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 Viral hemorrhagic septicemia virus (VHSV) is the causative agent of a highly 

lethal, World Organization for Animal Health (OIE) reportable fish disease. With a 

broad host range and a long-term persistence, VHSV has become a worldwide threat, 

particularly to both fish farming and recreational fishing. As a result of the massive 

mortality events between 2005-2007 followed by disease disappearance in the Great 

Lakes, research began to focus on understanding the mechanisms of transmission and 

persistence of this new genotype of VHSV, IVb. In this study, a robust quantitative 

RT-PCR assay was first developed to provide a more sensitive tool to survey fish in 

the Great Lakes and has allowed the detection of persistent sub-clinical VHSV IVb 

infections throughout the region. The mechanisms of viral entry, replication, shedding, 

and transmission are only partially understood due to the lack of a suitable laboratory 

model host for VHSV IVb. A second phase of this work is the development a 

zebrafish model for VHSV IVb immersion infection that reflects many parameters 

governing infection of fish in the wild. This model has been used to evaluate 

temperature, dose and age effects on disease susceptibility. Using this model we have 

shown that VHSV IVb RNA and infectious virus are readily detected in infected post-

mortem zebrafish for more than 100 days at 4°C in air or water suggesting that 



 

deceased fish may contribute to viral persistence. Data are presented to show that 

direct physical contact with an infected host greatly enhances VHSV IVb 

transmission. Together data from the study will allow for a better understanding of the 

mechanisms of infection and transmission of VHSV IVb and provide a platform for 

further studies and translation to VHSV IVb transmission and pathogenesis in natural 

hosts. 
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CHAPTER 1 

 

INTRODUCTION 

 

History of Viral Hemorrhagic Septicemia 

 Viral hemorrhagic septicemia (VHSV) is a fish disease that affects a variety of 

fish species. External symptoms of this disease include hemorrhaging at the base of 

the fins and abdomen, exopthalmia, and lethargy. Internal symptoms primarily include 

hemorrhaging in the capillary and sinusoid endothelia, pale gills, and pale livers (2, 

49). VHSV is routinely isolated from the anterior and posterior kidneys, liver, heart, 

and spleen, although VHSV has also been isolated from the blood, gills, skin, brain, 

and fins of fish (47, 73, 74). Both external and internal symptoms vary dramatically 

from species to species (2, 49).   

VHS was first identified in the 1930’s in European rainbow trout farms (47, 

104). The cause of this disease was unknown at the time; however, researchers 

hypothesized that the disease was caused by a yet to be identified infectious agent. 

Although the causative agent of VHS, viral hemorrhagic septicemia virus (VHSV), 

was first isolated in 1963 (Jensen 1963), VHSV was considered for decades to be a 

virus specific to European rainbow trout, particularly those located in fish farms.  

However, the isolation of VHSV from returning salmon on the West Coast of 

the United States in 1988 incited the discovery that VHSV is worldwide, pervasive 

virus (68, 105). VHSV was also isolated from the east coast of the United States as 

well as the coasts of Canada (9, 41, 67), Japan (14), Korea (48), and various locations 

around Europe (70, 88, 92), thus expanding the known geographical regions that 

VHSV infected. Not only did VHSV infect more than just rainbow trout it was spread 

throughout the marine environment.   
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In 2005 through 2007, VHSV was isolated from many different fish species in 

the Great Lakes region causing massive fish mortalities and extreme economic losses 

to the states surrounding the lakes (37, 61). With this discovery, VHSV could no 

longer be considered to be isolated to marine environments. Interestingly, these mass 

mortality events were seasonal, focused mainly in the spring, when the lakes 

experience the largest changes in temperature and the fish are taxed with the stresses 

due to spawning. To better understand how and where VHSV entered the Great Lakes, 

how it spread through the area, and what potential threat of VHSV in the future would 

be, survey work sampling various sites around the Great Lakes concurrent with 

laboratory challenge models were developed to test how changes in temperature and 

other conditions affected infectivity of VHSV (49). From 2008 to 2010, infectious 

VHSV was isolated from various fish from the Great Lakes region in the absence of 

clinical signs of disease or massive mortalities (6), leaving researchers wondering how 

VHSV persists in this environment. 

The first identified VHSV positive samples came from four muskellunge 

collected in 2003 from Lake St. Clair, Michigan (25), indicating that VHSV was 

present before the major outbreak of disease in the Great Lakes. Although the casual 

element for the severe outbreaks beginning in 2005 is still unknown, many hypotheses 

including viral mutations, environmental changes (e.g. temperature, increased 

presence of other pathogens, or presence of other toxins), and impacts from increased 

shipping are each under consideration. In addition to having a broader geographic 

range of infection than initially thought, VHSV was also found to have a much 

broader host range than initially expected.  VHSV is able to infect fish from rainbow 

trout, to flounder, to muskellunge, to emerald shinners. Over 28 species of fish have 

been found to be susceptible to VHSV (96). Interestingly, VHSV has also been 

isolated from a small invertebrate, Diporeia ssp, a leech, a river lamprey, and even an 



 

 
3 

aquatic turtle (28, 29, 31, 34). Not only does the susceptibility to VHSV differ 

dramatically, but also with the advent of a highly sensitive assay for VHSV detection, 

qRT-PCR (18, 33, 44), the presence of asymptomatic infections has become 

increasingly important to understand the mechanisms of both transmission and 

persistence of VHSV in the environment.  

Viral Hemorrhagic Septicemia Virus 

 VHSV is a rhabdovirus in the genus novirhabdovirus, the same family 

containing the rabies virus. Several other rhabdoviruses have been found to infect fish, 

including most notably, infectious hematopoietic necrosis virus (IHNV), hirame 

rhabovirus (HIRRV), snakehead rhabdovirus (SHRV), and spring viremia of carp 

virus (SVCV) (1, 4, 10, 78). VHSV is an envelope virus with a bullet-shaped structure 

characteristic of its family (Figure 1.1). It has approximately an 11 kb single strand, 

negative sense RNA genome, encoding six genes: the nucleoprotein (N), the 

phosphoprotein (P), the matrix protein (M), the glycoprotein (G), the non-viron (NV), 

and the polymerase (L).  

Figure 1.1 Diagrams of VHSV. (A) Viral particle representation of VHSV. (B) 
Transcriptional regulation of VHSV. Red triangle indicates the reduction of transcripts 
of the genes as the polymerase moves from the 3’ end to the 5’ end of the genome. 
Blue: nucleoprotein. Pink: phosphoprotein. Yellow: matrix protein. Green: 
glycoprotein. Purple: nonviral protein. Brown: polymerase. Red: single-stranded RNA 
genome. 
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Based on nucleotide sequencing of the N and G genes, VHSV isolates have 

been categorized into four distinct genotypes. Interestingly, each genotype generally 

correlates with geographical location of the isolation (9, 22, 89). Isolates categorized 

as genotype I have mainly been isolated from rainbow trout farms in continental 

Europe, but isolations from marine species from the Baltic Sea also fall into this 

genotype. Genotype II isolates also include those from wild marine fish from the 

Baltic Sea. Genotype III isolates come from wild marine fish, mainly from the North 

Sea near the United Kingdom. Genotype IV isolates have been divided into two 

distinct classes, either IVa, which include isolates from wild marine fish from the 

coasts of North America, Japan, and Korea, and IVb, which include isolates from both 

wild freshwater fish from the Great Lakes and wild marine fish from the eastern 

Atlantic coast of Canada (32, 104).   

VHSV follows a similar lifecycle as its fellow rhadbdoviruses, entering the cell 

through attachment to extracellular receptors and then endocytosed into the cytoplasm. 

Phosphatidylserine is thought to be the primary receptor for VHSV; however, this 

might not be the case as more recent studies have disproven that phosphatidylserine is 

the primary receptor for the related vesicular stomatitis virus (VSV), as it was believed 

to be for a decade (19). Following endocytosis, the viral envelope fuses to the 

endosome membrane in response to a decrease in pH within the endosome, releasing 

the nucleocapsid into the cytoplasm. Here, the genome is transcribed and processed 

into messenger RNAs that encode for each of the viral proteins. Interestingly, 

transcriptional attenuation occurs as the polymerase moves from the 3’ to the 5’ end of 

the genome, resulting in the most copies of the N gene produced per cycle of 

transcription (7). Once transcribed, the viral messenger RNAs are then translated into 

proteins using the host ribosomes and complete protein processing occurs in the host’s 

endoplasmic reticulum and the golgi apparatus. It is thought that the switch from 
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transcription of individual messenger RNAs to transcription of the complete template 

for genomic replication occurs in response to N protein accumulation on the genome 

templates. Upon completion of protein processing and genome replication, both are 

shuttled to the plasma membrane for packaging. With an accumulation of glycoprotein 

in the plasma membrane and the matrix proteins bridging the nucleocapsid to the 

glycoproteins, the mature virion is then exocytosed into the cytosol, in search of a new 

cell to infect.  

Host Immune Response to VHSV 

 In response to infection by VHSV, several host mechanisms are triggered. 

Initially, several different pathways trigger the innate immune system (19). First, RIG-

1 plays a key role in recognizing a variety of negative sense RNA viruses, including 

rhabdoviruses such as VSV. RIG-1 recognizes 5’ triphosphates that are present on the 

viral leader as well as the negative and positive strand RNAs of the viral genome. 

Since 5’ triphosphates of the host cell’s messenger RNAs are capped before export 

from the nucleus, any host RNA that is packaged into the virus is protected from this 

anti-viral mechanism. Interestingly, the more defective interfering particles present, 

the more targets RIG-1 has to bind. RIG-1 activation through a phosphorylation 

cascade activates IFN production and ultimately the transcription of interferon-

stimulated genes. Since rhabdoviruses cannot grow in IFN-alerted cells, a likely result 

of co-evolution of virus and host, VSV has developed countermeasures to prevent IFN 

production by 1) inhibiting the basal transcription factor TFIID, and 2) inhibiting 

nuclear export of host mRNA. Both of these actions have been attributed to the viral 

matrix protein. Interestingly, host cells have also learned to deal with the later of these 

actions by increasing production of the nuclear export proteins that the viral matrix 

protein binds. Second, toll-like receptors play an ancillary role in the anti-viral 

response to rhabdoviral infections. TLR3 recognizes dsRNA, while TLR7/8 
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recognizes ssRNA. Once triggered, these receptors initiate a signaling cascade 

resulting in production of interferons. TLR7 has been shown to recognize VSV; 

however, this seems to occur through recognition of cytosolic viral RNAs that are 

transported to the lysosome by autophagy. Interestingly, TLR4, expressed on the cell 

surface of many cell types including epithelial cells, fibroblasts, and monocytes, was 

also been shown to respond to VSV infection. The VSV glycoprotein was found to 

trigger a CD14/TL4-dependent pathway ultimately leading to the activation of IRF7 in 

memory dendritic cells and macrophages. Interferon stimulated genes of primary 

importance include dsRNA-dependent protein kinase (PKR), and Mx proteins (81), 

and IL-8 (69).  

 After recognition of infection, the host adaptive immune system is also 

induced. VHSV has been shown to trigger the production of neutralizing antibodies, 

exclusively targeted to the glycoprotein. Furthermore, DNA vaccines targeting the 

glycoprotein, but not the matrix or nucleoprotein have had significant affects in 

protecting fish from VHSV challenge for up to 6 months post vaccination (94); 

however, the immune mechanisms responsible for this are still unknown. Furthermore, 

this observed protection after vaccination does not always correlate with antibody 

titers (99) and a recombinant glycoprotein DNA vaccine only provided very low 

protective efficiency (14), implying a potential role for cellular mediated protection 

post vaccination. Cytotoxic T lymphocytes and natural killer cells have also been 

indicated as players in the immune response to VHSV; however, T cell mediated 

responses are not well understood (14, 99). 

Tools for the Analysis of VHSV 

 As a World Organization for Animal Health (OIE) reportable disease, the 

protocols for the detection of VHSV in endemic or naïve bodies of water has been 

crucial and limiting as to understanding the mechanism of VHSV in its environment. 
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Cell culture, followed by classical RT-PCR, has been used to identify infectious 

VHSV in fish and water samples, with a detection limit for VHSV IVb around 103 pfu 

(37). With the increased awareness of the sub-clinical nature of VHSV, more sensitive 

methods became necessary with a focus specifically on qRT-PCR (44). Although 

qRT-PCR cannot replace cell culture due to its inability to define infectivity, its 

increased sensitivity by 2 to 3 orders of magnitude has been instrumental towards 

better defining where VHSV is located, both within a body of water as well as within 

its host, how it is moving in its environment, and where it may travel next. Also, with 

its increased processing time and ease of use, this method is rapidly changing the 

diagnostic field for fish viruses as it already has for human viruses (5, 53, 66). Several 

qRT-PCR assays have already been developed for VHSV genotype I through III (18, 

20, 57, 63, 64), IHNV (79), SVCV (79, 110), snakehead rhabdovirus (78), and the 

recent addition of VHSV genotype IVb (33, 44). Other techniques that are redefining 

the VHSV research landscape include more sensitive immunohistochemistry (2), live 

host viral tracking (26, 39), and other host challenge model developments focusing on 

differences in susceptibility to VHSV (43, 58, 80). 

Challenge and Natural VHSV IVb Infections 

 Within the Great Lakes regions, over 28 species are known to be susceptible to 

VHSV IVb (46), with varying degrees of susceptibility (49). However, although 

isolations of VHSV IVb have been taken from several species around the Great Lakes, 

the mechanisms of transmission and persistence have been difficult to understand due 

to a number of other factors that could lead to these susceptibility differences, such as 

current immune status, duration and exposure to VHSV, and environmental 

differences, including temperature and chemical differences.  

 Thus, to better understand these differences and to be able to control outside 

variables, several challenge experiments with natural fish species have been done in a 
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laboratory setting exposing fish to VHSV via immersion or an intraperitoneal (IP) 

injection (58, 80, 85, 90, 91). Ideally, immersion challenges are preferable they are a 

natural route of exposure to VHSV; however, in cases where this is not possible, IP 

injection has been used. From a recent comparison of 11 Great Lakes fish species, 

Kim et al. found that exposing the fish to either 104 or 105 pfu/fish, depending on the 

species, the mortalities ranged anywhere from 100% for muskellunge, 40% for yellow 

perch, brook trout, and brown trout, and 1 or 0% for Coho and Chinook salmon 

respectively (49). The average median time to death was approximately 9.6 days; 

however, this also varied significantly with species and did not always correlate with 

percent mortality. Interestingly, using a similar dose with IP injection, although not a 

natural route of viral entrance, the species differences to susceptibility are still very 

apparent, implying that not all of these differences can be attributed to entrance 

differences. It is likely that a combination of both viral entrance and internal 

differences, such as where the virus may be sequestered or how the immune system 

handles VHSV, contribute to the species-specific differences to VHSV susceptibility 

and disease.  

Mechanisms of entry, internal movement, disease, exit, and transmission of VHSV 

 Another important aspect of VHSV infection involves entry into the host. 

Although the primary mode of entrance has yet to be identified, evidence indicates 

likely transmission through the gills, the skin, orally, or even vertically transmitted 

(47, 73, 74). Most likely a combination of these occur in nature; however, the most 

well documented route is entry through the fin bases.  

Since the early 1980’s, work with VHSV genotype I has indicated the 

importance of VHSV in the gills (73). Studies with VHSV genotype I in rainbow trout 

have shown high levels of VHSV in the gills and organ pools, around 105 CCID50/g, 

as early as 3 dpi, 6 days prior to the first mortality (73). For VHSV IVb, high levels of 



 

 
9 

virus have been detected from the organ pools, fin bases, with lower levels in the gills, 

and no detection in the blood. 

 VHSV has also been isolated from ovarian fluids, indicating the potential for 

vertical transmission. Prior work looking at VHSV and INPV found VHSV to be 

present around, but not in the oocytes, whereas INPV was inside the oocytes 

hypothesizing that, unlike INPV, VHSV cannot be vertically transmitted (17). More 

recent work, however, indicates that VHSV is present in mature oocytes, but not 

immature oocytes, indicating a likely possibility of vertical transmission of VHSV (2, 

47). However, direct evidence for VHSV vertical transmission has yet to be shown 

due to complications in breeding, whether having access to enough fish when breeding 

or having appropriate facilities to breed natural hosts of VHSV.  

 Another potential site of entrance includes ingestion of infected fish, as is 

likely the case for infected predatory fish. Understanding the predator-prey 

relationship may help to explain some of the species susceptibility differences to 

VHSV IVb. For example muskellunge, which are large predatory fish are highly 

susceptible to VHSV infection and disease, whereas fathead minnows, a baitfish, are 

highly susceptible to VHSV infection, but not to disease, acting as a potential carrier 

fish. Indeed, high levels of VHSV IVb have actually been found in the minnows. 

However, it is not known if the differences in disease are due to an oral route of 

exposure. VHSV has now been isolated from a variety of other species, including 

leeches, Diporeia spp., and lampreys (28, 29, 31), and in a challenge model has been 

found to even infect freshwater turtles, which were found to feed off of VHSV 

positive fish (34).  

 The most highly accepted primary site of entry includes the fin base junctions 

for several reasons. First, severe hemorrhaging on the fin bases has been observed 

both in natural and laboratory challenge infections on numerous occasions and is an 
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accepted clinical sign of VHSV infection (47). Second, using bioluminescence and 

live host imaging, the spread of IHNV from the fin bases into the internal cavities of 

the host fish has also been documented (39). And third, at 2 days post infection, the 

immune response in VHSV genotype I infected zebrafish has been shown to be higher 

in the fins then in the internal organs (26).  

 Once inside the fish, the virus eventually invades several different organs, as 

VHSV IVb has been isolated from various organs, including brain, kidney, liver, heart, 

and spleen. Thus VHSV most likely moves through the circulatory system. Although 

earlier studies have isolated genotype I virions from blood samples and the brain (73, 

74), VHSV IVb has yet to be detected in the blood (unpublished work). However, 

VHSV has also been shown to invade macrophages (12), and thus the lymphatics 

system could also be a major transporter of VHSV within the host. 

 Understanding viral spread may be crucial in elucidating species susceptibility 

differences; especially knowing that viral entry alone does not determine differences 

in susceptibility. It is possible that VHSV infects different primary cells in different 

hosts, or is sequestered in different tissues in different hosts, or simply that the host 

immune response is different in different hosts. Most likely a combination of these 

occurs in a natural host fish. Furthermore, different stressors such as rapid temperature 

shifts, spawning conditions, other pathogens, or environmental chemicals or toxins 

may also affect the fate of the virus in the host. 

Zebrafish as an infection model 

 Zebrafish have long been used as a model organism, primarily in 

developmental research due to their near-transparent embryos (95). As a result of this, 

the zebrafish genome has almost entirely been sequenced, allowing for microarray or 

high-throughput sequencing technology to be adapted to zebrafish.  

 Although zebrafish have been used in developmental studies, their use as 
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infection models have only recently become of increasing interest (3, 65, 93). Fish 

viruses including SHRV (78), SVCV (84), infectious spleen and kidney necrosis virus 

(108), nervous necrosis virus (59), infectious hematopoietic necrosis virus and 

infectious pancreatic necrosis virus (55), and VHSV genotype I (76) have already been 

used in zebrafish infection models. This growing trend is due to not only the ease of 

maintenance of these fish and their genetic knowledge, but also as a result of their 

immunological similarity to other fish species as well as mammals (3, 65, 93, 109). 

Unlike C. elegans and Drosophila, which have limited immune systems, zebrafish 

have a complete immune system, both innate and adaptive (100). 

Our choice for the zebrafish model for VHSV IVb infection included the 

following parameters: 1) large numbers are easy to maintain, allowing us to do 

population based studies both to avoid individual variation or to exploit our 

understanding of the significance of this variation and to achieve biological replicates, 

thus gaining strength for our conclusions; 2) breeding can be performed year round, 

allowing us to directly test vertical transmission; 3) the sequenced genome allows us 

to look at the host response through the course of infection as well as the virus; 4) the 

small size of the fish allow us to use whole sections in both histology and 

immunohistochemistry, to study the entrance and movement of VHSV in fish at 

different stages during infection; and 5) the large dynamic temperature range of 

zebrafish allow us to halt virus replication in the host, essentially as a temperature 

sensitive mutant. 

With these advantages of a zebrafish model in mind along with the newly 

developed qRT-PCR assay for VHSV IVb developed in the lab (Chapter 2), the 

following work can be divided into two segments. The first segment of work focused 

on developing a dynamic model while testing the effects of temperature acclimation 

prior to infection, duration of exposure, length of exposure, and age on the 
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susceptibility to VHSV IVb. Furthermore, we also tested the ability of fish to recover 

from VHSV using shifts up to higher temperatures (Chapter 3). In the second segment, 

we focused on applying our newly developed model to study the mechanisms of 

VHSV transmission in the following manners: 1) from post-mortem hosts (Chapter 4), 

2) through vertical transmission (Chapter 5), and 3) through horizontal transmission 

(Chapter 6). I have concluded this work with an analysis of future directions for the 

VHSV IVb zebrafish model, expanding it to further address environmental conditions 

and their affects on the susceptibility to VHSV IVb (Chapter 7).  
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CHAPTER 2 

 
COMPARISON OF QUANTITATIVE RT-PCR WITH CELL CULTURE TO 

DETECT VIRAL HEMORRHAGIC SEPTICEMIA VIRUS IVB (VHSV IVB) 

INFECTIONS IN THE GREAT LAKES * 

Hope KM, Casey RN, Groocock GH, Getchell RG, Bowser PR and Casey JW 

 

ABSTRACT 

Viral hemorrhagic septicemia virus (VHSV) is an important pathogen of cultured and 

wild fish in marine and freshwater environments. A new genotype, VHSV IVb, was 

isolated from a fish collected from the Great Lakes in 2003. Since the first isolation, 

VHSV IVb has been confirmed in 28 species, signaling the early invasion and 

continued spread of this Office International des Epizooties–reportable agent. For 

surveillance of this virus in both wild and experimental settings, we have developed a 

rapid and sensitive one- step quantitative real-time polymerase chain reaction (qRT-

PCR) assay that amplifies a 100-base-pair conserved segment from both the genomic 

negative strand and the mRNA positive strand of the nucleoprotein (N) gene of VHSV 

IVb. This assay is linear over seven orders of magnitude, with an analytical capability 

of detecting a single copy of viral RNA and reproducibility at 100 copies. The assay is 

approximately linear with RNA input from 50 to 1,000 ng per assay and works equally 

well with RNA prepared from a column-based or phenol-chloroform-based method. In 

wild-caught fish, 97% of the cases were found to be more than three orders of 

magnitude more sensitive using qRT-PCR than using cell culture. Of the 1,428 fish 
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from the Great Lakes region tested in 2006 and 2007, 24% were positive by qRT-PCR 

whereas only 5% were positive by cell culture. All of the fish that were positive by 

cell culture were also positive by qRT-PCR. Importantly, qRT- PCR sensitivity is 

comparable to that of cell culture detection when comparing VHSV viral RNA levels 

with viral titer stocks, confirming that the high qRT-PCR signals obtained with 

diagnostic samples are due to the accumulation of N gene mRNA by transcriptional 

attenuation. The qRT-PCR assay is particularly valuable for rapid and high-throughput 

prescreening of fish before confirmatory testing by cell culture or sequencing tissue-

derived amplicons and especially in detecting infection in fish that do not show 

clinical signs of VHS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Hope KM, Casey RN, Groocock GH, Getchell RG, Bowser PR and Casey JW. 2010. 
Comparison of quantitative RT-PCR with cell culture to detect viral hemorrhagic 
septicemia virus (VHSV) infections in the Great Lakes. Journal of Aquatic Animal 
Health 22(1):50-61. Copyright American Fisheries Society, reprinted with permission. 
Hope wrote the manuscript and provided data for Figures 1 through 6. Casey RN 
processed qRT-PCR samples for Figure 7 and ran the initial qRT-PCR assays for 
VHSV IVb. Groocock and Getchell dissected tissue samples and performed cell 
culture on the indicated samples for Figure 7. Bowser contributed intellectual direction 
pertaining to fish pathology. Casey JW is the primary investigator and contributed 
intellectually, particularly relating to qRT-PCR. 
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INTRODUCTION 

 Viral hemorrhagic septicemia virus (VHSV) is both highly pathogenic for fish 

and spreading to new geographic locations. There are four distinct genotypes of 

VHSV based on the sequence of either the glycoprotein or nucleoprotein genes of 

various isolates of VHSV and these generally correlate with geographic location (9, 

22, 89). Isolates from genotypes I, II, and III have been found mainly in Europe and 

Japan, whereas genotype IVa predominantly contains marine isolates from the west 

coast of North America. After its initial isolation in the 1960s, VHSV was thought to 

be both retrospectively associated with mass mortality in European fish farms as early 

as the 1930s and primarily a disease of rainbow trout, Oncorhynchus mykiss (87, 106). 

In 1988, a new variant of VHSV, now known as VHSV genotype IVa, was isolated 

from pacific salmon retuning inland for spawning (68) and later in mortality events 

affecting Pacific herring, Clupea pallasi, Pacific hake, Merluccius productus, and 

walleye Pollock, Thergra chalcogramma (41). In the summer of 2003, a new 

genotype, VHSV IVb, was isolated from dead muskellunge, Esox masquinongy, and 

freshwater drum, Aplodinotus grunniens, in the Great Lakes basin (25, 61). Significant 

fish kills and surveillance efforts in this region from 2006 to 2008 found the virus to 

be infecting a wide variety of fish. Currently twenty-eight fish species are susceptible 

to VHSV infection and are regulated by the USDA VHSV Federal Order (97). 

Furthermore, the virus has been found throughout the Great Lakes basin with the 

exception of Lake Superior. Importantly, VHSV isolations were made from clinically 

normal fish in 2008 from Clear Fork Reservoir, Ohio, a region outside of the Great 

Lakes basin, suggesting that VHSV may spread to southern regions of the United 
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States. 

 The currently used and accepted international standard for detecting VHSV is 

detailed in the OIE Manual of Diagnostic Tests for Aquatic Animals (OIE) and 

includes an initial cell culture to identify the presence of an infectious agent. This is 

followed by RT-PCR and nucleotide sequencing to confirm the presence of VHSV as 

the infectious agent. In endemic regions, cell culture can be circumvented by RT-PCR 

and amplicon sequencing (107).  Although cell culture methods are essential for the 

confirmation of infectious VHSV, cell-culture isolation is limited by its lack of 

sensitivity, speed, and throughput (18, 38, 56, 77, 86). Molecular approaches, 

including qRT-PCR, are more sensitive in pathogen detection, can be accomplished in 

a few hours, and are being rapidly employed as preliminary screening tools to aid in 

confirmation by laboratories in research settings and more slowly by international 

regulatory agencies.  

 In a research setting, quantitative RT-PCR (qRT-PCR) is common practice for 

the detection of many fish RNA viruses, including other VHSV genotypes as well as 

other fish rhabdoviruses, like SVCV and IHNV (27, 62, 64, 79, 110). From these 

reports, qRT-PCR has been shown to be a reproducible, highly specific assay to 

evaluate varying levels of virus both from tissues and water samples, as well as 

significantly less time consuming than many other more commonly accepted cell 

culture methods. In our study, a TaqMan probe-based qRT-PCR system was designed 

to amplify a 100-bp segment of the N gene of VHSV genotype IVb. The sensitivity 

and specificity were evaluated and found to be similar to those in other reports of viral 

detection using qRT-PCR assays. This assay was extensively evaluated on fish 
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brought in from the Great Lakes region either showing signs of disease or clinically 

normal, and compared to the cell culture protocols for VHSV detection. 

METHODS 

Fish collection and tissue extraction. 

Between 2006 and 2007, fish were collected in and around the Great Lakes Basin 

either live or frozen within 24 h of collection. Following collection, the fish were 

delivered to the Cornell Fish Disease Diagnostic Laboratory where they were 

categorized as normal or suspected of having VHS, based on gross external and 

internal examination. All live fish were euthanized with an overdose of MS-222 

(tricaine methanesulfonate, Western Chemical Inc, Ferndale, Washington). Fish were 

processed for diagnostic evaluation as previously described (75). This included 

collecting skin scrapings and gill clips, sterile collection of posterior kidney samples 

for bacteriology, gross pathology, and collection of tissues for histopathology and 

virology. Samples of liver, anterior and posterior kidney, spleen, and heart were 

collected and pooled for the isolation of VHSV in cell culture or by qRT-PCR. Fish 

tissues were most commonly stored at -20°C or -80°C until the tissues could be lysed 

and homogenized.   

Tissue lysis and homogenization.  

 For lysis and homogenization, pooled fish tissues (liver, anterior and posterior 

kidney, spleen, and heart) were mixed with 1 mL of sterile phosphate-buffered saline 

(1×PBS) solution and applied either to a Bead-Beater (Bio-Spec Products) or 

manually processed using a mortar and pestle. Samples were kept on ice throughout 

this process. Briefly, the PBS-suspended tissues were mixed with 100 to 150 mg of 
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0.1 mm zirconia/silica beads in the designated sterile 2 mL screw-cap tubes (Bio-Spec 

Products), and homogenized for 10 s in the BeadBeater (Bio-Spec Products). 

Following homogenization, the samples were centrifuged at 10,000 revolutions per 

min (rpm) for 5 min at room temperature in an Eppendorf Model 54-15 centrifuge. 

The supernatant was transferred to a sterile 1.5 mL microcentrifuge tube and kept on 

ice until further processing. For samples that were manually processed using a mortar 

and pestle, 100 to 200 µL of PBS were added to the fish tissue in a sterile 1.5 mL 

microcentrifuge tube and homogenized for 2 min with a sterile plastic pestle. After 

this process, samples were centrifuged for 10,000 rpm for 5 min at room temperature. 

After the cells were lysed, homogenized, and centrifuged, a portion of the supernatant 

(0.02 to 0.06 g tissue weight) was used to isolate total RNA for qRT-PCR and the 

remaining supernatant (0.10 to 0.50 g tissue weight), frozen or direct application, was 

further diluted for cell culture. The dilutions ranged from 1:50 to 1:100 depending on 

the sample.  

Cell culture.  

 Epithelioma papulosum cyprini (EPC) cells used for virus isolation were 

obtained from ATCC (30).  These cells were routinely grown in 75-cm2 or 25-cm2 

tissue culture flasks (Corning, Inc.) using Eagles Minimum Essential Medium with 

HEPES buffer containing 10% Fetal Bovine Serum (FBS) with penicillin, 

streptomycin, and L-glutamine (EMEM-10FPSH) as described (37). Cells were sub-

cultivated through the use of a 0.05% trypsin wash to dislodge the cells from the 

surface of a flask, followed by re-suspending the cells in an appropriate volume of 

EMEM-10FPSH prior to seeding in new culture vessels.  Virus isolations were 
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performed in 48-well tissue culture plates (Corning Inc.).  One confluent 25-cm2 tissue 

culture flask was used to seed each 48 well tissue culture plate, for an approximate 1:2 

split.  Cells were harvested as described above for cell passage, but were then re-

suspended in EMEM-5 (same formulation as EMEM-10 but with 5% FBS).  To each 

well of the 48 well plate, 500 µL of cell suspension was seeded.  Sample homogenate 

was then thawed, in most cases within 2 weeks of dissection out of the fish, and used 

to inoculate triplicate wells of the 48 well plate for virus isolation before 48 h of cell 

growth time had passed so that the cells might be in a state of active division. During 

this inoculation process, 100 µL of filtered inoculum was carefully placed in each well 

to avoid disrupting the EPC monolayer.  After inoculation, EPC cells were incubated 

at 15oC for a maximum duration of 28 d. Cells were examined for cytopathic effects 

(CPE) at 1, 3, 7 and 14 days post inoculation.  If at any time CPE was noted, cells and 

media were removed and passaged to fresh EPC cell monolayers after being filtered 

through a 0.2 micron porosity filter.  Passage zero (p0) (the initial inoculation) was 

always passaged to P1 after 14 d even if no CPE was observed.  Passage P1 however 

was only passaged if CPE was noted.  Otherwise, the cells were scored as VHSV-

negative at 28 d.  Under the criteria used, a sample must show CPE for three 

consecutive passages and be confirmed using RT-PCR to be considered VHSV-

positive. 

Total RNA isolation. 

 Total RNA was isolated from the homogenized samples using one of two 

methods: a phenol-chloroform-based extraction process, RNA Bee reagent (Tel-Test) 

or a column-based extraction process, RNeasy mini kit (Qiagen). For the RNA Bee 
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process, total RNA was isolated according to the manufacturer’s protocols with the 

following modifications. All samples and reagents were kept on ice or chilled to 4°C. 

To increase its performance, additional guanidine thiocyanate at a concentration of 0.2 

g/mL was added to the RNA Bee reagent. One milliliter of this reagent was added to 

the homogenized tissue, followed immediately by 0.2 mL of chloroform. The tube was 

then inverted twenty times and left on ice for 10 min. After centrifugation (Eppendorf) 

at room temperature for 10 min at 13,000 rpm, the upper, aqueous layer was removed 

and added to 800 µL of isopropanol. The tube was vortexed briefly and then stored on 

ice for a minimum of 20 min or kept at –20°C overnight. The sample was then 

centrifuged at room temperature for 10 min at 13,000 rpm and the supernatant 

decanted. The pellet was washed with 1 mL of 75% ethanol, followed by a final 

centrifugation at room temperature for 10 min at 13,000 rpm. Ethanol was carefully 

removed with a pipette and the RNA pellet was allowed to semi-air-dry. RNA pellets 

were re-suspended in 100 to 200 µL of water treated with diethyl pyrocarbonate 

(DEPC) and incubated for 10 min in a 65°C water bath. The concentration of each 

sample was determined using a spectrophotometer, either a Beckman DU-40 

(Beckman-Coulter) or a NanoVue (GE Healthcare Bio-Sciences Corp.). In preparation 

for qRT-PCR, dilutions were made to achieve 50 ng of total RNA per well of a 96-

well plate.  

 For Qiagen’s RNeasy kit, a modified version of the manufacture’s protocols 

were used as follows. All centrifugation steps were performed at 10,000 rpm unless 

otherwise stated below. Six hundred microliters of both Buffer RLT and sterile 70% 

ethanol was added to the cleared lysate from the BeadBeater procedure. The mix was 
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applied to the RNeasy column and centrifuged for 15 s twice to allow for the full 

volume to be added to the column. To fully remove the wash buffers, an additional 2 

min centrifugation step into a clean sterile collection tube was included immediately 

following the final RPE centrifugation step. To elute the total RNA from the column, 

50 µL of RNase-free water was added and centrifuged for 1 min at 13,000 rpm. To 

allow for a more concentrated sample, this step was repeated, eluting the same 50 µL 

back through the column. The final concentration of RNA was quantified by an OD260 

reading using a spectrophotometer, either a Beckman DU-40 (Beckman-Coulter) or a 

NanoVue (GE Healthcare Bio-Sciences Corp.). In preparation for qRT-PCR, dilutions 

were prepared to achieve 50 ng of total RNA per well of a 96-well plate.  

Design of primers and probe for qRT-PCR. 

 The primers and probe were designed to target the N gene of the VHSV IVb 

MI03 isolate (25). The 400 base-pair conserved region of the N gene was selected for 

primer and probe design in order to produce an amplicon of approximately 100bp 

(83). The primers and probe were designed using ABI software.  

The following were used: forward- 5’- 

ACCTCATGGACATCGTCAAGG – 3’, reverse- 5' - 

CTCCCCAAGCTTCTTGGTGA - 3', and probe- 5' - /56-

FAM/CCCTGATGACGTGTTCCCTTCTGACC/36-TAMSp/ - 3'. 

Standard curve for VHSV. 

 A VHSV-relevant RNA standard made from a VHSV-infected round goby, 

Neogobius  melanostomus, was calibrated to the absolute values of T7-prepared viral 

RNA (35, 37). Briefly, 420 bp of the N gene of an isolate of VHSV IVb, previously 
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sequenced (25), was amplified using conventional PCR and then cloned in both 

orientations into pTopo-TA. Utilizing the vector’s T7 promoter, viral RNA was 

transcribed using the MAXIscript T7 Kit (Ambion, Austin, Texas), precipitated, and 

re-suspended according to the manufacturer’s protocol. The T7 transcribed RNA was 

digested with Turbo DNAase (Ambion) according to the manufacturer’s protocol. The 

efficiency of the qRT-PCR using T7 transcribed RNA was evaluated using the slope 

of the amplified standards, which at -3.75 was comparable to the range shown in 

Figure 2.1. The final concentration of RNA was quantified by an OD260 reading. To 

assess the presence of remaining plasmid template DNA, an aliquot (3×106 copies) of 

T7 transcribed RNA was digested with RNase both before and after Turbo DNase 

digestion. Before Turbo DNase digestion, plasmid DNA template accounted for 0.1% 

of the RNA preparation (2.3×103 copies). After Turbo DNase digestion, plasmid DNA 

template was reduced to 0.0001% (5 copies). To generate a standard curve for use in 

qRT-PCR, 10-fold serial dilutions were made based on copy number per 50 ng of total 

RNA starting at 1×106 copies.  

In order to avoid the burdensome process of continually making T7 RNA and 

to create a standard with an environment more similar to the viral RNA found in fish 

tissues, total RNA was isolated from the tissues of a VHSV infected round goby in 

2005, further purified using Qiagen’s RNA Easy Purification Kit, and then calibrated 

to the T7-prepared viral RNA standard curve in a qRT-PCR assay. A 10-fold serial 

dilution of this round goby isolate was then used in all future assays as the standard 

curve for determining the copy number of the VHSV IVb N gene starting at 3×107 

copies.  
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qRT-PCR assay. 

 The assay was performed according to the manufacturer’s protocols using their 

TaqMan One-Step RT-PCR Master Mix Reagents and run on an Applied Biosystems-

Prism model 7700 sequence detector (ABI). Briefly, the unknowns, the standards, and 

the no-template controls (which contained either DEPC treated or RNase-free water in 

place of template) were run in duplicate on a MicroAmp Optical 96-well reaction plate 

from ABI. Each 25 µL per well reaction was comprised of 15 µL from the master mix 

solution, (final amounts per reaction: 1×Multiscribe, 1×TaqMan Universal PCR 

Master Mix with No AmpErase® UNG, 200 nM forward primer, 200 nM reverse 

primer, and 200 nM probe), and 10 µL of sample at a concentration of 50 ng total 

RNA/10 µL unless stated otherwise. The polymerase chain reaction conditions were as 

follows: 30 min at 48°C for reverse transcription; 10 min at 95°C for AmpliTaq 

activation; 15 s at 95°C for denaturing followed by 1 min at 60°C for annealing and 

extension, repeated for 42 cycles. Absolute copy numbers in unknown samples were 

determined from a standard regression fit using the supplier’s software, SDS (ABI). 

Isolation of viral RNA from VHSV IVa and SVCV. 

 Total RNA was prepared as described above for viral stocks of both the Makah 

isolate of VHSV IVa (NCBI Ac#: X59241) and the 2002 Wisconsin isolate of SVCV 

(NCBI Ac#: NC_002803). These isolates were obtained from Jim Winton and Gael 

Kurath via the U.S. Geological Survey’s Western Fisheries Research Center in Seattle, 

WA. 
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RESULTS  

Analytical sensitivity and reproducibility of VHSV N gene primers and probe 

 A VHSV-relevant RNA standard made from an infected round goby was 

calibrated to the absolute values of T7-prepared viral RNA. The standard curve, a 10-

fold dilution series of this RNA, showed excellent reproducibility and high sensitivity. 

Amplification is observed to a single copy level. An example of a representative 

standard curve is shown both as an amplification plot (Figure 2.1A) and as a standard 

plot (Figure 2.1B) where the standards were run in duplicate on a 96-well plate.  

 

Figure 2.1 Quantification of a representative VHSV standard curve using the 
Taqman probe-based qRT-PCR. (A) Amplification plot of 10-fold serial dilutions 
of standards ranging from 101 to 107 copies. Bold line indicates threshold used to 
create the standard plot. (B) Standard plot showing the threshold copies (Ct) versus 
viral copy number. 
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The amplification of VHSV RNA serial dilutions was linear over seven orders of 

magnitude. Based on regression analysis, the correlation coefficient was 0.996 and the 

slope was –3.6. The qRT-PCR assay is approximately linear with RNA input from 50 

to 1,000 ng per reaction (Figure 2.2). An observed 2-fold reduction in the expected 

signal (20-fold), based on the 50 ng Ct value, was observed at the highest input sample 

(1 µg). Independently run assays at higher RNA input (4–8 µg) result in an increase 

signal but more dramatically reduced from the expected signal.  

 

       

Figure 2.2 Effect of RNA concentration on the amplification of VHSV. Increasing 
amounts of total RNA extracted from two infected fish, ranging from 50 ng to 1 µg, 
were assayed by qRT-PCR. Upper curve represents a fish carrying 4×106 copy 
numbers (squares) and the lower curve represents a fish carrying 9×102 (circles). 
Averages of duplicate samples are shown at each experimental point. 
 

By comparing several standard curves run on different plates and at different 

times, inter-assay variations were evaluated (Figure 2.3). Each point on the graph 
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represents an average of 23 different values from 23 different standard curves. The 

standard error associated with these averages ranged from 0.1 to 0.4, with the higher 

variations occurring with the more dilute samples. Although the assay detected as low 

as one copy of viral RNA per 50 ng of total RNA, it is reproducible with a 95%  

 

                

Figure 2.3 Variation in standard curves for detecting VHSV using qRT-PCR. The 
cumulative average of 23 individual standard curves is shown with a slope of – 4.02, a 
y-intercept of 46.1, and a correlation coefficient of 0.997. Error bars represent 
standard error of the mean. 
 

confidence on the order of 102 copies of viral RNA per 50 ng of total RNA based on 

technical duplicates on a single plate (data not shown). For the standard on the order 

of 102 copies of viral RNA, one of two wells was amplified 100% of the time, whereas 

both wells were amplified 96% of the time. When evaluating the standard on the order 

of 101 copies of viral RNA, one of two wells was detected only 65% of the time and 

both wells were only detected 17% of the time.  



 

 
27 

Analytical specificity of VHSV N-gene primers and probe.  

 The primers and probe used in this assay were targeted to the central region of 

the N gene of the Michigan isolate (MI03) of VHSV genotype IVb (Table 2.1). These 

regions, which show the highest degree of similarity to many isolates of VHSV  

 
Table 2.1 Sequence alignment of N-gene amplicon regions of various fish 
rhabdoviruses compared to VHSV genotype IVb primers and probe. Genbank 
accession numbers: VHSV IVb DQ427105; VHSV IVa X59241; VHSV I Z93412; 
VHSV III AB179621; IHNV NC_001652; SVCV NC_002803. The sequence for this 
region for genotype II has not been published.  
 

                           

 
genotype IVa, are significantly different from most other genotypes of VHSV, as well 

as other fish rhabdoviruses, such as SVCV and IHNV. Using the probes and primers 

designed for the MI03 isolate of VHSV in the qRT-PCR assay, total RNA extracted 

from the Makah IVa isolate amplified well, whereas no amplification was observed 

from total RNA extracted from an isolate of SVCV (Figure 2.4). SVCV RNA did 
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amplify with a similar Ct value to VHSV IVa using qRT-PCR primers and probe 

specifically targeting the N gene of SVCV. 

 

                 

Figure 2.4 Evaluation of the specificity of the VHSV MI03 primers and probe in 
qRT-PCR. The amplification plot of RNAs from SVCV and VHSV IVa is shown. 
RNA representing the equivalent of 107 PFU per well was run in duplicate.  
 
 
Comparison of RNA-purification protocols. 

RNA purity and integrity are major concerns for this assay. Two RNA-isolation 

procedures were compared to optimize the isolation of total RNA (Figure 2.5), a 

phenol-chloroform-based assay using the Tel-Test RNA-Bee reagent and a column-

based assay using Qiagen’s RNeasy Mini Kit. To thoroughly compare these two 

procedures, fish tissue was spiked using a viral stock of the Michigan isolate of VHSV 

to get final concentrations of 102, 104, and 106 plaque-forming units (PFU) per 30 mg 

of tissue and a negative control. Total RNA purity, after isolation by either method, 

was not significantly different as measured by the A260/A280 ratio, ranging from 2.0 

to 2.1. The total yields of RNA were also not significantly different between the two 
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procedures. To evaluate the quality of the RNA, the spiked samples were run in the 

qRT-PCR assay (Figure 2.5). The negative-control RNA did not show amplification in 

 

   

Figure 2.5 Comparison of RNA-isolation procedures on qRT-PCR amplification 
of VHSV. Thirty milligrams of fish tissue spiked with 0, 102, 104, or 106 PFU was 
extracted using either the Qiagen column-based method or the phenol-chloroform-
based method and assessed by qRT-PCR. Control viral stock RNA is shown on the 
right. 
 
 
this assay using either RNA isolation method, whereas all three spiked samples 

amplified at their predicted copy numbers regardless of the isolation method.  

The sensitivity of qRT-PCR was compared to a viral titer stock. By definition, 

RNA amplified by qRT-PCR in this experiment represents primarily minus-strand 

genome transcripts (82). In eight independent experiments over a 4-month period, the 

variation between these two parameters ranged from 0.4 to 1.3 logs more in the qRT-

PCR assay than in the viral titer stock (Figure 2.6).  
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Figure 2.6 Viral RNA levels determined by qRT-PCR correlate closely with viral 
titer. Eight independent assays over a 4-month period were evaluated in duplicate. 
The expected viral copy number is shown in dark bars (left y-axis) and the actual viral 
copy number obtained is shown in the lighter bars (right y-axis). 
 
 
Sensitivity of the qRT-PCR assay is significantly higher than cell culture when 

evaluating VHSV in fish tissues.  

Tissues from 1,428 individual fish collected from several different locations in the 

Great Lakes region were evaluated independently by both cell culture and by qRT-

PCR. For this data set, cell culture entails primary identification of the presence of a 

filterable agent that produces a cytopathic effect (CPE) in EPC cells, followed by RT-

PCR, and in some cases nucleotide sequencing, to identify VHSV as the specific agent 

causing the CPE. In order to be cell culture positive for VHSV, a sample must produce 

CPE in three successive passages and be identified as VHSV using RT-PCR. In 

comparison to this cell culture assay, we are using the qRT-PCR assay that has been 

described in this manuscript. As applied to this data set, a qRT-PCR positive sample is 

defined as any sample with at least one well that results in a Ct value with an 
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amplification curve following the formula 2n, which is the formula that results in a 

theoretical amplification of a known target sequence.  

Of these 1,428 samples, 69 were cell culture positive, whereas 1,359 were negative 

(Figure 2.7A). From the 69 cell culture positive fish, all were qRT-PCR positive 

(Figure 2.7A). From the 1,359 samples negative by cell culture, 1,034 were also 

negative by qRT-PCR; however, 325 were positive by qRT-PCR (Figure 2.7A). When 

evaluating the relative threshold of sensitivity, VHSV was detected by cell culture 

from the majority of samples that displayed at or above 104 copies of viral RNA 

(Figure 2.7B). However, below 103 viral RNA copies, only 3 to 18% were cell culture 

positive, whereas all of these samples were detected by qRT-PCR. 
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Figure 2.7 Comparison of qRT-PCR to cell culture from fish collected in the 
field. (A) Venn diagrams of 1,428 individual fish samples. (B) Distribution of the 395 
qRT-PCR positive samples according to copy number and OIE status. 

 

To evaluate the presence of clinical signs of VHS, all of the fish in the data set 

were grossly examined both externally and internally for the presence of 

hemorrhaging. Of the 1,359 fish that were negative by cell culture, 32 fish (2%) had 

varying signs of clinical disease, including internal or external hemorrhaging or both, 

whereas the other 1,327 fish were clinically normal (98%). Of these 32 fish with 

clinical signs that were cell culture negative, only 2 were positive for VHSV by qRT-
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PCR. This was on the order of 106 copies of viral RNA. Of the 69 VHSV-cell culture 

positive fish, 32 (46%) had visible clinical signs of disease, whereas the other 37 were 

clinically normal.  

The prevalence of VHSV in cell culture was sixty-nine out of 1,428 samples 

(4.8%) with a binomial exact confidence interval of 3.8% to 6.0%.  The use of qRT-

PCR determines the prevalence at 395 out of 1,428 samples (28%) with a binomial 

exact confidence interval of 25% to 30%.  There is complete separation of the 

confidence intervals, which shows that qRT-PCR detects a significantly higher 

prevalence than standard cell-culture methods. Additionally, cross-tabular frequency 

distributions for the two tests show that there is a strongly significant association 

(Fisher’s Exact Test p-value < 0.001) between the results of the cell-culture and the 

qRT-PCR testing. 

DISCUSSION 

Evaluation of the qRT-PCR assay for VHSV IVb. 

 Due to high-throughput sampling, sensitivity, reliability, and speed, qRT-PCR 

methods utilizing the TaqMan system are now being developed routinely for pathogen 

diagnosis and gene-expression studies in aquaculture, including those for 

rhabdoviruses such as IHNV, SVCV, and other VHSV genotypes (27, 62, 64, 79, 

110). In the case of these fish rhabdoviruses, the development of nucleic acid based 

assays have targeted different viral genes to achieve high sensitivity. In an attempt to 

detect various isolates in the same genotype, a highly conserved gene, such as the 

polymerase, is often chosen as the target for the qRT-PCR assay (27). However, the 

process of transcriptional attenuation that occurs during rhabdovirus replication results 
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in high copy numbers of the nucleoprotein (N) gene mRNA, ranging from 50- to 200-

fold higher than that of viral polymerase mRNA (54, 101). Thus, detection of the N 

gene in our qRT-PCR assay to detect VHSV IVb instead of the viral polymerase gene 

has greatly improved the overall sensitivity of the assay. More specifically, the central 

portion of the N gene of VHSV was targeted for amplification in the qRT-PCR assay 

due to its conserved RNA-binding function (82, 83). The one-step TaqMan approach 

described here amplifies both the negative-strand genomic RNA and the positive-

strand mRNA transcripts of VHSV.  Because the assay does not distinguish between 

virion RNA and viral mRNA, N-gene copy number does not directly correlate with the 

amount of infectious VHSV in fish tissue. However, the qRT-PCR-derived N-gene 

copy number is closely comparable, only 0.4 to 1.3 logs higher than the VHSV titer 

determined by cell-culture-based plaque assays (Figure 2.6). This further emphasizes 

that the increased qRT-PCR signal in total RNA isolated from infected fish tissue as 

compared to that identified using plaque assays is due to the presence and detection of 

viral mRNA. To directly measure the viral-genome copy number during replication of 

VHSV and at different disease stages, as has been done with IHNV (79), a two-step 

qRT-PCR strategy selectively amplifying either the positive or negative strand will be 

required. 

Analytical sensitivity. 

The high sensitivity and reproducibility of this qRT-PCR assay is apparent 

when comparing 23 different standard curves run at different times. A correlation 

coefficient of 0.997 indicates both a good linear fit and high reproducibility of the 

standard samples. Furthermore, the slope of – 4.02 is within an acceptable range of the 
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theoretical yield of –3.3, indicating an accurate reading of the dilution series and near 

optimal primer and probe concentration. The standard error associated with these 

averages ranged from 0.1 to 0.4, with the higher variations occurring with the more 

dilute samples, which is a range consistent with other qRT-PCR assays for other fish 

pathogens (64, 79, 110). 

This qRT-PCR assay is approximately linear with RNA input from 50 to 1,000 ng 

per reaction (Figure 2.2). A 2-fold observed reduction in the expected signal (20-fold) 

was observed at the highest input sample (1000 ng); however, from assays where 

higher amounts of total RNA (4–8 µg) were used, a further reduction in expected 

signal was observed. With this lack of linearity at high concentrations of total RNA in 

a reaction, quantifiable value of the viral copy number would have to be derived from 

an established concentration dependent standard curve. Thus, in order to keep the 

quantifiable aspects of this assay, we recommend not adding more that 1000ng of total 

RNA under the present conditions.  

Analytical specificity. 

 Although the qRT-PCR approach presented here was focused on targeting 

VHSV IVb, the primers and probe also cross-react with at least one other isolate of 

VHSV (Table 2.1; Figure 2.4). The primers and probe designed for genotype IVb 

amplified both genotypes IVa and IVb since the target sequences were well conserved 

with only a one-base substitution in the probe.  Amplification was not observed with 

the fish rhabdovirus SVCV RNA due to the extensive sequence divergence between 

these viruses. To differentiate between different genotypes of VHSV, a different set of 

primers and probe would need to be designed and tested. It appears that other 
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genotypes of VHSV are less of a concern at the present time in this region since there 

are very few sequence differences between Great Lakes isolates, all of which are still 

classified as genotype IVb (104).  

Comparison of qRT-PCR with cell culture. 

 This qRT-PCR assay is more sensitive than a cell culture based method of 

detecting VHSV in fish tissues. Approximately 104 copies of the N gene (detection 

limit as predicted by qRT-PCR) must be present in a tissue sample to isolate VHSV in 

cell culture. Using the qRT-PCR method, the limit that reproducibly detects VHSV is 

approximately 102 copies of viral RNA, or 100 times more sensitive than cell culture 

identification. If the qRT-PCR assay is carried out with 1 µg of input RNA instead of 

50 ng, the sensitivity becomes 10-fold greater and is now 1,000 more sensitive than 

cell culture.  

As well as higher sensitivity, qRT-PCR provides a quantitative analysis that 

conventional RT-PCR cannot, while also eliminating post amplification steps, thereby 

reducing the risk of cross contamination events in subsequent testing (42). Although 

qRT-PCR cannot replace cell culture, since it does not evaluate the infectivity of the 

virus nor detect sequence variants, it will serve as a valuable screening tool in 

detecting a defined pathogen like VHSV IVb, especially where high-throughput 

sampling is necessary (27, 56, 62). Furthermore, in endemic regions, RT-PCR based 

methods are often sufficient (107). 

Real-world applications.  

 RNA quality is an important issue in this assay. Besides the obvious concerns 

for RNA degradation during processing of tissues, there could be selective degradation 
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of mRNA compared to virion RNA that may be somewhat protected by its capsid. 

Similarly, some RNA-preparation methods may offer advantages in limiting RNAse 

activity during thawing of frozen fish. We have compared the efficacy of two RNA-

isolation procedures, RNAbee and RNeasy. The two methods were essentially 

indistinguishable with regard to RNA suitability in this qRT-PCR assay (Figure 2.5). 

Slightly higher amounts of RNA were achievable with RNAbee, but precautions in 

handling toxic chemicals and residual waste are major concerns. RNeasy is convenient 

and presented in a well-defined kit format, and the yield of RNA (100 µg) is more 

than sufficient for these applications. In both methods, we saw no loss of RNA during 

the homogenization step when we would have predicted tissue RNAses to be most 

active. Surprisingly, it appears that tissue homogenized in PBS versus guanidine 

thiocyanate-based lysis buffers had no effect on preserving RNA integrity as measured 

by qRT-PCR. However, this qRT-PCR assay targets a very short 100-bp region of the 

N gene and some RNA hydrolysis could have occurred without compromising the 

assay.  

 Comparing this qRT-PCR assay and cell culture protocols using wild fish 

samples taken from the Great Lakes during 2006 and 2007, qRT-PCR was found to be 

as accurate as cell culture identification, but far more sensitive to detect VHSV 

infection. For example, of 1,428 samples evaluated, all 69 VHSV-cell culture positive 

samples were also positive by qRT-PCR. However, of 1,359 samples negative 

according to cell culture, 325 (24%) were positive according to qRT-PCR. Four of 

these 326 cases (1%) had copy-number values of 104 or more, which we would have 

predicted to be positive by cell culture.  Although it’s unclear why this small fraction 



 

 
38 

was not identified in cell culture, we suspect it may be due to limitations such as the 

amount of available sample, toxicity of the sample, or the age of the sample. 

 Although often used to first identify the potential presence of VHSV, clinical 

signs of disease, including external hemorrhaging, are not sufficient to determine 

whether a fish is positive or negative. Of the 1,359 cell culture negative samples, 32 

showed clinical signs and only two of these 32 were qRT-PCR positive. On the other 

hand, of the 69 fish that were both cell culture and qRT-PCR positive, 37 of these fish 

showed no signs of disease. These data ultimately indicate that the clinical signs of 

disease, although helpful when seen, are not indicative of VHSV infection. 

Furthermore, clinical signs for VHSV are also shared with many other pathogens, 

including SVCV.  

 In summary, the qRT-PCR assay described here, with its increased sensitivity 

and specificity and decreased time requirements is beneficial both as a diagnostic aid 

to rapidly and accurately identify VHSV in fish and as a research tool to follow the 

fate of the virus in an experimental setting. This assay will be particularly useful in 

survey work to detect fish with sub-clinical infections and ultimately determine the 

threat that VHSV poses in both endemic and non-endemic regions. The ability to 

accurately detect the presence of the VHSV is critical, especially for an agent with 

such compelling ecological and financial impacts on the Great Lakes region (104).  
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CHAPTER 3 

 
THE DEVELOPMENT OF A ZEBRAFISH, DANIO RERIO, INFECTION 

MODEL FOR THE GREAT LAKES ISOLATE OF VIRAL HEMORRHAGIC 

SEPTICEMIA VIRUS IVB 

 

Kristine M. Hope, Paul R. Bowser, and James W. Casey 

 

ABSTRACT 

Viral hemorrhagic septicemia is a severe fish disease caused by the fish 

rhabdovirus, viral hemorrhagic septicemia virus, VHSV. Of the four described 

genotypes, the North American isolate VHSV IVa is most closely related to a recent 

fresh-water isolate VHSV IVb that invaded the Great Lakes in 2003. From the onset, 

VHSV IVb was associated with numerous mortality events but since 2008 now 

persists in fish in the absence of clinical disease. The stress of temperature change and 

spawning are thought to play a major role in disease susceptibility since disease and 

viral expression are highest at this time. We have employed a zebrafish infection 

model to define VHSV IVb infection conditions that favor mortality versus subclinical 

disease. Zebrafish are susceptible to VHSV IVb infection at 15°C, and susceptibility 

decreases based on both the length of time of acclimation to 15°C prior to infection 

and the virus dose. The dose exposure threshold for hemorrhagic disease induction and 

mortality occurs at a threshold between 105 and 106 pfu/mL regardless of the length of 

time of 15°C acclimation. At an infectious dose of 106 pfu/mL, 100% mortality results 

for fish acclimated to 15°C for 24-hours or for 2-weeks, however the mortality profiles 

are significantly different. The 24-hour acclimated fish reach 50% mortality at 6 dpi 
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while mortality is delayed to 13 dpi in fish acclimated for 2-weeks suggesting 

recovery from the initial short-term stress of rapid temperature change. In contrast, at 

exposure doses between 102 and 104 pfu/mL, many fish show levels of 102 to 106 

copies of VHSV N gene RNA in their tissues and harbor infectious VHSV IVb 

measured by cell culture virus isolation. Maximal VHSV IVb shedding occurs in 

zebrafish that are infected at 104 pfu/mL, conditions where subclinical infections 

(70%) are favored. In summary, zebrafish offer a highly reproducible and accurate 

model that parallels environmental conditions and the pathogenic outcome of fish 

infected in the wild. Extension of these studies will help further define mechanisms of 

viral transmission and host immune responses that govern the long-term effects of 

invasive pathogens, like VHSV IVb, on the Great Lakes ecosystem. 
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INTRODUCTION 

 A new isolate of Viral hemorrhagic septicemia virus (VHSV IVb) has emerged 

in the Great Lakes and affects at least 28 fish species (11). VHSV is divided into four 

genotypes that generally correlate with geographic location (104). Interestingly, 

numerous isolates of VHSV IVb from different geographic sites, show little genetic 

diversity (104) suggesting that the invasion was one genotype. VHSV IVb was first 

identified in the Great Lakes region in 2005 associated with fish mortalities in Lake St. 

Clair and the Bay of Quinte, Lake Ontario, Canada (61). In the three years following 

the initial identification of VHSV IVb, additional mortality events at new locations 

occurred. However, from 2008 to the present, no significant mortality events were 

observed in the Great Lakes but VHSV IVb was found to persist in fish sampled from 

four of the Great Lakes tested in the absence of clinical disease(6).  

Recent surveillance of the Great Lakes has focused on trying to better 

understand VHSV IVb persistence. Several possibilities exist for the observed 

persistence of VHSV in Great Lakes and most likely more than one contribute to this 

aspect of viral survival.  The 2008 survey work found many species of fish to be likely 

“asympotomic carriers” of VHSV IVb, as they were clinically normal but had varying 

levels of viral RNA in their tissues. Surprisingly, the highest amounts of N gene 

copies detected were on the order of 107, which usually result in mortality. 

Additionally infectious VHSV IVb was rescued by cell culture in several cases and 

suggests that additional abiotic and biotic factors maybe necessary for overt 

disease(6). Interestingly, the persistence of VHSV IVb in the Great Lakes parallels 

earlier studies of clinically normal migrating salmon to the west coast of the United 
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States that were positive for VHSV IVa but also subclinically infected(13, 45). 

Further, VHSV IVb can persist free in freshwater and retain its infectivity at 4°C for 

more than a year (40). And, Faisal et al. found that Diporeia sampled from Lakes 

Huron, Ontario, and Michigan were positive for infectious VHSV IVb, indicating 

other species may also serve reservoirs for and contribute to viral persistence (28).  

To better understand if this virus will persist in the future requires an 

understanding of the mechanisms the virus uses to replicate, shed and transmit in the 

environment. With respect to transmission, fish challenged in laboratory settings are 

primarily infected via intraperitoneal (IP) injection or immersion, which is most 

relevant to transmission in the natural environment. Although less relevant to natural 

transmission, the most prominent outcomes of IP injection experiments are the vast 

differences in species susceptibility, severity of disease, and infectivity (47). VHSV 

has also been isolated from reproductive fluids, suggesting the possibility of vertical 

transmission.  However, due to the difficulty in experimentally testing this possibility, 

direct evidence of this has yet to be shown (16). Several organs have been identified as 

targets for VHSV infection, particularly the kidney, spleen, liver, and heart. 

Interestingly, however, VHSV IVb has not been isolated from blood, even though it is 

known to cause hemorrhaging by destruction of endothelial cells lining blood vessels 

(47). All genotypes have the unique ability to persist in the environment for years. 

This is supported by the fact that European fish farms have been dealing with 

reoccurring outbreaks of VHSV since the 1930s (47). And although research is being 

done to investigate VHSV IVb persistence, a laboratory model to help address 

questions of persistence and transmission would be particularly useful for aquaculture 
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and the environment.  

In this manuscript, we use zebrafish via immersion infection as a model for 

VHSV IVb pathogenesis. Zebrafish have been successfully used as an infection model 

for IHNV, SVCV, Snakehead rhabdovirus, and even VHSV genotype I (26, 60, 76, 

78, 84). Although zebrafish are normally maintained at 26°C to allow for viral 

replication the fish must adapted to 15°C.  Zebrafish, naturally live between 18°C and 

25°C, and are readily adapted to 15°C. Our work shows that zebrafish infected with 

high doses of VHSV show similar signs of clinical disease, namely external 

hemorrhaging, lethargy, occasional exophthalmia, and death, similar time frame of the 

onset of mortality, and similar mortality to both natural VHSV infected fish and 

natural fish hosts that have been challenged in a laboratory setting. We investigate the 

mortality profile and the infectivity of VHSV IVb in zebrafish as a function of the 

acclimation time to 15°C prior to infection and by altering the dose in which the fish 

are exposed. We have further investigated shedding of VHSV IVb from infected fish 

both with and without clinical signs of disease. Finally, we have investigated viral 

expression in the population that is in a “carrier” state.  

METHODS 

Reagents. 

 The Cornell strain of zebrafish was generously provided by Dr. Kate Whitlock 

and maintained in an Aquatic Habitats (AHAB) System. The fish are maintained at 

26°C, with a 14 hour light and 10 hour dark cycle had an average mass of 116.2 ± 

2.5mg, for the 689 fish used. The fish were fed a combination of brine shrimp and 

ground TetraMin Tropical Flakes daily (Tetra). 
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 The VHSV IVb isolate (MI03) was used for these experiments and propagated 

in epithelioma papulosum cyprini (EPC) cells.  

Acclimation to 15°C prior to infection. 

 To allow for viral infection, zebrafish were adapted to 15°C prior to infection. 

Zebrafish were moved into a static container in a mixture of reverse osmosis (RO) 

water and Instant Ocean at 26°C at a average density of 2.7 ± 0.4 mg/mL, and then 

moved into a 15°C incubator. For the first 3 hours, the rate of temperature decline was 

0.05 °C/min, followed by a slower decrease for the next 10 hours averaging at 0.008 

°C/min, reaching 15°C by 16 hours. The zebrafish were then kept at 15°C prior to 

infection for various amounts of time depending on the experiment. Water parameters 

were checked every 3 days for ammonia, pH, chlorine, nitrates, nitrites, hardness, and 

alkalinity; and full water changes were also done every 3 days. Fish were fed ground 

TetraMin Tropical Flakes daily (Tetra) during all phases of the experiments.  

Infection of zebrafish with VHSV MI03. 

 After the zebrafish were acclimated to 15°C, typically either 24 hours or 2 

weeks, the fish were separated into two groups: an uninfected group, exposed to media 

only, and an infected group, exposed to VHSV MI03 in media. Both groups were 

treated via bath exposure in 500mL of water at an average density of 0.3 ± 0.01 

mg/mL. Twenty-four hours post infection the zebrafish were netted into 1000 mL of 

15°C clean RO water with instant ocean at an average density of 0.1 ± 0.007 mg/mL. 

The fish were then observed for signs of viral infection including external signs of 

hemorrhaging on the base of the fins and abdomen, exophthalmia, erratic swimming 
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behavior including lethargy, and death. Zebrafish were removed from the containers 

post-mortem and immediately frozen at -20°C until further processing. To evaluate 

virus shedding, one-milliliter daily water samples were taken and frozen at -80°C. An 

aliquot of the viral stock used as inoculums for each experiment was also stored at -

80°C for qRT-PCR and cell culture confirmations. 

Post infection processing. 

 Post-mortem, whole frozen zebrafish were processed both for qRT-PCR and 

cell culture. For lysis and homogenization, a whole zebrafish was weighed, mixed 

with 1 mL of HMEM-5FPSH (media with 5% FBS, penicillin, streptomycin, HEPES) 

and 100 to 150 mg of 0.1 mm zirconia/silica beads in the designated sterile 2 mL 

screw-cap tubes (Bio-Spec Products), and homogenized for 10 s using a Bead-Beater 

(Bio-Spec Products). Following homogenization, the sample was centrifuged at 15.7 

rcf for 5 min at room temperature in an Eppendorf Model 54-15 centrifuge. The 

supernatant was transferred to a sterile 1.5 mL microcentrifuge tube and kept on ice 

until further processing. After the cells were lysed, homogenized, and centrifuged, a 

portion of the supernatant, from 5 to 30 mg of tissue depending on the sample size was 

used to isolate total RNA for qRT-PCR. The RNA was stored at -80°C. The remaining 

supernatant was further diluted when possible at a tissue to volume ratio of 1:30 using 

HMEM-5FPSH for immediate application in cell culture.  

Cell culture application of whole zebrafish homogenate.  

 EPC cells used for virus isolation were obtained from ATCC (30).  These cells 

were routinely grown in 75 cm2 or 25 cm2 tissue culture flasks at 23°C (Corning) 

using Minimum Essential Medium Eagle, With Hanks′ salts, L-glutamine and sodium 
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bicarbonate, liquid, sterile-filtered, cell culture tested (Sigma) with added 10% Fetal 

Bovine Serum (Invitrogen/Gibco), penicillin/streptomycin (Invitrogen/Gibco), and 

HEPES (Invitrogen/Gibco) (HMEM-10FPSH). Cells were sub-cultivated through the 

use of a 0.05% trypsin (Invitrogen/ Gibco) solution to dislodge the cells from the 

surface of a flask, followed by re-suspending the cells in HMEM-5FPSH prior to 

seeding in new culture vessels.  Virus isolations were performed in 48-well tissue 

culture plates (Corning).  One confluent 25-cm2 tissue culture flask was used to seed 

each 48 well tissue culture plate, for an approximate 1:2 split.  Cells were harvested as 

described above for cell passage, but were then re-suspended in HMEM-5FPSH. To 

each well of the 48 well plate, 500 µL of cell suspension was seeded.  Inoculation of 

cells with the tissue homogenate was performed on sub-confluent cultures. The diluted 

zebrafish homogenate was filtered using a 0.22 µm syringe filter and 250 µL of each 

sample was added to each of three wells of a 48-well plate of EPC cells. To control 

both cross contamination between wells and cell degeneration not associated with the 

zebrafish homogenate, 250 µl of HMEM-5FPSHFPSH was added to 3 wells on each 

48 well plate.  

After inoculation, the 48 well plates were incubated at 15°C and examined for 

cytopathic effects (CPE) daily. Once 90-100% CPE was observed, the remaining cells 

and media were removed and combined from each of the three wells, filtered using 

0.22 µm syringe filter, and re-plated in 3 wells of a fresh 48 well plate of EPC cells, 

passage one (p1). This was repeated one more time (p2). From the p2 plate, the 

remaining presumed positive cells and media were collected at 90-100% CPE, all 

three wells for each sample combined, and stored at -20°C. If the diluted homogenate 
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did not show CPE, it was left at 15°C for 14 days, passage as described above (p1), 

and then with continued lack of CPE, the cells and media from the p1 plate were 

collected and frozen at -20°C as described above and were presumed cell culture 

negative. All samples were processed for confirmation of VHSV using qRT-PCR as 

described below. 

To ensure detection of VHSV IVb, from cell culture experiments and define 

limits of detection versus tissue toxicity control experiments were performed with the 

following dilutions of tissue mass to media volume: 1:5, 1:10, 1:30, 1:50, 1:100, 

1:250, and 1:500, and with the following amounts of VHSV: 0, 102, 103, 104, 105, and 

106 pfu/mL (data not shown). However, wells were ranked both for degree of CPE as 

well as extent of tissue toxicity, compared to mass to volume dilutions that had no 

VHSV present. An aliquot of the final cell passage was evaluated for levels of VHSV 

N gene using qRT-PCR. Tissue toxicity occurred at a mass to volume ratio at or above 

1:10, with minimal tissue toxicity observed at a ratio of 1:30. No tissue toxicity was 

observed at any of the ratios of 1:50 or below. When infected with VHSV, 2.5 pfu 

showed CPE in 4 days. Thus, VHSV is highly infectious in cell culture and is only 

inhibited when tissue toxicity overcomes the infection. For subsequent experiments we 

used a 1:30 mass to media ratio as our highest value and 1:300 as our lowest ratio. 

However, qRT-PCR detects both virion RNA and mRNA and higher qRT-PCR levels 

are predicted than in cell culture positive detection. Our threshold of qRT-PCR copies 

detected that are consistently positive in all three wells is 103 N gene copies. 

Isolation of total RNA for detection using qRT-PCR.  

Total RNA was isolated from the aliquot of homogenized fish, 150 µl of water, 



 

49 

or 150 µl of cell culture cell/media mixture (CC), using a modified version of the 

manufacture’s protocols for an RNeasy mini kit (Qiagen). All centrifugation steps 

were performed at 15.7 rcf. For fish samples, 600 µl of both Buffer RLT and 70% 

ethanol was added; for the water and CC samples, 150 µl of Buffer RLT and 300 µl of 

70% ethanol was added, prior to vortexing and application to the RNeasy columns. 

The columns were centrifuged for 30 s once, for the water and CC samples, and twice 

for the fish samples to allow for the full volume to be absorbed to the column. The 

protocol was then the manufacturer’s directions. To fully remove the wash buffers, an 

additional 2 min centrifugation step into a clean sterile collection tube was included 

following the final RPE centrifugation step. Elution of total RNA was accomplished 

with 50 µL of RNase-free water followed by centrifugation for 1 min at 15.7 rcf. The 

following additional steps were carried out for fish samples. To allow for a more 

concentrated sample, the elution step was repeated by eluting the same 50 µL back 

through the column. The concentration of RNA was determined by an OD260 reading 

and diluted to achieve a final stock concentration of 50 ng/ 6 µl in preparation for 

qRT-PCR. 

qRT-PCR analysis of VHSV IVb. 

The qRT-PCR assay for the MI03 isolate of VHSV is outlined in Hope et al. 

2010 (Chapter 2), with the following changes for water and CC samples. These 

samples were evaluated on a 384-well format (Applied Biosystems, MicroAmp® 

Optical 384-Well Reaction Plate with Barcode, MicroAmp® Optical Adhesive Film) 

using a ViiA 7 Real-Time PCR System (Applied Biosystems). The total reaction 

volume was decreased to 15 µL using the same ratios as in Hope et al. 2010, with 6 µl 
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of total RNA to be loaded per well and run in duplicate (44). This volume was tested 

in comparison to the previous reaction volume and found acceptable for the detection 

of VHSV from these sources. The standards were also adjusted accordingly. 

To insure detection of samples with less than 50ng of total RNA, serial 

dilutions of zebrafish total RNA samples known to have a given N gene copy number 

were run in qRT-PCR (data not shown). As the relationship between total RNA loaded 

per well and N gene copies detected is not linear above 500 ng, we found that at least 

0.2 N gene copies / ng of total RNA is required to reduce the chance of false negatives 

using lower amounts of starting material. 

Results 

Zebrafish Susceptibility to the MI03 Isolate of VHSV. 

Prior to infection, 4 to 6 month old zebrafish were acclimated to 15°C for 

either 24 hours or 2 weeks (Figure 3.1A). Following this acclimation, fish were either 

VHSV infected with 106 pfu/mL of the MI03 isolate or mock infected with the  
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Figure 3.1 High mortality and external hemorrhaging are observed in zebrafish 
infected with VHSV and can be altered based on duration of 15°C acclimation. 
(A) Experimental design for zebrafish exposed to 106 pfu/ml of VHSV. (B) Severe 
external hemorrhaging is observed largely at the base of fins and abdomen, as is 
shown here in fish that have been acclimated to 15°C for 24 hours prior to infection. 
(C) Percent mortality of fish acclimated to 15°C for either 24 hours (solid black) or 2 
weeks (solid gray). Uninfected controls are also shown for each condition (dashed 
black and dashed gray respectively). Error bars represent biological triplicates of 19 to 
22 fish each.  
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comparable volume of media via immersion for 24 hours. Fish were observed over the 

course of 30 days for clinical signs of disease, in particular external hemorrhaging, 

lethargy, and mortality.  

Both 24 hour and 2 week acclimated fish showed varying levels of clinical 

disease. External hemorrhaging ranged from slight to severe and was most visible at 

the base of the fins (Figure 3.1B). Abdominal petechial hemorrhaging, hemorrhaging 

of the eye, and exophthalmia were also observed. Fish with signs of external 

hemorrhaging were also lethargic, increasingly so as the severity of the hemorrhaging 

increased. Once hemorrhaging was visible, the fish would die within 1-2 days or 2-4 

days for 24 hour or 2 week acclimated fish respectively, and these fish were not able 

to be rescued by moving the fish back to 26°C to halt viral replication. In fish 

acclimated for 24 hours, external hemorrhaging was observed on one fish in one group 

as early as 2 dpi, however, the other two groups consistently had fish showing external 

hemorrhaging around 5 dpi and external hemorrhaging preceded death in most cases. 

For the 2 week acclimated fish, external hemorrhaging was observed consistently in 

all three groups around 5 to 6 dpi and external hemorrhaging preceded death in all 

cases.  

Fish acclimated to 15°C for both 24 hours and 2 weeks eventually showed near 

100% mortality (Figure 3.1C). However, the mortality kinetics are very different. The 

24 hour acclimated fish had a steep mortality curve, with mortalities beginning as 

early as 2 days post infection (dpi), with 50% mortality occurring at 6-7 dpi, and 100% 

by 13 dpi. In contrast, the 2 week acclimated fish did not start dying until 5 dpi, with 

50% mortality occurring around 12-14 days, and near 95% by 24 dpi. One fish from 
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each control group died, but showed no clinical signs of disease and were negative for 

VHSV by cell culture and qRT-PCR. 

Histological analysis showed lesions consistent with viral infection (Figure 

3.2). The most common internal lesions included mild to moderate multifocal acute 

necrosis of the epithelium of the skin over the whole fish, mild to moderate multifocal 

acute necrosis of the epithelium of the oral cavity, pharynx, filaments, and lamellae of 

the gill, mild to moderate multifocal acute necrosis of the epithelium and lymphatic 

tissue of the thymus, mild to moderate acute diffuse, global degeneration and necrosis 

of the capillary epithelium of the glomeruli of the kidney. In severely affected fish, 

severe hemopoietic depletion from the kidney interstitium, moderate multifocal 

intramuscular hemorrhage in both white and red skeletal muscle, and degeneration of 

spermatids in the testis with spermatid giant cell formation was observed. In fish 

sampled later post infection, multifocal hyperplasia of the epithelium and mucous cells 

in the skin, oropharynx, and gills, regenerative hyperplasia of the kidney hemopoietic 

tissue with a profound left shift, in that most of the cells were blasts or immature, were 

observed. Glomeruli in the kidney also showed crescent formation in Bowman’s 

capsule and in a few cases cuboidal metaplasia of the epithelium lining of Bowman’s 

capsule, indicating sub-chronic inflammation of the glomeruli, was observed. Other 

lesions observed include locally extensive necrosis of the epithelium of the pneumatic 

duct, necrosis of the epithelium lining of the lateral line canal, locally extensive 

necrosis of the nasal epithelium, and mild necrosis of the pseudobranch epithelium. 
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Figure 3.2 Zebrafish exposed to VHSV display varying internal clinical signs of 
infection. Histological analysis with hematoxylin and eosin staining for the following 
uninfected fish sections: (A) Whole section of an uninfected zebrafish at 1x, (B) mock 
infected gill lamellae at 20x, and (C) mock infected kidney at 40x, or infected 
conditions: (D) moderate locally extensive necrosis of the epithelium of the skin at 
100x, (E) mild multifocal necrosis of the epithelium of the gill filaments and lamellae 
at 20x, (F) depletion of the hemopoietic tissue from the kidney (the asterisk indicates 
sinusoids that contain degenerating red blood cells and the arrow indicates a 
glomerular capillary that is intact but contains necrotic red blood cells) 40x, (G) 
locally extensive necrosis of the epithelium of the pneumatic duct 40x, (H) necrosis of 
the epithelium lining of the lateral line canal 10x, and (I) degeneration of spermatids in 
the testis 20x.  
 

To evaluate the levels of VHSV in each fish, both qRT-PCR and cell culture 

were performed on whole tissue homogenates (Figure 3.3, Table 3.1). For both the 24 

hour and 2 week acclimated mock infected fish, all were negative for VHSV in qRT-

PCR and cell culture as expected (data not shown). All VHSV infected fish had high 

* 

A. B. C. 

D. E. F. 

G. H. I. 
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levels of N gene copies (Figure 3.3) and were positive for infectious VHSV in cell 

culture (Table 3.1). For the 24 hour acclimated VHSV infected fish, one fish each on 

the order of 105 copies, while the rest had 106 or more copies. For the 2 week 

acclimated VHSV infected fish, one fish had 103 copies, while the remaining had 106 

or more copies. Although no fish survived the infection after being acclimated for only 

24 hours, the fish that survived the infection after a 2 week acclimation had 103, 106, 

and 106 N gene copies, representing the lowest concentrations of VHSV of all of the 2 

week acclimated fish.  

 

 

Figure 3.3 VHSV confirmed in zebrafish tissue using qRT-PCR targeting the N-
gene. Total RNA from zebrafish acclimated to 15C for 24 hours (left) or 2 weeks 
(right) prior to mock infection (VHSV -) or infection (VHSV +) were quantified based 
on copies of the N-gene per 50ng of total RNA. The percent of fish with a given N-
gene copy number is plotted. Copy number categories are as follows: 0 = not detected; 
1 = less than or equal to 101 N-gene copies; 2,3,4,5 = on the order of 102, 103, 104, or 
105 N-gene copies respectively; 6 = greater than or equal to 106 N-gene copies. Black 
bars indicate death; white bars indicate survival.   
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Zebrafish susceptibility to VHSV is dose dependent and affected by 15°C 

acclimation. 

 To investigate the effects of the dose of VHSV on zebrafish susceptibility, fish 

were acclimated to 15°C for either 24 hours (Figure 3.4A) or 2 weeks (Figure 3.4B) 

prior to exposure to VHSV via immersion at 0 (mock infection), 102, 103, 104, 105, or 

106 pfu/mL for 24 hours. Fish were observed over the course of 30 days for clinical 

signs of disease, including external hemorrhaging, lethargy, and mortality. 

Monitoring external hemorrhaging over the course of infection was the first 

distinguishing metric (data not shown). For both the 24 hour and 2 week acclimated 

fish, no hemorrhaging was seen in the uninfected group or the group infected with 102 

pfu/mL of VHSV. However, as the dose increased for both acclimated groups of fish, 

the appearance of clinical signs both increased and began to be seen earlier post 

infection. On average, the first signs of hemorrhaging were seen on 13 ± 3.5 dpi, 9.7 ± 

1.5 dpi, 4.7 ± 1.2 dpi, and 3.7 ± 1.5 dpi for the 24 acclimated fish and on 13 dpi, 

Table 3.1  Cell culture results confirm infectious virus in zebrafish. 

Exposure 
to  

VHSV 

qRT-PCR 

Positive Negative 

Cell Culture 

Positive Negative 

Acclimation 
to  

15°C 

24 Hour 

2 Week 

0 
(0/65) 

100 
(65/65) 

0 
(0/65) 

100 
(65/65) 

100 
(64/64) 

0 
(0/64) 

0 
(0/59) 

100 
(59/59) 

0 
(0/59) 

100 
(59/59) 

100 
(60/60) 

0 
(0/60) 

0 
(0/60) 

100 
(60/60) 

- 

- 

+ 

+ 

100 
(64/64) 

0 
(0/64) 

Top number is percent of total. In paratheses is ratio to total fish number. 
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Figure 3.4 Mortality and susceptibility of zebrafish to VHSV are dependent on 
dose. Fish were acclimated to 15°C for 24 hours (A) or 2 weeks (B) prior to infection 
with either 0 (blue), 102 (green), 103 (yellow), 104 (orange), 105 (light red), or 106 
(dark red) pfu/mL VHSV for 24 hours. Mortality curves are shown on the left and 
copies of N gene in each fish for each dose are shown on the right for each acclimated 
group. The N gene copies are plotted as a distribution as follows: 0 = below the limit 
of detection, 1 – 5 = on the order of 101, 102, 103, 104, 105 respectively and 6 = on the 
order of 106 or greater. Error bars represent biological triplicates of 10 to 15 fish each. 

 

18 ± 11 dpi, 9.7 ± 3.8 dpi, and 7.0 ± 2.6 dpi for the 2 week acclimated fish exposed to 

103, 104, 105, and 106 respectively.  

Mortality during the course of infection was our second distinguishing metric 

(Figure 3.4). For the 24-hour acclimated fish (Figure 3.4A), the mortality profiles at 

105 and 106 pfu/mL were comparable with the same steep curve and 100% mortality 

by 15 dpi. The first mortalities were on 5 dpi and 3 dpi, reaching 50% around 7 to 8 
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dpi and 6 to 7 dpi for the 105 and 106 doses, respectively. The 104 pfu/mL dose 

reached a maximum mortality of 14%, with the initial mortality on 9 dpi, remaining at 

12% from 18 to 29 dpi, only reaching 14% on 30 dpi. The 103 pfu/mL dose had a 

maximum mortality of 8% by 15 dpi, with the initial mortality on 9 dpi. The 102 

pfu/mL dose and the mock infected fish had no mortalities. For the 2 week acclimated 

fish (Figure 3.4B), the 106 and 105 pfu/mL doses also had similar mortality profiles to 

each other through 21dpi, with a dramatically shifted mortality curve than what was 

observed for the 24 hour acclimated fish. Initial mortalities for these two doses were 

observed at 5 and 8 dpi and reached 50% by 14 to 15 and 16 to 17 dpi, respectively. 

However, whereas the 106 pfu/mL dose reached about 95% mortality by 25 dpi, the 

105 pfu/mL dose only reached its maximum mortality of 68% by 22 dpi, indicating 

substantial differences between these two doses after a 2 week acclimation. As the 

dose decreases further, the mortality profiles become more suppressed. The 104 

pfu/mL dose had its initial mortalities on 9 dpi, remaining at about 6% from 9 dpi 

through 27 dpi, only to achieve the maximum 10% mortality at 28 dpi. No mortalities 

were observed in the 103, 102, and mock infected doses.  

The third distinguishing metric involves the quantification of VHSV using 

qRT-PCR (Figure 3.4) and the presence of infectious VSHV using cell culture (Table 

3.2). For the 24 hour acclimated mock and 102 pfu/mL dose, none of the fish had 

detectable levels of N gene and all were cell culture negative, corresponding to the 

lack of mortalities seen in these groups. For the 103 and 104 pfu/mL doses, 70% and 

72%, respectively, were positive for VHSV N gene, with 40% and 56% positive in cell 

culture, even with the low rate of fish mortality at these doses.  Interestingly, the 



 

59 

distribution of N gene copies in each of these doses varied quite dramatically with fish 

containing anywhere from undetectable levels to 106 or greater. All of the fish that 

died in these doses had 106 or more N gene copies. For the 105 and 106 doses, all of 

the fish were 100% positive in both qRT-PCR and cell culture. Unlike the 103 and 104 

doses, however, the fish had N gene copies from 104 through 106 or more. For the 2 

week acclimated fish, the mock infected were negative for both qRT-PCR and cell 

culture as expected. For the 102 pfu/mL dose, unlike the 24 hour acclimated fish at this 

dose, 46% of the fish had levels of N gene at 103 or below, even though all were cell 

culture negative. For the 103 dose, only 5% had levels of N gene equal to or less than 

101 N gene copies and all were cell culture negative. For the 104 pfu/mL dose, 33% of 

the fish had N gene copies, with 13% less than or equal to 101, 10% on the order of 

102, and 10% equal to or higher than 106 N gene copies, while 10% of the fish were 

cell culture positive. For the 105 pfu/mL dose, 93% had N gene copies, with 7% less 

than or equal to 101, ~3% on the order of 102, 103, and 104, and 77% greater than or 

equal to 106, with 80% cell culture positive. For the 106 pfu/mL dose, 98% had N gene 

copies, 2.5% were less than or equal to 101, 2.5% were on the order of 102, 103 and 

105, and 87.5% were greater than or equal to 106 N gene copies, with 93% being cell 

culture positive. Unlike the 24 hour acclimated fish at the 105 and 106 doses, the 

distribution of N gene copy numbers in the 2 week acclimated fish was more diverse.  
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Viral release of VHSV from zebrafish is dose dependent. 

To evaluate the viral shedding of the fish, an aliquot of water was taken both 

before and after infection and before and after every water change (Figures 3.5 and 

3.6). In both the 24 hour and 2 week acclimated fish, from 102 though 104 as the dose 

increases, more VHSV N gene can be detected in the water, with significant amounts 

Table 3.2 Cell culture results confirm infectious virus in zebrafish in a dose 
                dependent manner. 

24 Hour 0 
(0/39) 

100 
(39/39) 

0 
(0/39) 

100 
(39/39) 

0 
(0/39) 

100 
(39/39) 

0 

2 0 
(0/39) 

100 
(39/39) 

Top number is percent of total. In parentheses is the ratio to total fish number. 

70 
(21/30) 

30 
(9/30) 

40 
(12/30) 

60 
(18/30) 

72 
(28/39) 

28 
(11/39) 

56 
(22/39) 

44 
(17/39) 

100 
(30/30) 

0 
(0/30) 

93 
(28/30) 

100 
(40/40) 

0 
(40/40) 

100 
(40/40) 

0 
(0/40) 

3 

4 

5 

6 

7 
(2/30) 

2 Week 0 
(0/32) 

100 
(32/32) 

0 
(0/32) 

100 
(32/32) 

54 
(19/35) 

46 
(16/35) 

0 

2 0 
(0/25) 

100 
(25/25) 

5 
(2/40) 

95 
(38/40) 

33 
(13/40) 

67 
(27/40) 

93 
(37/40) 

7 
(3/40) 

80 
(32/40) 

98 
(39/40) 

2 
(1/40) 

3 

4 

5 

6 

20 
(8/40) 

0 
(0/40) 

100 
(40/40) 

10 
(4/40) 

90 
(36/40) 

93 
(37/40) 

7 
(3/40) 

Exposure 
to  

VHSV 

qRT-PCR 

Positive Negative 

Cell Culture 

Positive Negative 

Acclimation 
to  

15°C 
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detected starting at 103 and 104 for the 24 hour and 2 week acclimated fish 

respectively. Interestingly, this trend does not continue at the higher doses. For the 24 

hour acclimated fish, little VHSV N gene was detected in the water at a dose of 105, 

even though the mortality curve was very steep with all fish having high levels of 

infectious virus in their tissues. The fish exposed to 106 pfu/mL of VHSV had high 

VHSV N gene copies in the water throughout the experiment. For the 2 week 

acclimated fish, the levels of VHSV N gene in both the 105 and 106 pfu/mL doses 

were highly detectable, however very similar to each other. Overall, there does appear 

to be a spike in VHSV N gene in the water when mortality occurred; however, more 

data would need to be collected to better understand this correlation. Furthermore, 

variation between the replicate tanks was also apparent, particularly in the lower 

doses. 
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Figure 3.5 VHSV released into the environment of fish acclimated to 15°C for 24 
hours is dose dependent. Fish were acclimated to 15°C for 24 hours prior to infection 
with either 102 (1st row), 103 (2nd row), 104 (3rd row), 105 (4th row), or 106 (5th row) 
pfu/mL VHSV for 24 hours. VHSV N gene copies/mL (grey bars), corresponding to 
the left axis and reported as log transformed values, are superimposed onto the 
mortality curves (black lines), corresponding to the right axis. Each column represents 
a biological replicate of 10 to 15 fish each for each dose, trial A (left), trial B (center), 
and trial C (left). Blue marks indicate water change days. 
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Figure 3.6 VHSV released into the environment of fish acclimated to 15°C for 2 
weeks is dose dependent . Fish were acclimated to 15°C for 2 weeks prior to 
infection with either 102 (1st row), 103 (2nd row), 104 (3rd row), 105 (4th row), or 106 (5th 
row) pfu/mL VHSV for 24 hours. VHSV N gene copies/mL (grey bars), 
corresponding to the left axis and reported as log transformed values, are 
superimposed onto the mortality curves (black lines), corresponding to the right axis. 
Each column represents a biological replicate of 10 to 15 fish each for each dose, trial 
A (left), trial B (center), and trial C (left). Blue marks indicate water change days. 
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Effect of age on the susceptibility of zebrafish to VHSV. 

In the development of our model for translation to natural hosts of VHSV, 

preliminary work tested the VHSV susceptibility of different age groups of zebrafish, 

including 8 week old juveniles (data not shown), 4 to 6 month adults (as described 

here), and greater than 2 year old adults (data not shown).  

For the juvenile experiments, the fish were acclimated at 15°C for 2 weeks, 

infected with either 104, 105, or 106 pfu/mL or mock infected for 2 hours, and then 

observed for 30 days with water changes every 3 to 4 days. The juveniles did not show 

increased sensitivity to VHSV, with the highest mortality at 70%, whereas adults 

exposed to 106 pfu/mL for 2 hours reached 100% mortality. The total mortality for the 

104 dose was lower, at 40%, than the 105 and 106 doses, which were similar to each 

other at 70%. N gene copies increased in a dose dependent manner, with 60%, 83%, 

and 100% positive for VHSV N gene, on the order of 101 to 102, 102 to 103, and 104 to 

107 copies for the 104, 105, and 106 doses respectively. Juveniles were also used to test 

sensitivity to temperature change and an increased susceptibility was observed when 

the fish were exposed to either a rapid higher or lower temperature shift (data not 

shown). 

The older adult fish were used to further understand the effect of acclimation 

time on VHSV susceptibility. The fish were acclimated to 15°C for 16 hours, 2 weeks, 

4 weeks, 8 weeks, and 16 weeks prior to a 2 hour infection with 106 pfu/mL (Table 

3.3). For the 16 hour acclimated fish, the first mortality occurred on 1 dpi, 50% on 

5dpi, and 100% at 10 dpi. All of the fish had detectable levels of VHSV N gene. 

Those that died on 1 dpi and 2 dpi had copies on the order of 102 to 103 and the rest on  
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the order of 104 to 107. For the 2 week acclimated fish, the fist mortality was on 10 

dpi, 50% between 11 and 12 dpi, and 100% on 23 dpi, with VHSV N gene copies on 

the order of 106 to 107 for all of the fish. Interestingly, for acclimation times greater 

than 2 weeks, the mortality profiles are very similar to the 2 week profile. For the 4 

week acclimated fish, the first mortality was on 11 dpi, 50% on 28 dpi, and 60% on 35 

dpi, with VHSV N gene copies on the order of 106 to 107 for the mortalities, and 

undetectable, 102, and 106 for the survivors. For the 8 week acclimated fish, the first 

mortality was on 8 dpi, 50% on 17 dpi, and 100% on 34 dpi, with VHSV N gene 

Table 3.3 Long term threshold of the effects of 15°C acclimation on VHSV susceptibility in 
                 zebrafish older than 2 years.  

a Acclimation refers to 15°C prior to infection. 
b Dose is  pfu/mL. 
c Day refers to day post infection. 
d Number in paraentheses refers to percent total mortality. 

16 weeks 2 hours 106 

Acclimation 
Timea 

Infection 

Doseb Time 

Day of 
Initial 

Mortalityc 

Day of 
50% 

Mortalityc 

Day of 
Final 

Mortalityc, d 

10 35 
(90) 

13-14 

8 weeks 8 34 
(100) 

17 

11 35 
(60) 

28 4 weeks 

2 weeks 

16 hours 

0 hours 

10 23 
(100) 

11-12 

1 10 
(100) 

5 

2 3 
(100) 

1-2 

Trial 2 

Trial 1 Mock 

VHSV 

Mock 

VHSV 

1 5 
(60) 

4-5 

1 6 
(100) 

3-4 

2 6 
(100) 

3 

2 hours 106 

2 hours 106 

2 hours 106 

2 hours 106 

2 hours 0 

2 hours 106 

2 hours 0 

2 hours 106 
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copies on the order of 106 to 107 for all of the fish. For the 16 week acclimated fish, 

the fist mortality was on 10 dpi, 50% between 13 and 14 dpi, and 90% on 35 dpi, with 

VHSV N gene copies on the order of 106 to 107 for the mortalities, and undetectable 

for the survivors. Although there is variation as to total mortality, the profiles 

themselves clump together from 2 weeks through 16 weeks, indicating a threshold for 

acclimation affecting VHSV susceptibility at 2 weeks, after which the mortality 

profile is not significantly affected by longer acclimation periods.  

To determine whether there is an early threshold of acclimation, adult fish 

were also moved directly to 15°C without acclimation. As suspected, this immediate 

temperature shock resulted in high mortality in both the mock infected and the VHSV 

infected fish and this mortality occurred earlier than the 16 hour or 24 hour acclimated 

fish. For two trials, the total mortality was 100% and 60% for the mock infected fish, 

and 100% and 100% for the VHSV infected fish. Strikingly, the mock infected 

mortalities were more sporadic, whereas the VHSV infected mortalities were almost 

identical between the two trials. For the mock infected fish, the first mortalities were 

on 2 dpi and 1 dpi, 50% on 1 to 2 dpi and 4 to 5 dpi, and the maximum mortality of 

100% on 3 dpi and 60% on 5 dpi for trial one and trial two respectively. For the 

VHSV infected fish, the first mortalities were on 1 dpi and 2 dpi, 50% on 3 to 4 dpi 

and 3 dpi, and 100% on 6 dpi and 6 dpi for trial one and trial two respectively. 

DISCUSSION 

Zebrafish infection model is similar to natural outbreaks and laboratory challenge 

experiments in natural host species. 

We have focused on using zebrafish as a relevant model for VHSV IVb 
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infection of fish in the Great Lakes. Although zebrafish are tropical, they can be 

acclimated to 15°C and productively infected with a number of fish rhabdoviruses 

including VHSV genotype 1 (55, 76, 78, 84). Characteristic clinical signs of disease 

appear on infected zebrafish, which include external hemorrhaging and internal lesions 

that are consistent with both natural infections of VHSV as well as laboratory 

challenge experiments on fish that are natural hosts (49). Similarly, the time scale of 

when mortality begins and the profile of disease are also consistent with these VHSV 

IVb challenge experiments using natural hosts (49).  

Zebrafish model insights into the age of fish on the susceptibility to VHSV. 

Juvenile, adult, and older adult all show similar mortality profiles when 

exposed to the same dose for a similar amount of time. However, in both juveniles and 

adults, rapid temperature shift is a key component in increasing the susceptibility to 

VHSV. Furthermore, with both the adults and older adults, temperature acclimation is 

also a major contributor to increased viral susceptibility. The length of time for the 

fish to reach an equilibrium with respect to acclimation to 15°C is as early as 2 weeks, 

since the mortality profiles after 2 weeks are similar to the 2 week profile for both 

groups of adults. Time points between 24 hours and 2 weeks have not been 

investigated, but would help to fully determine this long-term threshold.      

In natural hosts of VHSV, increasing age has often been correlated with 

decreasing susceptibility to VHSV. The preliminary results for the zebrafish VHSV 

infection model shown here do not indicate an age preference; but replicates of these 

experiments would increase the strength of these conclusions. However, even with the 

typical trend of increasing age and decreasing susceptibility, this has not been tested in 
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all natural host species of VHSV and may be partially species specific. Interestingly, 

there is evidence in Pacific herring that fish exposed to VHSV in the larval stage are 

more protected after their metamorphosis to juveniles than juveniles that had never 

been exposed to VHSV, indicating that even at early stages of development, there are 

differences in the susceptibility to VHSV (43). Evaluating the effects of the age of the 

fish on VHSV susceptibility warrants further study. 

Zebrafish model insights into the entry of VHSV into the host fish. 

The primary site of VHSV entry and its movement through the host has been 

under debate for some time. Recent evidence indicates entry through the gills, orally, 

and through the fin base (39, 47). Harmache et al. have used bioluminescence to 

follow IHNV in live fish and have found movement through the tail and other fins into 

the fish. Further more, the Encinas et al. have found that at one time point post VHSV 

infection, there is a strong immune response in the fins and not in the internal organs, 

implying that the virus encounters the fins and then hematologically spreads, 

becoming a systemic infection (26). The data obtained here from the zebrafish 

infection model also support this mode of entrance based on the following: (1) 

hemorrhaging at the base of the fins is observed on the majority of all fish showing 

signs of disease, and (2) hemorrhaging at the base of the fins are usually the first 

clinical signs of an infected fish. However, current data cannot exclude the possibility 

that the virus is entering through additional routes and then spreads early in the course 

of the infection to the fin bases.  

Zebrafish model insights into the replication of VHSV in the host fish. 

 The persistence of VHSV in the Great Lakes, in spite of the lack of mass 
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mortality from 2008-2011 (6), emphasizes both the extreme hardiness of this virus, as 

well as the lack of understanding as to how this virus persists and is rescued as an 

infectious agent. Previous work in our lab examined over 1000 different fish collected 

from four of the Great Lakes; and, through the use of a highly sensitive qRT-PCR 

approach to detect VHSV IVb coupled with cell culture, both fish that show clinical 

signs of disease and fish that are sub-clinically infected with VHSV were found (44). 

Furthermore, recent survey work found that, not only can infectious VHSV be isolated 

from clinically normal fish in various locations throughout the Great Lakes, but that 

VHSV IVB can also be detected in water samples in some of these locations (6), 

indicating the shedding activity and persistence of VHSV IVB in the absence of 

disease. 

 To better understand the separation between subclinical infection and disease 

associated infection, we exposed zebrafish to different doses of VHSV IVb mimicking 

what we observe in fish surveyed in the Great Lakes, including all three categories of 

fish: VHSV infected fish with clinical signs of disease, infected fish not showing 

clinical signs of disease, and VHSV exposed fish that do not have VHSV in their 

tissues. Observing these groups of fish for 1) external hemorrhaging, 2) degree of 

mortality, and 3) presence and infectivity of VHSV in both higher (24 hour 

acclimation prior to infection) and lower (2 week acclimation prior to infection) 

temperature associated stress conditions, allows us to hypothesize the existence of 

additional stressors, such as spawning that may have an effect on susceptibility to 

VHSV IVb in natural hosts.  

 Temperature acclimation stress appears to be a major contributor to the 
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susceptibility of zebrafish to VHSV IVb. Although the degree that the immune system 

is compromised at 15°C has not been thoroughly evaluated for zebrafish, recent work 

which has assessed the immune response after a one week acclimation to 15°C prior to 

exposure to VHSV I and found that fish were able to mount an immune response and 

that the response varied depending on the tissue analyzed (26). In our study, zebrafish 

infected after 24 hours acclimation to 15°C, appear to be partially 

immunocompromised as is evidenced by increased disease susceptibility. Recovery 

from this temperature shift occurs within 2 weeks and perhaps sooner, but we have not 

examined shorter time periods. Using this temperature acclimation variable as an 

indicator of a stress (like the temperature changes that fish in the Great Lakes 

encounter in spring), we evaluated the effects of different exposure doses to VHSV at 

two acclimation time intervals. As expected, external hemorrhaging increased with 

increased exposure dose in both temperature-acclimated groups. For the 24 hour 

acclimated fish, significant signs were observed at 104 pfu/mL, whereas for the 2 week 

acclimated fish hemorrhaging was not observed until 105 pfu/mL. Interestingly, fish 

acclimated for 24 hours died within one to two days of exhibiting hemorrhaging, 

however, fish acclimated for 2 weeks, died significantly later, on average of 4 to 5 

days after hemorrhaging was visible. Both this increased threshold for clinical signs of 

disease and this longer ability of the fish to maintain severe states of disease, indicate 

the decreased susceptibility to VHSV after having been acclimated for 2 weeks.  

   Predictably, mortality also increased with dose, however, for the 24 

acclimated fish mortalities were observed at a dose of 103 pfu/mL, whereas for the 2 

week acclimated fish, mortalities were not observed until 104 pfu/mL, again indicating 
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about a log difference in the viral threshold between a 24 hour acclimation and a 2 

week acclimation. For both time acclimations, 105 to 106  pfu/mL seems to be a 

plateau of mortality. Interestingly, however, the profiles of mortality are very different 

between the two time points when comparing the 105 and 106 doses, with 50% 

mortality reached by 7 dpi for the 24 hour acclimated fish and by 16 dpi for the 2 

week acclimated fish. The total mortality is also different between these two 

acclimation times, with a 30% increase in mortality when decreasing the acclimation 

time. In short, this data reconfirms that zebrafish are far more susceptible to VHSV 

IVb pathogenesis when encountering virus shortly after a 24 hour temperature shift. 

 Overall, the threshold of VHSV IVb infectious disease is 104 pfu/mL. A log 

decrease in virus exposure is observed when temperature acclimation time is reduced 

from 2 weeks to 24 hours. The threshold for mortality for zebrafish is around 105 

pfu/mL with both a 30% increase in total mortality and a 9 day decrease in time to 

50% mortality when acclimation time is shifted from 2 weeks to 24 hours. The 

threshold for detection of VHSV IVb shed in the water using either qRT-PCR or cell 

culture, is around 104 pfu/mL regardless of the acclimation time. Interestingly, the 

delayed onset of disease and mortality seems to be a consistent trait with respect to 

VHSV infection, as different species exhibit this type of profile even when exposed to 

the same dose of VHSV and the same temperature conditions (49). Since this trend is 

mirrored in zebrafish using differences in temperature acclimation, evaluating fish for 

host factors that influence susceptibility may help to further elucidate those that cause 

these types of profile differences in natural host species. 
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Zebrafish model insights into the exit of VHSV from the host fish and its 

transmission from host to host. 

At low doses of VHSV exposure, 102 and 103 pfu/mL, VHSV can be detected 

in the water for a few days post exposure, but it becomes undetectable past 4 dpi. This 

could be due to residual carry over of virus initially from water changes, either 

through the net or the fish. However, at these lower exposure doses, VHSV IVb 

cannot be detected again in water. At 104 pfu/mL, VHSV is shed into the water 

throughout the experimental time frame even in the absence of external hemorrhaging 

and death. At higher doses, VHSV in the water corresponds to mortalities and fish 

with external hemorrhaging. Interestingly, this pattern indicates that a carrier state for 

zebrafish would be around 104 pfu/mL, where few clinical signs and mortalities are 

observed, but a significant amount of VHSV is still being shed into the water, posing a 

subclinical threat to uninfected fish, a log lower than the dose required for extensive 

mortality. Future extension of viral shedding studies from these different categories of 

infected or exposed fish, whether showing clinical signs or not will be informative to 

better understand the transmission of VHSV. 

The future use of the zebrafish VHSV IVb infection model. 

In conclusion, the sustained persistence of VHSV in the Great Lakes region 

and its wide host range, allow VHSV to be a continued threat to other naïve bodies of 

water and fish. To better understand the role this virus plays in a rapidly changing 

environment, the mechanisms of virus replication and transmission need to be 

delineated. Using zebrafish, a species that models disease in natural populations, as 

well as laboratory challenge infections of wild fish, will allow detailed investigations 
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of VHSV pathogenesis.  Taking advantage of zebrafish genomics to define host 

immune response to rhabdovirus infection coupled with analysis of viral replication 

and transmission promises to provide new insights into the mechanisms employed by 

VHSV IVb to invade and persist in environments like the Great Lakes. 
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CHAPTER 4 

 
INVESTIGATING THE PERSISTENCE AND STABILITY OF VIRAL 

HEMORRHAGIC SEPTICEMIA VIRUS (VHSV) IVB IN POST-MORTEM 

FISH 

Kristine M. Hope, Mrinalini Modak, Steven E. Zhang, Randall A. Meyer, and James 

W. Casey 

 

Abstract  

The earliest detection of viral hemorrhagic septicemia virus IVb (VHSV IVb) 

in the Great Lakes was in 2003 in Lake Saint Clair. Since then VHSV IVb has spread 

throughout the Great Lakes including inland bodies within or near the Great Lakes 

watershed.  The long-term stability of VHSV IVb at low temperatures is remarkable 

(up to a year) and likely a major factor in allowing the virus to persist both in the 

environment and in aquaculture. We have similarly investigated the stability of VHSV 

IVb in post mortem infected zebrafish to model the fate of infected natural mortalities 

in the environment. We find that detection of VHSV IVb N gene using qRT-PCR is 

readily accomplished through 30 days at 22°C and 100 days at 4°C although the copy 

number drops off by 2-3 logs at the later time points. We are able to isolate infectious 

VHSV IVb by cell culture on EPC cells for 1 day post-mortem (dpm) and occasionally 

from dry carcasses up to 14 days at 22°C. Remarkably, infectious VHSV IVb can be 

consistently recovered for up to 100 dpm at 4°C from carcasses kept dry in air or in 

water. These findings substantiate that VHSV IVb can be detected at vastly longer 

time intervals than previously assumed and that infected dead fish might serve as 
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reservoirs, possibly enhancing transmission through consumption by susceptible hosts. 
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Introduction 

A member of the Rhabdovirus family within the genus Novirhabdovirus, viral 

hemorrhagic septicemia virus (VHSV) is the etiological agent of viral hemorrhagic 

septicemia (VHS), a highly fatal and persistent fish disease. Upon infection, fish may 

exhibit symptoms of lethargy and petechial hemorrhaging, specifically under the 

dorsal fins, near the gills, or surrounding the mouth (47). Multiple marine and 

freshwater fish from the coasts of Japan, Europe, the United States, and more recently, 

the Great Lakes, have been found to be susceptible to VHSV (47, 107). Four distinct 

genotypes of VHSV have been discovered and generally correlate with location (9). 

Genotype IVb include isolates from the Great Lakes and the Atlantic coast of Canada. 

The route of VHSV movement into the Great Lakes watershed, although 

initially thought to involve shipping routes, has yet to be clearly understood. However, 

genotype IVa, the closest phylogentic relation to IVb, has been found primarily on the 

Pacific Northwest of the United States. Furthermore, although the major outbreaks of 

disease in the Great Lakes occurred between 2005 to 2007, with massive mortalities in 

the tens of thousands, a dead muskellunge (Esox masquinongy) captured from the 

Great Lakes and stored frozen in 2003 and then tested for VHSV in 2006 was found to 

be positive for VHSV, indicating the presence of VHSV in the region prior to 

outbreaks of disease (25, 37, 61). Although few mortality events have been reported, 

infectious VHSV has been found throughout the region, substantiating that VHSV has 

the ability to persist even in the absence of clinical disease (6).  

Due both to the broad host range of VHSV IVb, which encompasses over 28 

fish species in the Great Lakes, and to the persistence of VHSV in the environment, 
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understanding how the virus is transmitted and the behavioral interactions within 

susceptible fish species is central to being able to predict the future role of VHSV IVb 

in both this region and its spread to neighboring regions (32, 37, 61). 

Although susceptibility to VHSV varies greatly depending on the fish species, 

with respect to both infection and disease, the mechanisms of transmission are still 

unclear. Fish exposed to VHSV via immersion become infected and have been shown 

to shed virus into the water. Direct evidence of how virus enters the host, whether 

through the skin, gills, mouth, or some combination of these, is being studied, with 

different preferences being observed depending on the experimental design and 

technology employed. VHSV IVb has been found to be shed in both urine and ovarian 

fluids, suggesting another source for spread and a potential for vertical transmission 

(29, 52). Interestingly, species other than fish, including Diporiea ssp, leeches, 

lampreys, and turtles have also been found to be susceptible to VHSV, indicating the 

possibility that these additional reservoirs could contribute to VHSV IVb persistence 

(28, 29, 31, 34). Hawley et al. has convincingly shown that the infectivity of VHSV is 

maintained for up to a year at 4°C (40). Based on the surprising stability of VHSV IVb 

in water, especially for an RNA virus, the potential for this virus to remain stable in 

post-mortem hosts is intriguing. 

To test the stability of infectious VHSV in post-mortem hosts, our study has 

utilized a zebrafish VHSV IVb infection model. Zebrafish have several advantages, 

including a short generation time, access to large numbers for population studies, and 

a well- developed model for VHSV IVb pathogenesis. In this paper, we investigate the 

stability and infectivity of VHSV IVb in post-mortem zebrafish at two temperatures, 
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4°C and 22°C, temperatures that mimic those in the environment, and two conditions 

of post-mortem fish, 1) washed up on sand or 2) floating or sinking in water.  

Materials and Methods 

Zebrafish care and maintenance. 

The zebrafish used in this study are wild-type of the Cornell line (K.E. 

Whitlock; Cornell University), AB fish crossed to commercial available zebrafish. 

They were maintained in a closed recirculation system (Aquatic Habitats) with a 12 h 

light-dark cycle at 26ºC. The fish were fed crushed Tetramin Tropical Fish Flake and 

brine shrimp. 

Zebrafish acclimation and VHSV infections 

Before infection, the zebrafish, at an average density of 1.8 mg/mL, were 

acclimated to 15ºC over the course of 12 hours (Chapter 3) in a static container 

containing a solution of reverse-osmosis (RO) water and Instant Ocean at a 

concentration of 60 mg/L. The fish were then kept at 15ºC for an additional 12 hours 

prior to infection. 

After acclimation, the fish, at an average density of 7.2 mg/mL, were either 

infected with 106 PFU/mL of the MI03 isolate of VHSV or mock infected with the 

corresponding volume of HMEM-5FPSH via immersion for 24 hours. Following the 

infection, the fish were transferred into clean, pre-chilled to 15ºC water, at an average 

density of 1.8 mg/mL. Water parameters, including pH, ammonia, nitrate, nitrite, 

chlorine, hardness, and alkalinity were measured every 3 days to ensure the quality of 

the water during this period. Fish were fed daily with crushed Tetramin Tropical Fish 
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Flake and complete water changes were performed every 3 to 4 days with a one-

milliliter water sample collected before and after water change for each condition. 

Clinical signs of VHSV infection, including lethargic movement and 

hemorrhaging near the fins, mouth, and abdomen, began to show around 6 to 8 days 

post infection (dpi). Infected fish were collected as indicated, either 1) after death 

occurred or 2) after euthanization when external hemorrhaging was visible using an 

overdose of tricaine mesylate at a concentration of 0.02 g/mL. Mock infected fish 

were euthanized using an overdose of MS-222 to match the death or euthanization of 

each infected fish.  

Post-mortem plating and collection. 

Once euthanized or collected, each dead fish was placed in a 10 cm petri dish 

in one of three conditions, either 1) dry air, 2) water, or 3) wet sand, at either 4°C or 

21°C. The pH of the sand was tested to be 7 and mixed with 15 mL of RO water. The 

water environment consisted of a volume of 25 mL RO water. An 800 or 1000 µl 

sample was taken from the water conditions daily. For each infected fish plated, a 

corresponding mock-infected fish was also plated for the same condition and time 

point. Three fish per condition per temperature were plated to achieve biological 

triplicates.  

Upon sample collection, the fish were placed in 1.6 mL microcetrifuge tubes 

and frozen at -20°C until sample processing could occur. Three fish were collected at 

each of the following time points, for 21°C: 0, 0.25, 0.5, 1, 2, 3, 4, 5, 7, 14, and 30 

dpm, and for 4°C: 0, 0.25, 1, 2, 3, 4, 5, 7, 15, 30, 60, and 100 dpm. 
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Zebrafish tissue preparation for qRT-PCR and cell culture. 

Fish tissue for cell culture and qRT-PCR were prepared according to Chapter 

3. Briefly, whole fish were homogenized for 10 seconds using a Mini Bead Beater 

(Bio-Spec) in 1 mL of HMEM-5FPSH with 100 mg of silica beads and then 

centrifuged at 9.3 x gravity (g) for 4 minutes. The supernatant was collected into 

sterile tubes. Thirty-milligrams of homogenized tissue was aliquoted for qRT-PCR 

and the remaining tissue was diluted in a 1:30 mass:volume ratio for use in cell culture 

analysis.  

Detection of VHSV using qRT-PCR and cell culture. 

For qRT-PCR detection of VHSV, total RNA was extracted from the 30 mg 

centrifuged tissue homogenate using Qiagen’s RNeasy kit following the 

manufacturer’s protocol, including the optional spin prior to elution, and the 

concentrations were determined using a spectrophotometer (General Electric). qRT-

PCR was performed using a Taqman one-step qRT-PCR kit (ABI), with 50 ng of total 

RNA per reaction. The primers and probes were constructed to amplify approximately 

a 100 bp region of the nucleoprotein gene of VHSV IVb. The sequence of the forward 

primer is 5’-ACCTCATGGACATCGTCAAGG-3’. The sequence of the reverse 

primer is 5’ CTCCCCAAGCTTCTTGGTGA-3’. The probe sequence is 50-

56FAM/CCCTGATGACGTGTTCCCTTCTGACC/36-TAMSp/-30. The thermal 

cycling sequence was the following: 48ºC for 30 minutes, followed by 10 min at 95 

ºC, and finally 1 minutes at 95 ºC 60 ºC for 15 seconds for 42 cycles using an Applied 

Biosystems ViiA 7 instrument.  
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 Cell culture virus isolation was performed on epithelioma papulosum cyprini 

cells (EPC) obtained from the American Type Culture Collection (30) using the 

protocol of Winton et al. modified by Hope et al. with the following variation (44, 

105). After the final passage, the etiological agent for CPE was confirmed to be 

VHSV using the previously described qRT-PCR assay instead of endpoint RT-PCR. 

Results 

To investigate the potential of post-mortem hosts as reservoirs of VHSV, either 

mock infected or VHSV infected zebrafish presenting with clinical signs of disease, 

were euthanized and then exposed to different conditions mimicking the environment 

that a naturally infected post-mortem host might encounter. The fish were exposed to 

either air, water, or wet sand at 22°C or 4°C for 0.25, 0.5, 1, 2, 3, 4, 5, 7, 14, 30, 60, or 

100 dpm. Each condition and time point was plated with three different fish to achieve 

biological triplicates and to observe the effects of individual variation on the ability of 

VHSV to remain in post-mortem hosts. Three fish were also collected post-infection 

prior to plating at time zero to give measure the initial infection status of the fish. The 

fish were analyzed for VHSV using both qRT-PCR and cell culture. For the water 

conditions, water samples were taken frequently to evaluate viral release into the 

surrounding environment.  

 At 22°C, VHSV N gene copies can be detected through 30 dpm in air, water, 

and wet sand, with copies ranging from 101 to 106 (Figure 4.1, 4.4). However, by 14 

dpm, a decrease by approximately 2 orders of magnitude was observed. In cell culture, 

infectious VHSV IVb was not detected past 1 dpm in the water and wet sand 

conditions; however, in air, after a lack of infectious VHSV IVb detection between 2 
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                   A. 

 
 
 
 
 
 
 
 
 
 
                   B. 
 
 
 
 
 
 
 
 
 
 
 
                   C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1. VHSV N gene can be detected through 30 dpm at 22°C under all conditions. 
Fish were plated on dry petri dishes representing air (A), on petri dishes with water (B), or on 
petri dishes with wet sand (C). Each fish was then collected at the designated day post-
mortem. Fish homogenate was then analyzed for VSHV using qRT-PCR. White, light grey, 
and dark grey bars represent each fish from a biological triplicate, as indicated by Fish A, B, 
or C. VHSV N gene copies are reported as log transformed values.  
 

!"

#"

$"

%"

&"

'"

("

)"

*"
+,-."/" +,-."0" +,-."1"

!"

#"

$"

%"

&"

'"

("

)"

*"
+,-."/" +,-."0" +,-."1"

!"

#"

$"

%"

&"

'"

("

)"

*"

!" !2$'"!2'" #" $" %" &" '" )" !" #&" %!"

+,-."/" +,-."0" +,-."1"

34
53

"6
"7
89

8"
:;
<,
8-
"

=>?-"@;-ABC;DA8E"

34
53

"6
"7
89

8"
:;
<,
8-
"

34
53

"6
"7
89

8"
:;
<,
8-
"



 

83 

and 5 dpm, infectious virus was detected at both 7 and 14 dpm (Table 4.1). 

Interestingly, a spike of virus is detected in the water environment at 1 dpm and then 

drops off slowly after this initial peak (Figure 4.2).   
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       A. 
 
 
 
 
 
 
 
 
       B. 
 
 
 
 
 
 
 
 
 
       C. 
 
 
 
 
 
 
 
 
       D. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2. VHSV N gene copies in the water condition peak at 1dpm at 22°C. Eight 
hundred microliter samples were taken upon plating (t = 0), upon collection, and daily when 
possible from each petri dish with water. Each panel represents the fish that were collected on 
the following days: Left side: 0.25 (A), 0.5 (B), 1 (C), 2 (D) and Right side: 3 (A), 4 (B), 5 
(C), 7 (D) days post-mortem. Bars represent the day the water sample was collected: 0 (white), 
0.25 (horizontal stripes), 0.5 (vertical stripes), 1 (diagonal stripes), 2 (light grey), 3 (dots), 4 
(black), 5 (exes), 6 (dark grey), and 7 (dashes).  
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At 4°C, VHSV N gene copies can also be detected throughout the course of the 

experiment, in this case 100 dpm, with copies ranging from 102 to 107 (Figure 4.3, 

4.4). By 100 dpm. the signal is reduced about three orders of magnitude in both air 

 

 

Figure 4.3. VHSV N gene can be detected through 100 dpm at 4°C under all conditions. 
Fish were plated on either dry petri dishes representing air (A) or on petri dishes with water 
(B). Different colored bars represent each fish from a biological triplicate, as indicated by Fish 
A, B, or C. VHSV N gene copies are reported as log transformed values.  
 
 
and water. This decrease occurs by 60 dpm in water, but not until 100 dpm in air. By 

cell culture, infectious VHSV could also be detected to 100 dpm in air and water 

(Table 4.2). In air, infectious VHSV was not detected between 4 and 14 dpm, but 
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detectable at 30 dpm. At least one water sample at each time point through 100 dpm is 

positive for infectious VHSV. 

 

 

 
Discussion 

Our study examined the stability of VHSV genotype IVb in post-mortem fish 

in simulated lake environments. Previous studies have suggested that VHSV may be 

infective for up to one year in water at 4°C (40). However, the effects of VHSV in 
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idea by suggesting that post-mortem fish infected by VHSV may act as reservoirs of 

the virus, especially at 4°C.  

VHSV N gene can be detected through the latest time point in each 

temperature, 30 dpm at 22°C and 100dpm at 4°C, in all simulated environments. It is 

possible that N gene could be detected later than 30 dpm at 22°C if the trial was 

extended, however, as both late time points for each temperature show a decrease by 

about 3 orders of magnitude, this is likely close to the detection limit of VHSV in 

post-mortem fish at both temperatures. The increased stability of VHSV N gene RNA 

at 4°C is further emphasized by looking at the distribution of copies based on orders of 

magnitude, where almost 70% of the fish in the 4°C trial had N gene copy numbers 

around 106 or greater, but only about 30% were around this copy number for the 22°C 

trial (Figure 4.4). We cannot rule out the possibility that a portion of this discrepancy 

is due to the fish at 22°C replicating less virus into their tissues during infection. 

However, fish were examined for clinical signs of disease upon plating with an 

attempt to minimize these differences. Interestingly, by examining different fish at 

each time point in each condition at each temperature, we do see individual variation; 

however, this is likely a result of the infection status of the fish upon plating. For 

example, in the 22°C trial, the 0.5 and 4 dpm fish were plated toward the end of the 

experiment with fish showing very slight clinical signs of disease. Regardless, the 

levels of VHSV N gene RNA are consistently detected out to 30 dpm and 100 dpm at 

22°C and 4°C respectively. 

Significant differences are seen when evaluating the cell culture results both 

between different conditions and between temperatures. At 22°C, infectious VHSV 
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can still be detected up to 1 dpm in all three environmental conditions. However, in 

wet sand infectious VHSV is not detected at 0.5 dpm, but due to the low levels of N 

gene in these fish and the lower sensitivity of cell culture, we are not surprised by this 

result. Even with the low levels of RNA at this time point, the detection at 1dpm is 

consistent with the sand condition. Interestingly, in air, where the fish dry out as they 

remain in the petri dish provides a very different infectious VHSV IVb profile. VHSV 

IVb is detected up to 1dpm, like the water and wet sand, but then is detected again at 

both 7 and 14 dpm and finally dropping off to negative at 30 dpm. This may be a 

result of the different ways that tissue degrades depending on the environment and 

how this effects the degradation of VHSV IVb, since both water and wet sand are 

moist environments as compared to dry air. At 4°C, infectious VHSV is recovered up 

to 100 dpm in both air and water. We suggest that wet sand represents a fish washing 

up on shore and since this does not often happen at 4°C, particularly during the spring 

when VHSV outbreaks have previously been seen, we did not use this condition at this 

temperature. Interestingly, in air there is a gap of detection of infectious virus, 

similarly to what is observed at 22°C. Infectious VHSV is detected up to 3 dpm, then 

negative from 4 to 14 dpm. Infectious virus is recoverable from 30 to 100 dpm. The 

lack of detection of infectious VHSV during 4 to 14 dpm may reflect the time frame of 

tissue degradation in air, where some virions survive the complete degradation of 

tissues of the level of encapsulated virus RNA compared to free RNA. This 

discrepancy may also reflect where and how the virus is sequestered in individual fish. 

Interestingly, in water at 4°C, infectious VHSV can be detected in at least one fish at 

all time points through 100 dpm, with all three fish having detectable infectious virus 
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at 1, 5, and 100 dpm. When examining daily water samples taken from zebrafish 

placed in water, infectious VHSV peaks at 1 dpm in the water and then decreases 

slowly over time at both 22°C and 4°C. One day post mortem appears to be a 

significant time point where infectious virus is both released into the environment and 

is detectable in tissues at both 22°C and 4°C and would be a concern of transmission 

into the environment and into hosts feeding on the degrading tissues.  

Combined, our data give compelling insight into VHSV’s mode of 

transmission and identifies another possible reservoir of infectious VHSV IVb that 

may contribute to the persistence of VHSV in the Great Lakes. At 22°C, infectious 

VHSV is present in tissues up to 1dpm, but this time increases through 100 dpm at 

4°C, which is particularly relevant to fish that have died and washed ashore or are 

floating on the surface or even those fish such as Round Gobies that sink when they 

die. These post-mortem hosts may either be consumed by other fish and possibly 

transmit the virus through the oral route, or release infectious virus into their 

surrounding environment and transmit infectious virus in a waterborne manner. 

Furthermore, once this infectious virus is released into the water, the stability VHSV 

IVb in freshwater has been shown to be detected through 60 and 10 days at 4°C and 

20°C, thus increasing the impact of infectious VHSV released from post-mortem 

hosts. Ultimately, post-mortem hosts are reservoirs of infectious VHSV and likely 

contribute to the persistence of VHSV in the Great Lakes. 
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CHAPTER 5 

DETERMINATION OF VIRAL HEMORRHAGIC SEPTICEMIA VIRUS 

(VHSV) IVB VERTICAL TRANSMISSION USING A ZEBRAFISH 

INFECTION MODEL 

Kristine M. Hope, Anthony N. Monroe, and James W. Casey 

 

*Hope wrote this chapter based off of Monroe’s thesis, helped with various steps for 

the experiment, and contributed significantly in an intellectual manner. Monroe 

performed all experiments in this chapter. Casey is the primary investigator and 

contributed intellectually. 

 
INTRODUCTION 

 Viral Hemorrhagic Septicemia (VHS) is a deadly marine and freshwater fish 

disease that affects over 48 species of fish worldwide (85).  Acute clinical signs 

include skin darkening, anemia, exophthalmia, and epidermal hemorrhages sometimes 

with ulceration (24, 51).   Internal lesions consist of petechial and/or ecchymotic 

hemorrhages located in most visceral organs and serosanguinous ascites (85). 

Discovered in the 1930’s in European Rainbow Trout farms, VHS has now caused 

massive damage to commercial as well as recreational fish populations worldwide. 

The viral etiology of VHS was determined in the 1960s and the associated 

Novirhabdovirus was called Viral Hemorrhagic Septicemia Virus (VHSV). Today, it 

is one of the most studied fish pathogens and has expanded its geographic range and 

habitat occupation in the last two decades (68). VHSV is usually classified into sub-
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genotypes, ranging from Type I to IVb, and these genotypes are usually associated 

with geographic locations. Type I to Type IVa have been known and studied for 

decades, but more recently, a novel genotype of VHSV, genotype IVb, has been 

isolated from various fish across various species in the North American Great Lakes 

region and is expanding to other freshwater bodies in the United States (37).  

The virus was first isolated in the Great Lakes in 2005 from freshwater drum, 

Aplodinotus grunniens, and round goby, Neogobius melanostomus, after large die-off 

events in Lake Ontario (15).  Afterward, VHSV was isolated from archived samples of 

muskellunge, Esox masquinongy, captured in Lake St. Clair, Michigan in 2003, which 

were clinically normal, although little is known about VHSV in this region between 

2003 and 2005 (25). Additional fish mortality episodes appeared in 2006 through 2007 

at several locations in Lakes Michigan, Erie, St. Clair, and connected waters (15, 37, 

61, 98).  Between 2005 and 2007, the major fish mortality events, observed only in the 

spring, presented immediate concerns about the effects, spread and virulence of 

VHSV, resulting in a continued survey effort from 2008 through 2011 in the Great 

Lakes region. Interestingly, during this period very few mass mortality events were 

reported; however, infectious VHSV was found in all lakes surveyed (6).  The extreme 

persistence of VHSV in this region is not well understood, although several theories 

are being researched, including horizontal transmission, other species aside from fish 

as potential reservoirs for VHSV, and vertical transmission. Fish exposed to VHSV 

through immersion studies have been found to be infectable in this manner; however, 

there is a noted difference from different species of fish as to their susceptibility to 

VHSV via immersion and this is not well understood. Furthermore, VHSV has been 
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isolated from other species, such as lamprey, leeches, and Diporeia ssp, although what 

roles these species play in the persistence of VHSV in the Great Lakes remains 

unknown (6, 28, 29, 31). And although VHSV has been identified in ovarian and 

seminal fluids from infected fish, due to the difficulty of studying these mechanisms in 

natural host fish, direct evidence to support or deny vertical transmission, defined by 

either direct transmission within germ cells or via exposure to reproduction fluids 

contaminated pre or post fertilization, as a key component of persistence in the Great 

Lakes region, has yet to be provided (21, 52, 71).  

However, due to the newly developed zebrafish model for VHSV IVb, vertical 

transmission can now be studied in earnest (Chapter 3).  This model shows that 

zebrafish are susceptible to VHSV IVb, exhibit many similar symptoms of VHS as 

native species both naturally infected and laboratory infected, are easy to manipulate 

in terms of environmental parameters, are easily maintained due to their small size, 

and are able to be bred year round allowing for testing the potential for vertical 

transmission of VHSV Ib. 

The main goal of this project was to develop and implement a zebrafish model 

to test vertical transmission of VHSV IVb. Since a breeding infectivity model for 

zebrafish has not been reported, several parameters were tested in order to elucidate 

the most optimal conditions for vertical transmission of VHSV IVb, including 1) the 

effects of temperature on embryo viability and development, 2) the effects of 

temperature on breeding viability, using both traditional single temperature 

environments, as well as shifting temperature environments, 3) the efficacy of a 

disinfection protocol for the removal of external VHSV from the embryos, and 4) the 
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ability of qRT-PCR and cell culture to detect virus and confirm viral infectivity, 

respectively. After determining the appropriate parameters to test vertical 

transmission, fish were selected for this protocol after 2 days post-infection (dpi), 4 

dpi, or 11 dpi to determine the effects of infectivity on the ability of VHSV IVb to be 

vertically transmitted. Using our model, vertical transmission of VHSV IVb is not a 

significant contributor to the persistence of the virus in the Great Lakes. 

MATERIALS AND METHODS 

Zebrafish maintenance and care. 

Zebrafish, Danio rerio, used were wild-type Cornell strain, between the ages 

of 6 months and 2 years.  Males and females were maintained separately for as short 

as 3 weeks prior to use, as determined by visualization of outer features typical to 

male and females, including underbelly shape and form (males have a more 

streamlined underside while females have a protruding belly due to the ovaries), size 

(females are usually larger than males), and color (male zebrafish often have a pink-

yellow undertone while females have more of a white-blue undertone) (102).  Before 

use in experimental procedures, zebrafish were maintained between 26°C to 30°C in a 

temperature and humidity controlled animal care facility, using a typical closed 

filtered recirculation system (103).  

During all experiments, unless otherwise stated, the following conditions were 

used. The water was reverse osmosis (RO) filtered water with Instant Ocean (9.0 g per 

40 L). The static container’s included 4 L, 2 L and 1 L containers filled with 3 L, 1.5 L 

and 0.5L of water respectively, depending on the number of fish to be grouped.  The 

density of housed fish ranged from 3.3 to 6.0 mg/mL. Breeding was conducted using 
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green translucent breeding containers and traditional breeding protocol (103).       

 To ensure the overall health of the fish in each experiment, periodic water 

samples and water condition assays were collected and recorded respectively.  

Parameters measured included nitrate levels, nitrite levels, ammonia levels, pH, free 

chlorine levels, and alkalinity, and appropriate water changes, every third to fourth 

day, when not otherwise stated, was performed to maintain healthy water conditions.           

Effects of temperature on embryo viability and development. 

 To determine the temperature allowance of zebrafish embryos, three sets of 

uninfected female and male fish were bred at 26°C, 3 males and 3 females per 

breeding, to achieve between 200 to 250 viable embryos. The embryos from all 

breedings were collected 4 hours post fertilization (hpf), counted, dead embryos and 

unfertilized eggs removed, and the remaining 200 to 250 embryos were placed in a 10 

cm petri dish with a 50% embryo media to RO water mix, and moved to either 15°C, 

22°C, or kept at 26°C. They embryos were then observed until hatching. Each trial 

was repeated with different fish at different times to reduce individual breeding pair 

variation and to provide biological triplicates.  

Embryos used in the temperature dependence of zebrafish embryos experiment 

were photographed every 8 hours until the embryos hatched and became juveniles. 

The Wild Makroshop M420 was the dissecting microscope used (Wild Heerbrugg 

Scope Instrument Company) at a magnification of 20X using a 10X eyepiece, for a 

total magnification of 200X.  The camera used was 11.2 Color Mosaic (Diagnostic 

Instruments Inc.) with associated software: Insight Firewire Spot.     
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Determination of viral RNA extracted from zebrafish embryos. 

 To determine the number of embryos required for viral detection in cell culture 

and for extracted viral RNA in qRT-PCR, three sets of uninfected female and male 

fish were bred at 26°C, 3 males and 3 females per breeding, and the resulting embryos 

were divided as follows: 50, 100, 200, 300, 400, and 500 embryos.  The embryos were 

collected in pre-weighed 2ml sterile microcentrifuge tubes, and all excess water was 

removed by decantation.  The embryos were weighed using a Mettler AE163 Model 

analytical scale (Mettler Toledo International Inc,).  This was repeated three times to 

achieve biological triplicates. 

Determination of the efficiency and efficacy of the embryo disinfection protocol. 

 To determine whether the disinfection protocol would be useful for the 

determination of vertical transmission in zebrafish, three sets of 3 males and 3 

females, maintained separately prior to breeding, were bred at 26°C (103). The 

embryos were collected, separated into groups of 60 embryos each, or 70 mg. Two 

groups of 60 embryos were infected with 106 pfu/mL of VHSV, while the other two 

groups of 60 embryos were exposed to an equal volume of HMEM-5FPSH only, via 

immersion for 4 hours.  

Post-infection, one of the infected and one of the uninfected groups of embryos 

were exposed to a 0.003% hypochlorite solution in RO water for approximately 1 

minute, with a continuous mixing motion, followed by two RO washes for 1 minute 

each, again with a continuous mixing motion (103). To determine whether VHSV can 

be detected from washed embryos, the other infected and uninfected groups of 

embryos were not exposed to the hypochlorite, but were washed three times as 
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described above with RO water only. 

The embryos were then collected using a transfer pipette in 2 mL 

microcentrifuge tubes, followed by decantation of excess water, and stored in a -20°C 

freezer until sample processing.  Hypochlorite solution was made fresh for each group 

of embryos being disinfected. This protocol was repeated three times in order to 

achieve biological triplicates. 

Effects of temperature on zebrafish breeding. 

To determine the acceptable temperature conditions for breeding zebrafish 

under the temperature constraints of VHSV, three pairs of 3 uninfected males and 3 

females were maintained separately and then bred at one of the following four 

temperature conditions: 26°C, 15°C, after a 2 week acclimation, and two temperature 

shifting conditions, whereby after a 2 week acclimation to 15°C, the fish were moved 

back to 26°C for either 24 or 48 hours prior to breeding. The fertilized embryo 

numbers were recorded for each temperature condition. This protocol was repeated 

three times to achieve biological triplicates. 

Determination of VHSV in fish tissues in a post-infection time course. 

 To determine the amount of VHSV in fish tissues at different times during 

infection, males and females were maintained together, acclimated to 15°C, infected 

and terminated at given times post infection. Twenty-five fish were moved into static 

containers for 2 weeks at 15°C for acclimation purposes, as previously described, with 

7 fish in one container and 18 in another, density controlled. Post-acclimation, the 

group of 18 fish was infected at a dose of 106 pfu/mL, while the group of 7 fish was 

exposed to HMEM-5FPSH only, for 24 hours via immersion. A complete water 
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change was performed after this 24 hour infection period for both infected and 

uninfected fish. Three infected fish were collected on 0, 1, 3, 5, 7, 9, and 11 dpi, with 

corresponding single control fish collected each day. The collected fish were 

euthanized using an overdose of MS-222 (tricaine methanesulfonate; Western 

Chemical, Ferndale, Washington), approximately 8 mg/mL of MS-222 diluted in RO 

Water.  The protocol for ensuring the fish were properly euthanized included 

observing the fish in the MS-222 solution until movement of the gills ceased, followed 

by an additional one minute in the solution to ensure death.  After confirmed death, 

fish were collected in 2 mL microcentrifuge tubes and stored in a -20°C freezer until 

sample processing could commence. This protocol was repeated three times to achieve 

biological triplicates. 

Protocol for the determination of vertical transmission of VHSV in zebrafish. 

 To test for vertical transmission using the pre-determined conditions above, 

male and female fish were maintained and kept separated, acclimated to 15°C, 

infected with VHSV, moved back to 26°C for 48 hours, combined for 24 hours, and 

then the embryos were collected. Briefly, approximately 10 males and 10 females 

were used per experiment, housed separately in 2 L containers acclimated to 15°C for 

2 weeks, infected or mock infected with either 106 pfu/mL VHSV or HMEM-

5FPSHFPSH, respectively, via immersion for 24 hours, followed by a complete water 

change. Fish were moved back to 26°C for 48 hours prior to breeding at 11, 4, or 2 

dpi. Breeding pairs consisted of three males and three females each, three separate 

breeding groups per experiment. This protocol was repeated three times for each time 

point post infection to achieve biological triplicates. 
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Protocol for the tissue lysis and homogenization prior to VHSV detection protocols. 

Whole fish were partially thawed, weighed, and mixed with 1ml of Hank’s 

Minimal Essential Medium (HMEM) (Gibco®, Invitrogen) supplemented with 5% 

fetal bovine serum (FBS), Streptomycin (200 IU/ml) (Gibco®, Invitrogen), Penicillin 

(200 µg/mL) (Gibco®, Invitrogen), and HEPES Buffer (1M 0.015 mL/mL) (Gibco®, 

Invitrogen), and with 100 to 150 mg of 0.1-mm zirconia–silica beads in designated 

sterile 2 mL screw-cap tubes (Bio-Spec Products), and homogenized for 10 to 20 s 

depending on the size of the fish sample in a Bead Beater (Bio-Spec Products,). 

Samples were kept on ice when not being homogenized.  After homogenization, the 

samples were centrifuged at 9,300xg for 5 min at room temperature in an Eppendorf 

Model 54–15 centrifuge.  

The supernatant was then transferred to a sterile 2 mL microcentrifuge tube 

and a portion of the supernatant (15-30 mg tissue weight) was used to isolate total 

RNA for qRT-PCR and the remaining portion (100–500 mg) was further diluted, 

approximately 1:30, for cell culture.   

Protocol for the isolation of total zebrafish RNA.  

Total RNA was isolated using the QIAGEN RNeasy kits, with a slightly 

modified protocol. Seven hundred microliters of both buffer RLT and sterile 70% 

ethanol were added to the 10 -30 mg tissue weight cleared lysate from the Bead Beater 

procedure, vortexed and then applied to the RNeasy column. Two centrifuge steps 

were required to allow the full volume to be added to the column.  A new collection 

tube was used for each centrifugation step to avoid cross contamination.  To elute the 

total RNA from the column, 50 µL of RNase-free water was added and centrifuged for 
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1 min at 13,700 g. To provide a more concentrated sample, the final elution step was 

repeated, eluting the same 50 µL of water back through the column. Total RNA was 

measured for purity and concentration using a NanoVue spectrophotometer. In 

preparation for qRTPCR, dilutions were prepared to achieve 50 ng of total RNA per 

well of either a 96- or 384-well plate. 

Determination of quantitative VHSV RNA using qRT-PCR.  

The following primers and probe were designed to target the N gene of the 

MI03 isolate of VHSV IVb, as previously described (8, 18, 23, 32, 37, 44, 83). 

Forward- 5’- ACCTCATGGACATCGTCAAGG- 3’, 

Reverse- 5’ – TCCCCAAGCTTCTTGGTGA – 3’, 

Probe- 5’ -/56-FAM CCCTGATGACGTGTTCCCTTCTGACC/36-TAMSp/- 3’. 

 The assay was run on an Applied Biosystems-Prism model 7700 and Applied 

Biosystems ViaII model sequence detector (Applied Biosystems, Inc.) for 96 and 384 

well plates, respectively, and performed according to ABI using their TaqMan One-

Step RT-PCR Master Mix reagents. VHSV N gene copy number standards were 

prepared and run exactly according to published methods (44).   

 The unknowns, standards, and no-template controls (which contained RNase-

free water in place of template) were run in triplicate on a MicroAmp Optical 96- or 

384 well reaction plate from ABI. For the 96 well plates, each 25 µL-per-well reaction 

was comprised of 15 µL from the master mix solution (final amounts per reaction: 1X 

Multiscribe, 1X TaqMan Universal PCR Master Mix, 200 nM forward primer, 200 

nM reverse primer, and 200 nM probe) and 10 µL of sample at a concentration of 50 

ng total RNA/10 µL unless stated otherwise.  For the 384 well plates, each 15 µL-per-
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well reaction was comprised of 9 µL from the master mix solution (final amounts per 

reaction: 1X Multiscribe, 1X TaqMan Universal PCR Master Mix, 120 nM forward 

primer, 120 nM reverse primer, and 120 nM probe) and 6 µL of sample at a 

concentration of 50 ng total RNA/6 µL unless stated otherwise. The PCR conditions 

were as follows: 30 min at 48°C for reverse transcription; 10 min at 95°C for 

AmpliTaq activation; 15 s at 95°C for denaturing, followed by 1 min at 60°C for 

annealing and extension (repeated for 42 cycles). Absolute copy numbers in unknown 

samples were determined from a standard regression fit using the supplier’s software 

(SDS; ABI).  This standard regression fit used the applicable standard curve for 

VHSV IVb, which was constructed previously by Hope et al. (44).   

Determination of infectious VHSV using cell culture.  

Epithelioma papillosum cyprini (EPC) cells were obtained from the American 

Type Culture Collection for virus isolation (30). Cells were routinely grown in T75- or 

T150- cm2 tissue culture flasks (Corning, Inc.) in Hank’s Minimum Essential Medium 

(HMEM) with HEPES buffer containing 10% fetal bovine serum (FBS) with 

penicillin and streptomycin (HMEM-10FPSH). The cells were sub-cultivated using a 

0.05% trypsin wash to dislodge them from the surface of the flasks and then re-

suspended in an appropriate volume of HMEM-10FPSH before being seeded in new 

culture flasks. Virus isolations were performed in 48-well tissue culture plates 

(Corning, Inc.). The equivalent of one confluent 25-cm2 tissue culture flask was used 

to seed each 48-well tissue culture plate, for an approximately 1:2 split.  

The cells were harvested as described above for cell passage but then re-

suspended in HMEM-5FPSH. To each well of the 48-well plate 250 µL of cell 
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suspension was seeded. The sample homogenate was then used (or thawed in cases of 

homogenate having been frozen) and used to inoculate triplicate wells of the 48-well 

plate for virus isolation. During the inoculation process, 250 µL of filtered inoculum 

was carefully placed in each well. After inoculation, EPC cells were incubated at 15°C 

for no more than 14 days. The cells were examined for cytopathic effects (CPE) at 1, 

5, 7, and 14 days post inoculation. If at any time CPE was noted, the cells and media 

were removed and passaged to fresh EPC cell monolayers after being filtered through 

a 0.2 µm porosity filter. All samples were passaged at 14 days even if there were no 

signs of CPE, for a total passage count of three.  If there was no CPE observed after 

three passages, the cells were scored as VHSV negative. If the sampled showed CPE 

for three consecutive passages (or rather throughout the entire cell culture passaging 

process) it would be scored as VHSV positive, pending confirmation of the passage 

filtrate using qRT-PCR.  

RESULTS 

Effects of temperature on embryo viability and development. 

To determine the acceptable temperature for zebrafish embryo growth and 

development under the temperature constraints of VHSV as a low temperature 

replicating virus, embryos were obtained via optimal breeding conditions at 26°C, 

separated, placed into one of three temperatures, either 15°C, 22°C, or 26°C, and then 

observed for mortality and developmental stages.  

Low mortality events were observed with the 22°C and 26°C embryos, 19% 

and 12% respectively, while those embryos held at 15°C experienced 100% mortality 

(Figure 5.1). 
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Figure 5.1. Zebrafish embryo survival is temperature dependent. Zebrafish 
embryos, collected 4 hours post fertilization at 15°C (solid), 22°C (dashed), or 26°C 
(dotted), were observed for embryo death. Bars represent biological triplicates at each 
temperature condition. 
 
 To assess the developmental differences of the embryos at these different 

temperatures, the embryos were observed in each condition at 2.5, 15, 37, 61, 77, 97, 

and 121 hours post fertilization (hpf) and representative images are shown in Figure 

5.2. Although the mortality of the embryos was not significantly different between the 

22°C and the 26°C groups, differences in the development were very apparent (103). 

Between the embryos kept at 26°C and 22°C there is an approximate 1:2 

developmental delay throughout the time course. At 2.5 hpf, the embryos at 26°C were 

at the 16-cell stage, or the 1.5 hour stage, whereas the 22C embryos were at the 8-

stage, or what would be expected for a 1.25 hour stage. At 15 hpf, the 26°C embryos 

were at the 3-somite stage, or the 11 hour stage, whereas the 22C embryos were in the 
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Figure 5.2 Embryo developmental defects are observed at 22°C and 15°C. 
Photographs represent the developmental stage of more than 70% of the embryos 
taken at 2.5, 15, 37, 61, 77, 97 or 121 hpf. Magnified at 20X using a 10X eyepiece.          
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shield, 6 hour stage. By 37 hpf, the 26°C embryos were at the prim 22, or 35 hour, 

stage, and the 22°C embryos were at the 18-somite, or 18 hour stage. At 61hpf, the 

26°C embryos were now hatched at the pec fin, or 60 hour stage, while the 22°C 

embryos were still only at the prim-16, or 31 hour stage. At 77 hpf, the 26°C embryos 

were now at the protruding mouth, or 72 hour, stage, while the 22°C embryos were 

just reaching the high pec, or 42 hour, stage. By 97 hours, the 26°C fish are now 

considered juveniles, whereas the 22°C embryos had just reached the pec fin, or 60 

hour stage, not reaching the protruding mouth, or 72 hour, stage until 121 hpf.  

 Although the embryos kept at 22°C fully developed albeit taking twice as long, 

the embryos at 15°C never fully developed. Interestingly, the 15°C embryos at 2 hpf 

reached the same stage as the 22°C embryos, the 8 cell, or 1.25 hour, stage. However, 

at 15 hpf, the 15°C embryos had only reached the 256-cell, or 2.5 hour stage, with a 

highly irregular shape with a bi-lobe appearance. This irregular shape was maintained 

until 121 hpf, when the embryos died. 

The effects of embryo mass on the detection of VHSV using qRT-PCR and cell 

culture.  

 Typical yields necessary for our cell culture and qRT-PCR assays using whole 

zebrafish tissue range from 50 to 100 mg of tissue for cell culture and 5 to 30 mg of 

tissue for qRT-PCR; however, the amount of material in an embryo had not been 

determined using either cell culture or qRT-PCR in our lab. Thus, to determine the 

amount of embryonic material for detection using cell culture and qRT-PCR, 

uninfected male and female fish were bred at 26°C and the embryos collected. The 

embryos were then counted into groups of 50, 100, 200, 300, 400, or 500 embryos and 
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the mass was determined for each group. As expected, embryo weight increased 

linearly with embryo number (Figure 5.3).  As 100 embryos provide about 120 mg of 

tissue and 200 embryos provide 240 mg of tissue, 100 to 200 embryos would provide 

enough tissue for both of our assays.   

 

 

Figure 5.3: Embryo mass increases linearly with embryo number. 
Uninfected embryos were collected, counted, separated, and weighed using an 
analytical scale. Error bars represent biological triplicates. 
 

Determination of the efficiency and efficacy of the embryo disinfection protocol. 

In order to differentiate whether VHSV is inside the embryo, indicating 

vertical transmission, or attached to the exterior of the embryo, a disinfection protocol 

using a dilute hypoclorite solution of bleach was tested to remove external VHSV 

(Figure 5.4). Uninfected embryos, collected 2.5 to 4 hpf, were either infected with 
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using dilute bleach or mock disinfected with RO water. These groups were then 

washed twice with RO water to remove any lingering VHSV and bleach, and excess 

water removed.  

 

         

Figure 5.4.  External VHSV is significantly reduced using dilute bleach. Hours 
post-fertilization that previously uninfected embryos were exposed to 106 pfu/mL of 
VHSV or an equal volume of HMEM-5FPSHFPSH for 4 hours via immersion. After 
infection, the embryos were disinfected with 0.005% hypoclorite solution or mock 
disinfected with RO water. Following two washes with RO water, the embryos were 
evaluated for VHSV using both qRT-PCR (values of bars) and cell culture (bar color; 
red indicates cell culture positive and black indicates cell culture negative). Error bars 
represent biological triplicates. 
  

All uninfected embryos survived the disinfection protocol and were negative 
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was significantly reduced, on the order of 101 N gene copies per 50 ng of total RNA, 

and were now cell culture negative. These results show that a significant amount of 

external VHSV can be removed using this bleaching protocol. Furthermore, these 

results also corroborate previous work with snakehead rhabdovirus, which requires 

embryos to be de-chorionated for external viral entry (78). 

Effects of temperature on zebrafish breeding. 

Along with the effects on the outcome of embryo development, temperature 

also plays a crucial role in breeding. To determine the acceptable temperature for 

zebrafish breeding under the temperature constraints of VHSV as a low temperature 

replicating virus, zebrafish were bred at one of the following four temperature 

conditions: 26°C, 15°C, and two temperature shifting conditions, whereby after a two 

week acclimation to 15°C, mimicking conditions for infection, the fish were moved 

back to 26°C for either 24 or 48 hours prior to breeding. 

The average embryo yield at 26°C was approximately 377 embryos, whereas at 

15°C no embryos were observed, which is consistent with embryo viability at 15°C 

(Figure 5.5). To adjust for the lack of embryo production or release at 15°C while still 

allowing for a VHSV infection at 15°C, zebrafish, after a 2 week acclimation to 15°C, 

were shifted back to 26°C for either 24 or 48 hours prior to breeding, yielding on 

average 45±11 embryos and 197±91 embryos respectively.  
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Figure 5.5 Zebrafish breeding success decreases with decreasing temperature. 
Zebrafish were acclimated to either 15°C or 26°C for 14 days prior to breeding. Two 
groups were moved up to 26°C for 24 or 48 hours after this acclimation period prior to 
breeding. Breeding success was determined by the number of embryos collected from 
each temperature condition. Error bars represent biological triplicates from three 
different breeding pairs.  
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Figure 5.6 Infectious VHSV increases during infection. Zebrafish were acclimated 
to 15°C for 2 weeks prior to an infection with 106 pfu/mL VHSV. Three fish were 
collected on each dpi. Bar quantities indicate VHSV N gene copies; bar color 
indicated cell culture positive (red) or negative (black). Error bars represent biological 
triplicates of three separate infections.  
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of clinical signs with cell culture positivity for VHSV. Gender separated fish were 

acclimated at 15°C for 2 weeks prior to infection with 106 pfu/mL of VHSV or mock 

infection with HMEM-5FPSH for 24 hours. Following this infection period, fish were 

moved back to 26°C for 48 hours either at 2, 4, or 11 dpi. After this 26°C acclimation 

period, the male and female zebrafish were bred and breeding success was evaluated 

by embryo number (Table 5.1).  

 For the fish temperature shifted 11 dpi, where clinical signs were observed, 

breeding was not successful, no embryos or eggs were found, regardless of the 

breeding sets and no sperm was visible. For the fish temperature shifted 4 dpi, where 

the fish showed no clinical signs, again no embryos or eggs were found; however, 

sperm release was visible. For the fish temperature shifted 2 dpi, where clinical signs 

were not observed and the cell culture was negative, again no embryos or eggs were 

present; however, sperm release was visible. All mock infected breeding sets were 

successful at each temperature shift post exposure to HMEM-5FPSH with similar 

clutch sizes of that shown in Figure 5.5, implying the viral infection as the cause of the 

lack of embryo release. 
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Table 5.1 Zebrafish trials of vertical transmission of VHSV  
a  Temperature shift is defined as days post infection that the fish were moved back to 26°C 
prior to breeding. 
b Each breeding set consisted of three males and three females where possible.  Each breeding 
set counted as a single trial and three independent trials were done for each temperature shift 
condition.   
c N gene copies are reported as a log value. 
d Error reported is the standard deviation or range of the fish actually bred.  
*Died prior to breeding.    
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be reported. In this study, we directly tested for vertical transmission of VHSV 

utilizing a zebrafish model, that has been previously developed for VHSV IVb 

(Chapter 3), allowing an in depth study into the practicality of VHSV vertical 

transmission.   

Effects of temperature on embryo development and zebrafish breeding. 

 In order to determine a compromise for the optimal higher temperature for 

zebrafish breeding and the optimal lower temperature for VHSV replication, several 

temperature parameters and schemes for both embryo development and zebrafish 

breeding were evaluated. At 15°C, embryos did not develop normally and died by 121 

hpf even in uninfected zebrafish. Interestingly, however, the embryos developed at the 

same delayed rate as the 22°C embryos that ultimately survived and hatched at 2 hpf. 

By 15 hpf, the 15°C embryos were now delayed even from the 22°C embryos and 

began to display a highly irregular shape with a bi-lobe appearance. The embryos 

remained in this state until 121 hpf when they all died, displaying the characteristic 

white haziness inside the chorion. These are some of the first observations of zebrafish 

embryos at 15°C and imply that some development does occur even at such a low 

temperature but at a distinct stage of development, the embryos are halted and do not 

survive. At 22°C, embryo development took consistently twice as long as what was 

observed for the embryos at 26°C, but fully developed and hatched. Further 

temperature data would be interesting to fully understand these trends in 

developmental delay for zebrafish embryos.  

Breeding at 15°C was also not successful, since embryos were not observed, 

though whether this is a result of the females not producing eggs or just not releasing 
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the eggs is unclear, but sperm was also not observed in these breeding sets. However, 

by applying a temperature shift from 15°C to 26°C for either 24 or 48 hours, breeding 

was successful, however, both embryo clutch sizes were much lower than the embryos 

kept at 26°C, about 8-fold and 2-fold lower respectively. Thus, allowing the zebrafish 

to acclimate to 26°C for an additional 24 hours significantly affected the ability of the 

zebrafish to breed more normally. Although there was concern about VHSV being 

cleared at 26°C, a preliminary test of the vertical transmission infection model (data 

not shown) proved that even after 72 hours at 26°C, zebrafish infected with VHSV 

still showed high levels of virus when screened, and thus, acclimating the zebrafish at 

26°C for longer periods of time to increase the clutch size is another option. 

Furthermore, lower temperature acclimation has already been show to be crucial on 

the susceptibility of zebrafish to VHSV, where significant differences can be seen 

between 24 hours and 2 weeks, with little change even after acclimating the fish at 

15°C prior to infection up to 16 weeks (Chapter 3). The ability of zebrafish to 

acclimate to new temperature environments appears to be a very rapid response and 

most likely is even quicker when the temperature shift is upwards, affecting not only 

viral susceptibility but now breeding is observed as such as well. This is consistent 

with data indicating that zebrafish are not completely immune-compromised at 15°C, 

and likely other species of fish will show similarly variable responses to temperature 

change (26). 

Effects of bleach on disinfecting VHSV exposed embryos.  

To ensure that vertical transmission was occurring and to exclude the 

possibility of detecting VHSV that was attached to the outside of the chorion, 
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zebrafish embryos were exposed to dilute bleach using a protocol previously used on 

zebrafish embryos (103). The protocol was both highly efficient and efficacious in 

removing external VHSV, reducing the external VHSV levels by five orders of 

magnitude, while not harming the embryos themselves. Interestingly, however, the 

embryos that were exposed to VHSV without being exposed to bleach, with N gene 

copies on the order of 106, still underwent three washes with RO water and were then 

completely removed from any supernatant prior to processing them for qRT-PCR, 

emphasizing the ability of VHSV to adhere strongly to the surfaces of the embryos 

and is crucial in considering how VHSV is primarily spread from fish to fish. Further 

exploring the levels of external versus internal VHSV may shed some light into 

species specificity to this virus or at least into the possibility of transmission via 

physical contact with the exterior of the embryo post hatching. 

Determination of vertical transmission of VHSV using a zebrafish model. 

 With the parameters determined to test the vertical transmission of VHSV 

utilizing a zebrafish model, males and females were kept separate, acclimated and 

infected at 15°C, followed by acclimation and breeding at 26°C. Fish were moved 

back to 26°C prior to breeding at 3 different stages post-infection: on 2 dpi, prior to 

clinical signs of disease and prior to the detection of infectious VHSV, on 4 dpi, prior 

to clinical signs but after the detection of infectious VHSV, or on 11 dpi, after clinical 

signs of disease with the detection of infectious VHSV. Regardless of the stage post-

infection, none of the breeding sets resulted in the development of embryos. 

Interestingly, although the presence of sperm was observed in the two earlier stages, 

eggs were never released from the females, even at low exposure doses, indicating a 
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potential gender specificity of the susceptibility to VHSV. Furthermore, infected 

female fish presented clinical signs of disease before the males with more severe signs 

of disease (data not shown). Overall, the female zebrafish appear to be unable to 

produce and/or release eggs when exposed to VHSV, even at small doses, even though 

their uninfected counterparts did not exhibit this problem, whereas the male zebrafish 

seem to have a highly tolerance to VHSV and produce and release sperm when bred 

using the model after being moved as late as 4 dpi. 

Interestingly, even at 1 dpi, VHSV N gene copies were as high as 103, even 

though infectious VHSV was not detected. This could be a result of the increased 

sensitivity of the qRT-PCR assay compared with the cell culture assay, where the limit 

in cell culture is around 103 pfu/mL from fish samples. However, this could also 

indicate that, as is consistent with the ability of VHSV to adhere to surfaces, the initial 

amount of virus is located on the exterior of the fish, prior to moving into the fish and 

being able to replicate in the host cells, thus creating a highly concentrated exposure to 

VHSV that stays with the fish even as it moves through its environment. This would 

also help explain survey work from the Great Lakes and Canada, where fish have been 

found to have high levels of VHSV, without high levels in nearby waters, though the 

limitations of detecting VHSV in water samples cannot be ruled out.  

The main goal of this manuscript was to test for the vertical transmission of 

VHSV by analyzing embryos produced from infected fish for the presence of 

infectious VHSV.  However, embryo production was not observed even using fish that 

had yet to show clinical signs of disease.  There are several possibilities to explain 

these observations.  First, since there were no eggs released, an early effect of VHSV 
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exposure could be to halt egg production, egg release, or both. Exposing zebrafish to 

lower initial doses could also be done to further test whether any exposure to VHSV 

will result in this phenotype. Second, the lack of egg release may be a result of too 

many insults to the female host and maybe able to be reproduced with other insults, 

such as chemicals or bacteria, and is not a specific effect of VHSV exposure. Third, as 

there does appear to be a difference in susceptibility between male and female fish to 

VHSV, females may require more time acclimated to 26°C prior to being bred after 

being exposed to VHSV. Furthermore, if infected females are not releasing eggs, then 

exposing just males to VHSV and testing for vertical transmission may be a better 

model for what occurs in the natural environment, which could be controlled in our 

system by breeding the fish at 26°C and thus preventing the infection of females to 

any VHSV from the males. To further address the potential of vertical transmission 

using this model in the absence of infected embryo production, eggs and sperm from 

uninfected males and females can be squeezed out of the fish. The eggs can be 

separated from ovarian fluids, either bleached or not, and all fractions can be tested for 

VHSV, further directly addressing whether VHSV is even in the eggs to begin with. 

One piece of evidence indicates that VHSV is not in the eggs, whereas another virus, 

INPV, is located in the eggs (17). Furthermore, using uninfected eggs and sperm in the 

presence of varying amounts of VHSV in in vitro fertilization would determine that, if 

egg release did occur, would VHSV present during the fertilization process enter the 

embryo. Ruling out these further possibilities would go even farther to negate vertical 

transmission as being a likely source for transmission of VHSV. 

However, although vertical transmission may not be a key factor since infected 
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females did not release eggs, but due to the ability of VHSV to strongly adhere to 

surfaces, the potential for horizontal transmission early in development is highly 

likely. In natural hosts of VHSV, juveniles display an increased susceptibility to 

VHSV (50). Furthermore, newly hatched zebrafish feed on the chorions as part of their 

first meal until further developments occur for algae digestion. Although we have 

shown that VHSV is unable to enter the embryo during development when exposed 

post fertilization, which is consistent with work done with snakehead rhabovirus, 

where zebrafish embryos required de-chorination to be infected, the effects of VHSV 

exposure post-hatching has yet to be evaluated. High levels of VHSV attached to the 

juvenile fish during development may explain some of the increased susceptibility to 

VHSV at this early age. However, with SHRV, even upon de-chorionating the 

embryos and then infecting, the embryos were not able to survive this viral exposure, 

and likely VHSV would be similar (78). 

Based on the fact that 1) the female fish would not release eggs even with 

lower levels of VHSV in their tissues and 2) VHSV exposure to post-fertilized 

embryos, even though VHSV strongly adhered to the surfaces of embryos, does not 

enter embryos, it is unlikely that vertical transmission is a significant contributor to the 

persistence of VHSV in the Great Lakes region.    
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CHAPTER 6 

VIRAL SHEDDING AND HORIZONTAL TRANSMISSION OF VIRAL 

HEMORRHAGIC SEPTICEMIA VIRUS (VHSV) IVB UTILIZING A 

ZEBRAFISH INFECTION MODEL 

Kristine M. Hope, Randall A. Meyer, and James W. Casey 

 

*Hope wrote this chapter, helped with various steps for the experiment, and 

contributed significantly in an intellectual manner. Meyer performed all experiments 

in this chapter. Casey is the primary investigator and contributed intellectually. 

 

 Introduction 

 Viral hemorrhagic septicemia virus (VHSV), a rhabdovirus of fish, is the 

causative agent of viral hemorrhagic septicemia, one of the most serious fish diseases 

that is notifiable under the OIE. VHSV has affected various fish populations since the 

early 1930s and has continued to both spread and persist worldwide. Four distinct 

genotypes have been identified, which generally correlate with their location. VHSV 

IVb includes all of the isolates from the Great Lakes, having been only recently 

identified as of 2005 (47). From 2005 through 2007, massive mortality events 

occurred each spring in the Great Lakes region as a result of VHSV infection, 

initiating survey efforts for all of the Great Lakes. Interestingly, although mortality 

events dwindled after this time, with few noted outbreaks of disease, VHSV has 

continued to persist in the environment (6). This raises the question of how VHSV has 

maintained itself in these environments. In addition subclinical persistence of VHSV 
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IVb poses a threat to naïve bodies of water, raising concerns of future epidemics.   

 Understanding VHSV persistence requires investigating several aspects of the 

virus life cycle, including viral entry, replication area and status in the host, viral exit, 

transmission between hosts, and possible secondary host reservoirs. VHSV entrance 

into its host has been studied using various methods of infection, including oral, via 

the gills, or through the fin bases (47), which of these routes is dominant in natural 

virus acquisition is unknown. Once in the host, VHSV has been identified in most of 

the major organs including spleen, kidney, liver, and heart. VHSV can exit/shed from 

the host in number of ways. VHSV has been identified in ovarian fluid, feces and 

urine, but it is unclear as to whether these are the major sites of exit or if additional 

shedding occurs in tissues like skin. Once shed, VHSV appears to be stable in the 

environment for extended periods at low temperatures. VHSV can spread from host to 

host via water, but there is also evidence that species other than fish, such as leeches, 

Diporeia ssp, potentially contribute to spread and persistence (28, 29, 31). 

Interestingly, physical contact is another potential mechanism for spread of VHSV, as 

European fish farms were the first to identify the disease caused by VHSV where 

population density is high.  

 One particularly interesting element of VHSV transmission includes not only 

how VHSV is shed into the environment, but also at what rate shedding occurs and 

how this relates to persistence and disease outbreaks.  Recent studies have been 

conducted with fish rhabdoviruses to address some of these questions using various 

fish models.  VHSV shedding during a challenge infection of a Pacific Herring was 

demonstrated to have peaks corresponding to increases in cumulative percent 
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mortality during the course of the infection indicating a probable point during the 

infection for a water-borne transmission.  Furthermore, survivors did not shed 

detectable levels of the virus indicating either the virus was cleared or persisted sub-

clinically in the fish (43).  Similar trends were noted with a trial infection of Japanese 

flounder utilizing VHSV (72) and Atlantic salmon with infectious salmon anemia 

virus (36).  Although these studies confirm that VHSV and SVC are shed at an 

appreciable rate during infection they do not confirm how VHSV persists in fish and is 

transmitted from host to host. 

 To investigate the mechanisms of VHSV horizontal transmission, we have 

utilized a zebrafish model for VHSV IVb, focusing on two main questions. First, we 

have compared viral shedding profiles in group housed and individualized fish to 

evaluate both the fate of fish after an initial infection and the role of viral spread on 

this process. Second, we evaluated the ability of VHSV to infect both with and 

without physical contact from host to host, to determine the importance of physical 

contact in the transmission of VHSV.  

Materials and Methods 

Fish maintenance and 15°C acclimation. 

 Zebrafish from two sources were utilized for the following experiments.  The 

first were a wild type Cornell strain about 5 to 6 months old, with an average mass of 

187 mg. These fish were maintained in a flow through system at an average 

temperature of 26°C in a 12 hour light-dark cycle. The second were a wild type fish 

raised in Florida about 6 to 12 months old, with an average mass of 341 mg.  These 

fish were kept in filtered aquaria until use at an average temperature of 27°C on a 12 
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hour light-dark cycle. All fish were fed ground flakes (Tetra) and brine shrimp daily.  

 Prior to each experiment, fish were acclimated for either 24 hours or 2 weeks, 

as indicated in each experiment, to 15°C in reverse osmosis filtered water with 60 

mg/L of Instant Ocean (RO-IO) salts added. These fish were moved in static 

containers, as was done in Chapter 3, achieving 15°C by about 12 hours post move. 

Water changes occurred daily and all fish were fed granulated fish flakes for the 

duration of acclimation and experimental periods.  Water was tested for pH, ammonia 

levels, and chlorine every 7 days.  Fish were maintained at a density of 1.86 mg/mL 

for Cornell strain and 3.41 mg/mL for Florida strain in a stagnant system of RO water 

with 60 mg/L of IO for all acclimation, infection, and experimental periods and all 

exceptions are noted. 

VHSV stock and infection. 

 Viral hemorrhagic septicemia virus (VHSV) isolate M103 of Genotype IVb 

was employed through out these experiments. All virus stock was stored at -80°C. 

Virus was quickly thawed in a warm water bath prior to use in all experiments. 

 Zebrafish were infected with 106 pfu/mL of viral stock or mock infected with 

an equivalent volume of HMEM-5FPSH media via immersion for 24 hours. 

Immediately after initial exposure and before fish were sequestered into individual 

experimental groups, 800 µL water samples were taken and stored at -20°C until 

future processing. 

Evaluation of viral shedding. 

For this experiment, 10 Florida fish were mock infected and 30 fish (20 Florida 

and 10 Cornell) were VHSV infected with 106 pfu/mL for 24  
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Figure 6.1. Schematic for VHVS shedding protocol. After 2 weeks of acclimation 
to 15°C, 15 fish were infected and 15 fish mock infected. Following a 24 hour 
exposure, 5 fish from the mock infected group were kept as a group while the 5 others 
were separated into individual containers, while 10 infected fish were kept as group 
and the 10 others were separated into individual containers. This was repeated three 
times to produce biological triplicates. 
 
 
hours as described above after a 15°C, and then separated as described in figure 6.1. 

Fish from each group were either separated into individual containers in 300 mL of 

RO-IO, 5 fish for the mock infected group and 10 fish for the infected group, at an 

average density of 1.46 mg/mL, or kept as groups in RO-IO, 5 fish for the mock 

infected and 10 fish for the infected, at an average density of 1.74 mg/mL for Cornell 

strain fish and 3.71 mg/mL for Florida stain fish. The fish were observed for external 

hemorrhaging and mortality for 27 days. Complete water changes were done daily and 

800 µl water samples were taken before and after each water change. As fish died, 
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they were removed from the containers and at 27 days post infection (dpi), survivors 

were terminated in an overdose of MS 222 (20 mg/mL). All specimens were stored at 

-20°C upon collection until processed for qRT-PCR or cell culture. 

Evaluation of physical contact in VHSV infections. 

 To evaluate the importance of physical contact in VHSV infections, 36 Florida 

fish were acclimated to 15°C for 2 weeks. Following this acclimation period, two fish 

were tagged by clipping the caudal fin prior to infection. Twenty-two fish, including 

one tagged fish, was mock infected and 2 fish, including the other tagged fish, were 

VHSV infected with 106 pfu/mL for 24 hours. After infection, the fish were combined 

in the following ways: 1) one clipped mock infected fish with 5 mock infected fish, 2) 

one clipped VHSV infected fish with 5 mock infected fish, 3) one mock infected fish 

separated from 5 mock infected fish by a fish barrier, and 4) one VHSV infected fish 

separated from 5 mock infected fish by a fish barrier (Figure 6.2). The fish barrier 

consisted of two layers of a 2 mm plastic mesh barrier (Plastic Canvas) installed using 

hot glue and placed in the same containers used for all other zebrafish experiments. 

This apparatus was tested with uninfected fish for health and durability prior to using 

in the experiments.   
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Figure 6.2. Schematic for VHVS co-housing protocol. After 2 weeks of acclimation 
to 15°C followed by two fish being tagged, 22 fish were mock infected and 2 fish 
VHSV infected for 24 hours. Following infection, for the physical contact groups, (A) 
one mock infected tagged fish or (B) one VHSV infected tagged fish were combined 
with 5 mock infected fish. For the non-physical contact groups, (C) one mock infected 
or (D) one VHSV infected fish were placed on the opposite side of a semi water 
permeable barrier from 5 mock infected fish. This was repeated three times to produce 
biological triplicates. 
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Following separation into groups, fish were observed for external hemorrhaging and 

mortality over 27 days. Complete water changes were performed every 3 days and 800 

µL water samples were taken daily, both before and after water changes.  As fish died, 

they were removed from the container and at the end of the experiment, all survivors 

were terminated utilizing an overdose of MS-222 at 20 mg/mL.  All water and fish 

samples were stored at -20°C until processed for qRT-PCR and cell culture. This 

protocol was repeated 3 times to produce biological triplicates.  

Detection of VHSV using cell culture and qRT-PCR. 

 Fish samples were tested for viral infectivity utilizing epithelioma papillosum 

cyprini (EPC) cells from American Type Culture Collection (ATCC) following the 

protocol outlined in Chapter 3 for both maintenance and infectivity testing. Briefly, 

fish samples were thawed, weighed, and homogenized in a Bio-Spec Mini Bead 

Beater.  The homogenate was centrifuged at 2700xg for 5 min using a Eppendorf 

Centrifuge model 5430. Liquefied fish homogenate, or supernatant, was then 

withdrawn and the equivalent volume of 30 mg of tissue was withdrawn from each 

tube for qRT-PCR.  The remainder of the supernatant was diluted to achieve a 1:30 

mass (mg) to volume (µL) ratio, syringe filtered, and 250 µL was added to each well 

of a 48 well plate. Each sample was analyzed in triplicate wells and labeled as passage 

0.  Inoculated cell monolayers were stored at 15°C and were observed regularly for 

cytopathic effects (CPE). Upon 100% CPE in 2 of the 3 replicates or after 2 weeks, 

samples were passaged onto fresh EPC cell monolayers (P1). Cells showing no CPE 

after 2 weeks at P1 were considered VHSV negative, pending qRT-PCR confirmation. 

Cells showing CPE at P1 were then passaged onto fresh EPC cells to achieve P2. 
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Resulting CPE on P2 cells were collected and considered VHSV positive pending 

qRT-PCR confirmation. 

 Fish samples were also tested directly by qRT-PCR using the 30 mg volume 

supernatant described above as outlined in Chapter 2. Briefly, total RNA was prepared 

using the Qiagen RNeasy kit using the manufacturer’s protocol with the following 

modifications.  For tissue homogenates collected during cell culture preparation, 600 

µL of lysis buffer was added to the sample followed by one volume of 70% ethanol. 

The solution was centrifuged through the RNeasy column 3 times to collect all RNA 

from each sample. For water samples, 150 µL of sample was mixed with 200 µL of 

lysis buffer and then 1 volume of 70% ethanol was added. Wash step centrifugations 

were performed for 30s at 18,000xg. Post washing, samples were centrifuged for 1 

min at 18,000xg to completely remove all liquid from the column. Following total 

RNA preparation, for tissue homogenates only, total RNA concentrations were 

evaluated utilizing a NanoVue spectrophotometer.  Samples were diluted to 8.3 ng/µL 

for analysis on a 384 well plate or 5 ng/µL for analysis on a 96 well plate achieve 50 

ng of total RNA per well. Water samples were not diluted due to undetectable levels 

of RNA and are reported as copies/volume.  

 To assess VHSV N gene copy number, one step TaqMan qRT-PCR assays 

were performed as described in Hope et. al. (47) utilizing primers and probes as 

described.  Assays were performed on a 96 well plate on an Applied Biosystes 7500 

Fast Real Time PCR System) and on a 384 well plate utilizing a VIIa 7 Real-Time 

PCR system. reaction comprised of 1 X TaqMan One Step RT-PCR Master Mix, 1 X 

Multiscribe Reverse Transcriptase, 200nM of the forward primer, the reverse primer, 
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and the probe.  Standards were prepared via serial dilutions of samples of known 

VHSV RNA copy number.  Thermal cycler method was as follows: 30 min at 48°C 

for reverse transcription, 10 min at 95°C for Taq polymerase activation, and then 42 

cycles of 15s at 95°C for denaturation, followed by 1 min at 60°C for annealing and 

extension.  Data was analyzed utilizing a linear regression of standard samples to 

quantify VHSV N-gene RNA copy number for each sample utilizing manufacturer’s 

software.   

Analysis 

      All VHSV N-gene levels in fish are presented as copies per 50 ng total RNA.  For 

VHSV N-gene levels in water samples, each qRT-PCR value was presented on a per 

mL of tank water basis.   

For the shedding experiment, further data analysis was required to compute the 

daily shedding rate.  Each shedding data point was computed as follows: 

(N-gene copies/mL before water change) – (N gene copies/mL after water change the 

day before). 

This simple formula corrected for any carry over of VHSV during a water change and 

allowed for a daily shedding rate to be derived.  VHSV N-gene water level data for the 

transmission experiment was not processed in this manner.   

Results 

Investigation of VHSV release into their water environment.  

 To evaluate viral shedding from VHSV infected fish into their water 

environment, zebrafish were infected for 24 hours after a 2 week 15°C acclimation 

and then 100% water change was performed daily. Water samples were collected 
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before and after 1) infection and 2) each daily water change and evaluated for VHSV 

N gene levels using qRT-PCR. Fish were either infected and maintained as a group or 

individualized.  

The grouped Cornell strain reached a total percent mortality of 60%, reaching 

50% mortality between 14 and 15 dpi (Table 6.1 and Figure 6.3). The average N gene  

 

 

 

copies for these mortalities approximated 106, whereas the survivors averaged of 103. 

Both mortalities and survivors were positive in cell culture. Interestingly, the grouped 

Florida line had only 30% total mortality, reaching 50% mortality between 13 and 14 

dpi. The average N gene copies were approximately 105 for the mortalities and 101 for 

the survivors. Although all of the mortalities were positive in cell culture, only 14% of 

the survivors were positive. The individualized Florida line fish had a cumulative 

mortality of 90%, reaching 50% mortality between 10 and 11 dpi. For the mortalities, 

Table 6.1.  Individual fish are more susceptible to VHSV.  

Percent 
of fish b 

60 (6) 

a Fish strain represents either Cornell (C) or Florida (F). 
b Number in paraenthesis is the number of fish in that category.  
c Copies are per 50 ng of total RNA. Values are given as log transformations. Error reflects 
  standard error of the mean. 

Percent Positive 
in Cell culture b 

Average N 
gene copies c 

Group 
Mortalities 

Survivors 

6.6 ± 0.1 

Individual 
Mortalities 

Survivors 

40 (4) 

90 (9) 

10 (1) 

3.9 ± 0.3 

5.4 ± 0.5 

0.8 

100 (6) 

100 (4) 

89 (8) 

0 (0) 

30 (3) 
Group 

Mortalities 

Survivors 

5.5 ± 0.5 

70 (7) 1.3 ± 0.4 

100 (3) 

14 (1) 

Fish 
Strain a 

C 

F 

F 
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the cumulative N gene copies were on the order of 105, with 89% positive in cell 

culture. For the survivor, the N gene copies were below 101 and the fish was negative 

in cell culture.  

The progression of VHSV infection was also evaluated by qualitative 

examination of external hemorrhaging throughout the course of infection as well as 

upon mortality. The grouped Cornell line fish first exhibited first signs of slight 

hemorrhaging at 8 dpi.  As each fish in this group died, severe external hemorrhaging 

was noted on the abdomen, tail fin, and dorsal fin. The survivors exhibited no 

discernible signs of hemorrhaging. The grouped Florida line fish exhibited very slight 

signs of external hemorrhaging 9 dpi corresponding to the first mortality in that group. 

Further mortalities were accompanied by only very slight signs of external 

hemorrhaging. For the individual Florida line fish external hemorrhaging was first 

noted 11 dpi corresponding to the fifth mortality in that group.  Prior mortalities were 

not accompanied with clinical signs of VHSV infection. Fish after 11 dpi exhibited 

moderate hemorrhaging upon mortality on the abdomen, dorsal fin, and pelvic fin.     

 The VHSV levels in each group or with individual fish are shown in Figure 6.3 

for each day post infection. The zero time point is a sample taken during infection 

representing the initial infection to which all of the fish were exposed. For both groups 

and the individual fish, the average copies during infection were on the order of 106 to 

107, as expected for a target dose of 106 pfu/mL. A peak occurs 4 to 5 dpi and no 

VHSV is detected in the water past the last mortality in all three conditions.  
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Figure 6.3 VHSV N gene in water is not detected past the final mortality. The cumulative 
percent mortalities (line graph) are overlaid on the corresponding VHSV N gene in water 
samples on each day (bar graph) for fish either grouped, the Cornell line (A) or the Florida 
Strain (B), or individualized using the Florida line (C).  
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Figure 6.4 shows the individual fish shedding profile for VHSV. Only one fish 

survived the experiment and VHSV was only detected in the water through 2dpi. The 

rest of the fish died between 7 and 22 dpi, with VHSV detected through the day of 

death in 7 of the 9 containers (Figure 6.4, Fish # 1, 2, 3, 5, 6, 7, and 9). Fish # 4 and 

fish # 8 died 3 and 6 days after VHSV was detected in the water, respectively. Six of 

the 9 mortalities had a gap in the levels of VHSV prior to death (Figure 6.4, Fish # 1 

and 5 through 9).  
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Figure 6.4 VHSV N gene varies depending on the infection status of an individual fish. 
Levels of VHSV N gene copies in the water environment of each of the 10 individual fish are 
plotted above as log transformed values. The fish were infected together and thus day 0 is the 
same for all 10 fish. After the death of each fish, the rest of the time line is greyed out. 
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Evaluation of physical contact in VHSV infections.  

 To evaluate the role of physical contact in VHSV susceptibility, zebrafish were 

infected for 24 hours after a 2 week 15°C acclimation and then one infected fish was 

placed either in a barrier free tank or in a fish barrier adjacent to 5 mock infected fish, 

also referred to as target fish. These groups were then observed over a 27 day period 

for external hemorrhaging and mortality. VHSV N gene levels using qRT-PCR and 

cell culture detection methods were measured on each fish. 

 For the group in physical contact, in all three trials, the qRT-PCR levels for 

each of the infected fish were in the range of 104 to 107 VHSV N gene copies (Figure 

6.5A). In trials A and C, two of the target fish died with high levels of VHSV N gene 

copies, where one and three other target fish had low levels of VHSV respectively. For 

the group separated by the water permeable barrier, only the infected fish in trial A 

had high levels (107 ) of VHSV N gene. In trial A, no mortalities in the target fish were 

observed but all five fish had measurable low levels of VHSV N gene copies, even 

though none were cell culture positive. Interestingly, in trial A, although the infected 

fish was negative for VHSV in both cell culture and qRT-PCR, four of the five target 

fish had measurable levels of VHSV N gene with no cell culture positives.  
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Figure 6.5 Direct contact increases the transmission of VHSV. VHSV N gene copies per 
50 ng total RNA are graphed as log transformed values (bars) for fish in direct contact (A) or 
separated (B). Bar color represents either cell culture positive (red) or negative (black). Each 
bar represents a different fish for one of 3 trials. The “I” identifies the fish that was initially 
infected and the numbers 1 to 5 represent the 5 mock infected target fish. * indicates a fish 
mortality. 
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Figures 6.6 and 6.7 show the levels of VHSV N gene in the water of the fish in 

physical contact and fish separated by a barrier respectively. For the group in physical 

contact, significant levels of VHSV were detected in all three trials. For trial B, where 

the infected fish died on 8 dpi and none of the target fish died, levels of VHSV drop 

off dramatically by 9 dpi. For trials A and C, VHSV N gene copies can be detected 

throughout the course of the experiment, with an observable lack of VHSV N gene for 

2 or 3 days prior to the deaths of the target fish. For the fish separated by a barrier, for 

trials B and C, the infected fish did not die, did not have detectable levels of infectious 

VHSV, and N gene copies were only detectable through either 1 or 6 dpi, respectively. 

For trial A, the infected fish had high levels of infectious VHSV, died on 11 dpi, and 

the target fish all had detectable levels of VHSV N gene, although none of the target 

fish died, VHSV N gene can be detected in the water through 14 dpi. 
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Figure 6.6 Transmission of VHSV in fish with direct contact is dependent on the 
exposure time to the infected fish. VHSV N gene copies per 50 ng total RNA are graphed as 
log transformed values (bars) overlaid by the cumulative percent mortality for the mock 
infected target fish for fish in direct contact for each of three trials (A, B, C). The * indicates 
the day that the initial infected fish died and was removed from the system. 
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Figure 6.7 Transmission of VHSV is decreased in fish that are separated. VHSV N gene 
copies per 50 ng total RNA are graphed as log transformed values (bars) overlaid by the 
cumulative percent mortality for the mock infected target fish for fish in direct contact for 
each of three trials (A, B, C). The * indicates the day that the initial infected fish died and was 
removed from the system. No * indicates that the fish did not die during the experimental time 
period. 
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Conclusions 

 Using the zebrafish model for VHSV IVb infection, we evaluated 1) the levels 

of VHSV N gene in water over the course of infection, 2) the fate of an individually 

affected fish and the role of secondary infection during the course of infection, 3) and 

the importance of physical contact in VHSV susceptibility. Based on the water 

profiles of VHSV N gene, we observed that the release of VSHV into the water 

environment occurs prior to the fish presenting external hemorrhaging and long before 

the first mortality (Figure 6.4 and 6.5). The fate of each infected fish differs 

significantly from fish kept in a group, emphasizing the importance of re-infection of 

VHSV. Individualized fish died from 7 dpi to 22 dpi with one survivor, a range much 

larger than the group fish where one fish died on 9 dpi and the rest died from 19 to 22 

dpi for the Florida fish. The Cornell strain died from 10 to 16 dpi. Interestingly, the 

Florida line showed a decreased susceptibility to VHSV, while the individualized 

Florida fish show an increased susceptibility to VHSV than both the Cornell and 

Florida groups, indicating the added stress of individualizing these fish. The Cornell 

group had 60% mortality with VHSV N gene levels on the order of 106, while the 

Florida group had only 30% mortality with VHSV N gene levels on the order of 105. 

The individualized Florida fish, however, had 90% mortality with VHSV N gene 

levels on the order of 105. The decreased susceptibility by the Florida strain compared 

with the Cornell strain are similar to what has been observed for different strains of 

some natural VHSV hosts and utilizing these differences might help explain the 

mechanisms and factors involved in the dramatic species differences to VHSV IVb. 
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Furthermore, the dramatically decreased susceptibility of the Florida fish when 

individualized, from 30% to 90% total mortality, may also represents the increased 

stress that these fish experience when laboratory adapted. Since this trend is not 

observed when the fish are separated by a barrier, direct contact is not required; 

however, water contact is a requirement to decrease the individualization stress. To 

further determine if the stress is a factor evaluation of a stress indicator, like cortisol 

levels, in the individual fish compared to the group fish could be attempted. 

 By comparing fish either in direct contact with a single infected fish or 

separated from an infected fish (via a barrier), the importance of physical contact in 

VHSV susceptibility was determined. Interestingly, the fish in physical contact were 

more susceptible to VHSV, showing more severe signs of disease, including 

mortalities (Figure 6.6, 6.7, and 6.8). Furthermore, high levels of infectious VHSV can 

be isolated from fins and skin of infected animals alluding to the importance of VHSV 

on the exterior of the fish (27, 50, 73). However, until this aspect is investigated, the 

importance of surface virus in transmission remains untested.  

 In conclusion, we have evaluated the horizontal transmission of VHSV IVb 

from several different approaches. We have shown that viral release into the water 

environment occurs prior to the appearance of clinical signs of disease.  Additionally, 

survivors carrying infectious VHSV do not always release VHSV into the 

environment, indicating a potential difference in how the virus is compartmentalized 

internally or externally. We have also shown that individualization increases the 

susceptibility of zebrafish to infection by VHSV and different strains of zebrafish 

exhibit different responses in susceptibility to VHSV. Lastly, we have shown that 



 

 140 

physical contact increases the susceptibility to VHSV. This latter transmission 

mechanism relies on fish species behavior, which ultimately may impact our 

understanding of species susceptibility. 
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CHAPTER 7 

 

FUTURE DIRECTIONS FOR THE ZEBRAFISH INFECTION MODEL FOR 

VHSV IVB 

Kristine M. Hope 

 

• Evaluate the host immune response during the course of infection, with a focus on 

the different categories of fish, including survivors and mortalities.  

• Compare and expand the histology analysis alongside immunohistochemistry 

during the course of infection time course, with a focus of making a correlation of 

both viral and disease movement through the host.  

• Evaluate the effects of external VHSV on the host susceptibility by testing a dilute 

bleaching protocol post-mortem to remove external VHSV and compare this to 

internal VHSV without the necessity of cutting into the fish. 

• Evaluate the transmission of VHSV from a post-mortem host to naïve live hosts, 

both orally and through waterborne exposure. 

• Evaluate the different zebrafish lines for differences in VHSV susceptibility by 

utilizing the sequenced genome of the host. 

• Evaluate the effects of VHSV on the exterior of the embryos on post-hatching fish.  

• Evaluate the effects of other biological pathogens/chemical toxins on VHSV 

susceptibility. 

• Evaluate long-term immunity to VHSV through re-challenging survivors. 

• Evaluate VHSV isolate differences in host susceptibility, focusing on both 

survivors and mortalities using a dose response model.  



 

 142 

• Evaluate the potential of VHSV to adapt to higher replication temperatures using 

an infection model, while taking advantage of the broad temperature range of 

zebrafish. 
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