch, we have
shown preliminary evidence that the insects respond by shifting the point about
which they beat their wings [12]. Beating in front, for example, causes the lift
on the wings to generate a nose-up pitch torque. However, we still do not know
what type of controller is used nor the actuation mechanism during pitch stabi-
lization. These features are of particular interest given that body pitch is intrin-
sically unstable. On-going work in the group involves the use of free-flight data

as well as magnetic perturbation experiments to extract these mechanisms.

For body roll, it is suspected that flies use differential stroke amplitudes to
generate torque [8]. As for pitch, work has now begun on magnetically per-
turbing flies about their roll axis to confirm this idea and also to extract the roll

control strategy. Theoretical work from other groups suggests that roll is weakly
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damped and intrinsically stable with regard to angle itself [3]. This makes roll
dynamics inherently different from yaw, in which motion quickly damps out
but angle itself is not restored. Roll is also different from pitch, which is unsta-
ble. Thus, no active response would be needed to control roll, and in this sense,

it is expected to be the easiest degree-of-freedom to maintain.

One may also extend the work on maneuvering flight to evaluate how flies
change their translational degrees-of-freedom. In this thesis, we presented re-
sults on specific modes of sideways flight, forward flight, and turning all of
which involve paddling wing motions. However, these are not the only modes
exhibited by flies. In particular, flies often tilt their body in pitch during for-
ward flight and in roll during sideways flight. These qualitative observations
lead to many questions. What are the maneuvering dynamics for other modes
of translation? When do insects use different modes and why? What control
schemes are used for translation? In particular, what sensors are used to main-
tain flight speed? Some of these questions might be addressed by devising an

experimental procedure for exerting forces to flying insects.

With regard to ascending flight, work is nearing completion that clearly
shows that fruit flies increase stroke amplitude on both wings to ascend at

higher speeds.

Another challenge involves the coordination of all of these degrees-of-
freedom. How are different body orientation angles controlled simultaneously?
To address this question, I have constructed a set-up that is capable of applying
two torque perturbations offset by a delay. This could be used, for example, to
rapidly follow a yaw perturbation with a pitch perturbation. This would deter-

mine if the two responses are simply linearly superposed, for example, or if the
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insect chooses a more complex route through the three Euler angles in order to

regain its posture.

It also remains open as to how well the findings for fruit flies carry over to
other insects. Certainly, all of the maneuvering dynamics and stabilization work
could be carried out for different insects. In this respect, I find the exploration of

flight control for insects of varying body plans to be the most interesting pursuit.

Perhaps one of the most appealing frontiers involves the study of very small
insects, those less than a millimeter in size [10]. First, the Reynolds numbers
are quite low for these insects, on the order of tens, and there may be interest-
ing aerodynamics at these scales. Second, the wings of very small insects have
unusual features, such as a bristle-like structure connected to a central stalk. Fi-
nally, the work on pitch stability presented here predicts extremely fast neural
reaction times would be needed to stabilize these small body plans. Perturba-
tion experiments on such insects may well discover some of the fastest behav-

ioral response times in the animal kingdom.

I also believe that manipulation of actual insects is a powerful though tech-
nically difficult way to explore aspects of flight behavior. In the pitch stability
work, we began efforts in this spirit by disabling sensors and restoring flight sta-
bility passively by adding draggy fibers onto the bodies of these insects. Work
in progress involves altering the center of mass location by adding weights on
the top of fruit flies. Preliminary results indicate that physical stability is sen-
sitive to the location of the center of mass relative to wing location. However,
it appears that actual insects compensate for this change quite well using their

active control schemes.
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Many other manipulation experiments await exploration. At the beginning
of my insect flight work, I tried mechanically manipulating the actual halteres of
insects with the hope of being able to “steer” them in flight. I managed to glue
magnetic pins onto the halteres of a crane-fly — fruit flies are far too small for this
work —but the fly never took to flight after the operation. I also conducted wing-
clipping experiments in which parts of one or both wings were removed. Fruit
flies take symmetric and asymmetric clipping in stride. A fly with both wings
cut to nearly half area can still ascend. A fly with half of one wing removed

hovers and turns with remarkable control.

We have also carried out preliminary work that is in this spirit with
mosquitoes. Mosquitoes fly with all six legs extended and preliminary calcu-
lations indicate that the drag on the legs may enhance passive stability. Indeed,
when the legs are removed our videos show body oscillations that are eventu-
ally either damped out or overcome with an active response. These oscillations
occur in roll, and ongoing work is aimed at investigating their origin and ulti-

mate stabilization.

8.3 Experimental Methods: Where Are We Now?

The simplest way to improve the experimental apparatus is to simply add more
cameras to the current three. Fortunately, the price of high-speed cameras are
quickly dropping in price, so this strategy is becoming increasingly feasible. The
more views would greatly improve the reconstruction of posture during flight.
In addition, the camera calibration procedure should be automated. There al-

ready exist standard packages — available for Matlab, for example — for calibrat-
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ing a set of cameras. This would eliminate the need to manually position each

camera to great precision.

The Hull Reconstruction Motion Tracking (HRMT) technique could be
greatly improved upon [7]. Probably, the most fruitful direction would involve
a thorough examination of current computer vision techniques. Certainly, there
is information in the videos that is not being used in the HRMT method. For
one, HRMT treats each frame individually and makes no use of time informa-
tion. This could be exploited, for example, by using previous positions and
orientations to estimate the current values. Also, the wings are somewhat dis-
tinguishable from the opaque body because they are translucent. This might be
exploited in the image processing step in which the wings are dissected from

the body.

Additionally, one might consider tracking algorithms that are conceptu-
ally very different from HRMT. The most promising is perhaps a model-based
tracker. In this algorithm, a model is formed and given certain degrees-of-
freedom. The model is then oriented and positioned until it best matches the
video observations according to some metric. Currently, our collaborator Attila
Bergou is pursuing this approach for bat flight using an approach that should

generalize to insect flight.

Once flight data is collected, one may want to formalize the discovery proce-
dures presented here. I have largely made discoveries by careful and repeated
observations of the movies and by trying different types of models (PID con-
trollers, for example) to match the observations. For many problems, this could
be formalized in a rigorous way. For example, controller types might be found

by using system identification techniques that are common in control theory or
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dynamical systems research.

8.4 Aerodynamic Modeling: Where Are We Now?

With respect to aerodynamic modeling, it seems that many of the major mecha-
nisms have been outlined and included in models. There are, of course, other in-
teresting effects not included in current models. Wing flexibility would appear
to be the next frontier, though it is unclear how important it is in insect flight
aerodynamics. In addition, issues of wing-wake and wing-wing interference
have not been incorporated in reduced-order models, though the importance of
these effects is also unclear. If wing shape, and not just wing area, is important,

this would also have to be investigated.

In pursuing the next generation of aerodynamic models, it is important to
bear in mind the lesson from the last generation: do not start by calibrating or
validating models with animal experiments. First use dynamically-scaled ex-
periments or computational simulations to isolate major effects and build mod-

els. Then test the models against observations of actual animals.

It is also unfortunate that there is not an infrastructure for comparing differ-
ent aerodynamic simulations and models. The quality of new codes could be
tested by having a benchmark set of high-precision wing kinematics taken from
animal experiments. How well does a code predict the forces and torques or the

resulting body motion?

Once an aerodynamic model is validated, the next step is to incorporate this

into a comprehensive, modular, accessible code for insect flight simulations.
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There are currently several versions of such codes, and work in the Wang group
is aimed at formulating such a computational tool. The immediate power of
these simulators will be in testing reduced-order physical and behavioral mod-
els. Less obviously, these simulations could generate new hypotheses if differ-
ent aspects of flight are explored in simulation. The aerodynamic effect of beetle
elytra (the hardened wing covers), for example, could be quickly investigated

in such a framework.

8.5 What Good are Reduced-Order Models?

Given that comprehensive flight simulators are emerging, what is the use of

reduced-order mathematical models of flight dynamics and behavior?

First, simple models are powerful. They strip away details and allow the
modeler to include only factors that are believed to be relevant. In this way,
we are forced to isolate only the most important effects and are thus able to
see how broadly our results apply. Comprehensive simulations include many
effects and thus do not allow us to readily distinguish important ones from de-
tails. Of course, simulations do afford this capability, though the user has to

systematically turn on or off different effects and evaluate their influences.

It may also be that simple models work well because they reflect a deeper
truth about how animals actually operate. It is difficult to believe that the fly has
evolved a sophisticated optimal nonlinear controller to stabilize flight. It seems
reasonable that it has evolved a simple, fast controller that is good enough to

get the job done.
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Perhaps more importantly, I do not think simulations and experiments are
yet accurate enough to make discoveries directly from data taken from animal
studies. The basic problem is that the difference between hovering in place
and turning rapidly, for example, amounts to less than 10% differences in wing
forces. Now, consider all the sources of error. Even the best kinematic data
typically has errors of a few percent in wing orientation angles, say. Morpho-
logical parameters are fraught with error. Wing area might be estimated to a
tew percent. Body mass estimates, however, cannot be made to better than 10%.
(I have found that mass decreases by 5-10% over the course of an hour-long ex-
periment!) Simulation errors are also expected to be about 10%. These are some
known errors, and in light of the many unknown errors such as wing flexibility,

the problem appears daunting.

The technique we have subconsciously developed to sidestep these issues
involves forming simple models. We observe actual data and try to map the
complicated events onto simplified or idealized pictures that capture much of
the essence of what’s going on. Complex wing motions can be mapped onto
paddling during turns, for example. The idealized picture then must be shown
to capture some important and general features of the behavior. For turns, we
made a general prediction that connected body turn angle to paddling wing

motions and showed that many instances could be united by this picture.

We note that other researchers interested in quantitative descriptions of an-
imal behavior have independently converged to this same approach. In par-
ticular, Robert Full calls the approach “templates and anchors” in his work on
walking and running of insects [4]. Templates are the idealized simple models

of physical or biological aspects of locomotion, and such templates are anchored
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in actual observation of animal behavior. From my personal experience in insect
flight, I believe this approach will continue to be the driving force for discovery

in the foreseeable future.

8.6 Can We Build It?

Do we know enough about insect flight to build a flapping-wing robot? Yes.
There are currently many efforts into building such devices, including one being
carried out in Hod Lipson’s group here at Cornell [9]. This robot has four wings
that flap back-and-forth, and stability is ensured by adding damping sails onto
the robot body. Another notable effort is being conducted by Rob Wood’s group
at Harvard [11]. Their micro-robotic insect uses an external power source and is

not yet capable of free-flight due to stability issues.

Perhaps the most successful work is being conducted as a classified DARPA-
funded project by AeroVironment, Inc. I had the pleasure of visiting this com-
pany in the summer of 2010 and giving a talk on much of the work presented
here. To my surprise, the team of engineers had stumbled upon many of our
findings while building their flapping-wing robot. They had not quantified their
tindings or explained them, but they had discovered aspects such as the pitch
instability by trial and error. In many ways, this was a crowning moment in my
work. I was especially pleased to have found a group of people who shared my
approach in terms of simple mechanisms. It was all the better that this group is

the one leading the effort to realize flapping-wing flying robots.

The practical hurdles in constructing such robots are not in the subtle aero-

dynamic differences between fixed and flapping wings. The first hurdle is suffi-
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cient force generation. This involves actuation mechanisms capable generating
the wing motions, materials that are strong but light, and high-power motors
that do not weigh much. For small-scale robots, the motors used to vibrate
pagers and cellular phones make for a cheap and accessible option. The second
hurdle is stability. Many groups are implementing passive stability by adding
sails or dampers onto their aircraft. The AV robot may be the exception: it ap-
pears to use active stabilization using sensors and feedback control. The next
hurdle is actuation schemes for maneuvering. How can we make light-weight

actuators that modulate the wing motions?

The next question is, Should we build it? Will these small robots be good for
anything? Will they be better than currently-available small helicopters? The
impressive maneuvering capabilities of radio-controlled helicopters certainly
set the bar high for flapping-wing robots. But it is difficult to assess whether
efforts to make insect-like robots are worthwhile. The main problem is that we
do not know if flapping-wing flight is better than fixed-wing flight in any sense.
This brings us to the next big issue: To what problem exactly is flight the solu-
tion? What are the principles that underlie insect flight? We will address these

challenging issues in the following section.

But there are reasons to build robots beyond possible uses for their flight
itself. First, the lesson from AV is that trying to build the thing can lead to un-
derstanding just as trying to observe actual insects does. Second, the endeavor
of conducting such an ambitious project is certain to lead to innovations even
if flight is never realized. For example, small-scale actuators, light-weight sen-
sors, and novel material processing is likely to emerge from this effort. Finally,

I would like to see robots used to make scientific discoveries. For example, the
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dependence of the pitch instability on damping could be tested by adding sails

of varying sizes onto robots.

8.7 What Are the Principles?

As I consider this body of work all together, it is difficult to see the broad, unify-
ing principles that have been distilled. I think this is largely because this work
represents many initial forays into a complex and difficult subject. The field is
simply not mature enough to have led to major guiding themes. Nonetheless,
clues have emerged from this work, and I believe the next generation should

approach the subject with an eye toward distilling principles.

A possible unifying theme for animal locomotion is optimality. The optimal-
ity principle says that animals have evolved the best ways to move according
to some criterion or metric and subject to constraints. It is a natural principle
routed in the clear fact that life adapts to its environment and better adaptations

tend to stick around longer. What might insects be optimizing?

One idea we have pursued is whether insects use wing-strokes that conserve
power while generating sufficient force to keep aloft. A primary difficulty is
measuring or estimating the power consumed. We can certainly calculate aero-
dynamic power, but we do not know whether this is the primary loss for actual
insects. Another difficulty is in the optimization routine itself. How do we op-
timize over all possible wing-strokes? The work of Berman and Wang made
great strides in circumventing this issue by considering a rather broad family
of strokes that could nonetheless be captured by relatively few parameters [2].

However, we note that the optimal stroke that was obtained for the fruit fly em-
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ployed a significantly lower angle of attack than what is observed. But given
the many modeling assumptions, it is difficult to say that this is a failure of the

power optimality principle.

That flies employ a high angle of attack suggests that they may be optimizing
for force production. In fact, the lift force is a maximum for angles of attack
near 45 degrees, which is quite near the attack angle near mid-stroke. However,
it is difficult to see how this idea would lead to further predictions, since the
other basic way to increase force is to increase wing speed. Clearly, biological
and physical constraints would limit this speed, though it is not clear how to

quantitatively predict the nature of this constraint.

Perhaps instead flies are maximizing the change in forces that are induced
by changes in wing motions. For example, by operating at an attack angle near
45 degrees, small changes in this angle lead to large changes in drag that is
used to maneuver. Might this idea be generalized by considering strokes and

modulations that maximize gradients in forces?

The above discussion touches on a great unknown in animal locomotion:
What does maneuverability mean? Animals may be optimally maneuverable,
but we do not have a solid mathematical framework for maneuverability as
we do for stability, so we cannot begin to evaluate this quantitatively. Perhaps
one idea is something like the concept of manipulability used in assessing the
dexterity of robots. Do insects seek to attain a large variety of flight states using

a small set of actuation mechanisms?

Another alternative would be to ask if insect flight is robust to the unpre-

dictable changes that are likely to occur. Such changes might be flight distur-
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bances, in which case the robustness of a control scheme would have to be eval-
uated. Other changes might be made to the wing morphology. For example, my
preliminary results show that flies can handle large amounts of wing trauma,
and indeed wing tearing and partial loss are common as flies age. Perhaps in-
sects are robust to changes in body morphology, for example, the changes in

mass distribution associated with laying eggs or feeding.

In all of these cases, it would appear one must define a metric that captures
the sensitivity of some flight metric to changes in given parameters. A central
difficulty in assessing whether one strategy is better than another is that such
gradients will generally have different dimensions or units. For example, one
might ask if big and slow wings are better than small and fast wings that gen-
erate the same lift. But size and speed have different units, so it is difficult to

compare these two variables.

Another important concept may be minimality. While optimality seeks the
best of possible solutions, minimality seeks solutions that are good enough. The
work on neural response times needed to control the pitch instability illustrates
this principle. We formulated the principle by seeking reaction times that were
just fast enough to confer a good degree of stability. Minimality is probably
a good guiding theme when animals are placed in extremely demanding sit-
uations by physical effects. Maintaining balance is demanding, and sensory-
neural systems appear to be so strained as to drive solutions that are just fast

enough to handle the physical instability.

Finally, in the end, flying insects must be solving many problems all at once.
Perhaps ideas of multivariate optimization can be used to assess the importance

of different criteria that are being considered.
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These many challenges make the search for principles in animal locomotion

an exciting one, and I eagerly await the discoveries on the horizon.
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