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ABSTRACT

Low-dose computed tomography (CT) imaging provides a method for obtain-

ing accurate anatomical information without the full radiation exposure inherent

in standard CT protocols, and is primarily used in lung cancer screening. Seg-

mentation of the pulmonary arteries from low-dose chest CT images is a vital first

step in improving computer-aided detection of frequently missed pulmonary nod-

ules near major arteries. This thesis presents the first fully automated method for

segmenting the main pulmonary arterial trees in low-dose CT images.

The correlation between the arterial and airway trees was used to develop

an automated pulmonary artery seed point detector. The main basal pulmonary

arteries are identified by searching for candidate vessels near known airways, using

a progressive morphological opening method. The arteries are tracked into the

lungs by means of a cylindrical vessel tracker that iteratively fits model cylinders

to the CT image. Vessel bifurcations are detected by measuring the rate of change

of vessel radii. Subsequent vessels are segmented by initiating new cylinder trackers

at bifurcation points.

Quantitative analysis of both the number of arteries and veins segmented, as

well as the error per vessel, was accomplished with a novel evaluation metric called

the Sparse Surface (SS) metric. The SS metric was developed to capture the

details of the true vessel surface while reducing the ground-truth marking burden

on the human user. This metric is a unique new tool for ground truth marking

and segmentation validation, with particular importance in problems with complex

geometries.

The segmentation method and SS metric were applied to a dataset of seven



CT images, and achieved an overall sensitivity of 0.62 and specificity of 0.90 of all

manually identified vessels. The average root mean square error between the vessel

surface and the segmentation surface was 0.63 mm, or less than 1 voxel. Addition-

ally, seed points were detected automatically for a majority (80%) of cases with

labeled airways. This method is an important first step towards robust pulmonary

artery segmentation and artery/vein separation in low-dose chest CT, and is the

first fully automated method designed for accomplishing this task.
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CHAPTER 1

INTRODUCTION

The pulmonary arteries comprise the vessels that supply deoxygenated blood

to the capillary beds of the right and left lungs. Each lung is supplied with a

single branch of the main pulmonary artery originating at the right ventricle of

the heart. A method for automatically locating these arteries and segmenting their

subsequent branches is presented in this thesis. The segmentation method consists

of two parts: automated seed point detection in the left and right pulmonary

arteries and vessel tracking using a cylinder fitting and novel bifurcation detection

method.

To quantify the performance of the segmentation algorithm, a novel evaluation

metric, the Sparse Surface (SS) metric, was developed for evaluating segmentations

of complex structures. This method is designed to quantify both the total number

of arteries and veins segmented and the error per vessel. The sparse ground truth

marking system required to implement this method constitutes an improvement

over dense marking systems designed for the same purpose, significantly reducing

the marking burden to the human user.

The dataset used to test the segmentation method consists of low-dose chest

CT images, rather than the standard-dose CT images. The primary purpose of

thoracic low-dose CT is for pulmonary nodule detection in lung cancer screening,

and segmentation of the pulmonary arteries could improve computer-aided pul-

monary nodule detection. However, low-dose CT images present an additional

challenge to segmentation methods, as there is less information and more noise

than in standard-dose CT images.
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1.1 Clinical Application

Lung cancer is the leading cause of cancer death in the United States, and an

estimated 1.5 million new cases are expected to be diagnosed worldwide in 2010 [9].

Early detection of lung cancer has been shown to reduce lung cancer mortality [7,

4], prompting the creation of large clinical trials of lung cancer screening using

low-dose CT imaging [5]. Small malignant pulmonary nodules can be detected in

low-dose CT images before they become large enough to cause symptoms, allowing

for earlier treatment and improved clinical outcomes [7].

Identification of pulmonary nodules in low-dose CT is a challenging task. Computer-

aided detection of lung nodules has been shown to improve the detection sensitivity

of radiologists [25]. However, nodules located at vessel bifurcations, lung walls, and

vessel surfaces are common sources of false negatives in automated computer detec-

tion systems. Automated segmentation of the pulmonary vessels has been shown

to improve lung nodule detection sensitivity when applied to low-dose screening

scans [3]. Our method is designed to segment the large arteries as they enter the

lungs, a first step in improving nodule detection near the mediastinum.

After nodules are detected, they must be classified as either benign or malignant

in order to make informed clinical decisions. Distinguishing between benign and

malignant nodules remains a difficult task for radiologists. Computer-aided nodule

classification systems have been developed to aid in this task, and rely on features

such as volume, central moments, and compactness for accurate classification [19].

Nodules attached to the lung pleura and the pulmonary vessels are particularly

challenging to segment and classify, as their shape and volume are difficult to

measure. By defining the true blood vessel shape, segmentation of the pulmonary

vasculature in low-dose CT images could provide a method of more accurately

measuring and classifying nodules adjacent to vessels.
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Segmentation of the pulmonary arteries also provides a first step toward ob-

taining highly accurate measurements of vessel radii. Patients with pulmonary

arterial hypertension (PAH) have been shown to present with enlarged pulmonary

arteries, as measured by manual observation of CT images [22, 17]. These enlarged

vessels are at increased risk for fatal dissection and require immediate surgical in-

tervention where possible. Automated segmentation and measurement methods

have the potential to better quantify vessel enlargement in patients with PAH,

providing an earlier and non-invasive means of diagnosis [14].

1.2 Computed tomography

The first clinical scans from a CT, published in 1972 by Hounsfield and Ambrose,

consisted of head scans of human brains [6]. Since the inception of the single-slice

scanner, CT technology has progressed to include helical CT and multi-detector

row CT (MDRCT). However, because CT present a potential radiation hazard to

the patient, low-dose scanning protocols are now being implemented to reduce the

risk to the patient. This section will provide a brief overview of the X-ray physics

and CT technology relevant to low-dose imaging.

1.2.1 X-ray physics

CT images are produced by measuring the interaction of electromagnetic radiation

with matter. The intensity of radiation reaching the photodetector is dependent

on the photodensity of the irradiated matter. Tissues are distinguished from one

another by the rate they attenuate radiation I, given by Beer’s Law:

I(η) = I0e
−µη (1.1)
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where η is the thickness of the irradiated matter and µ is the linear attenuation

coefficient, which is dependent on the rate of which the material absorbs and

scatters the radiation. The linear attenuation coefficient is related to the density

of the material by:

µ =
ρNA

A
· σtot (1.2)

where ρ is the density, NA is Avagadro’s constant, A is the atomic number, and σtot

is the total photoatomic cross-section for either scattering or absorption. Thus,

the attenuation coefficient is simply the number of atoms per unit volume times

the interaction probability per atom.

CT scanners require high-frequency X-ray electromagnetic radiation with wave-

length between 10−11 and 10−8 m (120 eV to 120 KeV) to produce high-quality

images. In this regime, the photoatomic cross-section of the irradiated matter is

dependent upon two major interactions: absorption via the photoelectric effect

and Compton scattering.

In a photoelectric interaction, shown in Figure 1.1a, the incident radiation will

eject an inner shell electron from the atom and deposit all of its energy hν − φ

to the electron, where h is Planck’s constant1, φ is the energy required to free the

electron, and ν is the frequency. The cross-section for the photoelectric interaction

is given by Sauter:

Φphotoelectric = K(ν)Z5 (1.3)

where Z is the atomic number and K is weighting function2 which is dependent

on the photon energy [21]. The quintic dependence of the cross-section on the

atomic number provides the motivation for using contrast agents with high atomic

numbers, such as barium (Z = 56) or iodine (Z= 53), which interact strongly with
1h = 6.626× 10−34 J · s
2K(ν) = 3

2α
4 (γ+1)3/2

(γ−1)7/2

[
4
3 + γ(γ−2)

γ+1

(
1− 1

2γ
√
γ2−1

ln γ+
√
γ2−1

γ−
√
γ2−1

)]
exp

(
−πα+ 2α2 (1− lnα)

)
where γ = hν+mec

2

mec2
and α ≈ 1

137 is the fine-structure constant
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the radiation. However, materials with similar molecular composition (e.g. soft

tissues) are difficult to distinguish in CT.

Compton scattering occurs when an incident photon scatters off an outer va-

lence electron. Figure 1.1b shows an incident X-ray γ recoiling off a weakly bound

valence electron and scattering as a lower energy photon γ′. The cross-section for

Compton scattering was explored by Klein and Nishina, and is given by:

σCompton = Φ0J(ν) (1.4)

where Φ0 is the classical Thompson scattering constant3, and J(ν) is a function4 of

the frequency ν [21]. Unlike the photoelectric interaction, the Compton interaction

does not depend on the atomic number. The probability of a Compton interaction

is dependent on the number of electrons in the material. For this reason, Comp-

ton scattering provides for contrast between tissues with different electron (mass)

densities.

Incoming X-ray
 photon

Outgoing electron

Incoming X-ray
 photon

Recoil electron

Scattered photon

A B

Figure 1.1: A) Photelectric interaction and B) Compton scattering of an incident
X-ray. These two processes account for the attenuation of X-rays in matter, pro-
viding information to the CT scanner about the radiodensity of the irradiated
tissue.

CT scans are calibrated so that materials with a given radiodensity will produce

the same value across different scans. The Hounsfield scale was developed to

3Φ0 = 8π
3

(
1

4πε0
e2

mec2

)2

= 6.65× 10−29 m2

4J(ν) = 2π
(

1
4πε0

e2

mec2

)2 [(
1+γ
γ2

)(
2 1+γ

1+2γ2

)
− ln(1+2γ)

γ + ln(1+2γ)
2γ + 1+3γ

(1+2ε)2

]
where γ = hν

(mec2)
2
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describe a tissue’s radiodensity relative to water and air. A value of 0 Hounsfield

units (HU) is assigned to water, and -1000 HU is assigned to air. Given these two

defined points, the HU value of any tissue can be found with the linear relation:

Htissue =
ρtissue − ρwater

ρwater
× 1000 (1.5)

where ρ is the radiodensity measured by the CT scanner through the interaction

processes described above. Because CT is calibrated, the soft tissue (e.g. blood)

presents at around 0 HU across different scans. This provides a method to separate

the class of soft tissue objects from bones (> 200 HU) and lung parenchyma (-1000

HU) based on the calibrated intensity values.

1.2.2 CT scanner technology

In conventional X-ray radiography, a single immobile source irradiates a 3D object

to produce a 2D projected image. CT employs a mobile X-ray source that rotates

around a circular gantry to produce a series of projected images called a sinogram,

which is converted via the Radon transform into the final image. Single-detector

CT produces one slice per 180o gantry rotation. To produce multiple slice images,

the patient is moved forward on the scanning table a distance equal to the slice

thickness, and a new slice is acquired. Helical CT employs a continuously rotating

X-ray source and constant table velocity to reduce acquisition time and minimize

motion artifacts. Multi-slice CT scanners contain multiple detectors that allow for

multiple slices to be acquired per gantry rotation.

CT scanners produce X-rays by accelerating electrons towards a target that

interacts with the electrons to produce X-rays. Schematics of two common CT

X-ray generation systems are shown in Figure 1.2 [2].

In both systems, thermal electrons created at the cathode by heating a metal

filament with a current I0 are accelerated towards the anode through a potential
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Figure 1.2: Two common systems for X-ray generation in CT scanners.

V0, typically in the 25 kV - 150 kV range. Electrons interact with the metal

anode material to produce X-rays through bremsstrahlung and inner shell electron

ejection. Although X-rays are produced in both processes, the primary product

from the electron-anode interaction is heat. Circulating liquid metal anodes were

developed to counteract the problem of overheating of the anode material.

Low-dose CT scans are produced by reducing the anode current without in-

creasing the scan time. This is achieved by decreasing the number of thermal

electrons produced at the cathode. It is useful to explore how the reduction in the

dose affects the quality of the signal received and thus the quality of the image.

The photon statistics at the photodector can be approximated by a discrete Pois-

son distribution [2]. The variance is equal to the mean of the distribution, which is

proportional to the total number of events n, in this case is the number of photons

received at the photodetector. The signal-to-noise ratio (SNR) is:

SNR =
signal level
noise level

=
mean

standard deviation
=
〈n〉√
〈n〉

=
√
〈n〉 (1.6)

Thus we see that the SNR is proportional to the square root of the anode current;
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image quality is reduced only slowly as the radiation dose is decreased.

Naidich et al first explored the use of low-dose CT scanning protocols for tho-

racic imaging [18]. With a reduction in anode current from 120 mA to 10mA, they

found that although noise was noticeably increased, organ structures within the

images were still able to be robustly identified by trained radiologists. Low-dose

scans provide enough detail for detecting nodules in lung cancer screening scans,

where the decrease in the SNR is not significant enough to justify increasing pa-

tient exposure. The purpose of this thesis is to extend the amount of information

that can be obtained in low-dose CT by automatically segmenting the pulmonary

arteries.

1.3 Pulmonary artery anatomy

Abdominal window Lung window

Main pulmonary 
artery

Arteries enter 
lungs

Figure 1.3: The location of the pulmonary arteries in the mediastinum and the
point where they emerge into the lung parenchyma.

The pulmonary arteries begin at the right ventricle of the heart, and are part

of a larger organization of organs (heart, trachea, pericardium, etc.) known as the

8



mediastinum, located in the center of the thoracic cavity (Figure 1.3a). Tracking

the pulmonary arteries from their origin in the center of the mediastinum presents

a significant challenge to automated segmentations, due to the lack of contrast

between the different soft-tissue types in that region. Instead, our goal is to begin

tracking of the arteries as soon as they emerge from the mediastinum into the lung

parenchyma, as indicated in Figure 1.3b.

The anatomy of the airway and pulmonary arterial trees is highly complex: both

the airway and arterial trees branch extensively in the lungs, with approximately

seven generations appearing in the CT scan. Before attempting to develop an

automated segmentation method, it is important to have an accurate picture of the

pulmonary anatomy, along with its proper nomenclature. This section describes

the geometry and nomenclature of the pulmonary anatomy.

Despite the individual complexity of the airway and arterial trees, a remarkable

symmetry exists between the airways and the arteries. The two trees form a par-

allel structure called the bronchopulmonary tree, in which the pulmonary arteries

run parallel and adjacent to the airways, forming airway/artery vessel pairs [8].

Furthermore, the pulmonary arteries bifurcated at approximately the same loca-

tions as the airways. These observations led to a parallel nomenclature for both

the airways and the arteries.

The lungs are divided into five lobes, each with its own blood supply, capil-

lary bed, and venous return. The left lung is comprised of a superior, medial,

and inferior (or basal) lobe, while the right lung is divided only into a superior

and inferior (basal) lobe. Each pulmonary lobe can be subdivided further into

segments, where each segment is supplied by a unique bronchopulmonary vessel

pair. The nomenclature for the segmental arteries and airways simply describes

which segment they supply and where that segment is located within the lobe. For

9



example, the basal-posterior artery and airway supply the posterior segment of

the basal lobe. Each segmental bronchopulmonary segment can be further divided

into subsegmental, and sub-subsegmental vessel pairs.

Figure 1.4a shows an airway tree labelled with the bronchopulmonary segment

nomenclature. The airway tree was generated with an automated airway segmen-

tation by Lee and Reeves [12], along with minor manual modifications to account

for segments that were visually identified in the scan but were not automatically

generated. The nomenclature for the airway tree will be used to describe the pul-

monary arteries running parallel and proximal to the airways. Figure 1.4b shows

the symmetric nature of the airway and arterial trees. The airways were generated

with the automated method by Lee and the pulmonary arteries were manually

marked.














 














































 

Figure 1.4: Labelled airway tree demonstrating the bronchopulmonary nomencla-
ture used to describe the pulmonary arteries.
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1.4 Issues in pulmonary artery segmentation

The pulmonary vasculature is a highly complex branching structure that presents

significant challenges towards robust segmentation. Normal anatomical variability,

as well as anatomic abnormality from disease, limits the amount of a priori infor-

mation that can be used to develop a robust segmentation algorithm. Streaks from

metal implants and image discontinuities from patient movement also decrease im-

age quality and generate potential sources of error for automated methods. And

as with any segmentation method in low-dose CT, image anisotropy, noise, and

partial volume effects serve to complicate the task of identifying structures. This

section will describe the main challenges in segmenting the pulmonary arterial tree

in low-dose CT.

The main difficulty in segmenting the arterial tree in low-dose CT is the lack

of contrast between the different types of dense (non-fat) soft tissue. Without

physical contrast enhancement, soft tissue structures such as the blood, vascular

walls, airway walls, and the heart have indistinguishable image intensity values.

The current clinical protocol for CT pulmonary angiograms requires injection of

100 - 150 mL of radiocontrast [1]. This contrast allows the blood to be distinguished

from airway walls and lymphatic tissue based solely on intensity information. The

low-dose lung cancer screening scans used in this thesis do not have the added aid

of radiocontrast.

The most frequent source of error arises from confusion with the venous vascular

tree. Figure 1.5 presents a CT section of the left lower lobe containing segmental

pulmonary arteries, segmental venous branches of the left inferior vein, and airway

walls. Because the arteries and veins have the same intensity, separate structures

appear to run together to form a complex blob. A geometrical representation is

included to further indicate which tree (arterial or venous) each vessel belongs to.
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The vessel were identified by manually tracing them back to their parent vessel,

either the left inferior pulmonary vein or the left pulmonary artery. The boundaries

between the veins, arteries and airway walls are difficult to determine, due to the

lack of contrast between structures.



















Figure 1.5: Segmentation issue caused by close proximity of arterial and venous
trees

In addition, non vascular soft-tissue structures such as the airway walls and

lymphatic tissue are another important source of segmentation error. Figure 1.6

shows a section of the left inferior lung windowed to soft tissue, along with a

geometrical representation of the anatomy. The left medial segmental artery, the

posterior branch of the left inferior vein, and the medial segmental airway wall

appear as a fused isointensity object. Errors can occur in the segmentation where

the airway walls bridge the venous and arterial trees, and where arteries and veins

touch each other.

The morphology of the arterial tree itself further complicates the task of seg-

menting the vessels. Bifurcations are an especially salient source of difficulty be-

cause the conflated arterial and venous trees often present a similar geometry to
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Figure 1.6: Segmentation issue caused by proximity of airway wall to arterial tree

true vessel bifurcations. Any segmentation algorithm for the pulmonary arterial

tree will have two challenges at these bifurcation points: 1) finding the two child

vessels and 2) avoiding segmenting extraneous structures. Figure 1.7 shows a bi-

furcation of the left pulmonary artery into the posterior basal and anterior basal

segmental arteries. An inferior segmental vein is running posterior to the bifur-

cation point, and appears to be stemming from the parent artery when only the

local geometry around the bifurcation point is considered.

1.5 Previous work

Although there have been several published methods for segmenting the entire

pulmonary vasculature (arteries and veins), only limited work has been done on

distinguishing the pulmonary arteries from the pulmonary veins in CT. Methods

to segment the entire pulmonary vasculature generally rely on a combination of

global image filters to identify candidate structures, followed by local operations

such as vessel tracking, region growing, and morphological operations to achieve a

final segmentation. This section first provides an overview of previously published
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2. Finding Child Vessels

• Difficult to detect true bifurcations
• Close proximity of arteries and veins source of error

True bifurcation

Adjacent vein

Figure 1.7: Segmentation issue caused by vessel bifurcation. In this case, an
adjacent vein has the appearance of stemming from a trifurcation of the parent
artery.

methods for automated pulmonary vessel segmentation, and then reviews methods

specific to separating arteries from veins. Table 1.1 provides a summary of the

primary methods and goals of previously published work on pulmonary vessel

segmentation.

1.5.1 General pulmonary vessel segmentation methods

Several attempts to segment the pulmonary vasculature focus on detecting vessels

by filtering the image with a Hessian matrix. The Hessian matrix provides an

estimate of the local curvature of an image f , and is given by:

Hij(f) =
∂2f

∂xi∂xj
(1.7)

The eigenvalues of the Hessian matrix are used to detect tubular structures and

their orientations, in an effort to enhance cylindrical vessels.

Zhou (Chuan) et al. combined a Hessian matrix filter with a multiscale Gaus-

sian filter to enhance vessels and their bifurcations in contrast-enhanced CT pul-
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Table 1.1: Summary of previously reported methods for non-discriminantly seg-
menting the pulmonary vasculature and for discriminating arteries from veins.

Author Year Goal Method Data
Wood [24] 1995 PV Region growing 1 SD (canine)
Masutani [15] 2001 PV Connected component 12 SD w/contrast
C. Zhou [27] 2005 PV Hessian, expectation max. 2 SD w/contrast
J. Zhou [29] 2007 PV Hessian, bif. Detection 1 SD w/contrast
Kaftan [11] 2008 PV Fuzzy connectivity 1 SD w/contrast
Shikata [23] 2009 PV Hessian, vessel tracking 44 SD
Lei [13] 2001 A/V Fuzzy connectivity (MRI) 54 (pelvic MRI)
Bemmel [26] 2003 A/V Level-set algoritm 7 (pelvic MRI)
Saha [20] 2010 A/V Fuzzy connectivity (CT) 2 SD
This thesis 2010 PA Airway model, vessel tracking 10 LD
PV: Pulm. vasculature A/V: Artery/Vein separation PA: Pulm. arteries
SD: Standard dose CT LD: Low dose CT

monary angiography (CTPA) scans [28]. The eigenvalues of the Hessian matrix

were incorporated into a response function which returned values characteristic

of either bifurcations or vessels, and suppressed most non-vascular structures. To

overcome the challenge of detecting a wide range vessel sizes, the eigenvalues of

the Hessian matrix were computed for images with different scales of Gaussian

filtering; increasing the filter size enhanced larger vessels. To achieve their final

segmentation, an expectation-maximization classifier based on the histogram of

the lung region was applied to each voxel in a local region around the vessel candi-

dates. Using a centerline metric (see Section 4.1) they achieved true positive rates

of 93.8% and 97.0% for cases with and without lung disease.

Shikata and Sonka employed a multiscale Hessian matrix filter to enhance vessel

and bifurcation structures, but combined the filter output with a vessel tracking

algorithm to preserve vessel connectivity [23]. An initial segmentation was per-

formed by locating likely vessel centerlines using the output of the Hessian matrix

filter. The local distance transform was computed at each point to obtain an esti-
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mate of the radius, and a threshold of -600 HU was applied within the estimated

region to obtain a binary segmentation. Vessel tracking was then initiated at these

seed points and proceeded in the direction of the eigenvectors of the Hessian ma-

trix, pointed along the vessel centerlines. The vessel tracking connected centerline

candidates and terminated when a bifurcation candidate, generated by the Hes-

sian filter, was reached. The final segmentation was achieved by growing spheres at

each point of the tracked centerline. Their validation criterion was similar to Zhou,

except that in addition to marking vessel centerlines, false points were included

outside the vessel regions. In 44 scans without contrast enhancement, Shikata iden-

tified 99% of their manually placed truth-points. However, their method did not

attempt to distinguish between arteries and veins, and used high quality standard

dose CT images, as compared with the low-dose images used in this thesis.

Zhou (Jinghao) and Axel et al. combined a multiscale Hessian matrix filter

with a bifurcation detector based on the AdaBoost machine learning algorithm [29].

Similar to Shikata and Sonka, they used the eigenvalues and eigenvectors of the

Hessian matrix filter to initiate vessel tracking at automatically generated seed

points. To search for bifurcations, they took a cutting plane directly in front of

the vessel tracker and perpendicular to the tracking direction. The cutting plane

was then filtered separately by a three filters: a Gaussian filter and its first and

second derivatives. The trained AdaBoost method then made a decision about

whether the cutting planes represented a bifurcation or not. Their test set was

limited to 50 user-selected regions of interest in the lung parenchyma of chest CT

scans. They reported a 97% true-positive rate for vessel detection.

Although most automated approaches towards segmenting the pulmonary vas-

culature have focused on identifying vessel candidates with the Hessian matrix,

several other approaches have been attempted. Kaftan and Ach applied a soft-
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tissue threshold to the lungs to generate candidate seed points [10]. The fuzzy

connectivity of neighboring pixels to the seed points was computed and thresh-

olded to obtain the final segmentation with a sensitivity of 89% at a specificity

of 98%. Masutani and Doi implemented hysteresis thresholding and connected

component analysis to generate seed points for the major pulmonary vessels [15].

These seed points were used to initiate region growing within a segmented lung re-

gion. They employed their segmentation to limit the search space for a pulmonary

embolism detector, which achieved 85% sensitivity with 2.6 false positives per case

over 19 cases [16]. Wood and Hoffman performed manually seeded region growing

in both the pulmonary vessels and the lung airways. The binary segmentation was

thinned to search for bifurcations [24].

1.5.2 Pulmonary artery segmentation methods

Separating arteries from veins is a challenging task. Lei and Udupa used a mul-

tiseeded fuzzy connectivity algorithm to separate a conflated arterial and venous

tree in contrast-enhanced magnetic resonance angiography [13]. After an initial

fuzzy segmentation of the entire vasculature, the connectedness of each point in

the segmentation to either the arterial or venous seed points was computed. The

separation was only validated visually.

Bemmel et al. implemented a level-set algorithm to separate arteries and veins

in magnetic-resonance images [26]. A Hessian matrix filter was used to detect

the centerlines of vessel candidates. A function representing the boundary of the

vessel was fit around each centerline using the level-set algorithm to obtain the

final segmentation. Using a volume-based similarity metric with manually created

ground-truth regions, they achieved a similarity of 0.94.

Although these previous methods were implemented in MRI scans, they are
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potentially generalizable to other imaging modalities such as CT. However, Saha

and Hoffman presented an approach specifically in pulmonary CT images [20].

Their method is based on multiseeded fuzzy connectedness, employed by Lei and

Udupa for the same task in magnetic resonance angiography (MRA) images. The

pulmonary vessels are manually seeded as either arteries or veins at their cen-

terlines to obtain a fuzzy connectivity map. The map is analyzed to obtain an

approximation for the size of the vessels, and a local morphological erosion of this

size is applied to separate the fused vessels. The separated, eroded vessels are

dilated to their original size, but each voxel in the dilated region is assigned to

either the vein or artery based on their proximity to the newly identified vessel

center. Validation was performed on two CT scans without contrast enhancement.

Several thousand points on the centerlines of the arteries and veins were manually

marked to establish the sensitivity and false positive rate of the pulmonary artery

segmentation. The quality of the segmentation increased with the number of seed

points, and a sensitivity of 99% and false positive rate of 0.5% were reported with

66 seed points.

The methods aimed at segmenting only the arterial trees require anatomical

knowledge to properly seed the segmentation algorithms. This is markedly dif-

ferent from methods to segment the entire pulmonary vasculature, which require

only morphometry and intensity clues inherent in the vessels themselves. Sep-

arating the arteries required a trained user familiar with anatomy to use other

clues (parent vessel identity, proximity to known anatomical structure, etc.) to

inform the method about how to classify the segmented vessels. Thus, although

general pulmonary vessel segmentation methods can provide a significant first step

towards artery segmentation, they are fundamentally unable to distinguish and

classify conflated isointensity trees.
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1.6 Outline

The primary goal of this work is to present an automated method for identifying

the parent pulmonary arteries as they enter the lungs, and automatically track

them into the lung parenchyma. Chapter 2 describes the method for automati-

cally seeding the pulmonary arteries and the experiment designed to evaluate the

method. The results and discussion of the seed point method are presented at

the end of the chapter. Chapter 3 describes the method for iteratively tracking

the arteries along their lengths and detecting their bifurcations. In Chapter 4, the

Sparse Surface Metric is first defined in general terms, and then is applied to the

problem of artery segmentation. Furthermore, an overview of previously reported

validation metrics is presented. Chapter 5 describes the experiment used to train

and test the vessel tracking and bifurcation detection method and presents the re-

sults. Finally, a concluding discussion and suggestions for future work are provided

in chapter 6.
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CHAPTER 2

SEED POINT DETECTION

This chapter describes our work in automated pulmonary artery seed point

detection for use with vessel tracking. The first section describes the method for

automatically finding the location and orientation of the pulmonary arteries as

they enter the lungs. The details of the detection experiment, including the visual

training and parameter optimization, are then presented. Finally, the results of

the experiment are provided along with a discussions of our findings.

2.1 Method

This section will describe a method of automatically generating seed points and

vessel orientations for the basal part of the left and right main pulmonary arteries,

using as an axiom the results of a previously reported method of segmenting and

labeling the airways by Lee and Reeves [12].

2.1.1 Anatomical model

As described in Section 1.3, the pulmonary arteries run parallel and adjacent to

the airways. This anatomical correlation provides strong evidence for the location

of the pulmonary arteries, and is especially useful in CT images without physical

contrast enhancement where isointensity arteries and veins are only distinguishable

by their anatomical locations. In order to utilize this bronchopulmonary model

for locating the pulmonary arteries, the airway tree must be robustly segmented.

Furthermore, each segmented branch must be uniquely labelled, with each airway

receiving the same label across every case. This ensures that the corresponding

pulmonary arteries are also correctly identified across different cases.

Lee and Reeves provide a fully-automated method for accomplishing this task
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in low-dose chest CT [12]. Airway segmentation is performed by 3D region growing

from a seed point in the trachea, generated automatically by searching for a large,

low-intensity component 50 mm below the most superior axial frame. The air-

way region growing is performed within an advancing cylindrical region of interest.

In the case of a leak outside the ROI, the homogeneity parameter for growing is

narrowed, and a more conservative region growing is performed. After the segmen-

tation is completed, the airway tree is skeletonized and pruned with a 3D thinning

algorithm. Each segment of the skeleton is then uniquely labelled according to

its relationship to the trachea and the other branches. A diagram of the airway

labels, along with the relevant local vascular anatomy, is shown in Figure 2.1.





























 











Figure 2.1: Illustration of the relationships of the labelled airways to the pulmonary
arteries

The strongest anatomical correlation between the airways and the pulmonary

arteries occurs along the left and right basal airway segments, labelled as segments

6 and 8 respectively. With very high probability, the left and right basal arteries

will be located parallel and lateral to their corresponding airway segments. Fig-
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ure 2.2 shows this relationship between the airways and arteries in both the left

and right lungs. The airway segmentation by Lee is superimposed on the image as

indicated.

In addition to their strong anatomical correlation with the airways, the basal

arteries also exhibit high contrast against the lung parenchyma. Although the

basal arteries are located near the soft tissue mediastinum (heart, great vessels,

and surrounding tissue), they penetrate deep enough into the lung parenchyma that

they can be distinguished from the isointensity great vessels of the mediastinum.

Thus, the basal arteries were also chosen as candidates for automated seed-point

generation because their location outside the mediastinum is most likely to produce

a lower false positive rate; other non-artery vessels are not likely to be confused with

the pulmonary arteries. Figure 2.2 shows that the basal arteries are separated from

the heart and aorta by lung parenchyma. Notice, however, that in the left lower

lobe, the inferior pulmonary vein runs near the basal artery, creating a potential

hazard to automated seed-point detection and pulmonary vessel tracking.

Left basal
 artery

Left basal
 airway (airway label 6)

Right basal
 airway (airway label 8)

Right basal 
artery

Heart

Aorta

Inferior pulmonary 
artery

Figure 2.2: Axial slice showing the location of the left and right basal arteries
relative to the airway segmentation and the lung parenchyma.
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2.1.2 Region of interest construction

Given a labelled airway, the next step is to limit the search space for the pulmonary

artery. This was accomplished by constructing a region of interest (ROI) around

the basal airways. Lee provides a method for creating a parametrized cylindrical

ROI around the airway. The segmented airway is fit with a cubic spline ~S(n) in

three dimensional space:

~S(n) = sx(n)x̂+ sy(n)ŷ + sz(n)ẑ (2.1)

si = ain
3 + bin

2 + cin+ di (2.2)

where the parameter n defined on the boundary [0,1]. Reconstructed views are

created orthogonal to the airway by taking cutting planes at constant intervals of

n on [0,1]. Each cutting plane becomes a single frame in a reconstructed space

representing the ROI. Each frame of the ROI reconstruction is associated with a

unique coordinate system x
(n)
i that facilitates the mapping between the CT space

and the ROI. The airway reconstruction process is shown in Figure 2.3. The image

on the left is a diagram in CT space of the local anatomy around the airway. The

image on the right is a single frame from the reconstruction of the left basal airway.

Seed points generated in the ROI must be transformed back to the original

CT image space to initiate the vessel tracking algorithm. Let n̂′i be the ROI basis

vectors of the slice taken at the S(n) location of the spline, and êi be the basis

vectors of the original CT image space. The transformation from a coordinate in

the ROI to the CT image space is given by the transformation matrix:

Tn =


n̂′1 · ê1 n̂′1 · ê2 n̂′1 · ê3

n̂′2 · ê1 n̂′2 · ê2 n̂′2 · ê3

n̂′3 · ê1 n̂′3 · ê2 n̂′3 · ê3

 (2.3)

The vector n̂′3 is the tangent vector to the cubic spline at S(n), and n̂′1 and n̂′2

are basis vectors constructed to be orthogonal to n̂′3. Thus, the T matrix for
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Figure 2.3: Diagram of the airway ROI construction process and a single frame
from the output.

transformations back to image space can be computed given the spline parameters

ai, bi, ci, di for the three coordinates. The final transformation from the primed

ROI space to the unprimed image space is given by:

xi = Tijx
(n)
j . (2.4)

2.1.3 Artery identification

The algorithm for identifying the pulmonary arteries within the ROI around the

labelled airway is based on the following observations:

1. There is very limited contrast between soft tissue structures, and structures

are best identified by their morphology and anatomical location.

2. The main basal pulmonary arteries extend from the mediastinum into the

lungs, where they are bordered by lung parenchyma.

24



3. The main basal pulmonary arteries are parallel and adjacent to the main

basal airways.

The ROI around the airways is composed of either isointensity soft tissue (air-

way walls, blood vessels, lymphatic tissue) with no edge information, or lung

parenchyma. Based on this observation it becomes appropriate to work in bi-

nary space (soft tissue or lung parenchyma) using only geometric and anatomic

information for finding the arteries. Figure 2.4 shows a histogram of the ROI

around the airway. The peak at 0 HU corresponds to soft tissue, and the peak at

-900 HU is the lung parenchyma. A binary representation of the ROI is created

by thresholding at a value of -400 HU, midway between the lung parenchyma and

soft tissue histogram peaks.

Figure 2.4: Histogram of the ROI around the left basal airway. A threshold of -400
HU was applied to separate the peaks.

The second observation indicates that because the arteries are bordered pri-

marily by lung parenchyma, it is possible to separate the pulmonary arteries from

the mediastinum by looking for structures within the ROI surrounded by lung
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parenchyma. The third observation provides a key to identifying the separated

soft tissue structures. The pulmonary artery will be, with high probability, the

structure nearest to the airway that runs parallel with it.

CT Scan Reconstructed ROI

Threshold at -400 HU

Labeled 
Airways

Set initial morphological opening size  

Morphological opening and connected 
component labeling

Is single object near 
airway?

Increase morphological opening size

No

Find centroid and direction of 
pulmonary artery

Transform seed point and location to 
CT space

Yes

Figure 2.5: Process diagram for the identification of the main basal pulmonary
arteries within the ROI

The process for locating the pulmonary arteries within the reconstructed ROI

is outlined in Figure 2.5. The soft tissue structures are separated using a 3D

morphological opening operation with an ellipsoidal kernel S(0) set to a small initial

size. The purpose of the morphological opening is to remove the connections

between the mediastinum and the pulmonary arteries, effectively separating the

two larger objects (Figure 2.6a). The resulting objects are labelled with a 3D

connected component algorithm, a method for assigning each separate object a
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unique label. The connected component algorithm used assumes a 26-connected

foreground and a 6-connected background.

Each unique object is then checked to see if it is a possible candidate for the

pulmonary artery. Objects which extend past 4 cm from the center of the airway

are likely to contain mediastinum and are eliminated. Of the objects remaining

after the elimination, the component that is closest to the airway center is identified

as the pulmonary artery, as predicted by the bronchopulmonary model. If no

components are found, it is likely that the morphological operation opening was

too small to separate the pulmonary artery from the mediastinum – both structures

were eliminated together as a single object extending too far from the airway.

This situation is diagrammed in Figure 2.6a. In this case, the size of the kernel is

increased (S(1)) and the process is repeated until the pulmonary artery is separated

and identified, as shown in Figure 2.6b. The algorithm for isolating the artery from

the mediastinum is shown in Algorithm 1.

Morphological 
opening kernel

Morphological 
opening kernel

Pulmonary 
artery

Pulmonary 
arteryMediastinum Mediastinum

Initial opening operation. Artery 
not separated from mediastinum.

Opening with larger kernel. Artery 
separated from mediastinum.

Figure 2.6: Diagram of the progressive opening operation for separating the pul-
monary artery from adjacent structures within the ROI
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Algorithm 1 Separate and isolate pulmonary artery from mediastinum

S ← ellipse(s
(0)
x , s

(0)
y , s

(0)
z )

while sx < slimit do
B ← A ◦ S {Morphological Opening}
C ← label B {Connected Component Label}
for all Voxels ci ∈ C do

if
(
c
(x)
i

)2

+
(
c
(y)
i

)2

< r2
lim then

for all c(L)
j equals c

(L)
i do

remove cj
end for

end if
end for
r2
min = min

∣∣∣∣(c(x)i

)2

+
(
c
(y)
i

)2
∣∣∣∣{Find label with min distance to airway}

for all Voxels ci ∈ C do
if c(L)

i 6= c
(L)
min then

remove ci
end if

end for
if C equals ∅ then
sx ← sx + 1
sy ← sy + 1

else
return C
break

end if
end while

The location of the separated pulmonary artery is defined as the location of the

centroid of the candidate object at the most proximal (close to heart) frame in the

ROI. This ensures that vessel tracking begins as close to the start of the vessel as

possible, increasing the extent of the segmentation. The centroid coordinate (x, y)

of a binary object with N pixels is defined as:

(x, y) =
1

N

N∑
i

(xi, yi) (2.5)

where the centroid is computed in the ROI coordinate system.
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Similarly, a second seed point is identified by computing the centroid of the

artery in the most distal (far from heart) frame it appears in the ROI. The initial

orientation of the vessel is defined as the vector running from the proximal seed

point to the distal seed point. Finding a seed point and approximate direction for

the basal pulmonary arteries allows the vessel tracking algorithm to perform the

segmentation of the identified pulmonary artery. As discussed in Chapter 3, vessel

segmentation is performed by automatically optimizing a cylinder model to the

vessel; the initial direction need only be an approximation.

2.2 Training and Experiment Design

Both training and experimental testing of the seed point method were done using

visual validation. The first five cases in our low-dose CT dataset were selected

for optimizing two parameters: kernel height sz and ROI radius dROI. For each

parameter set, the automatically generated seed points were used to initiate vessel

tracking. The vessel tracking result was inspected to ensure that it 1) began in

the correct vessel and 2) started cylinder tracking along that vessel into the lung

parenchyma. The optimal value of the sz was found to be 1 cm, which was sufficient

to remove most small structures from the ROI without eliminating the vessel. The

optimal value of dROI was 4 cm, which was large enough to capture the arteries

with the ROI.

The process diagram for the seed point identification experiment is presented

in Figure 2.7. The full, undocumented low-dose CT dataset was used to evaluate

the detection method on a larger scale (50 cases). Visual validation of the tracking

initiation was used to confirm the success of the detection method for each seed

point pair. Additionally, visual inspection of the labeled airway tree was performed

to evaluate the detection method success rate relative to the number of correctly
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50 low-dose CT 
scans Segment airway Locate basal 

arteries

Validate 
labeling and 
segmentation
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segmented?
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scans

Individually 
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arteries

Sparse surface 
distance errors

Threshold RMS 
values to 2 mm Sensitivity

Specificity

GT-surface 
distance 

distribution

Figure 2.7: Diagram of the seed point identification experiment

generated ROIs.

2.3 Results

The results of 50 case seed point identification experiment are given in Table 2.1.

The overall success rate for initiating automated tracking given a correctly gener-

ated ROI is 80%. The method was significantly more successful for the left basal

artery (88%) than the right (74%). Without correcting for mislabeled airways, the

success rate decreases to 72% in the left lung and 50% in the right, with an overall

result of 60/100 arteries seeded.

Table 2.1: Qualitative results for the basal artery identification method, tested on
50 cases.

Dataset Airway Segmented Airway Labeled Tracker Initiated
50 cases (Left only) 47 41 36 (88%)
50 cases (Right only) 47 34 25 (74%)
50 cases (Total) 94 75 60 (80%)
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2.4 Discussion

An example of a successful seed point detection is shown in Figure 2.8. The

images were generated by taking a single frame from the left and right basal artery

ROIs, with the detected artery overlaid. In this case, both the left and right basal

pulmonary arteries were correctly separated from the mediastinum, allowing for

automated seed point generation. The basal arteries exhibited a clear anatomical

separation from the mediastinum as they entered the lungs, which allowed for their

identification as in a majority of the cases.









Figure 2.8: Successful seed point detection. The result of the morphological open-
ing is overlaid on the images.

The seed point detector was not successful in all cases, and an example of a

single frame from a failed case is shown in Figure 2.9. The artery never sufficiently

separated from the mediastinum, and the morphological opening was unable isolate

the artery. After elimination of ROI border objects, no components remained and

no seed point was able to be identified.

The seed point detection method was successful in initiating tracking in a ma-

jority of cases, and represents the first reported method for automatically seeding

31



Initial left ROI Morphological 
opening result

Final result 
(no seed point)

Figure 2.9: Failed seed point detection. The morphological opening does not sep-
arate the artery from the mediastinum. Connected component analysis eliminates
the morphological opening, as they are not viable artery candidates. The final
result is that no seed point is detected.

the pulmonary arteries. The method for locating the pulmonary artery is highly

dependent on the airway labeling method by Lee. Although successful in a ma-

jority of cases, further refinement is needed in both the airway labeling and artery

extraction methods.

The primary difficulty encountered by the artery extraction method occurs

when the vessels are not sufficiently physically separated from the mediastinum

within the ROI. The primary cause of this is that the basal airway ends before the

pulmonary arteries emerge into the lung parenchyma where they can be identified.

The decreased performance in the right basal artery (74%) compared with the left

(88%), is most likely due to the shorter length of the right basal airway, illustrated

in Figure 1.4 in Section 1.3. The artery identification method failed if the basal

airway did not extend into the lung parenchyma, as was more often the case with

the shorter right basal airway. One possible solution would be to extrapolate the

ROI further into the lungs until the airway and artery reliably separated from the

mediastinum.

Another important limitation of this method is that the parent arteries to the
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left and right superior lobes are not surrounded by lung parenchyma, and are not

identifiable by the method presented in this thesis. A possible extension of this

work would be do develop a method for automated seed-point generation in the

smaller parent branches of the upper lobes.
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CHAPTER 3

METHOD FOR TRACKING THE ARTERIAL TREE

This chapter describes a method for tracking the pulmonary arteries along

their lengths and into the lungs. There are two main components to this method:

vessel tracking and bifurcation detection. Vessel tracking requires an initial seed

point and direction, and thus builds on the method for locating the pulmonary

arteries. The bifurcation detector builds on the vessel tracking method by finding

the location and orientation of child vessels to be tracked.

3.1 Preliminary steps

Before applying the vessel tracking algorithm to the CT images, three preliminary

steps were performed to reduce noise and decrease the signal from unwanted struc-

tures. The first step was to apply a 3× 3 median filter to the image to reduce the

noise inherent in low-dose scans. The CT scans were then thresholded at a value

of -400 HU, to separate the soft tissue (0 HU) from the lung parenchyma (-900

HU) within the lungs. It is important to note that structures such as bone (400

HU) and fat (50 HU) were not eliminated, and took on the same values as the soft

tissue after thresholding. However, because these structures do not appear in the

lungs where the tracking occurs, they are highly unlikely to affect the results of

the segmentation.

The third preliminary step was the partial removal of the airway walls, given in

Algorithm 2. As described in Section 1.4, the airways run parallel to the vessels,

and the isointensity airway walls have the potential to be confused with the pul-

monary arteries. To remove the airway walls, the binary airway segmentation A

provided by Lee was dilated with a 5× 5× 3 ellipsoidal structuring element in the

anisotropic image space. This corresponds to an approximately 2 mm expansion
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Figure 3.1: Pre-processing of CT images reduces noise, eliminates airway walls,
and converts to binary image.

of the airways in isotropic space. The airway walls were removed by subtract-

ing the dilated airway from the thresholded CT image. Figure 3.1 illustrates the

application of this operation to a 3rd generation bronchopulmonary segment.

3.2 Cylinder matching metric

A single vessel can be modeled as a series of discrete cylinders as shown in Fig-

ure 3.2. This model is based on the observation that vessels are approximately

cylindrical in shape and curve only slowly along their lengths. Vessel tracking is

the task of recreating the vessel by progressively fitting model cylinders in a binary

3D discrete CT image space W with voxels w1, w2, ...wi.

35



Algorithm 2 Threshold image and remove airway walls
get W {Binary CT image}
get A {Airway segmentation}
for all wi ∈ W do

if wi > wthresh then
wi ← 1

else
wi ← 0

end if
end for
S ← (5, 5, 3){Structuring element}
B ← A⊕ S {Dilate segmentation}
return W ∧B

t0 t1

t2

Figure 3.2: Modeling of a blood vessel with discrete cylinders

To determine the level of similarity between a model cylinder and the actual

vessel, a similarity metric must be defined. The metric must return a maximum

score when the model cylinder fits directly over the vessel, and minimized when

there is no overlap. Additionally, because we are searching for a volume represen-

tation of the vessel, it is important to define a similarity metric that gives a greater

score to model cylinders that encompass a larger volume of the actual vessel.

To construct a similarity metric, define the set C of all voxels in a model cylinder

with a given location and orientation, and the set W of voxels in the thresholded

image. The similarity score between the cylinder and the image is computed by

Algorithm 3. A penalty of −5 was selected to prevent the cylinder tracker from

jumping between adjacent soft tissue structures; model cylinders that span areas

of lung parenchyma are highly penalized. The ad hoc value of -5 inserted enough
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gain into the system to prevent leaks across parenchyma without overly penalizing

well-fitting cylinders. The similarity metric is not normalized to the size of the

cylinder, giving model cylinders that capture more of the vessel a higher similarity

score, increasing the extent of the vessel segmentation.

Algorithm 3 Match cylinder to CT image
get W {Binary CT image}
get C {Model cylinder}
M ← 0{Cylinder match score}
for all wi ∈ W do

if wi ∈ C then
if w(L)

i > 0 then
M ←M + 1

else
M ←M − 5

end if
end if

end for
return M

3.3 Iterative vessel tracking

The iterative vessel tracking process is outlined in Figure 3.3. The algorithm begins

with an initial seed point x0 and normalized direction d̂′0. The initial seed point is

fixed as the start point of the first model cylinder. From this initial point, model

cylinders of varying orientations and radii are evaluated for their similarity to the

vessel. The initial radius r0 is optimized on the interval [2 mm, 12 mm], which is

sufficient to cover both abnormally large and small vessels. The search space for

finding the optimal orientation of the model cylinder is limited to the solid angle

Ω = 2π, parametrized on the azimuthal angle α and the polar angle β. The α

parameter was discretely sampled between 0 and π/2 radians at a sampling step

size 4α of π/32. Similarly, the β parameter was sampled between 0 and 2π at step

37



Seed point and 
initial direction x0, 

d0

Set initial search 
space

Save tth best fitting 
cylinder

Is strong match? Is bifurcation?

Update search space 
based on previous 

fit

Fit cylinders at point 
xt around direction 
dt (Algorithm 3)

Get new xt and dt 
from xt-1 and dt-1

yes

no

no

End vessel Find and track 
children

Preprocessed CT 
Image

Figure 3.3: Iterative vessel tracking process diagram.

sizes 4β of π/32. The step size of π/32 radians was selected to keep the run-time

to roughly 3 minutes per lung.

Finally, in order to limit the size of the model fitting parameter space, the

height of each model cylinder is set to a fixed value of h0. The model cylinder

which returns the greatest similarity score is defined as the initial cylinder, with

starting location x0, radius r0, height h0, and direction d̂0. The algorithm used to

implement this process is given in Algorithm 4.

After the initial model cylinder is fit, the process repeats for a new initial

position x1, shown in Figure 3.4. For the tth iteration of cylinder fitting, the initial

point xt is defined as:

xt = (∆step)d̂t−1 + xt−1 (3.1)

where d̂t−1 is the normalized direction of the previous model cylinder, and ∆step is
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Algorithm 4 Fit t cylinder to vessel
Require: t > 0

get W {CT image}
rmin ← 0.7rt−1

rmax ← 1.3rt−1

Mt ← −1000 {Initial match score for t cylinder}
generate ô1 such that ô1 ⊥ d̂t
generate ô2 such that ô2 ⊥ d̂t, ô1

for r = rmin to rmax by 4r do
for α = 0 to π/4 by 4α do

for β = 0 to 2π by 4β do
â1 ← ô1 cos β + ô2 sin β
â2 ← d̂t cosα + â1 sinα
x′t ← xt−1 + â2h0

C ← cylinder of radius r between xt−1 and x′t
M ← match (C,W )
if M > Mt then
Mt ←M
xt → x′t
rt ← r
d̂t ← â2

end if
end for

end for
end for
return xt, rt,Mt, d̂t

the distance the next cylinder is progressed from the previous one. The orientation

search space remains bounded by Ω = 2π. Additionally, because the radius is

expected to vary only slowly between model cylinders, the radius search space is

limited as:

rt ∈ [0.7rt−1, 1.3rt−1] (3.2)

The full set of vessel tracking parameters is given in Table 3.1. The cylinder

radius r and orientation α and β are optimized for each cylinder at run time. The

incremental step size δstep and cylinder height h0 are fixed at values optimized

durning training (Section 5.2).

Iterative vessel tracking terminates when the tracker either fails to find a strong
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Figure 3.4: Iterative fitting of the model cylinders

Table 3.1: Static and run-time optimized parameters of the vessel tracking method

Parameter Description Search space or fixed value Step size
h0 Cylinder height 15 mm -

∆step Incremental step 0.20h0 -
r Cylinder radius [0.7, 1.3]rt−1 4r = 0.25 mm
α Azimuthal angle [0, π/2] 4α = π/32
β Polar angle [0, 2π] 4β = π/32

match or a bifurcation is detected. A strong match is defined as having at least

50% of the voxels in the model cylinder be soft-tissue. This criterion fails to be

met when either the vessel becomes too small to give a strong signal, as in the

case of higher generational subsegmental arteries, or the tracker has fallen off the

vessel. The condition for termination by vessel bifurcation relies on the method

outlined in the following section.

3.4 Bifurcation detection

Child vessels were segmented by implementing a bifurcation detector. The detector

was designed to identify where on the parent branch to look for potential child
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branches, and to initiate tracking of the child vessels at the proper location and

direction. Detection is primarily complicated by the proximity of arteries to veins.

Thus, it is important to develop a bifurcation detector with a low false-positive

rate to maintain the separation of the venous and arterial trees.

Automated bifurcation detection is performed by comparing the actual vessel

geometry to a bifurcation model. Child vessel trackers are only initiated all the

parameters of the model are met. This serves to prevent erroneous segmentations

at points that are unlikely to contain true vessel branching. The bifurcation model

is constructed from the following observations:

1. The radii of the child vessels are measurably smaller than the radii of their

parent vessel.

2. The angle between child vessels is no less than 30o and no more than 90o.

3. The angle between the child vessels and the parent is greater than

xt-2 xt-1 xt

Parent vessel

Child 1

Child 2

2

Figure 3.5: Bifurcation detection using model cylinder radius change

The first observation indicates the bifurcation detector to search for child vessels

when the parent vessel tracker undergoes a large decrease in radius. As indicated in
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Figure 3.5, when the parent vessel tracker encounters a bifurcation, the next model

cylinder will fit onto one of the child vessels with a smaller radius. Because the

cylinder matching metric highly penalizes oversegmentation, a cylinder straddling

a parent and child vessel will take on the smaller radius of the child vessel. Using

this model, a bifurcation candidate is generated when the ratio of the current

radius to the radius at 1
2
h0 upstream, r0/rh0

2

, falls below radius change threshold

δradius, a bifurcation candidate is detected at point xt. This calculation is presented

in Algorithm 5.

Algorithm 5 Bifurcation detection
tcheck ← h0/(2fstep)

Require: t ≥ tcheck

if rt/rtcheck ≤ δradius then
t← tlim + 1{Stops parent vessel}
return 1{Bifurcation detected}

else
return 0

end if

Terminate 
parent tracker

Initiate 
child 2 

Initiate child 
1 at xt and dt

Track child 
2

Track child 
1 

True 
vessel?

Combine 
with parent

Find child 2 
location  

yes no

True 
vessel?

False 
bifurcation. 
Erase vessel

no yes

End vessel

Bifurcation detected 
(Algorithm 5)

Figure 3.6: Process diagram for locating child vessels at bifurcation point.
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The process for finding the child vessels at bifurcation candidate points is out-

lined in Figure 3.6. When the parent tracker detects a bifurcation at xt, a new

child vessel (child 1) is initiated at xt and in the direction ~dt. The next step is to

search for the second child vessel, and begin a vessel tracker along its length. Ob-

servations 2 and 3 of the bifurcation model indicate where to look for bifurcation

candidates. Let the orientation of the parent vessel at the bifurcation be d̂p, and

the orientation of children 1 and 2 at the bifurcation be d̂1 and d̂2 respectively.

Child vessel 2 will satisfy the bifurcation model if:

cos 30o <
(
d̂1 · d̂2

)
< cos 90o and

(
d̂2 · d̂p

)
< cos 90o (3.3)

xt

Parent vessel

Child 1

Child 2

30o

60o

Search space

Model
 cylinder

d1

d2

dp

Figure 3.7: Search space for locating the second child vessel at a bifurcation point.

The search space that satisfies these conditions is illustrated in Figure 3.7.

Algorithm 6 explicitly states how the search space is sampled for the sister vessel,

using a rotation R1 about direction ô by angle α. The orientation of the best

fitting model cylinder within this search space becomes the initial orientation of a

new vessel tracker for child 1, with initial point xt.

1R =

 o2x + (1− o2x) cosα oxoy(1− cosα)− oz sinα oxoz(1− cosα) + oy sinα
oxoy(1− cosα) + oz sinα o2y + (1− o2y) cosα oyoz(1− cosα)− ox sinα
oxoz(1− cosα)− oy sinα oyoz(1− cosα) + ox sinα o2z + (1− o2z) cosα
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Algorithm 6 Find sister vessel orientation bifurcation point
get W{Preprocessed CT}
get d̂1{First child direction}
get d̂p{Parent direction}
get x0{Bifurcation point}
ô1 ← d̂1 × d̂p/

∣∣∣d̂1 × d̂p
∣∣∣

for θ = 0 to 2π by 4θ do
for φ = φmin to φmax by 4φ do
ô2 ← R(θ, d̂1)ô1

d̂2 ← R(φ, ô2)ô2

if d̂2 · d̂p > cosφparent then
x1 ← x0 + h0d̂2

C ← cylinder of radius rchild 1 between x0 and x1

if match (C,W ) > Mmax then
Mmax ←match (C,W )

d̂sis ← d̂2

end if
end if

end for
end for
return d̂sis

Parent vessel

Child 1

Child 2

Child 1

Erase

Parent

Child 2

No strong
match

Parent vessel

Child 1

Child 2

Mediastinum
Overgrown 

cylinder

A B

Figure 3.8: False positive bifurcation detection and error correcting. A) The child
vessel does not find any strong matches. B) The child vessel leaks onto the medi-
astinum.

In the case of a false positive for bifurcation detection, child 2 may terminate

after only a few iterations. This situation is presented in Figure 3.8a. To correct the

error generated by the false bifurcation detection, the abruptly terminated child 2

vessel is erased, and child 1 continues to track, but as a continuation of the parent
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vessel. Additionally, a leak detector was implemented to remove false positive child

vessel returning large similarity scores when they leak onto the large mediastinum.

A leak is detected when a model cylinder is fit with a radius over 150% of the

radius of the model cylinder beginning at one full cylinder length upstream. A

diagram of the case of a leaking child vessel is illustrated in Figure 3.8b.
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CHAPTER 4

SPARSE SURFACE EVALUATION METRIC

The pulmonary arteries are a highly complex branching structure, and quanti-

fying the quality of a vessel segmentation is a difficult task. Modern CT scanners

produce images with a total number of voxels on the order of 108, with roughly 105

voxels belonging to the pulmonary arteries in a typical thoracic scan. Capturing

both the full geometry and finer voxel-level detail of the vessel tree for validation

requires extensive manual markings. This places a practical limit on the number

of cases that can be used for validation, indicating a tradeoff between the size of

the dataset and the level of detail of the analysis.

This chapter will first review the major evaluation metrics that have been pre-

viously used for the problem of pulmonary vessel segmentation. A novel validation

metric called the Sparse Surface Metric will then be described. The SS method

was designed to provide quantitative evaluation of both the total number of ves-

sels segmented and the accuracy per vessel, while reducing the number of manual

markings required. The metric will be defined here in general terms, and is capable

of being extended to other segmentation problems with complex geometries.

4.1 Previously reported evaluation metrics

Table 4.1 provides a summary of the relevant previous work done in pulmonary

vessel segmentation validation. Full volume based comparisons, where the ground

truth is marked to produce a complete volume representation of the desired struc-

ture, are able to quantify both the detail and extent of a segmentation; however,

they require the greatest number of manually marked points.

Saha et al [20] performed the most extensive volume-based ground-truth mark-

ing reported for pulmonary vessel segmentation – an expert classified 8000-10000
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Table 4.1: Summary of previously reported metrics for evaluating pulmonary vessel
segmentations.

Author Year Segmentation Method # of cases
Saha [20] 2010 Pulm. A/V separation Full volume 2
Bemmel [11] 2008 Abdominal A/V separation ROI volume 7
Kaftan [11] 2008 Pulm. vasc. ROI volume 5
C. Zhou [27] 2005 Pulm. vasc. Centerline 2
Shikata [23] 2009 Pulm. vasc. Centerline 44
Masutani [15] 2001 Pulm. vasc. Visual 12
This thesis 2010 Pulm. arteries Sparse surface 10

voxels in each lung, per CT scan, as either belonging to the arterial or venous trees.

Quantitative validation was performed by computing the sensitivity of artery iden-

tification:

Sensitivity =
|Gartery ∩ S|
|Gartery|

(4.1)

weighed against false positives and misses (false negatives):

False =
|Gvein ∩ Sartery|

Gartery
Miss =

|Gartery − Sartery ∩ Svein|
Gartery

(4.2)

where G is the set of ground truth points manually marked to capture the volume

of the arteries, and S is the set of voxels belonging to the segmented volume. The

strength of their validation system was that it contained a method of quantifying

both the extent and accuracy of the artery segmentation. However, ground truth

markings were only performed for two CT cases, suggesting that this method is

not suitable for application to larger datasets.

Similar volumetric manual marking were implemented by Kaftan et al [11] to

compute the sensitivity and specificity of their pulmonary vessel segmentation algo-

rithm. To reduce the number of manually placed ground truth points, they limited

their markings to 6 ROIs placed at different points within the lungs. Similarly,

Bemmel et al [26] calculated a true positive fraction and false positive fraction for

seven cases by marking ground-truth volumes within 6 manually selected ROIs per
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case. Although limiting the extent of the ground truth markings to selected ROI

allowed for a larger dataset, the markings for each scan do not capture the full

geometry of the vessels – the choice of where to place the ROIs has the potential

to significantly alter the results.

Zhou (Chuan) et al [27] reduced their number of ground-truth points by mark-

ing only vessel centerlines rather than defining vessel volumes. In their study, a

total of 9421 manually marked points were placed at the centerlines of arteries

and veins across two CT scans. This allowed them to compute the sensitivity and

specificity of their algorithm up to the 7th generation of vessels, while requiring

significantly fewer points than volumetric methods. Shikata et al [23] also imple-

mented centerline marking by identifying over 1000 points at vessel centerlines for

each scan. To estimate the false positive rate, they inserted 150 randomly placed

points per scan outside of the pulmonary vessels.

Although centerline marking is valuable metric for quantifying the extent of a

segmentation, it cannot provide information on the quality of the segmentation at

points that lie off of the centerlines. Erroneous segmentation of lymphatic tissue,

the airways, or other neighboring structures, are not penalized by a centerline

marking system.

4.2 Sparse surface metric

We propose a novel surface-based method called the sparse surface (SS) metric

for validating the results of our pulmonary artery segmentation method. The

goals in developing a new validation criteria to be applied to pulmonary artery

segmentation were three-fold:

1. To develop a metric and marking system to quantify the number of vessels

segmented (i.e. extent of segmentation).
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2. To use the same markings to also evaluate the error per vessel (i.e. the

accuracy of segmentation).

3. To minimize the number of manual ground truth markings required of an

expert human user.

Dense volumetric markings accomplish the first two goals, but require a signifi-

cant number of manual points. ROI markings are able to find the error per vessel,

but are not able to evaluate the overall extent of the segmentation. Conversely,

centerline markings capture the extent, but not the accuracy, of the segmentation.

The SS method accomplishes the three listed goals by defining a mapping from

ground truth points marked at the surface of vessels to the surface of the segmen-

tation. By mapping from the ground truth to the segmentation, ground truth can

be marked only sparsely – there is no penalty incurred by segmentation surface

points that are not close to ground truth points. The full geometry of the vascular

tree can be captured by marking a limited number of surface points for each vessel,

allowing for the calculation of the extent of the segmentation. Similarly, the The

following section formally defines the SGT metric.

4.3 Formal definition

Let V be the set of voxels of the segmented volume. The boundary of V is the

set ∂V of voxels that are 6-connected to a background voxel. The set S of surface

points of a segmented volume V is then defined as:

S = {x|x ∈ ∂V } = {s1, s2, ..., sk} (4.3)

Let G be the set of ground-truth points, where the members gi were individually

identified by manual markings. The set G contains n subsets On representing
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the ground-truth markings for n objects. The SGT metric is constructed from a

mapping f of On to Mn such that for every element oi of a set On:

f(oi) = mi = ai min
j=1,...,k

{‖(oi, sj)‖E} (4.4)

where the parameter ai describes whether the point is interior or exterior to the

segmentation:

ai =


−1 if mi ∈ V (interior)

1 otherwise (exterior)
(4.5)

The isotropic distance metric ‖(a, b)‖E is the positive semi-definite 3D Euclidean

distance between two points:

‖(a, b)‖E =

√[
(ax − bx)

xr

]2

+

[
(ay − by)

yr

]2

+

[
(az − bz)

zr

]2

(4.6)

where (xr, yr, zr) are the lengths the vectors defining a unit cell in anisotropic space

(i.e. the length, width and height of a voxel).

The set Mn now holds the values of the Euclidean distance from each ground

truth point for object n to the nearest surface point of the entire segmentation,

with positive values corresponding to ground truth points that lie outside the

segmentation and negative values for interior points. An illustration of the SGT

metric being applied to an example segmentation is provided in Figure 4.1.

The distribution of distance elements in each of the setsMn is expected to take

on a normal unimodal distribution. The ideal algorithm will return a narrow dis-

tribution centered around zero. For an over-segmentation, the distribution will be

shifted towards negative distances, and for an under-segmentation, will be shifted

towards positive distances.

Quantitative information about the segmentation can be obtained by comput-

ing statistics on the sets Mn. The average signed distance (ASD) Mn of the set
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Figure 4.1: Diagram illustrating the SS metric. The illustrated distances comprise
the set M .

Mn of order N can be computed as:

Mn =
N∑
i

mi

N
(4.7)

The average signed distance is a measure of the overall bias of the segmentation –

an ASD near zero results from data whose collective distance between the segmen-

tation surface and points outside the segmentation equals the collective distance

for points inside the segmentation. To evaluate the magnitude of the average error

per truth point, the root mean square distance (RMSD) can be calculated for each

object distance error set Mn.

MnRMS =

√√√√ N∑
i

m2
i

N
. (4.8)

Additionally, the maximum amount of over- or under-segmentation can be

found by calculating the maximum negative distance (over-) and maximum positive

distance (over-). These measures classify which error is the most severe. Table 4.2

summarizes the statistics used in the SS method.

Given a set of surface markings for each object, the distance error statistics

obtained using the SS metric as defined above can be used to achieve our goals of

evaluating the number of objects segmented, and the error per object. An object
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Table 4.2: Statistical measurements used in the SS evaluation metric

Statistic Measure of
Average signed distance (ASD) Accuracy/bias of segmentation
Root mean square distance (RMSD) Magnitude of distance error
Max negative distance Point of greatest over-segmentation
Max positive distance Point of greatest under-segmentation

may be classified as having been segmented if the RMS truth-to-surface error is

small, signifying that the segmentation did not stray far from the object. The

bias, magnitude, and extreme values of the error can then be calculated for each

segmented object.

4.4 Comparison with dense markings

Sparse ground truth markings Dense volumetric ground truth markings

Figure 4.2: Manual SS markings overlaid on the left main pulmonary artery and
its two child branches

To evaluate the new SS method, case 1 was documented with 4000 dense mark-

ing and 300 sparse markings. Figure 4.2a shows the sparse markings for three

pulmonary arteries, shown here overlaid on the surface of a segmentation. Fig-
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ure 4.2b shows surface markings for a dense, volumetric ground-truth on the same

vessels. The ratio in the number of points between the dense markings and the

sparse markings is 10:1.









Figure 4.3: Histograms of the truth-to-surface error applied to case 1 for a) sparse
markings and b) dense markings.

The distributions of truth-to-surface distance errors for both sparse and dense

markings are presented in Figure 4.3. Both histograms exhibited a normal distri-

bution, and an F-test indicated the distributions had no statistical difference in
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variation. This allowed an unpaired t-test to be performed to test the hypothesis

that both samples (dense and sparse) are drawn from the same population (the

true surface). A small difference in means between the two samples populations

indicates they are likely the same population.

The 95% confidence interval of mean differences between the population con-

taining the sparse markings and the population containing the dense markings

was -0.06 mm to 0.12 mm. The hypothesis that both samples represent the same

population (i.e. the true vessel surface) is well supported. Thus we find that

the by applying the SS method to sparse markings, we can decrease the manual

marking burden by at least one order of magnitude and still robustly evaluate the

segmentation extent and accuracy.
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CHAPTER 5

VESSEL TRACKING OPTIMIZATION

This chapter discusses the training and optimization of the methods used in this

thesis, as well as presents the details of the experiments used to evaluate the

segmentations.

5.1 Dataset

The dataset used for this experiment consisted of 50 low-dose thoracic CT scans.

From these 50 cases, 10 cases with accurate airway segmentations and labels were

selected for ground truth marking. The scans were generated with an 8 slice helical

CT scanner operating under a low-dose protocol with beam current of 40 mA. The

full set of scan and image parameters for the dataset are presented in Table 5.1. The

scans were tagged with standard Digital Imaging and Communications in Medicine

(DICOM) headers, with the patient-identifying information removed. The image

resolution information, used in our method to implement isotropic methods in an

anisotropic image, were automatically retrieved from the DICOM header.

Table 5.1: CT scanning parameters for the 50 cases in the low-dose data set.

Parameter Value
CT scanner model GE LightSpeed Ultra
Accelerating voltage 120kV
Anode current 40 mA
Gantry aperture 70 cm
Number of slices 8
Gantry revolution time 500 ms
Axial image size 512×512
Image format 16 bit
Slice thickness 1.25 mm
In-plane resolution 0.55 - 0.82 mm
Patient position Feet first supine
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5.2 Performance evaluation with the SS metric

Ground truth points were marked on axial slices of CT scans windowed to soft

tissue. An approximately homogenous mat of ground truth points was created by

marking vessels at roughly 4 mm intervals around their circumference for roughly

every third frame, corresponding to about a 4 mm interval in the axial direction.

Each vessel was marked separately and given a unique label. Only left and right

basal pulmonary arteries child vessels with radii greater than 1 mm were marked.

Additionally, veins with radii > 1 mm in the conflated inferior pulmonary venous

tree were individually marked.

Each marked vessel was classified as either having been segmented or missed

by measuring the RMS error per vessel. A vessel was classified as having been

segmented if the RMS the distance was below 2.0 mm, which corresponds to an

average error of roughly 3-4 voxels. The threshold of 2.0 mm is an ad hoc value that

represents the upper error bound for vessels visually confirmed to be segmented.

Using this method, each vessel was classified into one of four categories, given

Table 5.2, for evaluating the performance of the algorithm.

Table 5.2: Vessel classification for evaluating algorithm performance

Category Type of vessel Criterion
True Positive (TP) Artery RMS error less than 2.0 mm
False Negative (FN) Artery RMS error greater than 2.0 mm
True Negative (TN) Vein RMS error greater than 2.0 mm
False Positive (FP) Vein RMS error less than 2.0 mm

The primary goal of the method was to maximize the number of arteries seg-

mented while minimizing the number of veins segmented. To quantify the perfor-

mance of the method using these criteria, the overall sensitivity and specificity of
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the algorithm were calculated:.

Sensitivity =
TP

TP + FN
Specificity =

TN
TN + FP

(5.1)

The sensitivity is a measure of the ability of the method to identify the arteries,

while the specificity is a measure of the ability of the method to separate the

arteries from the veins.

The secondary goal was to minimize the error between the segmented vessel

shape and the true vessel shape for each identified artery. Quantification of this

error was also performed using the SS metric. The bias, magnitude, and extreme

values of the truth-to-surface error were calculated using the error statistics given

in Section 4.3.

5.3 Training and Optimization

Three CT scans were selected for algorithm training and parameter optimization.

Three parameters were selected for optimization: cylinder height h0, bifurcation

detection threshold δradius, and the incremental step size ∆step. Table 5.3 gives the

values of parameter space that were explored for optimization.

The tracking and bifurcation detection algorithms were trained to maximize the

number of arteries and minimize the number of veins segmented (i.e. maximize

segmentation extent). To find the optimal set of parameters, a training score was

constructed which gives the fraction of vessels correctly identified by the algorithm:

Training Score =
True Positives + True Negatives
Total number of vessels marked

(5.2)

The optimal set of parameters which maximize this training score is given in Ta-

ble 5.3.

Additionally, the sensitivity and specificity of the algorithm for each parameter

set were computed. Figure 5.1 shows the effect on segmentation and training
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performance when each of the three trained parameters is varied from the optimal

value.

Table 5.3: Parameter sets used in training on 3 documented CT images.

Parameter Range Step size Optimal value
h0 10 mm - 30 mm 5 mm 15 mm
δradius 0.75 - 0.95 0.05 0.90
∆step 10% - 30% h0 10% 20%h0












     

Cylinder height (mm)

Cylinder height training ho

  













     

Radius change threshold for bifurcation detection

Bifurcation detection training radius

  













    

Incremental step size (fraction of cylinder height)

Incremental step size training step

  













    

Incremental step size 

step Optimization
  













     

Cylinder height (mm)

ho Optimization
  













     

Radius change threshold

radius Optimization
  

Figure 5.1: Training results for the cylinder height, bifurcation detection, and in-
cremental step size parameters. Each plot shows the effect of varying one parameter
while retaining the other two at their optimal values.

The parameter that had the largest effect on the outcome was the cylinder

height h0. Visual inspection of the training tracking results indicate that cylin-

ders which are too short are sensitive to noisy regions and are unable to extract

the vessel structure. Conversely, cylinders that were not sensitive enough to de-

tect most bifurcations, reducing the overall sensitivity. Similarly, incremental step

sizes above the optimal value of 0.20h0 were too coarse detect many bifurcations,

decreasing the sensitivity.

The radius change threshold parameter δradius was optimized to a value of 0.90,

which gave a marked improvement in algorithm performance over a much weaker

value of 1.0. This indicates that limiting the search for child vessels to geometries
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where the radius changes abruptly improves overall vessel identification perfor-

mance.

5.4 Experiment design

The process diagram for the experiment is given in Figure 5.2. The primary pur-

pose of the experiment was to evaluate the ability of the algorithm to segment the

arterial tree while avoid venous segmentations. However, the SS metric also allows

for analysis of truth-to-surface distance per vessel to evaluate the accuracy of the

segmentation for identified vessels.


  
































 






Figure 5.2: Process diagrams vessel tracking experiment

Sparse surface documentation of the veinous and arterial trees was performed

on 7 cases in addition to the 3 training cases. Seed points in the left and right

lungs were successfully automatically generated for 19/20 of the arterial trees across

the ten cases. The SS metric was applied as outlined in Section 4.3 to compute

the sensitivity and specificity of the algorithm. Additionally, the truth-to-surface

distance errors were calculated for each vessel to obtain the overall distance error

distribution for segmented vessels. Additionally, the maximum extent of over- and

under-segmentation, the RMS error, and the overall bias (ASD) were calculated

for the 19 segmented basal parent arteries.
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CHAPTER 6

VESSEL TRACKING RESULTS AND DISCUSSION

This chapter presents the results of the pulmonary artery segmentation exper-

iment (Section 5.4) performed on the ten documented cases. The ability of the

method to identify arteries and avoid veins is evaluated first, followed by analysis

of the truth-to-surface errors for the parent vessels. Additionally, this chapter dis-

cusses the main sources of error and provides a discussion of the tracking method.

6.1 Results

The sensitivity and specificity of the tracking method for the three training cases

and seven test cases is shown in Figure 6.1. The average sensitivity across the seven

test cases was 0.64, while the average specificity was markedly higher at 0.90. The

average sensitivity across the three training cases was 0.60, with a specificity of

0.90.
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Figure 6.1: Sensitivity and specificity for the ten documented cases.
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In addition to evaluating the specificity and sensitivity, the sparse surface metric

provides for analysis of the segmentation error per vessel. As described in Chapter

4, four different statistics were calculated on the truth-to-surface errors for the seg-

mented vessels. Of particular interest are the parent basal arteries where the seed

points are detected. The plot in Figure 6.2 presents the average signed distance,

root mean square distance, and distances of greatest over- and under-segmentation

for the basal arteries across the ten documented cases.
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Figure 6.2: Results of the artery identification method for the LBPA and RBPA

The overall bias in the segmentation across the ten cases is 0.11 mm (approx-

imately 1/4 of a voxel). This indicates that neither isotropic dilation nor erosion

of the segmentation would improve results, as the bias is significantly less than

one voxel. The mean RMS error per vessel is 1.01 mm (approximately 1 voxel).

The SS metric also indicates that the greatest source of error arises from under-

segmentation.
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Distribution of SGT distances for segmented arteries
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Figure 6.3: Distribution of truth-to-surface distance errors for correctly identified
vessels using sparse markings across 10 cases.

The overall distribution of distance errors for segmented vessels is given in

Figure 6.3. The average signed distance error was -0.15 mm, and the average RMS

error was 0.63 mm.

6.2 Discussion

Visualizations of two arterial tree segmentations are given in Figure 6.4 along with

the manual sparse truth markings for the arteries. The first segmentation shown

provides an example of a case from the right lung with a high false positive and low

true positive rate. In this case, a large child artery was missed, causing subsequent

child branches to also be missed. Additionally, there is leaking onto the inferior

pulmonary vein, and the separation of the arterial and venous trees is not fully

maintained. The second segmentation represents a highly successful case from the

left lung. The arterial tree is fully detected while maintaining full separation of

the arterial and venous trees.

Figure 6.5 shows an example of the most significant source of error: leaking

onto the inferior pulmonary vein. In both the right and left lungs, the large inferior
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Poor segmentation Strong segmentation

Missed vessels

Leaking onto veins

Figure 6.4: A poor segmentation in the right lung (case 9) and a strong segmen-
tation in the left lung (case 10). Sparse surface truth markings are overlaid on the
segmentation.

pulmonary veins runs directly posterior to the main arterial bifurcation. Errors

at the inferior pulmonary vein are particularly, as they redirect the tracker onto

a large parent vein, resulting in the segmentation of the child veins as well. The

three frames in Figure 6.5 show the development of an inferior pulmonary vein

leak as the tracker progresses into the lung parenchyma. In the first frame, the

true bifurcation is missed, and the second child vessel is initiated on the inferior

vein, as shown in the second frame. The result is a segmentation of child veins, as

shown in the third frame.

The segmentation was performed in binary space, which reduced both the sig-

nal from the vessels and the noise inherent to low dose scans. The arteries were

separated from the veins through vessel morphology and relative anatomical loca-

tion alone. This approach is best suited for scans without contrast enhancement,

where vessel edge information is lacking.

The vessel tracking algorithm was able to successfully segment vessels of greatly

different radii. By fitting the size of the model cylinders to the vessel tree, the
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Figure 6.5: Three frames from a single CT image showing the progression of a leak
onto the inferior pulmonary vein.

tracker was able to segment both the large parent arteries of the inferior lobes and

the small subsegmental arteries deep in the lung parenchyma. However, as the

vessel radii approached the smallest possible cylinder, the tracker was unable to

detect bifurcations. The method was strongest in the larger vessels where Murray’s

law of vessel bifurcation is more closely followed. As vessel sizes decrease, blood

flow becomes more non-Newtonian, and child vessel sizes become larger relative

to the parent. Additionally, the smaller vessels deep in the lung parenchyma were

more prone to obfuscation by noise because of their small size.

In most cases, the tracker was able to separate the arteries from the veins

by searching for cylindrical objects in a limited size and orientation search space

defined by the bifurcation model. While this approach was able to distinguish

nearly identical vessels based only on their relationship to other arteries, it is

unable to locate vessels that fall outside of the search space. Thus, arteries were

missed if they originated at apparent trifurcations, or had unusually small radii

relative to their sister branches. Relaxing the bifurcation model results in few

missed segments, but more false positives (i.e. segmented veins).

The main source of error in vessel segmentation occurred at the left and right
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inferior pulmonary veins. In cases where the arteries were highly conflated with

the veins and airway walls, due either to high noise or unusual anatomy, the vessel

tracker leaked onto the pulmonary veins and tracked them into the parenchyma.

One possible method for reducing the false positive rate would be to initiate a

vessel tracker at the main inferior pulmonary arteries, and exclude from the arterial

segmentation vessels that were highly likely to belong to the venous tree.
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CHAPTER 7

CONCLUSION

Pulmonary artery segmentation has been suggested as a method to improve

diagnosis of both pulmonary embolism and pulmonary arterial hypertension. Al-

though much work has focused on segmenting the arteries and veins as one struc-

ture, very little previous work has been performed to distinguish the two trees. In

this work, a method was developed for automatically segmenting the pulmonary

arteries in low-dose CT, and was applied to the basal pulmonary arteries and their

child vessels.

7.1 Contributions

The method in this thesis is the first to automatically separate the arteries from

the veins in thoracic CT. Automated segmentations eliminate inter-user variability,

and provide the possibility of obtaining novel and quantitative anatomical informa-

tion. Additionally, the presented method is the first to use an airway segmentation

to eliminate airway walls prior to vascular segmentation.

A cylinder tracker was used to perform the entire segmentation, which allows

vessels to be tracked individually to separate them from fused structures. Vessels

were tracked based on anatomical and morphological information alone, as edge

information between soft tissue structures is highly suppressed in low-dose CT.

Child vessels were identified by comparing the local vessel morphology to a bi-

furcation model. Child vessels were searched for only at points where the parent

vessel underwent a large change in radius, suggesting a bifurcation point. Separa-

tion of the arteries and veins was frequently maintained by excluding child vessels

at highly unlikely angles from the parent and other child vessel.

A novel method for automatically locating large parent arteries was developed
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and tested on the basal arteries. An automated airway segmentation was used to

provide a reference point for locating the basal arteries, and a region of interest

was constructed around the basal airways to limit the search space for the arteries.

A method for extracting the location and orientation of the basal artery was used

to automatically seed the vessel tracker for segmenting the left and right lower

lobes.

Validation of complex structures is a challenging task, and a novel surface-

based ground truth marking system and validation metric were defined for use

with complex structures. Sparse surface markings capture significant vessel detail

while require fewer markings that traditional dense surface markings. This allows

for validation on a greater number of cases given the same amount of effort. The

sparse surface markings were shown to be an accurate sampling of the true surface,

justifying the use of spares markings over dense markings.

The artery identification method was validated on 50 cases (100 basal arteries)

with a success rate of 60% overall, and 80% when ROIs were provided from the

airway segmentation. The tracking algorithm achieved an overall sensitivity rate

of 0.64 and specificity rate of 0.90 when applied to 10 cases with correctly labeled

airways. Although the success rate is lower than the previously reported method

by Saha, the presented method has the advantage that it is completely automated,

and works in more noisy low-dose CT scans.

7.2 Future Work

Automated detection of parent vessels in the left and right upper lobes is the

next appropriate step to take in furthering this work. In this work, only the

largest arteries to enter the lung parenchyma were identified. Such a method

could employ a similar ROI construction or use another algorithm to locate the
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upper lobe arteries.

The sensitivity of the algorithm could be improved by developing a trifurcation

detector, or developing a method for identifying small subsegmental arteries missed

by the tracker. Additionally, the method could be paired with a global Hessian

matrix filter to amplify the signal from vessels and reduce tracking error.

Finally, the vessel tracker presented in this thesis could also be tested on the

pulmonary veins in low-dose CT. Additionally, the tracker could be used to seg-

ment branching biological networks encountered in alternative imaging modalities,

including standard-dose CT and magnetic resonance imaging.
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