
HYBRID SYNCHRONOUS / ASYNCHRONOUS DESIGN

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Filipp A Akopyan

May 2011

c© 2011 Filipp A Akopyan

ALL RIGHTS RESERVED

HYBRID SYNCHRONOUS / ASYNCHRONOUS DESIGN

Filipp A Akopyan, Ph.D.

Cornell University 2011

In this new era of high-speed and low-power VLSI circuits, the question of which

circuit family is best for a given application has become much more relevant.

From a designer’s point of view, process technology scaling continues to reveal

undesirable device behavior. Thus, a designer has to make decisions not only at

the micro-architectural scale, but also at a lower, circuit-level scale. However,

common circuit families are not sufficient to solve modern engineering problems in

many cases.

Our goal is to provide resources that will allow designers to select the circuit

family that yields the best results in terms of power, area, and performance metrics

for each application, with minimal human input. Using our techniques, this choice

can be made in a timely manner without in-depth knowledge of each circuit family.

We propose an improved hybrid synchronous / asynchronous toolflow that offers

significant reduction in the design cycle time and we advise on how our work can

be extended to various types of circuit families for any given technology node.

We describe tools that we have developed to allow designers to implement

their projects using both synchronous and asynchronous circuit families. We also

present the cosimulation environment that we have developed to allow designers to

run complex digital and analog simulations of various circuits at different levels of

abstraction with minimal setup effort. Finally, we demonstrate a highly optimized

synchronous-asynchronous interface that works as a bridge in designs where part

of the logic is implemented asynchronously within a globally synchronous system.

Biographical Sketch

Filipp Akopyan was born in Moscow, Russia, where he grew up and lived until

the age of 15. Filipp completed middle school in Russia and high school in the

United States (at Spring Valley, NY). Filipp joined Rensselaer Polytechnic Institute

(in Troy, NY) in September of 2001 and graduated number one in the School of

Engineering with a Bachelor’s Degree in Electrical Engineering in May of 2004.

His concentrations at RPI included electronic circuit design and signal processing.

The author has been enrolled in a joint M.S. / Ph.D. program at Cornell

University since September 2004. At Cornell his main interests included high-

speed VLSI circuits (including 3-D integrated circuits and neuromorphic systems)

that operate under extreme conditions and withstand process variations. He has

also developed low-power asynchronous systems for signal processing.

Filipp is a part of the Asynchronous VLSI (AVLSI) research group led by Pro-

fessor Rajit Manohar. Filipp’s office is located in Upson Hall, 358 in the Computer

Systems Laboratory.

iii

“Desire to become the best at what I do drives my life.”

dedicated to my family and friends; thanks for all the support

...yours truly

iv

Acknowledgments

First of all I would like to thank my advisor, Professor Rajit Manohar, who always

offered support and encouragement even in the toughest days of my graduate

career. His enormous help, ideas and willingness to discuss my (at times risky

and unconventional) ideas, allowed me to think outside of the box and perform

the work outlined in this thesis. I thank my close friends and colleagues at AVLSI

and the entire CSL staff. Special thanks go to Carlos Tadeo Ortega Otero, Ilya

Ganusov, David Fang and Virantha Ekanayake for all the valuable advices that

they have offered to me during my studies. I have been lucky to have such loyal

and smart friends surround me in graduate school.

My appreciation and endless love go to my family (Andrey, Galina, Seva,

Alexander and Vera), especially to my mother, Yuliya, who has always been there

for me and gave up everything she could in order to make my life better. I would

like to thank Sergey Rakov for all of his valuable professional and personal advices

throughout my life and for getting me interested in the Electrical Engineering field.

My gratitude goes to my lifetime friends: Vadim Zipunnikov, Borjan Gagoski,

Peter Paliwoda, Chin-Chen Lee and Jan Kostecki for helping me deal with diffi-

culties of graduate life. I would also like to thank Alena for her love and patience

through these last few years.

This research was supported in part by National Science Foundation and IBM.

v

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 3
1.3 Proposed Toolflow Basics . 5
1.4 Asynchronous Design Methods and Challenges 6
1.5 Toolflow Evaluation . 7
1.6 Organization of This Thesis . 8

2 Toolflow 10
2.1 Toolflow Comparison . 10

2.1.1 Conventional Toolflows . 10
2.1.2 Proposed Toolflow . 12
2.1.3 Proposed Simulator Chain 14

2.2 Industrial Tools Used in the Flow 16
2.2.1 Synchronous Digital Simulator 16
2.2.2 Transistor-Level Analog Simulator 16

2.3 Cornell AVLSI’s Tools Overview . 16
2.3.1 Asynchronous Digital Simulator (PRSIM) 16
2.3.2 Verilog-to-ACT . 17
2.3.3 Netlist Generator . 19
2.3.4 Automatic Cosimulation Environment Generator 19
2.3.5 Circuit Family Libraries . 20

3 Automatic Cosimulation Environment Generator 22
3.1 Motivation . 22
3.2 Vision . 24
3.3 Auto Simulation Setup . 25
3.4 Overview . 27
3.5 Functionality . 30
3.6 Common Setup Parameters . 35
3.7 Sources and Sinks Library for Testing Environment 44
3.8 Global Connections . 50
3.9 Output Files . 52

vi

4 Toolflow Evaluation 54
4.1 Benchmark Considerations . 54
4.2 Throughput Comparison . 56
4.3 Process Variations . 58
4.4 Power Analysis . 60
4.5 Design Space Analysis . 62
4.6 Designer Guidelines . 65

5 Asynchronous-to-Synchronous Interface with Discrete Timing 67
5.1 Motivation and Background . 67

5.1.1 Synchronous-to-Asynchronous Boundary 68
5.1.2 Asynchronous-to-Synchronous Boundary 71

5.2 Additional Asynchronous-to-Synchronous Interface Requirements . 72
5.3 Proposed Interface Overview . 74
5.4 Proposed Interface Detailed Description 76

5.4.1 Input Stage of the Synchronizer 78
5.4.2 Flip-Flop Implementation Details 81
5.4.3 Synchronous Circuitry . 86
5.4.4 Synchronous Register Implementation 89
5.4.5 Synchronizer Output Stage 92

6 Additional Related Research 94

7 Suggestions for Further Improvements 96

8 Conclusion 99

Bibliography 101

vii

List of Figures

1.1 Synchronous and Asynchronous Time Domains 4

2.1 Industrial Toolflow . 11
2.2 Asynchronous Toolflow . 12
2.3 Proposed Toolflow . 13
2.4 Sample Simulator Chain . 15
2.5 Verilog-to-ACT Conversion Table 18
2.6 Verilog-to-ACT Synchronous to Asynchronous Transformation . . . 18

3.1 Overview of COSIM’s Functionality 31

4.1 ITC-99 Benchmarks and their Functionalities 55
4.2 ITC-99 Benchmarks Structure . 55
4.3 ITC-99 Benchmarks: Synchronous and Asynchronous Implementa-

tions in MHz . 57
4.4 ITC-99 Benchmarks: Asynchronous Throughput Normalized 57
4.5 Process Variations: Synchronous Implementations 58
4.6 Process Variations: Asynchronous Implementations 58
4.7 Process Variations: SYNC and ASYNC Implementations 59
4.8 ITC-99 Benchmarks: PWR break-even frequency in kHz 61
4.9 Power for b01 in Watts: Asynchronous Implementation 63
4.10 Power for b01 in Watts: Synchronous Implementation 63
4.11 Power for b01: Diff between ASYNC and SYNC Implementations . 64

5.1 Two-Way Arbiter Structure with filter 69
5.2 Mutual Exclusion Element with QDI handshake 70
5.3 On-chip Globally Synchronous Network 74
5.4 Synchronizer Overall Diagram . 75
5.5 Synchronizer Detailed Diagram . 77
5.6 Input Stage of the Synchronizer . 78
5.7 Modified PCEHB Element . 80
5.8 C2MOS flip-flop with conditional feedback 84
5.9 C2MOS flip-flop with full combinational feedback 85
5.10 Synchronous Comparator and Ouput Stage of the Synchronizer . . 86
5.11 A Variant of Synchronous Comparator Implementation 88

viii

5.12 Synchronous Register / Flip-Flop Control Signals 90

ix

List of Abbreviations

ACT Cornell’s Asynchronous Circuit Toolkit

CHP Communicating Hardware Processes, hardware description language

CMOS Complementary Metal-Oxide Semiconductor

EDA Electronic Design Automation

GND Ground Power Supply Node

Netlist circuit description at some level of abstraction

HSE Handshaking Expansion

NFET n-diffusion Field Effect Transistor

PFET p-diffusion Field Effect Transistor

PRS Production Rule Set, transistor pull-up and pull-down description

QDI Quasi-Delay Insensitive

Sink data token consumer

Source data token generator

SPICE transistor-level circuit description

TSMC Taiwan Semiconductor Manufacturing Company

VDD Positive Power Supply Node

Verilog Hardware Description Language for electronic system modeling

VLSI Very Large Scale Integration

x

Chapter 1

Introduction

1.1 Motivation

Complexity of modern integrated circuits continues to increase with shrinking fea-

ture size. As a result of that, timing closure, power management and undesirable

transistor behavior at high operating speeds have become increasingly important

and challenging to deal with [34].

The main purpose of Computer-Aided Design (CAD) tools is to help designers

combat these issues. Contemporary industrial design flow is well understood, doc-

umented, and constantly being updated and improved by large-scale CAD corpora-

tions. However, the limitations of current design flow are also well-understood [6],

especially in the current era of low-power/high speed VLSI, where technology scal-

ing leads to more parasitic analog effects that are only revealed during low-level

simulations at the ”end” of the design cycle.

Consequently, VLSI design is becoming more complex and more time consum-

ing. One of the primary reasons for this is a lack of fast and accurate low-level

circuit modeling tools. Presently, if a designer wants to perform gate-level opti-

1

mizations, he is forced to perform slow, transistor-level simulations that can take

several days to complete for a reasonable size VLSI design. Furthermore, these

simulations are often infeasible, since most current designs are standard-cell based

and foundries do not reveal the exact structure of their gates to the designers due

to confidential intellectual property agreements. Thus, designers are forced to per-

form most of their optimizations only at a high-level circuit description, where

no notion of transistors or even gates exists. This type of decision-making pro-

cess renders crucial low-level design space optimizations unavailable. In addition,

mixed high- and low-level modeling is underdeveloped and cannot be performed

with all known circuit families.

Moreover, if a designer attempts to perform low-level optimizations, he is re-

quired to have in-depth knowledge of circuit implementations and circuit families.

It is extremely difficult to predict which circuit family will be ideal for a given de-

sign in a particular environment. Different optimization criteria exist for different

applications, design constraints, and environments.

Ideally, a designer should have the freedom of describing a design using a high

level language, such as Verilog or VHDL. The tools should then aid the designer

with synthesizing this behavioral description into a lower-level description (possibly

a gate-level netlist). Ideally, at that point the designer should already have some

guidelines about which circuit families he should consider and which he should

dismiss immediately due to the synthesized circuit structure. After a subset of

circuit families is selected based on the guidelines, the full design or subset of the

design (depending on size and complexity) can then be automatically synthesized

into transistor-level netlists for selected types of circuit families, which can then

be accurately simulated at the transistor-level. At this point, the designer should

have enough data to make an educated decision as to which circuit family is best

2

suited for their design, given their set of requirements and guidelines.

1.2 Background

When selecting a circuit family, the designer has many choices. Synchronous fami-

lies include static CMOS, domino logic, differential signaling, etc. However, many

low-activity/high-speed applications may benefit from self-timed (asynchronous)

circuit families, which offer tradeoffs in terms of throughput and/or power con-

sumption in comparison to synchronous circuits [9]. Some potential benefits in-

clude data-driven switching activity and absence of clock circuitry, but these ad-

vantages come with the overhead of additional acknowledgement signals and po-

tentially more complex data encoding (dual-rail signals, etc.).

Some application where asynchronous circuits have a clear advantage over con-

ventional synchronous circuits are audio/speech processing [5] and neurobiological

applications. A wide class of such designs has the property that the input signals

don’t change continuously; they are idle for some time, then change their value and

return back to idle state. Consequently, a lot of power, if implemented in typical

synchronous circuits, is wasted, because many samples of the input have the same

values for a long period of time. For the purpose of eliminating the circuit power

consumption when the input is stable, designers may use asynchronous design to

implement signal processing operations. Asynchronous circuits are appealing for

this task, since they don’t have a global clock that forces periodic sampling. Un-

like all the conventional synchronous circuits, an asynchronous system shuts down

automatically, if the input is constant (i.e. the system is event-driven). In the

applications of signal processing and neurobiological circuits, asynchronous cir-

cuits in many cases have several advantages in terms of energy consumption and

complexity reductions.

3

Asynchronous circuits operate without a global clock, and use handshakes to

transmit and control the flow of data as shown in Figure 1.1. The data-driven

nature of asynchronous circuits allows a circuit to idle without switching activity

when there is no work to be done. In addition, asynchronous circuits are capable of

correct operation in the presence of continuous and dynamic changes in delays [24].

Sources of local delay variations may include temperature, supply voltage fluctua-

tions, process variations, noise, radiation and other transient phenomena.

Figure 1.1: Synchronous and Asynchronous Time Domains

We believe that asynchronous circuits are a promising area in research because

many design parameters can be improved, in comparison to the well-known syn-

chronous circuits.

4

A brief comparison of synchronous and asynchronous circuit characteristics is

presented in the table below.

Synchronous Ckts Asynchronous Ckts

Activity Clock-Driven Input-Driven

Power Consumption Continuous Activity-Dependent

Logical Correctness Delay Sensitive Delay Insensitive

Temperature Variation Breaks Circuits Immune

Radiation Immunity Hard to Achieve Achieved with Minor

Modifications

Fault Tolerance Requires Complex Circuits Easily Achievable

1.3 Proposed Toolflow Basics

In order to allow the designer to make better-informed choices with regard to

circuit families, we have developed a toolflow for automatic synthesis of a given

logic block into synchronous and asynchronous logic families. This automatic

synthesis enables a fair and systematic comparison between different circuit family

implementations. After compilation of a given digital logic block into synchronous

and asynchronous implementations, we can measure power, performance, and delay

characteristics. Using our flow, the designer can evaluate various circuit types and

quantitatively determine under which conditions an asynchronous circuit would

result in reduced delay and/or power consumption compared to its synchronous

counterpart or vice versa. In this fashion, the designer can quickly obtain the

cost of each implementation in terms of power, performance, and area (transistor

count), at which point he can decide which implementation should be used without

going through the entire synthesis/layout of all blocks.

Our toolflow also provides highly optimized, pre-compiled cell libraries for dif-

5

ferent logic families, both synchronous and asynchronous, which eliminates the

designer’s requirement of thorough knowledge of all circuit families. All our tools

are also compatible with industrial standard cell libraries. Such compatibility gives

the designer another degree of freedom to pick the factory supplied standard cells if

they are sufficient or beneficial for a given design, or to decide that another circuit

family should be considered.

1.4 Asynchronous Design Methods and Challenges

For the majority of our asynchronous digital experiments, we have selected the

quasi-delay-insensitive (QDI) style [24]. The advantage of this family is that the

resulting circuits are robust and insensitive to process, voltage, and delay varia-

tions. Electromagnetic emissions are also minimized as compared to synchronous

circuits due to the absence of a high-frequency clock signal throughout the circuit.

A sample conventional asynchronous compilation method is described in Alain

Martin’s communicating process compilation technique [23]. It is based on a syn-

thesis method that translates a high-level design description to circuits through

handshaking expansions, and production rules. This technique facilitates physical

circuit realization, where some of the decomposition in Martin’s approach can be

generated automatically.

The issue with all the current asynchronous toolflows is that they are not easily

combined with their synchronous counterparts. One cannot easily interchange

synchronous and asynchronous circuits within a design. No unified tools that

could handle both circuit families exist according to the author’s knowledge. In

general, the lack of EDA (Electronic Design Automation) tools for asynchronous

flows limits their usage in contemporary electronic systems. Most of the synthesis

and simulation of asynchronous circuits is presently performed by hand, which puts

6

a large burden on the designer and requires in depth knowledge of the asynchronous

circuit theory. In addition, methods of combining synchronous and asynchronous

circuits are limited and sometimes do not satisfy the requirements of the more

complex systems.

Our goal is to solve these problems and introduce a new hybrid synchronous /

asynchronous toolflow that allow designers to easily build not only synchronous,

but also asynchronous systems and to have an efficient way of combining these two

circuit families.

1.5 Toolflow Evaluation

Transistor models will inevitably deviate from the actual manufactured integrated

circuits. All the results presented in this thesis are based on the theoretical models,

simulations and manufacturing data from previous test-chips/test-runs. However,

QDI asynchronous circuits tolerate variations between models and physical devices

due to the conservative design methodology [20]. Conversely, for some aggressive

synchronous circuits, more timing-closure analysis should be performed by design-

ers using the parasitic extractions obtained after the complete place-and-route

step, which is well covered in the industrial flows and is not presented in this work.

For the majority of measurements and tool calibration presented in this thesis we

have used the Nangate 45nm Open Cell Process/Libraries [1], commonly used for

testing and exploring modern circuits and EDA flows.

For the toolflow evaluation purposes we have designed various prototypes of

integrated circuits. While developing the presented toolflow, we utilized many of

our own tools, described in this thesis; as well as several industrial tool packages.

The following industrial tools have been extensively studied and used in our ex-

periments; for layout: Cadence IC 6.13, Cadence Encounter, Micromagic MAX;

7

for high-level simulations: Synopsys VCS, Synopsys Design Compiler; for analog

simulations: Synopsys HSIM, Synopsys Hspice. These software tools allow us to

perform pre-layout simulations, Verilog- and VHDL- type synthesis, post-layout

analysis, and verification of different digital and analog circuits.

1.6 Organization of This Thesis

This thesis is divided into four major parts.

In the first part we will discuss our innovations in toolflow development. We

will demonstrate a hybrid synchronous/asynchronous toolflow that uses identi-

cal mechanisms for synthesizing a given design into both synchronous and asyn-

chronous circuits. This toolflow gives designers the flexibility of obtaining accurate

power/throughput/area estimates early in the design cycle using different circuit

families.

Second part of this thesis will focus on the COSIMulation tool that we have

developed in order to allow designers to simulate their designs at various levels

of abstraction. This tool unifies various industrial and our own digital and ana-

log simulators to give designers an opportunity to test their designs. This tool

handles both synchronous and asynchronous circuit families and has the ability of

automatically connecting different types of input and output environments to the

design to provide logical and timing correctness checks.

Third part demonstrates the effectiveness of our toolflow. We evaluate our gate-

level conversion methods on a set of ITC-99 benchmarks, compiling them into a

highly efficient static CMOS industrial library and into our own QDI asynchronous

library. We present throughput and power consumption trade-offs in relation to

circuit input signal activity. We also perform a design space study based on power

consumption, input activity factor and maximum supported frequency.

8

The last part focuses on a highly efficient asynchronous-synchronous interface.

This interface is most useful in globally synchronous systems, where part of the

computation needs to be implemented asynchronously due to some targeted met-

ric or design characteristic. Our interface guarantees deterministic timing of the

overall system due to the implemented synchronization protocol.

9

Chapter 2

Toolflow

2.1 Toolflow Comparison

2.1.1 Conventional Toolflows

The toolflow used by the majority of companies in industry is presented in Fig-

ure 2.1. First, the designer creates a high-level Verilog/VHDL description of the

circuits. Second, this description is synthesized into a gate-level netlist using a spe-

cific set of standard cells with pre-layout timing estimates supplied by the foundry.

Third, the designer works with automatic place and route tools to obtain a physical

(layout) implementation of the circuit – in practice, this step is not fully automatic

and requires a significant amount of manual effort. At this point the layout can be

extracted, but the contents of the standard cells are not revealed by the foundry.

Only after these steps are completed can the designer perform analog-level sim-

ulations with the estimated parasitic elements from the layout – for the first time

since the beginning of the design cycle.

The place and route step takes a large portion of the design cycle time and

10

Figure 2.1: Industrial Toolflow

needs to be partially or completely repeated after every modification to the design.

It also takes the designer a long time to get to the first set of analog-level sim-

ulations, where many common problems, such as cross coupling, charge sharing,

signal swing issues are revealed.

As for the asynchronous toolflow, different design teams around the world have

their own toolflows. Various tools have been developed to support asynchronous

circuits, however, a large portion of the design process still requires designer’s in-

tervention for synthesis and analysis. A toolflow used by Cornell’s AVLSI research

group is presented in Figure 2.2.

Some of the tools shown in Figure 2.2 will be briefly described later in this

thesis. From the comparison of the two flows, it is obvious that synchronous and

asynchronous toolflows use completely different description languages and tools.

No parts of these flows may be interchanged and, thus, evaluation of synchronous

11

Netlist generator

Micromagic, Calibre

CHP, HSE Description

Production Rules
Description

Transistor-Level Netlist

Extracted Transistor
Netlist w/ parasitics

Figure 2.2: Asynchronous Toolflow

and asynchronous circuits conventionally requires a lot of work and a full under-

standing of asynchronous circuit operation to perform some of the manual synthe-

sis.

2.1.2 Proposed Toolflow

Our proposed toolflow, shown in Figure 2.3, provides full support of both syn-

chronous and asynchronous circuit families. It uses same exact tools to gener-

ate both synchronous and asynchronous netlists. It also allows easy modifica-

tions/adjustments for parts of the design. This toolflow eliminates all the manual

labor previously required from the designer to perform asynchronous circuit syn-

thesis.

Our toolflow also removes the necessity for the place and route step for all the

preliminary design decisions and measurements. Once the design is finalized and

satisfies all the metrics, the place and route step is performed only once with some

12

minor post-layout adjustments to account for cross-talk, transmission line effects,

etc.

Figure 2.3: Proposed Toolflow

In order to minimize design time and allow the designer to test various types

of circuit families for a given design, we augment the industrial toolflow in the

following manner. Similar to the current industrial flow, the designer creates a

high-level Verilog/VHDL description of the circuits, which is then synthesized into

a gate-level netlist using a specific set of supplied standard cells. At this point

the designer, instead of using the ”black-box” industrial cells, has a choice of

using cells from various different circuit family cell libraries. For example, if the

selected circuit family is synchronous, the synthesized netlist is used directly with

transistor-level libraries of various synchronous families. However, if the selected

13

family is asynchronous or data-driven, we perform several netlist transformations,

described in the next section, to obtain a logically equivalent asynchronous gate-

level netlist. In this case, asynchronous libraries are attached to the obtained

gate-level netlist. Presently, our tools perform the transformation of synchronous

gate-level netlists into Quasi-Delay Insensitive (QDI) [24] asynchronous netlists,

but it is relatively simple to perform a similar set of transformations to obtain a

bundled-data asynchronous netlist, for example. The designer need not have an

in-depth understanding of the operation of asynchronous circuits, because our tools

automatically perform correct netlist transformations and attach the corresponding

libraries of asynchronous components.

The advantage of our flow is that, at this early point in the design cycle,

designers can perform analog simulations using industrial simulators that take

into consideration most of the parasitic effects of the given design. To enable

this, we estimate and annotate wiring capacitance associated with each gate’s

output node. Once the designer is satisfied with the simulation results, the physical

implementation or layout step is performed only once using the circuit family that

gave the best results for the specified metrics.

2.1.3 Proposed Simulator Chain

In the toolflow that we have presented, the designer has much more flexibility

simulating the circuit at various pre-layout levels of development, as shown in

Figure 2.4. As in the industrial flow, the Verilog/ VHDL behavioral code may

be simulated with an industrial level simulator, such as Synopsys VCS [4]. After

compilation into gate-level description, the synchronous gate-level netlist may be

simulated with the same high-level simulator, whereas in the asynchronous case

we use our digital simulator PRSIM, which we describe in the next section. We

14

have also developed an interface to allow the cosimulation of synchronous and

asynchronous circuits simultaneously at various levels of abstraction.

After our netlist transformations are performed, from a gate-level description

we produce a transistor-level synchronous or asynchronous netlist that can be

simulated using any of the industrial analog simulators, prior to the layout step.

After the physical implementation is performed, the same analog simulator may

be used again for final evaluation of the design.

Figure 2.4: Sample Simulator Chain

15

2.2 Industrial Tools Used in the Flow

2.2.1 Synchronous Digital Simulator

For all behavioral level simulations, as well as for gate-level synchronous netlist

simulations we have used Synopsys VCS. The advantage of such a simulator is

that we can compare results obtained from circuit descriptions before and after we

invoke Synopsys’s synthesis tools.

2.2.2 Transistor-Level Analog Simulator

For all of our transistor-level simulations we have used Synopsys HSIM for larger

circuits and Synopsys HSPICE for more accurate smaller circuit simulations. Our

tools generate netlists that account for gate and parasitic output capacitances, as

well as estimated average-case wiring capacitance to accurately represent delay

and switching energy.

2.3 Cornell AVLSI’s Tools Overview

2.3.1 Asynchronous Digital Simulator (PRSIM)

The simulator we use for our experiments with asynchronous circuits is an event-

driven digital simulator. It has been extended to evaluate the transient effects of

temperature and supply voltage on delay if so desired. The input to the simulator is

a simplified transistor-level netlist (automatically generated) in the form of event

rules describing the logic. PRSIM has the advantage of performing fast digital

simulations, while simultaneously testing for correct asynchronous circuit behavior.

16

2.3.2 Verilog-to-ACT

The Verilog-to-ACT tool converts a synthesized Verilog netlist into an equivalent

intermediate format gate-level netlist that hierarchically describes pull-up and pull-

down transistor stacks of each gate used in the design. This tool can be used to

automatically generate either a synchronous netlist or an asynchronous netlist.

The transformation from a Verilog gate-level netlist to synchronous transistor

stack-level netlist is straightforward. Only the semantics of the netlist are altered

to transfer Verilog-level description to an intermediate ACT description. At this

stage, an appropriate transistor-level library is attached to the circuit description—

various synchronous families may be used.

If an asynchronous QDI netlist is selected, the tool produces an asynchronous

gate-level netlist, by performing gate level transformations based on the initial

synchronous gate-level netlist. Asynchrony is completely transparent to all the

previous parts of the toolflow, since prior to this step the circuit looks and behaves

completely synchronous. This kind of transformation preserves the circuit struc-

ture. It replaces synchronous gates with their asynchronous counterparts, as well

as inserts asynchronous-specific circuit modules, as described further.

Verilog-to-ACT converts every boolean channel into a delay insensitive channel

and automatically inserts copy processes for high fan-out signals and token sources

for constant-value inputs. In addition, during the asynchronous transformation,

all flip-flops are replaced with asynchronous initial token buffers. The performed

transformations are outlined in Figure 2.5.

An example of a Verilog-to-ACT transformation, where the asynchronous netlist

is produced from a synchronous netlist is demonstrated in Figure 2.6. In this fig-

ure, a synchronous netlists consist of a toggle flip-flop (T flip-flop), which is imple-

mented by using a D-type flip-flop with it’s output going to an XOR gate, along

17

Synchronous Netlist  Asynchronous Netlist 

Booleans  Asynchronous Channels 

Synchronous CMOS gates   Asynchronous CMOS Gates  

VDD and GND inputs  1‐ and 0‐ Data Sources 

Dangling nodes  Data Consumers 

Gate Output Fanout  Copy Process 

Synchronous Flip‐Flops   IniCal Token Buffers 

Figure 2.5: Verilog-to-ACT Conversion Table

with the T flip-flop’s input; the output of the XOR gate is connected to the input

of the D flip-flop. This is a standard way of implementing a toggle flip-flop. Af-

ter the synchronous-to-asynchronous transformation takes place, the asynchronous

netlist looks like the right part of Figure 2.6. D flip-flop is substituted with an

initial token buffer, fan-out of two is replaced by a two-way copy process, and the

XOR gate is implemented in an asynchronous manner.

` 

T D Q

!Q

CLK

D-Type
Flip-Flop

` 

Initial
Token
Buffer

T

` 
Async
XOR

` 
Async
Copy

Q

XOR

Figure 2.6: Verilog-to-ACT Synchronous to Asynchronous Transformation

After the transformation is completed, the obtained asynchronous circuit emu-

lates synchronous circuit’s behavior. All the clock actions are replaced with asyn-

chronous handshakes, but the sequencing and structure of event occurrences in the

18

system remain untouched.

These types of transformations are suitable for small and medium sized circuits.

This technique is not as efficient for large scale designs, since many asynchronous-

specific design optimizations are not performed due to preservation of the syn-

chronous circuit structure.

Eventually, for more efficient conversion, we would like to perform the synchronous-

to-asynchronous transformation at a higher-level behavioral description, but that

would require a complex compiler. Therefore, at this time we have decided to stay

with the gate-level transformations. Once the high level transformation is imple-

mented, we can use methods such as automated concurrent pipeline synthesis, as

described by Teifel [35], to perform the asynchronous synthesis function.

2.3.3 Netlist Generator

The Netlist Generator tool is used to automatically generate a hierarchical spice

netlist from a previously described ACT netlist, generated by our Verilog-to-ACT

tool (the pull-up and pull-down transistor description for a given circuit family’s

library). Values that control process-specific parameters such as gate input and

output capacitances, approximated wiring loads, minimum p- and n- transistor siz-

ing, source/drain area and perimeter, and spacing between two FET-s in the same

diffusion stack are specified to allow the Netlist Generator to calculate parasitic

capacitances.

2.3.4 Automatic Cosimulation Environment Generator

We have created Automatic Cosimulation Environment Generator (COSIM) to

allow co-simulations of an arbitrary mix of synchronous and asynchronous circuit-

families at various levels of abstraction. The environment generator automatically

19

creates an interface between the Verilog simulator VCS, the PRSIM asynchronous

simulator, and the HSIM transistor-level simulator. This tool allows the designer

to test mixed synchronous-asynchronous circuits while implementing the actual cir-

cuits using different families and different levels of abstraction. One can cosimulate

a high-level Verilog/VHDL synchronous circuit description together with an asyn-

chronous pull-up/pull-down circuit description, as well as with a transistor-level

description that includes all the transistor parasitic effects and wire-load estimates.

The tool can also automatically create an appropriate test-bench for a given cir-

cuit with both input and output environments. COSIM will be described in more

detail in Section 3.

2.3.5 Circuit Family Libraries

We have created transistor-level libraries for various circuit families that give us the

capability to synthesize our circuits into their corresponding transistor-level netlists

using different synchronous and asynchronous families. Post synthesis (pre-layout)

analysis allows us to pick the best circuit family depending on a targeted metric

such as power consumption, area, throughput, latency, etc.

Delays and capacitances are based on the logical effort model and are calibrated

against a realistic technology node in all our simulations. Please note that it is

straightforward to calibrate the libraries for a different/new technology node. The

only parameters that are changed with a new process are the circuit properties

and transistor descriptions – minimum size, parasitic parameters, mobility values,

etc. – used for the Netlist Generator configuration.

For the asynchronous library style we have implemented the QDI circuit family

[18] due to its robustness to delay, temperature, and process variations as described

in the Introduction section of this paper. We have implemented our standard cells

20

using PCEHB type handshake reshufflings [16]. Other asynchronous logic families

such as bundled-data may be used instead with appropriate netlist transformations.

21

Chapter 3

Automatic Cosimulation

Environment Generator

3.1 Motivation

The main reason for creation of an Automatic Cosimulation Environment Gener-

ator (COSIM) is current designer’s inability to perform mixed-level synchronous

and asynchronous circuit simulation at various levels of abstraction. According to

the knowledge of the authors, there are presently no tools that can automatically

perform such synchronous/asynchronous circuit simulations, along with proper

modeling of the interfaces between the two domains.

With the complexity of current chip design increasing drastically, it is becoming

impossible to perform transistor-level simulations of the entire chip. We would like

to have an option of performing partially transistor-level and partially high-level

behavioral simulations of the circuits.

As for simulation of purely asynchronous or mixed synchronous-asynchronous

22

systems, another problematic part of the simulation is creating the correct testing

environment. In order for an asynchronous environment to function correctly, it

has to support a number of different types of channels, have the ability to prop-

erly assert data validity and enable signals in order to support various types of

asynchronous handshakes. Creating a proper environment is not a trivial task.

Implementing such environment at transistor-level becomes very complex and, of-

ten, the obtained environment doesn’t check all the possible scenarios that can lead

to a circuit malfunction. Thus, we would like to implement this environment at a

higher, behavioral description level. This type of environment must not interfere

with circuit operation, but at the same time must perform extensive circuit testing

using various input signal patterns and using different timing situations. Also if we

have such environment written at higher level of description, it will be very easy to

isolate this environment into a separate circuit domain so that all our throughput,

area and power measurements are not influenced by the environmental artifacts

that should not be accounted for during measurements.

Presently Synopsys tools, such as HSIM and Nanosim offer some ”hooks” to

perform cosimulations of behavioral-level and transistor-level descriptions. Unfor-

tunately, these hooks require a lot of manual work to setup such a cosimulation.

This work has to be repeated for each circuit that is being tested and it requires

thorough understanding of the circuit’s operation to setup all the input and out-

put streams correctly. Also, Synopsys provides no support for testing asynchronous

circuits or mixed synchronous /asynchronous circuits, which is the major focus of

our work.

As described later in this section, we invoke several modern digital and analog

simulators (some of these are simulators created by the AVLSI group here at Cor-

nell). We offer designers to invoke their circuits at various levels of abstraction,

23

which allows trading higher accuracy of simulation for shorter simulation time and

vise versa.

In the work outlined in this thesis, we go further than just cosimulations of

different circuit families, but we also integrate all the synthesis and measurement

tools that provide a full package in synchronous/asynchronous circuit testing and

analysis. The following industrial and Cornell’s tools were utilized in COSIM’s

development and are briefly explained in this thesis: Synopsys HSIM, Synopsys

VCS, Cornell’s PRSIM, Cornell’s TLINT, Cornell’s Netgen.

All the COSIM development illustrated in this section has been done in collab-

oration with my colleague Carlos Tadeo Ortega Otero, who is also a Ph.D.

student in Cornell’s AVLSI research group.

3.2 Vision

Ideally, we would like to have a unified interface that could be used by designers for

simulation run control, as well as all pre- and post- circuit processing, such as com-

pilation into a spice-type netlist, power measurements, area estimates, throughput

measurements. We would also like to have minimal amount of setup performed by

the designer, but at the same time we don’t want to take away all the functional-

ity provided by the tools. So in most cases we create a cosimulation environment

with a default set of parameters that provide a good simulation time / accuracy

tradeoff. The designer may easily modify these parameters without going back to

any of the Verilog/VHDL/SPICE files. All the parameters for all tools may be

specified in the top-level simulation setup file, the only file that the designer has

to create in order to invoke all the tools that we use. The designer never specifies

any simulator setup or post-processing commands; he only specifies the necessary

simulation parameters and the circuit nodes he would like to monitor. COSIM

24

automatically invokes he correct sequence of commands to run the appropriate

tools in the correct sequence.

In order to connect Cornell’s and Synopsys’s simulators we use a VPI (Ver-

ilog Procedural Interface) created here at Cornell by our advisor. Synopsys’s VCS

natively supports VPI-type calls, which allows us to connect our own event-rule

digital simulator PRSIM, VCS and HSIM. We can then guarantee proper interac-

tion between simulators that are working with different levels of circuit abstraction.

VPI for connecting VCS and HSIM is provided by Synopsys, but requires quite

an amount of manual setup and compilation; we take that burden off the designer

and perform all the setup automatically as well.

As mentioned previously, we would like COSIM to generate all input pattern

generators (called sources) and output interfaces (called sinks or buckets). For

source, the only information the designer has to provide to COSIM is an input

stream file in text format, or to pick the type of input signal probability distri-

bution he would like to use. COSIM automatically detects the types of channel

that it is dealing with. It then connects appropriate sources and sinks. Sinks in

COSIM can perform several functions: they can simply monitor the output; they

can compare the outputted values with a set of predefined values; they also can

perform handshakes at the output in case of QDI asynchronous circuits. All of this

functionality is built into COSIM and the designer has to only select what type of

buckets to use.

3.3 Auto Simulation Setup

In the process of creating COSIM, one of the major tradeoffs that we were facing

was the amount of manual control that should be given to the designer during

the simulations setup. More control requires more in-depth understanding of the

25

circuit’s operation, as well as better understanding of the correct environment

behavior.

We decided to require the designer to perform as little setup as possible, with

COSIM making the educated guesses as to circuit’s behavior and it’s interfaces

with the environment. For example we have an option of automatically adding

source and sinks to all the circuit’s inputs and outputs. COSIM decides how to

reset these sinks and sources, and what type of input pattern distribution to pick.

However, the designer always has an option of specifying as much detail as he

would like (for example for all the critical signals), and afterwards COSIM can

perform the rest of the setup automatically.

This approach allows the designer not to have in-depth understanding of all

the tools that are used in the simulation process (though such ”ignorance” is not

recommended). If auto-connection is used at inputs and outputs, the designer

does not have to be familiar with the exact handshake reshufflings (though if non-

standard reshuffling is used in the circuit, this may lead to a deadlock during the

simulation), pattern setup, etc.

Majority of the simulation parameters have default values that are assigned

to them. The designer may override all of these values in the unified setup file.

The default values were chosen to provide, in our opinion, a reasonable degree of

simulation accuracy while still keeping a practical simulation time.

COSIM automatically performs various types of checks during the simulation

run. These include node capacitance calculation check, periodic excessive current

check (test for shorts), dangling nodes check (nodes that are not driven), uncon-

nected node check, non-switching node check (except global signals like power and

ground), power high-impedance node check, rise/fall time check, etc.

All the feedback from COSIM and from the simulators is collected and reported

26

back to the designer through various report files. COSIM warns the designer about

potential errors in the designer’s setup; it also informs the designer about the setup

that it performed automatically to make sure that it didn’t make any assumptions

that are not consistent with the designer’s implications.

3.4 Overview

COSIM is a PERL-based program that functions in the following manner. A

designer creates only one unified setup file in the XML format. COSIM parses

that file and sets up all the necessary simulators, interfaces between the simulators

and prepares all the measurement and post-processing tools.

COSIM passes the main simulation directives to the VCS simulator that mon-

itors the run at the top level of abstraction. COSIM creates the top-level Verilog-

based wrapper that has the global parameters, such as simulation time, circuit

module, global variables, all the necessary wiring connections, signal names, top-

level delays, timescale, top-level circuit inputs and outputs, etc. The created Ver-

ilog wrapper also connects the selected Verilog environment (sources and sinks)

to the design. Connections to PRSIM signals for asynchronous digital circuits

described in ACT are also performed here.

COSIM also creates a spice wrapper, if this option is selected, for simulating

transistor level netlists (including extracted circuits). The spice wrapper speci-

fies all the necessary low level details and parameters to correctly invoke HSIM

simulator. Among these parameters are supply voltage, output file format, simu-

lator accuracy parameters, Verilog rise and fall times for interface signals, analog

iteration method for initial operating point calculation. A table with some of the

variables that may be optionally set in the unified interface file (and will appear in

the spice wrapper) is presented later in this chapter of the thesis. Spice wrapper

27

also sets up all the analog voltage and current sources, global variables, connections

with the transistor-level circuits, all the measurement commands, etc.

Besides the main two wrapper files for VCS and for HSIM, COSIM automat-

ically creates various other files that are transparent to the designer under most

circumstances. If designer selects an ACT-type file and specifies that he wants to

simulate the circuit at transistor level, i.e. by invoking HSIM simulator; COSIM

automatically runs Netgen, and generates a top-level spice, as well as all the spice

subcircuit instances that were used in the original ACT description. Similar to

the command-line Netgen run, COSIM reads in a Netgen configuration file, which

should be either in local directory where COSIM is run, or specified as a netgen cf

variable in the unified interface XML file.

We use a simple JAVA-based parser to determine the names of the circuit

ports in all defproc-s of the ACT file in order to correctly connect these ports in

the Verilog wrapper and the spice wrapper. If the designer uses ”!” and ”?” to

indicate directionality in the top-level defproc of the ACT file, we also parse this

information and later use it if the designer wants to automatically connect sources

and sinks to the given module. In that case directionality only has to be indicated

at the top level module. Besides determining the names and directionalities of the

ports, we also use the parser to determine the types of channels that we are dealing

with. With that information, the user doesn’t need to specify channel type in the

XML file, since this information is obtained automatically.

When running Netgen directly from COSIM, several additional files are pro-

duced, that do not appear during a command-line Netgen run. These files have

to do with connection of ACT-type modules to VCS. COSIM produces a file that

contains the parsed channel types and names (as mentioned previously), located in

the *.act.AUX PROC PARSE. It also produces a file with top level Verilog mod-

28

ule connections that specify input, output types for the Verilog wrapper, located

in *.act.v. We also produce a *.act.v.port info file which contains all the channel

name equivalences between Verilog and ACT. Verilog by default has no notion of

channels, it only works with wires; we thus have to mangle some names for Verilog,

since it does not accept some of the characters used in ACT naming. These files

are transparent to the designer and will not be described in further detail here.

When setting up the VCS-HSIM mixed signal simulation, COSIM creates a file

call cosim.cfg, which holds several HSIM command line arguments that are used

in the cosimulation initialization. Specifically, the file contains the names of all the

modules that need to be simulated in the analog (transistor-level) mode. This file

also sets up several initialization arguments, like the name of the spice wrapper.

This file is also transparent to the designer.

Another important file that COSIM creates automatically is nsda cosim.sp.

This file is passed during the cosimulation initialization to the HSIM analog sim-

ulator. This file contains the top level spice module with all the port names that

correspond to the appropriate names of the Verilog-type environment (sources and

sinks). The main purpose of this file is to indicate to the simulators the VCS-to-

HSIM and HSIM-to-VCS interface signals. PRISM connections are treated similar

to VCS connections; signals from PRSIM first go to VCS and then to HSIM,

if desired. Once the interface signals are identified the simulator automatically

performs analog-to digital (HSIM-to-VCS) and digital-to-analog (VCS-to-HSIM)

conversion of the appropriate signals to guarantee correct communication between

the digital and analog simulators. nsda cosim.sp is essential for passing values back

and forth between the two simulators. This file is also transparent to the designer.

While setting up the proper environment for the circuit that is being tested,

COSIM parses all the interface channels specified by the designer in the unified

29

interface XML file and automatically determines the channel types from the ACT

file (if the top level module was described in ACT-format), as stated earlier. If some

of the ports of the top-level module are not specified in the XML file, COSIM will

notify the user that there are dangling ports in the module. For the input channels,

the user has an option of either passing a file with a given input stream, or selecting

an input probability distribution. If nothing is selected, COSIM will use a uniform

input probability distribution for the channel by default. As for the output, the

user specifies whether he wants to: simply watch the values of the channel, record

the values, perform handshake, and/or compare the values to a predefined output

pattern. By default, COSIM will simply watch and record the outputted values

on every channel.

Once all the circuit interface channels have been identified, COSIM creates an

environment used.v file which contains all the proper sources and sinks along with

their options for all the input and output channels (including CLOCK source, if

there is one). COSIM looks up the required sources and sinks in the environ-

ment library that we have created. This library contains various flavors of the

environment elements. The description of our library will be provided in a later

section. environment used.v contains only unique instances of each type of sinks

and sources used. This file is created automatically and passed to the simulators

during the VCS-HSIM cosimulation initialization.

3.5 Functionality

The main purpose of COSIM is to minimize the effort required by the designer to

simulate his design using various levels of hardware abstraction, and using different

circuit families, including mixed synchronous/asynchronous circuits. COSIM sim-

plifies this process and allows the designer to perform circuit simulation with only

30

rough understanding of all the simulators and circuit implementations. COSIM

also performs a task of automatically creating a testing environment for the design.

As mentioned previously, the current COSIM implementation requires the de-

signer to create only one top-level unified interface file in the XML format. I shall

refer to this file as cosim.xml. This file allows designers to perform connections

of various circuit parts implemented in different description languages and at dif-

ferent levels of abstraction. An example of such a design is represented in Figure

3.1.

Source
(Verilog -

VCS)
Design Slice

(Verilog - VCS
ACT – PRSIM

ACT – Netgen, HSIM
SPICE - HSIM)

Sink
(Verilog -

VCS)

...
Source

(Verilog -
VCS)

...

Design Slice
(Verilog - VCS
ACT – PRSIM

ACT – Netgen, HSIM
SPICE - HSIM)

Design Slice
(Verilog - VCS
ACT – PRSIM

ACT – Netgen, HSIM
SPICE - HSIM)

Sink
(Verilog -

VCS)

Sink
(Verilog -

VCS)

...

Figure 3.1: Overview of COSIM’s Functionality

The testing environment (sources and sinks) for all the designs is created in Ver-

ilog, as shown in Figure 3.1. This allows us to perform more complex input/output

value comparisons, logical correctness and timing correctness checking. In Verilog

we can easily implement various functions that help designers debug their circuits.

All values originate in VCS and are then passed to PRSIM or HSIM; as for

the outputs, all the values travel back to VCS, where various checks are performed

(based on designer’s selection in cosim.xml) to determine whether the circuit is

functioning properly.

As for the actual circuit implementation (outside of the testing environment),

31

labeled as Design Slice-s in the above figure, they may be implemented in Verilog,

ACT or in spice formats. If the circuit part is implemented in ACT, the designer

has an option of either using PRSIM for simulation, or, alternatively, of running

Netgen and generating a transistor-level description of his circuit and then simu-

lating it using HSIM (assuming all the production rules are properly sized by the

designer).

These Design Slice-s may be connected in cosim.xml in any arbitrary sequence,

as depicted. Sequential and parallel compositions are both allowed. Any organi-

zation of Verilog, ACT and spice modules is allowed. The designer also has the

option of implementing sources and sinks internally in his circuit, however, most

of the time that would limit the testability of the circuit, which is why we advice

designers to use our smart Verilog environment.

If an improper connection is performed in cosim.xml, or a violation occurs in

one of the sinks or sources (timing violation, value mismatch during comparison,

etc.), COSIM will inform the designer of this violation and may terminate the

simulation if desired by the user.

For each top-level module (most of the time just one), the designer needs to

specify some information in cosim.xml. Specifically, the designer indicates:

< circuit sim type = ”spice” file = ”prs/buffer.act” instance = ”pcfb buf”

file type = ”act” name = ”n1” >

...

< /circuit >

The description of all the parameters for the circuit module is provided in the

following table. Source and sinks should also be included within the above circuit

description block, as discussed later on.

32

Module Setup

sim type=”spice” determines which simulator will be invoked

during simulation: spice, verilog, act

file=”my filename” name of file with circuit description

instance=”top level name” name of top-level instance

file type=”act” description language used: spice, verilog, act

name=”my name” arbitrary name for COSIM’s internal purpose

and measurement reports

uses blackbox=”0” use this option only if foundry cells with no

transistor-level descriptions are used in cir-

cuit module

Few examples of the simulation types follow below.

sim type =”spice” and file type=”act” : run netgen and VCS/HSIM cosimulation

sim type =”prsim” and file type=”act” : run PRSIM/VCS cosimulation

sim type=”verilog” and file type=”verilog” : run only VCS simulation

Instance name is used in Netgen to specify the top-level instance and is a

required parameter. Channel type, does NOT need to be specified, since COSIM

parses all the ACT defproc definitions, as mentioned previously.

Once this information is provided for top-level module(-s), designer writes di-

rectives for all the necessary module and environment connections; specifies the

mandatory parameters, such as paths, tool configuration files locations; specifies

the optional parameters if desired; and runs the simulation by invoking COSIM

and passing cosim.xml as the only parameter. COSIM performs the rest of initial-

ization and setup automatically.

33

Once the designer invokes COSIM, the cosimulation initialization begins. If

there were any problems found in cosim.xml, or any other tools (like Netgen,

TLINT, etc.), COSIM immediately outputs this error to the user. If the error

leads to termination of any of the tools, COSIM will stop the setup and inform the

designer of a terminal error. If the error was not terminal, COSIM will print it to

the screen and into a log file, and keep going either until a terminal error occurs

or until cosimulation finishes.

As the cosimulation proceeds, COSIM will report the time progress of the

simulation, as well as any events that happen at the environment’s sources and

sinks. Most of the information outputted by COSIM and the simulators goes to

the screen and to the log files. A brief description of all the important output files

will be provided in a later section.

Once the simulation completes, COSIM will run any post-processing trace file

manipulations, if the designer selected this option. For example if designer selected

to run TLINT, a *.trace and *.names files will be produced and TLINT will be

initialized once the cosimulation completes.

If the user selected to perform frequency and/or power analysis in cosim.xml,

COSIM will produce a file called hsim.mt that will contain all the results from the

power and throughput computations performed in HSIM. Presently, the user may

select a time window of when to perform such analysis (reset time is usually omitted

from such computations). The user may select to calculate node capacitance (set to

all nodes calculation by default), subcircuit power calculation (static and dynamic,

depending on the input signal pattern), node voltage monitoring. By default the

voltage values of all nodes is calculated and recorded by HSIM into the *.fsdb file

format. This allows the designer to view waveforms of all nodes after the simulation

finishes using CSCOPE waveform viewer or any other compatible viewer.

34

If power/frequency analysis was chosen, COSIM will setup HSIM and TLINT to

output the results of all computations. Total circuit average and maximum current

and power, subcircuit average and maximum current and power, subcircuit node

average and maximum voltage, node capacitances will be reported by HSIM. The

results of TLINT run, including slew rate violations, incomplete transitions, charge

sharing problems, throughput will be reported back to the user as well.

Besides the above measurements, the user may select to perform additional

checks in cosim.xml. These checks are performed in HSIM and assume that at

least part of the circuit is implemented at transistor-level. These checks include

bulk forward bias check, diode junction check, large current check (value, period),

rise/fall time check, high impedance node check, inactive node check.

In order to run Netgen and TLINT, the user must specify the paths to Netgen’s

and TLINT’s configuration files in the appropriate fields of cosim.xml. Also to cor-

rectly output TLINT compatible trace file, the designer must have a proper library

libALINT.so in the local directory, where COSIM is run. The environment.v file

with all the environment library elements must reside in the same location as

cosim.pl (COSIM’s executable). If the designer wants to use a cosimulation with

PRSIM, appropriate vpi.o file must reside in the local directory as well.

Next few sections will go over some mandatory and optional parameters as

well as how to perform environment connections and how to create interactions

between various modules in cosim.xml.

3.6 Common Setup Parameters

As described in the previous section, COSIM is controlled through a unified inter-

face XML-based file. In this file we specify mandatory and optional parameters

that control all simulators (PRSIM, VCS, HSIM), as well as setup all the post-

35

simulation measurements and analysis.

Mandatory parameters include settings that are essential to the VCS/HSIM/PRSIM

cosimulations. These simulators will not function properly if these parameters are

not specified correctly. Among these parameters are:

• location of cosim.pl, which is the PERL-based executable for COSIM;

• global Vdd value (this value must match the value specified in the TLINT

configuration file, otherwise the simulation will fail);

• simulation time, which is used both in VCS and in HSIM setup;

• Verilog time scale, which specifies the default time unit for all the values past

to Verilog and the time precision with which HSIM and VCS are run (smaller

time step leads to slower, but more accurate simulation);

• location of Netgen and TLINT configuration files (as described previously);

• length of pReset and sReset, which control the asynchronous reset, sReset

pulse should be longer than the pReset pulse (and should enclose pReset)

to make sure that all asynchronous circuits are in a correct state, before they

go into operating mode.

Additional parameters worth mentioning separately are the settings that have

to do with the correct HSIM cosimulation setup:

• measurement start time signifies to HSIM when to start recording values for

power/frequency measurements (typically after circuit reaches steady state,

if applicable);

• measurement stop time signifies to HSIM when to stop recording values for

power/frequency measurements (can be the end of simulation);

36

• device models are either passed to HSIM as a .spi file or a .lib file, depending

on what kind of models are supplied by the foundry;

• device model type specifies which models should be used, i.e. TT; if this

option is provided in the model file designer can select typical, fast, slow,

etc.;

• model aliases set name equivalence classes between model names used in the

library files and model names used in the spice files that were generated by

Netgen or by another tool that was used

• HSIM globals, other than Vdd and GND, should be listed if more than one

supply is used in the circuit, e.g. VSS;

• HSIM trace output type specifies the HSIM trace file format: fsdb is used by

waveform viewers, such as CSCOPE, alint is used by TLINT post-processor;

• module inactive current specifies the current, below which HSIM may start

ignoring the subcircuit in terms of transistor modeling, and assume that the

subcircuit is inactive.

A full list of all important parameters, along with their brief descriptions, is

presented in the tables below. For more detailed information regarding the HSIM

internal variables that are not described below, please refer to the Synopsys user

manuals that can be found on Synopsys Solvnet website.

37

Mandatory Parameters

PARAMETER DEFAULT DESCRIPTION

cosim.pl path path to automatic environment gen-

erator cosim.pl

vdd global Vdd value for the circuit

sim time length of your simulation

timescale VCS timescale

netgen cfg netgen configuration file name with

path

sReset time sReset length in time units (ns)

pReset time pReset length in time units (ns)

measurement start time simulation time when designer wants

to start taking measurements

measurement stop time simulation time when designer wants

to stop taking measurements for

power, etc.

insert inverters on outputs no yes if you wan to perform power anal-

ysis using 2 inverters on interface

channels with separate power source

inverter size um takes effect only if yes to previous pa-

rameter; pmosWidth: pmosLength:

nmosWidth: nmosLength in microns

for each of the two inverters inserted

on every Verilog output

38

Optional Simulation Setup Parameters

device model lib device model library if using a spice

.lib format

device model type device model type if several are pro-

vided, for example TT

additional spice files use this if you need to include addi-

tion spice files; can also be used for

models if the format is appropriate

nmos model alias specify aliases for nmos transistors,

use spaces; order matters : usu-

ally netlist-file names first, model-file

name last

pmos model alias specify aliases for pmos transistors,

use spaces; order matters : usu-

ally netlist-file names first, model-file

name last

hsim globals Vdd, GND any global signals, like vcc, vsin; omit

Vdd and GND, as these two are de-

clared by default

39

Optional HSIM run Parameters

HSIMOUTPUT fsdb&alint trace file type, fsdb used for Cscope,

alint used for TLINT; fsdb&alint-both

are produced with this setting

HSIMSPICE 3 device model accuracy: 0..3 (3-most ac-

curate, 0-least accurate); to speed up

simulation, the MOSFET model can be

simplified

HSIMSPEED 1 simulator speed & precision; the value

can be any integer from 0 to 5; higher

speed values cause faster simulation

speed at reduced simulation precision

HSIMANALOG 1 -1..3, controls the complexity of analog

simulation algorithm; the higher the

value is, the more precise and time-

consuming the analog simulation algo-

rithm will be

HSIMALLOWEDDV 0.1 the time step size is dynamically ad-

justed so that each node voltage change

over the time step is limited by the

value defined by HSIMALLOWEDDV

HSIMITERMODE 1 the HSIM iteration control parameter;

can be set integer from 0 to 2; 2-highest

accuracy, 0-lowest

40

Optional HSIM run Parameters Continued

HSIMSTEADYCURRENT 10n(A) idle circuit (skipped by simulator)

current; a subcircuit is treated as be-

ing idle if every node in the subcircuit

is idle

HSIMIGISUB 0 0..3, 1=all on, the static gate leakage

currents and the substrate current

in the calculation of I-V result for a

MOSFET transistor with the BSIM4

model; note: if HSIMSPICE is set to

be greater than 0, HSIMIGISUB=1

by default

HSIMCHECKMOSBULK 1 0(off)..1(on), check to identify poten-

tial forward bias conditions in MOS-

FET parasitic diodes. HSIM will

report Warnings when the bulk of

a NMOSFET transistor can poten-

tially be greater than 0.5V or the

bulk of a PMOSFET transistor can

potentially be smaller than 0.5V

HSIMDIODECURRENT 1 0..2, when HSIMDIODECURRENT

is set to 1 or 2, the dc current of

MOSFET parasitic diodes will be

calculated

41

Additional Checking Options

large current check 10m(A) current check: warn if supply current

exceeds this value

large current period 1n(s) period for large current checks (fre-

quent checks drastically slow down the

simulation)

rise time check .01n(s) value for excessive rise time check

fall time check .01n(s) value for excessive fall time check

excessive rise fall fanout 1 0..2; 1=driving trans; defines the

fanout of driver nodes; if fanout is set

to 1, only the driver nodes with fanouts

are checked to avoid unnecessary checks

on internal nodes within logic gates; if

fanout is set to 0, both the internal

nodes and the driver nodes are checked;

the default value is 0 (fanout=0: all

nodes; fanout=1: nodes that have di-

rect connection to transistor’s gate;

fanout=2: nodes that have direct con-

nection to transistor’s bulk)

high impedance fanout 0 0..2(same as above); fanout=0: all

nodes; fanout=1: nodes that have di-

rect connection to transistor’s gate;

fanout=2: nodes that have direct con-

nection to transistor’s bulk

42

Measurement Options

subcircuit names for pwr meas Vdd specify nodes for average and

maximum power measurements;

results reported in hsim.mt, use

spaces; ACT syntax (no x -s in

front of subcircuit names)

subcircuit node voltage specify nodes for average and

maximum voltage measurements;

results reported in hsim.mt, use

spaces; ACT syntax (no x -s in

front of subcircuit names)

HSIMNODECAP * specify nodes for capacitance cal-

culations; *=(all nodes). the av-

erage capacitance of the speci-

fied node pattern is reported and

stored in the capacitance report

file hsim.cap

tlint config path specifies path to TLINT config-

uration file for post-simulation

analysis

run tlint no if set to yes runs TLINT analysis

at end of simulation; no - disables

TLINT

43

Other Options and Commands

HSIMNTLFMT specifies the netlist format of the input file. It

is an alternation to -netlist format command

line option. It is a global parameter and its

default value is hspice format

HSIMTOP specifies the top-level subckt name (if re-

quired). It is an alternation to -top command

line option. It is a global parameter and its

default is null

hsim param if you want to set additional HSIM parame-

ters, type exact syntax of the spice command

as you would in a spice setup (or netlist) file

HSIMRISE 0.001V/ns default value for rise time of signals coming

from Verilog

HSIMFALL 0.001V/ns default value for fall time of signals coming

from Verilog

3.7 Sources and Sinks Library for Testing Environment

All elements of the environment in COSIM are created as Verilog-type mod-

ules. These building blocks may perform various tasks including completing asyn-

chronous 4-phase handshakes, logging output values and comparing them to a

predefined set of values. Sources and sinks also perform some logical correctness

checks (such as mutual exclusion) and timing checks (such as sequence checking of

data and enable arrival times).

The list of all sinks and source available in COSIM is presented in the tables

44

below. The tables describe the types of sinks and sources; what kind of channels

a given source/sink is able to connect to; their corresponding XML names as used

in cosim.xml; connection syntax for these environmental elements. For sources, we

also describe what values will be sourced; for sinks, we describe how to perform

value checking on the output channels.

45

Available Sources

Type Channels Name in

XML

Values Sourced Connection

random e1ofN,

ev1ofN,

eMx1ofN,

evMx1ofN,

bool

type=

”random”

seed =”132” channel=”line1”,

for bool add:

clk used=”clock”

inject e1ofN,

ev1ofN,

eMx1ofN,

evMx1ofN,

bool

type=

”inject”

inject file =”y.dat” channel=”line1”,

for bool add:

clk used=”clock”

constant bool type=

”constant”

value=” sReset” channel=”reset”

clock bool type=

”clock”

rate=”650”

(in MHz)

channel=”clock”,

reset signal=

”reset”

globals all globals type=

”globals”

all globals channel=”g”

piece-wise

linear

bool type=

”pwl”

filename =”y.dat” channel=”in”

Note:

• Inject files must have the number of values on the first line, then one value

per line;

46

• For the piece-wise linear source, y.dat is a file that contains: Line 1 : n =

The number of values; Line 2 : Initial value of the signal; Line 3 to Line 3+n:

Delays to toggle the signal;

• Constant values are supported by inject source by setting (constant =1), by

constant source which can assign single value or value of another wire by

setting (value=1), and by piece-wise linear source, if properly specified in

y.dat;

• clock source uses a reset signal as a starting point for the clock pulses.

Most commonly used sources in our designs are random source with uniform,

exponential, and normal input probability distributions; and inject source that

uses values specified in an injectfile. The values can be specified in base-10 format;

there is no need for binary representation, since the source automatically performs

this conversion to properly insert the given values on a specified channel. All

channel types are supported by these two sources.

47

Available Sinks

Type Channels Name in XML Comparison

Values

Connection

just sink bool,

e1ofN,

ev1ofN,

eMx1ofN,

evMx1ofN

type= ”sink only” none channel=”outp”,

for bool add:

clk used=”clock”

watch

and

compare

bool,

e1ofN,

evMx1ofN

type=

”watch N compare”

expected=

”exp.dat”

channel=”outp”,

for bool add:

clk used=”clock”

watch

and sink

e1ofN,

ev1ofN

type=

”watch N sink”

expected=

”exp.dat”

channel=”outp”

Note:

• just sink only logs outputted values and controls enable for the 4-phase hand-

shake in the asynchronous case;

• watch and compare compares outputted values to the expected values in a

given file and does not toggle enable;

• watch and sink compares outputted values to the expected values in a given

file and controls enable for the 4-phase handshake in the asynchronous case;

• Presently all sinks are setup in such a way that COSIM automatically pro-

duces output name.dat files with all the values that were logged from each

given sink.

All of the listed sinks have been extensively used in many design created by our

group members. sink only is commonly used when designers are not interested in

48

the values produced and only care about the correct communication of the envi-

ronment with the given channel in the circuit. watch N compare does not toggle

the enable, which is commonly used in synchronous circuits, and in asynchronous

circuits where the bucket is a part of the circuit and designer only needs to monitor

the channel (and/or compare against given values) and not actively perform the

handshake. watch N sink performs an active handshake in case of an asynchronous

circuit and also has the ability to check the obtained values. It is trivial to extend

the listed sinks to support other channel types, but so far we have not seen the

need for it in the designs that we have been testing.

For source and sinks that support validity-based channels, i.e. evMx1ofN, the

validity calculation is enabled by setting (calculate v = 1) in cosim.xml. By default,

this variable is set to 0 (calculate v = 0).

All top-module ports must be connected in cosim.xml, or explicitly left dan-

gling. This is done to make sure that the designer does not forget to connect any

of the important ports of the design. Main directives for environment connection

in COSIM are source connection, sink connection, global variable connection and

leaving a dangling port.

All the ports that were left dangling in COSIM, will also be reported by HSIM

as unconnected nodes in a file called hsim.conn. The designer should always check

that file upon successful completion of simulation (if this file is nonexistent, than

there are no unconnected nodes), to make sure that only nodes that are indeed

not supposed to be driven are listed in that file.

All sinks and sources are connected within the circuit module block and the

syntax looks as follows:

< source type = ”random” channel = ”l”/ >

< sink type = ”sink only” channel = ”r”/ >

49

< disconnect channel = ”not used”/ >

The first line creates an instance of a random source on channel l; the second

line creates an instance of a sink only bucket with no value checking on channel r;

and the third line keeps channel not used explicitly disconnected. Outside angled

brackets refer to XML’s standard syntax.

If a given design slice has a very large number of inputs and/or outputs, it

becomes cumbersome and time-consuming for the designer to create instance of

sources and/or sinks for all of the ports in cosim.xml. To minimize the designer’s

effort in such cases, we have added an auto-connect option to COSIM (passed as a

parameter in shell command cosim -A) to perform such connections automatically.

If auto-connect option is selected, COSIM will automatically connect default sinks

and source to the circuit, based on the channel types obtained from our JAVA-base

parser. This greatly improves the design time / testing time for large designs with a

high number of input/output nodes. Presently, in the auto-connect mode, COSIM

by default connects random sources based on uniform probability distribution and

just sink -type buckets with no value comparison. These elements are the most

universal out of the implemented ones and they can connect to any synchronous

and asynchronous channel type.

3.8 Global Connections

Besides directives for module setup, COSIM’s general setup, circuit environment

connection and simulator parameters, COSIM also includes calls for making intra-

module and global variable connections. With the help of these directives, design-

ers can connect various modules of the design. These modules may be described

in different hardware languages (Verilog, spice, ACT) at different levels of abstrac-

tions (behavioral, stack-based, standard-cell based, or transistor level). Besides

50

making connections between modules, designer can also connect (or explicitly dis-

connect) top-level ports to global variables (such as Vdd, GND, sReset, pReset,

etc.).

In order to achieve such connections, we have introduced < connect > direc-

tives. There are several types of connect types:

• sReset: Connects the signal to sReset;

• pReset: Connects the signal to pReset;

• boolean: Connects a wire between signal specified by ”from channel” to sig-

nal specified by ”to channel”.

These connections are performed outside of the module description XML block.

An example of such connection would be the following line:

< connect type = ” sReset” from circuit = ”n1” from channel = ” Reset”/ >,

where the outside angled brackets refer to XML’s standard syntax.

This line creates a connection between Reset port of circuit earlier labeled

as n1 to a global variable, called sReset. All connection between two different

modules are created in a similar manner.

The < connect > command completes our set of introduced directives and

allows the designer, along with the other directives, to create any arbitrary design

description with synchronous and asynchronous circuit parts described in different

hardware languages at various levels of abstractions and corresponding testing

environments. Using the introduced syntax, COSIM reads in the circuit description

and various tool parameters from cosim.xml; and automatically sets up all the

simulators, pre-processing and post-processing tools for circuit’s compilation from

various description languages, design’s simulation and analysis.

51

3.9 Output Files

If designer’s HSIM simulation completed successfully, one should see the following

files in the local directory where the designer ran the simulation. Information

provided in these files has crucial effect on the circuit’s correctness, performance,

and manufacturability.

52

Important Output files

File Name Description

environment used.v Verilog sources and sinks that are used in this par-

ticular design instance

hsim.ach List of active nodes in the design

hsim.cap List of all nodes and their calculated capacitances

hsim.chk Power Check Results: Excessive Current Check,

High Impedance Node Check, Excessive Rise/Fall

Time Check

hsim.conn **Dangling Node Report** (if this file is missing,

all nodes are connected)

hsim.csintf Digital-to-Analog and Analog-to-Digital Conver-

sion channel list and event count

hsim.dcpath err.chk DC Path Check results on all nodes

hsim.fsdb CSCOPE compatible trace file

hsim.hsimba List of active nodes for back annotation

hsim.ina Surrounding inactive node list without DC signals

hsim.ina all Complete inactive node list

hsim.log Simulation Progress Log

hsim.mt Text-format file with all the power, current, volt-

age measurements

hsim.trace TLINT compatible trace file

inverter separate vdd.spi If designer has selected to insert buffers on inter-

face channels, this file will have the sized subcircuit

for inverters used in the buffers

53

Chapter 4

Toolflow Evaluation

4.1 Benchmark Considerations

As stated earlier we have developed two sets of libraries for evaluation of our

toolflow: a static synchronous library and QDI PCEHB-based asynchronous li-

brary. We have taken ITC-99 benchmarks and compiled them into synchronous

and asynchronous netlists using our novel toolflow. ITC-99 benchmarks have been

created and maintained with collaboration of several research groups [3], [2]. For

transistor models we have used the educational Nangate 45 nm design kit [1]. The

throughput measurements, as well as power analysis are presented in this chapter.

We have selected ITC-99 benchmarks, since most of them represent small to

medium size realistic designs. The compiled (using Synopsys Design Compiler)

benchmarks incorporate the following circuit structures: internal buses, input /

output ports, global reset signal, single-frequency clock signal, D-type flip-flops,

transistor-realizable circuit modules. All of these benchmarks are written using

behavioral VHDL-level descriptions. The list of the tested benchmarks and their

original functionality is shown in Figure 4.1.

54

Name  Original Func/onality 

b01  FSM that compares serial flows 

b02  FSM that recognizes BCD numbers 

b03  Resource arbiter 

b04  Compute min and max 

b05  Elaborate the contents of a memory 

b06  Interrupt handler 

b07  Count points on a straight line 

b08  Find inclusions in sequences of numbers 

b09  Serial to serial converter/encoder 

b10  VoPng System 

Figure 4.1: ITC-99 Benchmarks and their Functionalities

All of the implemented benchmarks are circuits with variable complexity, devel-

oped for different types of applications. The internal structure (in terms of logical

elements) of each benchmark is presented in Figure 4.2.

Benchmark  Gates  Flip‐Flops  Inputs  Outputs  VHDL lines 

b01  45  5  4  2  110 

b02  25  4  3  1  70 

b03  150  30  6  4  141 

b04  480  66  13  8  80 

b05  608  34  3  36  319 

b06  66  9  4  6  128 

b07  382  51  3  8  92 

b08  168  21  11  4  89 

b09  131  28  3  1  103 

b10  172  17  13  16  167 

Figure 4.2: ITC-99 Benchmarks Structure

One can observe that the largest designs contain around 600 gates with tens

55

of flip-flops. Some of these benchmarks are computation based, others - control

based. It is for this reason that we have selected ITC-99 benchmarks. They offer

a wide range of design complexities and design types for testing our toolflow.

4.2 Throughput Comparison

For the speed measurement of the asynchronously implemented benchmarks, we

run the circuit with random input patterns for a sufficient amount of time to reach

steady state and then measure it’s average throughput. As for the synchronous

circuit, we initially run it at a low frequency for a long period of time and record

all the output values, using random inputs. We then gradually increase the clock

rate of the circuit and compare the obtained values with the originally recorded

values. As soon as there is a mismatch in the outputted values, we know that

there was a timing violation somewhere in the circuit, i.e. setup or hold time of

a flip-flop was violated. At that point the last correctly recorded frequency is the

maximum circuit frequency under the given conditions.

Since none of the synchronously implemented benchmarks have explicit clock

trees; we model the clock tree load, skew and jitter by giving the maximum operat-

ing frequency a 20 percent safety margin. The safety margin given to synchronous

circuits is usually 20 percent or higher as reported in the literature [36]. From

unofficial sources, we know that AMD uses a clock safety margin of 25 percent and

Intel of 33 percent.

Below are two figures that show the throughput comparison of the synchronous

and asynchronous implementations. Figure 4.3 shows absolute throughput mea-

surements in MHz with random input patterns. Figure 4.4 plots the asynchronous

circuit frequency, normalized to the synchronous circuit frequency, where 1.0 rep-

resents the synchronous frequency per benchmark.

56

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

b01  b02  b03  b04  b05  b06  b07  b08  b09  b10 

ASYNC 

SYNC 

Figure 4.3: ITC-99 Benchmarks: Synchronous and Asynchronous Implementations
in MHz

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

b01  b02  b03  b04  b05  b06  b07  b08  b09  b10 

Figure 4.4: ITC-99 Benchmarks: Asynchronous Throughput Normalized

In both sets of simulations, we have implemented ideal environmental behavior

(inputs, outputs, clock). All the transitions from the environment are monotonic

with infinite drive strength and very fast slew rates. All internally unconnected

nodes were bucket-ed in the asynchronous implementations. The synchronous reset

network was replaced with asynchronous sReset and pReset networks.

57

4.3 Process Variations

In order to analyze the impact of foundry process variations incurred due to typical

device mismatch, we run the same set of synchronous and asynchronous simulations

in two process corners: slow PFET - slow NFET (SS), and fast PFET - fast NFET

(FF). Figures 4.5 and 4.6 demonstrate the effect that process corners have on the

behavior of synchronous and asynchronous circuits respectively.

0 

200 

400 

600 

800 

1000 

1200 

b01  b02  b03  b04  b05  b06  b07  b08  b09  b10 

FF SYNC 

Nominal SYNC 

SS SYNC 

Figure 4.5: Process Variations: Synchronous Implementations

0 

200 

400 

600 

800 

1000 

1200 

b01  b02  b03  b04  b05  b06  b07  b08  b09  b10 

FF ASYNC 

Nominal ASYNC 

SS ASYNC 

Figure 4.6: Process Variations: Asynchronous Implementations

58

As expected, the throughputs of both circuit families increase as the NFET and

PFET devices get faster. For comparison purposes, we demonstrate the through-

puts of both families in all process corners in Figure 4.7. All the simulation param-

eters, other than the device models, are kept consistent with the nominal device

model simulation setup. The synchronous benchmarks are still given a 20 percent

clock margin from the first point of failure, as previously explained.

0 

200 

400 

600 

800 

1000 

1200 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

SY
N
C 

A
SY
N
C 

b01  b02  b03  b04  b05  b06  b07  b08  b09  b10 

FF ASYNC 

Nominal ASYNC 

SS ASYNC 

FF SYNC 

Nominal SYNC 

SS SYNC 

Figure 4.7: Process Variations: SYNC and ASYNC Implementations

The trends for the SS and FF corners exactly resemble the nominal scenario

in Figure 4.3. Such behavior confirms that all the analysis, as well as all the

conclusions drawn from our experiments with the nominal device models can also

be used in the presence of process variations. The process variations considered in

this study are the 3-sigma variation, represented by the two process corners.

59

4.4 Power Analysis

In all the conclusions related to power analysis, due to the implementation of the

benchmarks, we have neglected the clock tree load and switching energy. If the

clock network was taken into account, the power consumption of the synchronous

circuit would drastically increase.

As expected, due to the nature of our transformations (gate level and not

process level), the power consumption of the asynchronous implementations is

much higher than that of the synchronous (with the clock tree neglected).

However, in the applications where input activity is variable, specifically, high-

frequency bursts of inputs followed by long periods of inactivity in the inputs,

asynchronous circuits provide power savings. Such applications include speech

processing, on-chip networks, neurobiological circuits, etc. In such designs, the

circuit implementations must still be able to support maximum throughput, thus,

the clock has to run at maximum rate in the synchronous implementations.

In our next set of experiments both synchronous and asynchronous frequencies

were fixed (per benchmark) to the highest frequency that both implementations

were able to support. We then effectively vary the input signal activity factor

by sending high frequency bursts of inputs and long periods of input inactivity

following them.

At the scale of benchmarks in our analysis (small and medium size circuits),

clock-gating overhead is extremely high due to the small size of the circuits. We,

thus, compare the asynchronous implementations to non clock-gated synchronous

implementations with the clock distribution network ignored.

Figure 4.4 demonstrates the break-even average frequency of when the power

consumption of the asynchronous implementation is equal to the power consump-

tion of the synchronous implementation. As mentioned previously, the inputs are

60

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

120.0 

140.0 

b0
1 @

72
0M
Hz
 

b0
2 @

84
0M
Hz
 

b0
3 @

36
0M
Hz
 

b0
4 @

48
0M
Hz
 

b0
5 @

20
0M
Hz
 

b0
6 @

64
0M
Hz
 

b0
7 @

32
0M
Hz
 

b0
8 @

44
0M
Hz
 

b0
9 @

48
0M
Hz
 

b1
0 @

45
0M
Hz
 

Figure 4.8: ITC-99 Benchmarks: PWR break-even frequency in kHz

supplied in bursts, so this average frequency (in kHz) approximately designates

how often these bursts occur for the dynamic power consumption of the two im-

plementations to be the same. If clock distribution network is taken into account,

these average frequencies will naturally become higher, providing a better trade-off.

The computation is performed in the following manner:

€

Pasync = CtotalVdd
2 fsw =αCtotalVdd

2 favg = CtotalVdd
2 favg

Psync = CtotalVdd
2 fsw = CclVdd

2 f sw + CclkVdd
2 fclk =αclCclVdd

2 fclk +αclkCclkVdd
2 fclk

Psync = 0.5CclVdd
2 fclk + CclkVdd

2 fclk

Psync = Pasync at a set average input frequency (favg) and fixed clock rate (fclk) :

0.5CclVdd
2 favg + CclkVdd

2 fclk = CasyncVdd
2 favg

0.5Ccl favg + Cclk fclk = Casync favg
0.5Ccl favg −Casync favg = −Cclk fclk

favg =
Cclk fclk

Casync − 0.5Ccl

61

This power calculation assumes comparable leakage power consumption for the

synchronous and asynchronous implementations. In that case, power consumption

is dominated by dynamic power. Such assumption proves to be correct in low

leakage technology, where both drain-to-source and gate leakages are minimized.

In the provided derivation, the activity factor, α, in asynchronous power cal-

culation; similar to αclk, is equal to one, since all triggered output nodes of the

asynchronous circuit switch twice per token (once to active phase and once to neu-

tral phase). The clock nodes follow the same trend. αcl represents the activity

factor of synchronous combinational logic and is estimated around 0.5 for compu-

tational purposes. Using these facts, we calculate synchronous and asynchronous

power consumptions and equate them for a fixed clock rate, which indicates the

maximum frequency of inputs within the high-frequency bursts (i.e. the maximum

throughput that the given benchmark supports).

The obtained result shows that the average break-even frequency favg is di-

rectly proportional to the maximum clock rate fclk and clock network capacitance

Cclk; and inversely proportional to the difference of total asynchronous capaci-

tance Casync and fraction of clock tree capacitance Cclk, as expected. In derivation

of Figure 4.8, all the capacitances were extracted from the actual circuit, however,

the additional capacitance coming from the clock tree distribution network was

omitted from the calculation.

4.5 Design Space Analysis

To give the reader a slightly better understanding of the synchronous / asyn-

chronous tradeoffs presented in this thesis, we present a study that portrays a full

deign space view for one of the analyzed benchmarks. Figures 4.9 and 4.10 present

a 3-dimensional view of the maximum supported throughput vs. average input

62

burst frequency vs. calculated dynamic power consumption of the asynchronous

and synchronous implementations respectively.

720  100  10  1  0.1  0.01  0.001 

0.00E+00 

5.00E‐04 

1.00E‐03 

1.50E‐03 

2.00E‐03 

2.50E‐03 

720 

10 

0.1 

0.001 

Figure 4.9: Power for b01 in Watts: Asynchronous Implementation

720  100  10  1  0.1  0.01  0.001 

0.00E+00 

1.00E‐05 

2.00E‐05 

3.00E‐05 

4.00E‐05 

5.00E‐05 

6.00E‐05 

7.00E‐05 

720 

10 

0.1 

0.001 

Figure 4.10: Power for b01 in Watts: Synchronous Implementation

In all charts, x-axis (horizontal) represents the maximum supported frequency

for b01. The third dimension, z-axis indicates the average frequency of input

63

signals bursts, as described in the previous sections. Y-axis (vertical) represents the

power consumption, given the maximum frequency and the average input frequency

(input signal duty cycle).

In these surface plots, the areas where the average input signal frequencies

are higher than the maximum supported frequency, should be ignored. These are

merely artifacts of the software used for the plotting purposes.

Next, in order to have a better comparison of the two implementations, we sub-

tract the power consumption of the synchronous implementation from the power

consumption of asynchronous implementations for all frequency ranges. The re-

sulting plot is demonstrated in Figure 4.11.

720  100  10  1  0.1  0.01  0.001 

‐5.00E‐04 

0.00E+00 

5.00E‐04 

1.00E‐03 

1.50E‐03 

2.00E‐03 

2.50E‐03 

720 

10 

0.1 

0.001 

Figure 4.11: Power for b01: Diff between ASYNC and SYNC Implementations

As previously stated, the unattainable throughput scenarios should be ignored.

For the rest of the states, the synchronous implementation provides a more efficient

power consumption at higher input signal average frequency (indicated by the red

surface); and asynchronous implementation provides a better power consumption

tradeoff for the areas where high maximum throughput needs to be supported, but

64

the average input signal frequency is much lower (indicated by the blue surface),

as discussed in Section 4.4.

This result agrees with the original hypothesis that we have made, while de-

veloping this synchronous-to-asynchronous transformation. Our prognosis stated

that due to the nature of the transformation (gate-level netlist conversion), the

number of transistors in the asynchronous implementation would on average be

higher than that of the corresponding synchronous implementation. Also, in the

asynchronous QDI 4-phase handshake circuits, the signal activity factor is higher,

since the circuit on every data token goes through the active phase and then re-

turns back to the neutral phase. These two facts lead to higher dynamic power

consumption of the ASYNC design when the inputs arrive at high frequency with

no inactive periods. However, due to data-driven nature of the QDI implementa-

tion, in the scenarios where the average input frequency is low, but bursty with a

high maximum input frequency within the burst, asynchronous circuits prove to

be beneficial in terms of dynamic power consumption. This mainly occurs due to

the ASYNC automatic shutdown property in the time periods when the inputs are

inactive.

The graphs for the rest of the benchmarks look almost identical and will not be

included here, since they introduce no novel information compared to the presented

plots. The only difference in the plots of the other benchmarks are the eaxct values

on the break-even frequency line, as shown in Figure 4.8.

4.6 Designer Guidelines

After carefully analyzing the obtained results, we have developed the following

guidelines for the designers to consider, when their designs are still at either be-

havioral level of abstraction or at the gate level netlist. The following two lists

65

provide some rules of thumb of when synchronous and asynchronous circuits should

be used, depending on the metrics that are targeted.

SYNCHRONOUS CIRCUITS

• Ideal for very small pipelines stages

• Simple functions with small number of inputs

• Constant rate, high-frequency inputs

• Circuits with many high-fanout nodes (wire copy is free in terms of utilized

transistors)

• Constant frequency of system operation

ASYNCHRONOUS CIRCUITS

• Ideal for medium size circuits

• More than 16 transitions between original pipeline stages (typically 40+ gates

on critical path)

• Functions that need multiple stages in static CMOS for implementability

• Complex functions with both positive and negative senses of inputs/outputs

• Inputs with long periods of inactivity followed by high frequency bursts

• Variable frequency requirements

66

Chapter 5

Asynchronous-to-Synchronous

Interface with Discrete Timing

5.1 Motivation and Background

Many modern systems contain both synchronous and asynchronous circuit parts

in order to achieve the required design metrics. In such systems, correctly cross-

ing synchronous/asynchronous boundary is a non-trivial problem. An example of

a system with synchronous/asynchronous divide would be GALS (globally asyn-

chronous, locally synchronous) systems that were first suggested by Chapiro in

1984 [8]. Such designs may contain two types of boundaries: synchronous-to-

asynchronous and asynchronous-to-synchronous. Next few sections describe these

two bonders in detail; we give an overview of the work that has been previously

done by various researchers in this area.

67

5.1.1 Synchronous-to-Asynchronous Boundary

In order to go from synchronous domain to asynchronous domain, one has to

guarantee that the minimum throughput of an interfacing asynchronous circuit is

higher than the clock rate of the interfacing synchronous circuit. The asynchronous

circuit has to be able to accept data tokens faster than the synchronous circuit

produces these tokens (asynchronous circuit has to be working faster than the clock

rate). Asynchronous part of the interface has to work without getting backed-up

and without stalling.

Some interfaces are more demanding than others and require the asynchronous

circuits at the interface to not only be faster than the corresponding synchronous

circuits, but also to deal with the problem of incoming synchronous signals chang-

ing at an arbitrary time (without any relationship to the other synchronous or

asynchronous inputs and without correlation to asynchronous system’s internal

state). Such interfaces assume no prior knowledge of the synchronous system’s

behavior; more than one inputs may arrive simultaneously, or immediately after

each other (could be both synchronous and asynchronous in nature). The prob-

lem with this situation is that the interfacing asynchronous circuit may enter a

metastable state at some output node (for example, if more than one inputs arrive

simultaneously), which could cause the entire asynchronous part of the system to

deadlock. This situation has been extensively studied; many solutions have been

derived, with asynchronous synchronizer being the most attractive and simple ap-

proach [27].

As discussed by Nystrom, one the most obvious ways to handle multiple simul-

taneous requests (arrival of several inputs that are not temporally correlated) is to

use a mutex element (also called arbiter) [13,20,32]. A simple two way arbiter can

be constructed with a pair of two cross-couple NAND gates, as shown in Figure 5.1.

68

Intermediate1
Data1

Data2
Intermediate2

Figure 5.1: Two-Way Arbiter Structure with filter

In this configuration, no matter what the input combination is, only one of

the outputs (either Intermediate1 or Intermediate2) is high at any given time

(guarantees mutual exclusion of the input requests). The average arbitration time

of the circuit is proven to be constant (if no initial conditions are set and both

inputs: Data1 and Data2 become simultaneously high). The proof is obtained by

using transistor physics to determine the output voltages [20].

The filter at the output of the cross-coupled NAND pair eliminates any non-

monotonicity in signal transitions and all the values that cannot be interpreted as

valid logic values. The filter is inverting and waits for the signals to be separated

by at least a threshold voltage before the output changes.

In the case when multiple synchronous requests enter the synchronous / asyn-

chronous boundary, a way of managing them would be to store these requests in

modified flip-flops, which will be discussed later in this chapter. Such flip-flops

will then produce proper asynchronous tokens at their outputs. In that scenario,

we still have to deal with the issues of these signals not being mutually-exclusive

as seen by the asynchronous system, however, they can now be treated in a fully-

69

asynchronous manner. In this case, the flip-flops are designed in such a way that

these simultaneous request signals can clear their states (and flip-flop stored states)

based on the value of the acknowledge signal coming from the asynchronous part

of the system.

In this situation, we could use the following modified mutex element that can

treat simultaneous arrival of two non-mutually exclusive asynchronous requests.

The modified flip-flops would be located immediately to the left of this arbiter

circuit.

Ack2

Ack1

Data1

Data2

Data1_arb

Data2_arb

Ack2_arb

Ack1_arb

Figure 5.2: Mutual Exclusion Element with QDI handshake

In order to implement a mutual exclusion element that will not violate any of

our four-phase QDI handshakes, not only the requests themselves, but also the

acknowledges that indicate that the requests were served have to be utilized in the

circuit. The basic mutual exclusion element for the applications in asynchronous

circuits is shown in Figure 5.2.

These elements may be cascaded to obtain arbiters of higher dimensionality,

i.e. arbiters that can handle more than two simultaneous requests. Techniques of

cascading mutex-s have been previously analyzed by Manohar [19].

70

5.1.2 Asynchronous-to-Synchronous Boundary

Going from asynchronous part of the design to synchronous part can be more

complicated. This is the area where we want to focus our attention. Many so-

lutions have been previously proposed. Among them is another type of synchro-

nizer (standard two flip-flop) solution, which is simple, elegant, but has a large

latency (and in some cases throughput) penalty and does not satisfy some of the

requirements of more complex interfaces. Also no useful logical operations may

be performed while the interface signals are being synchronized. A lot of theo-

retical and experimental work has been done to test the flip-flop approach at the

synchronous/asynchronous boundary. Probabilities of metastability propagation

and circuit failure have been carefully analyzed [21, 38]; it has been shown that

sequential connection of flip-flops greatly decreases the metastability propagation.

As a matter of fact, only two sequential flip-flops drive this probability to an al-

most zero-value. Much experimental work has been performed to demonstrate

such behavior in actual industrially-used circuits [7, 29,31].

Some more complex schemes were presented to drive the failure probability

down while using two flip-flops as the main synchronization circuit, with some

additional circuits at the periphery. One approach is using stoppable clocks while

performing the synchronizations between two domains [17, 26]. Such approaches

require more hardware as well as calibrated delay lines, but can be used in con-

junction with other techniques if desired. Various arbiter configurations and asyn-

chronous clock-pulse generators have been previously used at the interface of the

synchronous/asynchronous boundary. However, sometimes, the synchronous re-

quirements don’t allow clock stoppage or irregular clock periods. Also, all of the

above approaches require overhead hardware, and in many cases higher-level con-

trol circuits.

71

Additional synchronization approaches have been proposed, such as pipeline

synchronization technique [32]. Using this method, several pipeline stages are used

to perform synchronization of the asynchronous request signal with a synchronous

clock. This technique uses arbiters and tries to reduce the timing penalty compared

to the consecutive flip-flop synchronization. The issue is that such implementation

would most of the time require insertion of redundant pipeline stages (and arbiters),

which increases area and power consumption.

Another commonly used approach is dual-port FIFO placement at the inter-

face. This method is used not only at the synchronous/asynchronous boundaries,

but also at synchronization of circuits that use several clock domains. This tech-

nique is safe in terms of metastability issues (as long as the FIFO depth is properly

calculated), however, it has a clear area/power cost and has relatively high latency

penalties in some modes of operation (when the FIFO is completely full, or com-

pletely empty). It is most efficient when the read and write rates are almost equal,

which is not the case in most designs.

5.2 Additional Asynchronous-to-Synchronous Interface Re-

quirements

Besides the requirements for the asynchronous-to-synchronous interface described

above, we have discovered that a lot of times we would like to put more constraints

on the interface. Specifically, in applications of distributed sensor networks and

in neuromorphic systems, there is a necessity to not only synchronize the data

traveling from asynchronous domain to synchronous domain, but also to align the

data with a specific value of the global system counter. The overall system may be

synchronous or asynchronous, but somewhere in the design there exists a global

72

synchronous free-running counter; it’s purpose is to align events happening in the

system to a specific time instance (determined by the clock rate). Such events

can, for example, be packet broadcasts in the sensor network that relate packet’s

arrival or transmission to a network timer (counter) value that is used for packet

processing.

We would like to focus on globally synchronous systems that use asynchronous

circuits to perform part of the computation. Decision of using asynchronous cir-

cuits may be based on some of the advantages that asynchronous circuits have in

power consumption, their robustness to delay variation and process variation, as

described in the Introduction section of this thesis.

As stated earlier, such systems often have a requirement (in terms of counter

value) on when the processed data should be ”released” from the asynchronous

circuitry to the rest of the system. In order to satisfy this requirement, we have

created a highly efficient, specialized interface that performs above described func-

tions. We have developed several modifications to the standard scheme, as well

as used some of the previously implemented techniques for our design of this

asynchronous-to-synchronous interface. Next section gives detailed description of

our interface implementation and goes over it’s operation.

An example of such a system would be a high-throughput router in a globally

synchronous on-chip network of processing elements, as depicted in Figure 5.3.

Due to the fact that in many such networks communication between the processing

synchronous elements is rare and usually happens in bursts, a synchronous router

would waste a lot of power and/or require complex clock gating. As the results

of out previous evaluations show, asynchronous circuits are a perfect solution for

such a task.

In this scenario, all of the processing elements are timed with a global clock.

73

SYNC

SYNC

SYNC

SYNC

SYNC

SYNC

Global CLK

ASYNC ASYNC ASYNC

ASYNC ASYNC ASYNC

Figure 5.3: On-chip Globally Synchronous Network

Packets that are transmitted between these elements usually have to be delivered

to a remote processing element at a specific clock ’tick’. The exact packet latency

through the router is not known, and depends on various parameters, such as

router congestion. However, the maximum delay through the router is defined.

With this information we can use an asynchronous router and deliver the packet

as soon as possible; then synchronize it with the global clock at the destination

and wait until the proper global timer value to release the packet to the destination

processing element.

5.3 Proposed Interface Overview

Since majority of the circuits that we design are QDI (quasi-delay insensitive)

asynchronous circuits, we would like to focus on an interface that is data-driven

and highly efficient in terms of throughput, latency and power consumption. This

interface receives asynchronous data tokens and synchronizes them with a global

system clock. The output of such an interface would be either valid synchronous

data, or valid asynchronous data that has been aligned with a clock signal. Be-

74

sides aligning the received data with a clock signal, our interface release this data

only at a specific value of the global timer. In case of synchronous output all the

subsequent processing circuitry will be synchronous in nature. If the output is a

synchronized asynchronous token, the subsequent circuitry will be asynchronous

in nature; however, the timing of this token is well defined after synchronization.

This information (alignment with a specific timer value) may be used to for corre-

spondence with matching software (such as a discrete event simulator), or with a

logically equivalent fully synchronous system.

The block diagram of such an interface is presented in Figure 5.4. As mentioned

earlier, the input is an asynchronous QDI signal (data and enable/acknowledge).

In order to provide the ability to have deterministic timing through the system we

perform not only synchronization, but also alignment to the Synchronous Timer.

Clock signal (CLK) is provided externally for data synchronization purpose. The

output of the block is data, synchronized with the CLK signal. This data could

be synchronous (single rail logic), or aligned asynchronous (multi rail with enable)

to properly implement the QDI handshake.

Figure 5.4: Synchronizer Overall Diagram

The output of the interface may have a different number of bits (N-bit) than

the asynchronous input (N+T -bit), since the original asynchronous input to the

interface must contain the time value, which indicates when the data has to be

released after synchronization. This timer value in most occasions will not need to

75

be passed on from the interface to the succeeding circuit.

A common use for such an interface would be a system that requires globally

deterministic operation, while locally making use of data-driven (asynchronous)

behavior. The interface that we are discussing is able to track global time (by

aligning data to the synchronous timer), and gives designer the flexibility to per-

form some processing in asynchronous domain. If all the subsequent circuitry is

synchronous, we trivially modify the last asynchronous stage to output single rail

data compatible with the rest of the synchronous system.

5.4 Proposed Interface Detailed Description

We would now like to discuss details of the interface proposed in the previous

section and explain why it would be advantageous to use this interface at some of

the asynchronous/synchronous boundaries in the modern systems.

In order to minimize the number of synchronizers required at the boundary,

we use validity signals that indicate that all the data bits on a given channel are

in legitimate (valid or neutral) states. For example, instead of an asynchronous

eMx1of2<10> channel (10 dual-rail data values and one enable wire) we would

use an evMx1of2<10> channel, which adds another value (wire) that needs to be

transmitted between different circuit parts. The advantage of such an approach is

that the input validity does not need to be calculated locally at the next circuit

element, but is used from the output validity wire of the previous circuit element.

The disadvantage is that there is one more wire per each circuit element, which

complicates physical channel routing. However, if the channels are wide (multi-bit),

the overhead of one more wire is negligible. In our opinion this cost of an additional

wire is amortized by the reduction in circuit’s area and power consumption [10].

The validity value is calculated by completion trees (C-tree). A C-tree checks

76

for the presence of a valid data (or neutral data) over all the bits within a channel

by using C-element circuit primitives [33].

With the validity-based channels, instead of synchronizing each data bit with

the clock, we only need to synchronize the validity. According to the QDI princi-

pals, computation of validity is constructed in such a way that the validity is the

last value that changes on a channel (all data values must be in an allowed state

before validity’s value changes). We, thus, note that once the validity is synchro-

nized with the clock, we are guaranteed that all the data bits are synchronized as

well.

The detailed description of our synchronizer is shown in Figure 5.5.

Figure 5.5: Synchronizer Detailed Diagram

PCFB and PCHB (PCEHB) templates used in this description stand for Pre-

Charge Full Buffer and Pre-Charge Half Buffer (Pre-Charge Enable Half Buffer)

respectively. Two half buffer structures are required to hold one complete data

token; alternatively, only one full buffer could be used in their place. Few advan-

tages of a half buffer, however, is a smaller number of transistors, and a smaller

number of transitions per cycle than a full buffer. Half buffers are especially useful

77

in designs, where full slack is not required [20]. Both of these templates and their

various implementations have been thoroughly studied by Lines and Fang [10,18].

5.4.1 Input Stage of the Synchronizer

All the C-tree blocks are used to produce the channel’s validity signal, as discussed

earlier. The asynchronous input is received by the interface from the left side. The

interface structure is independent of the width of input data and is denoted as an

(N+T)-bit value for reference. In order to fully decouple the interface from the

preceding asynchronous circuitry, we store the data token in a full buffer, PCFB-

style. PCFB immediately releases the left handshake, before the data token is

passed to the next (right-side) element of the interface. As a result, the preceding

(left-side) asynchronous circuitry may start processing the next data token before

PCFB completes the right part of the handshake.

Figure 5.6: Input Stage of the Synchronizer

The synchronization with a clock (CLK) happens between the PCFB and

78

PCEHB elements as shown in Figure 5.6. The validity of this channel is passed

through flip-flops, as discussed earlier. If designer has prior knowledge of the cor-

relations between the time of arrival of asynchronous tokens and the CLK signal,

only one flip-flop may be used in some scenarios. Example of such case would

be if the asynchronous token always arrives before the CLK and provides enough

time to satisfy the flip-flop’s setup and hold times. Our structural design of the

flip-flops will be discussed in the next subsection.

However, if nothing is known about the clock’s relationship to the arrival time

of asynchronous tokens, the standard solution of two sequential flip-flops may be

used. The output of the second flip-flop is now represented by a data validity sync

signal that is aligned with the clock. In this case, the enable coming back from

the PCEHB sync enable to the PCFB also happens only after the positive edge of

the clock and is thus aligned with CLK signal as well. The enable actually gets

asserted almost right after the positive clock edge where the synchronization has

completed (plus a small delay from the transitions coming from the control part

of the PCEHB).

In a regular PCEHB buffer reshuffling, the data at the output of the buffer

appears two transitions after a valid data has arrived at the input of the buffer.

However, in our case, we cannot allow that two happen, because that would mean

that since only validity is synchronized, the data would appear at the output

of PCEHB before the synchronizations occurs and will cause the later part of

the interface and the succeeding circuitry to malfunction. In order to avoid this

scenario, we modify the evaluation stacks for the data rails of the PCEHB and

add one transistor to pull-up stack and one transistor to pull-down stack to check

for the synchronized channel validity value (Lv) as demonstrated in Figure 5.7.

This modification has to occur at stacks of all the data bits. It guarantees that

79

the output data will become valid only after the validity gets synchronized with

the clock. Since we now check for left validity on the data evaluation rails of the

PCEHB, we don’t need to check it again in the control part of the PCEHB. Thus,

the control gets simplified, as depicted in the figure.

Figure 5.7: Modified PCEHB Element

In this implementation, since both senses of the left validity are checked at the

data rails, the right validity implies the left validity; thus the left enable is produce

merely by inverting the right validity. Other than this small modification to both

data and control evaluation circuitry, the buffer behaves similarly to the original

PCEHB implementation, described by Fang [10].

The reason to have a PCEHB stage as the second set of buffers instead of PCFB

is analyzed next. In case of a second PCFB stage, there is a chance that there is a

complete data token residing in the second hypothetical PCFB (the left part of the

handshake resets right after the token is received, regardless of whether the token

80

has been processed on the right side of the PCFB). There could be a scenario

when this synchronized token is not immediately processed by the synchronous

circuitry; for example if the the result of the comparison of the timer value with

the newly arrived token T-value indicates that the data needs to be held until the

appropriate timer ’tick’ happens. In such a case, if another data token arrives from

the left (from the first PCFB stage), the validity gets synchronized and aligned

with the clock edge, but the data doesn’t get stored in the PCFB yet, because

the place is occupied by the previous token. Logically, this is allowed, but the

problem is that the new token gets held up at the PCFB’s input and will get out

of sync with the clock edge eventually. If so, it can lead to a metastability scenario

in the succeeding synchronous part once it enters the synchronous comparator,

because the data value will not be tightly related to the clock edge any more.

The simplest solution to this problem is not to finish the left handshake, before

the synchronous circuitry processes the previous token. To do that, one could

use a different handshake reshuffling that interleaves the left and the right side

of an asynchronous handshake. A PCHB (PCEHB) template exactly follows this

behavior and is used as a second stage in our design for that reason.

5.4.2 Flip-Flop Implementation Details

In the common two flip-flop synchronization scheme, the number of cycles that it

takes to synchronize a signal is variable. That number is dependent on the time

of data arrival in relation to the next clock edge. This synchronization will be

on average around two cycle on the valid part of the 4-phase handshake and two

cycles on the neutral part of the handshake, since both senses of the validity are

synchronized. This seems like a waste to us, because the neutral phase of the

validity doesn’t really need to be synchronized, since no computation is performed

81

(no new data is introduced), as long as further processing within the interface

is implemented in such a way that the interface operations is not broken. So in

order to minimize the number of clock cycles it takes to fully synchronize the valid

data token, we don’t synchronize the neutral state of the validity. Since flip-flops

are state-storing elements, we need to clear that state accordingly to mimic the

progression of the neutral part of the handshake at the flip-flops’ outputs. For that

we use a special asynchronous reset.

Alternatively, instead of imitating the neural phase in the four-phase hand-

shake, one could choose to use a two-phase handshake instead. In that case any

change of the request signal (validity signal in our case) would be synchronized,

however, every change of that signal would indicate the arrival of the new set of

data. The concern with the two-phase handshake based circuits, though, is their

complexity. The surrounding circuitry always ends up being bigger (in terms of

area) and more difficult to design than in the four-phase handshake case. For that

reason we decided to stay with a four-phase handshake based design and to imple-

ment a special asynchronous reset on the flip-flops’ outputs. Analysis, conversion

and comparison of two- and four-phase handshake based circuits are presented by

Nowick [25].

The forward (valid token) part of the handshake is synchronized through the

flops, as originally intended. However, after the PCEHB element accepts the

data token, we clear the flip-flop state and reset all intermediate signals to the

neutral state of the handshake, thus, mimicking the advancement of a neutral

token through the synchronization circuitry.

The flip-flops are reset with a short pulse generated with a NOR gate that

combines the sync enable signal, indicating that the token has been accepted by

the succeeding PCEHB and the negative edge of the CLK signal (to provide a

82

safety margin and avoid collision with the next data token). One thing to note,

is that since we are using the modified version of the PCEHB, the sync enable

signal becomes active only after the data token is passed on from the PCEHB to

the Synchronous Comparator. Such reset scheme minimizes the number of CLK

cycles required for synchronization and provides a safety margin for the flip-flop

reset.

The length of the negative voltage pulse (assuming a clock rate that is longer

than an asynchronous handshake completion time) is determined by how long the

sync enable stays active. Since both of the flip-flops are reset simultaneously, a

designer should use caution while laying out the reset signals and make sure that

the reset to the DFF1 is not longer (in terms of wire length) than the DFF2 reset

wire. This restriction occurs due to the fact that the neutral output of DFF1 is

not directly checked by any circuit and we assume that DFF1 has reset by the

time sync enable changes it sense. This assumption is safe, since there are several

transitions from the time data validity sync goes to state ’0’ to the time sync enable

goes to neutral state (lengths of these transitions also determine the length of the

reset pulse).

We have studied various flip-flop implementations and have selected a modi-

fied version of the C2MOS (Clocked Complementary Metal Oxide Semiconductor)

flop implementation. Such design minimizes the impact of races and also reduces

the clock slew rate requirement. C2MOS is fast, energy efficient and small which

perfectly fits into our interface requirements. We augment the commonly used im-

plementation with either full combinational feedback, discussed by Manohar [20];

or with conditional feedback (pseudo-static behavior) as explained later. The de-

tails of our flip-flop design are presented in Figures 5.8 and 5.9.

The difference between the two flip-flop variations is the addition of one more

83

Figure 5.8: C2MOS flip-flop with conditional feedback

transistor in each stack in the feedback networks. The advantage of the fully com-

binational feedback approach is that the intermediate nodes are always driven,

regardless of the state of the clock, and regardless of the delays of the clock invert-

ers and their corresponding wires. However, that comes at the cost of a few more

transistors and higher power consumption (short circuit current) when the feed-

back’s state needs to be flipped. Also the combinational feedback inverter needs

to be carefully sized to make sure that the main stack can overpower the feedback

when changing the stored value.

The approach with conditional feedback is thoroughly analyzed by Yeo [30] and

Brodersen [22]. All of the tradeoffs and power analysis are presented, as well as

several other flip-flop implementations.

Besides our asynchronous parallel and serial chip resets (not depicted in the fig-

84

Figure 5.9: C2MOS flip-flop with full combinational feedback

ures), we have added an asynchronous reset signal to the second latch of each flip-

flop. We generate this signal internally as described previously. These reset inputs

are used to perform a fast reset at the neutral phase of the asynchronous hand-

shake. The ”forced” reset is only performed at the second latch. The first latch is

passively overwritten during the negative clock cycle, as soon as pre-synchronized

validity value changes to zero, while it is transparent. So after the negative clock

edge and once the sync enable value becomes active, we write the first latch of

each flop to zero through it’s D-input, and force the second latch of each flop to a

zero state using a parallel reset transistor and a series cut off transistor (depicted

on Figures 5.8 and 5.9). At the moment of the forced write, the second latch is

non-transparent and no glitches can propagate forward from the preceding latch.

85

5.4.3 Synchronous Circuitry

The N-bit PCEHB buffer also works as a rail converter. The value comes out of

this buffer in a single rail format, as opposed to a multi rail encoded format in

the previous asynchronous stages. At that point, our token looks completely syn-

chronous. The acquired token contains two sets of information: the Data Release

Time Value (DRTV) that indicates when the data is supposed to be passed to next

stage; and the actual data that needs to be passed on.

As shown in Figure 5.10, the Data Release Time Value is then compared to the

value of the Global Synchronous Timer. The Global Timer is controlled by the

same CLK signal as the synchronization flip-flops of the previous stage; thus, they

are exactly in sync with each other. The decision of whether to release the arrived

data to the next stage depends on the result of the comparison of the DRTV and

the Timer Value.

Figure 5.10: Synchronous Comparator and Ouput Stage of the Synchronizer

86

To make our interface more robust, we put a restriction that, if desired, all the

communication with the (N+T)-bit PCEHB asynchronous stage has to be able to

finish within the same clock cycle as when the (N+T)-bit data was received by

the Synchronous Comparator. This would guarantee maximal throughput of our

interface and ability of processing the arrived token (through the entire interface)

within one clock cycle in the best scenario (if one flip-flop is used for synchroniza-

tion, and the data arrives within an allowed time window of the negative clock

cycle). The requirement of one clock cycle processing is non-trivial; that is why

we would like to focus on this scenario.

In order to allow synchronous comparison on the same clock cycle as synchro-

nization, we delay the clock arrival to the N-bit Synchronous register by the time

it takes the signal to travel from the output of DFF2 to the N-bit Synchronous

register (including the DRTV comparison with the Timer Value). This would allow

the timing comparison function and all the synchronization to remain transparent

to the rest of the design. The exact clock delay is bounded by time it take the

signal to propagate from the positive edge of the CLK signal (which is when data

validity sync goes up) to the time instance when Q f of the flops at the N-bit Syn-

chronous register goes up, as we will describe in the next subsection. For a point

of reference, for Synchronous Comparator working as a simple XNOR-based 5-bit

comparator in IBM’s 45 nm technology node, this delay is on the order of 400 ps,

which is incomparably faster than common contemporary clock rates. Such delay

corresponds to approximately 9 slow-fast inverter pairs (chain of small inverter -

large inverter pairs) to implement the delayed version of the CLK signal. The

delayed version of the global clock signal is called CLK delayed in our diagrams.

The delayed clock technique, applied in our interface, is similar to a time-

borrowing approach used by synchronous logic designers [14].

87

Figure 5.11: A Variant of Synchronous Comparator Implementation

A possible conceptual implementation of the Synchronous Comparator is pre-

sented in Figure 5.11. Such a design consists of T parallel 1-bit comparators (for

example implemented as XNOR gates) and a gate (or set of gates) that combines

the result of these 1-bit comparisons. In case of XNOR-s, the gate that combines

the outputs is an AND gate (or a tree that implements the AND function if the

fan-in is large). The output of the AND gate is indicated by a match signal that

is in a ’true’ state if all comparators indicate that their DRTV bit matches the

corresponding Global Timer bit, and is in a ’false’ state otherwise.

The AND gate that generates the match signal in Figure 5.11 does not create

any potential glitch problems for the succeeding asynchronous circuitry (glitches

can lead to deadlock in QDI-type circuits). Glitches can occur at the output of

the AND gate, however, that can only happen during the negative phase of the

CLK delayed signal. Evidently, by construction of the delay element, we require

that the output of the AND gate settles to a proper value before the positive edge

of the CLK delayed occurs. Thus, no glitches can propagate to the second set of

latches in the flip-flops of the N-bit Synchronous register; all glitches are stopped

at the first set of latches.

88

5.4.4 Synchronous Register Implementation

As long as the DRTV does not match the Global Timer, the result of the compar-

ison is ’false’ and the data does not get latched in the N-bit Synchronous register.

In order to achieve that, we simply gate the clock input of the register’s flip-flops

with the resulting match signal value (and a few other signals, as discussed later

on) of the Synchronous Comparator.

Once the Synchronous Comparator block finishes the computation (within the

positive phase of the clock cycle) and the resulting value is ’true’, the single rail

N-bit data is passed to the Synchronous Register.

As mentioned earlier, we have restrained the interface to the single cycle syn-

chronization requirement. In order to perform synchronization within one clock

cycle from the time the data is outputted by the PCEHB, we modify the Syn-

chronous register’s clock and reset control signals. For the register itself we use

the same C2MOS type flip-flop as in the validity synchronizer, described in the

earlier section. However, the control signals are generated differently and require

some explanation.

The PCEHB element besides outputting the data to the Synchronous Com-

parator, generates a valid bit that indicates that all the data bits are in the valid

phase. The flip-flops in the Synchronous register are activated (clock is enabled)

only when this valid signal is true. This means that all the changes of the Timer

Values are effectively ignored until the valid signal indicates that (N+T)-bit token

is available for time value comparison. In order to implement this type of flip-flop

clock control, we combine the valid and CLK delayed signal (and the match signal

described previously) with an AND gate, as indicated in Figure 5.12.

The same valid signal can be safely used to power-gate all synchronous circuit

elements and the successive circuitry to minimize the standby power consumption.

89

Figure 5.12: Synchronous Register / Flip-Flop Control Signals

Unlike the AND gate of the Synchronous Comparator, no glitches can possibly

occur at the output of the three-input AND gate that controls the clock input

of the flip-flops in the N-bit Synchronous register in Figure 5.12. The reason for

that is the AND gate’s input arrival sequence. For the up-going transition of the

clock input of the Synchronous register, the only possible input sequence is valid

goes high, then match goes high (after the CLK edge that resulted in a positive

result of the timing value comparison), and last CLK delayed goes up. These

values all change sequentially, monotonically and are guaranteed to stay in their

states, until the valid bit goes down, which by construction has to happen before

the next CLK tick arrives. On the down-going transition of the clock input of

the Synchronous register, the valid bit going low blocks all further triggers from

CLK delayed. The next time valid bit can go high is only on the next CLK cycle

(if the validity synchronization occurs immediately on the next cycle, and only

one flip-flop is used for the validity synchronization), however, during that time

the clock input of the Synchronous register is blocked by the negative value of the

90

CLK delayed. By the time the positive edge of CLK delayed arrives, the match

signal is guaranteed to already be in the correct state (again by the construction

of the delay unit), and will either allow the CLK delayed edge to go through to the

Synchronous register, or block it’s edge until the timing value comparison results

in a positive outcome. Thus, all the transitions are monotonic and no violations

of the QDI protocols can occur.

Due to the requirement of the same cycle data output from the N-bit Syn-

chronous register and the constraint that we have to be able to receive the next

valid data token on the next cycle (in case we use single flip-flop for the valid-

ity synchronization), we have to force the reset of the synchronous flip-flops in

the Synchronous register. This guarantees that by the time the next clock cycle

comes, the flip-flops are ready to receive another set of data. In order to do that,

we combine the CLK signal and CLK delayed signal with a NOR gate. Such com-

bination produces a pulse signal starting at the positive edge of the CLK delayed

signal. The length of the reset pulse is determined by how much the CLK signal is

ahead of the CLK delayed signal. In most typical applications (where the clock is

not extremely aggressive), the amount of the clock delay will be small, compared

to the cycle time. In such cases, the reset pulse will last for the majority of the

negative CLK phase. The reset pulse terminates once the CLK signal goes back

up to the positive clock phase, thus producing a guard band around the positive

edge of the CLK delayed signal.

Such flip-flop reset behavior is allowed, since we only actively force reset of the

second latch, which is not transparent during the negative clock phase. The output

value of the first latch remains untouched by the reset signal and will settle to the

zero value during the negative clock phase, if there are no pending tokens. Again

no glitches can propagate forward, since the second latch is non-transparent in the

91

negative clock-phase and, thus, can only either stay at a zero-value (if the data

is in neutral state), or have a monotonic one-to-zero transition once the reset is

applied. This type of reset guarantees that the signal integrity is well maintained

at all the latch outputs.

The Synchronous register also works as rail converter and generates multi rail

data signals out of single rails. For example, if dual-rail signaling is used, the single

rail is passed on directly as the true rail of the encoded data signal; and in parallel,

it is also passed through an inverter to generate the false rail.

5.4.5 Synchronizer Output Stage

From the output of the N-bit Synchronous register, valid data goes to the N-bit

Asynchronous register, as depicted in Figure 5.10. This register is implemented

as a full buffer stage (PCFB), to decouple the Synchronous register and the next

data processing block, outside of the interface (not shown). The validity signal

of this data is computed in parallel by using a C-tree. Once all the data is in

the allowed state (indicated by the validity), the handshake with the (N+T)-bit

modified PCEHB register is completed, and the PCEHB is ready to receive a new

synchronized valid token from the leftmost PCFB. All of this will happen within

one cycle, as long as the timing comparison had a matching outcome.

If the two flip-flop synchronizer scheme is used and data tokens are backed up

at the left side of the interface (tokens are waiting to be synchronized), the data is

able to be accepted every other cycle at maximum (assuming matching time values

and same cycle output from the right side of the interface), which corresponds to

the maximum throughput of this interface for the two flip-flop synchronization.

The data could potential be accepted, synchronized and processed every cycle in

this interface, if one flip-flop synchronizations scheme is used, however, that comes

92

with a higher probability of metastability propagation at the synchronizer, which

in most cases is not desirable behavior.

The N-bit Asynchronous register / PCFB at the right side of the interface per-

forms a triangular handshake and guarantees that once the reg enable is asserted,

the data is successfully latched by the PCFB elements and that the Synchronous

Comparator has successfully finished comparing or halting the data. PCFB reshuf-

fling allows the next token to start processing before the previous data token gets

retrieved by the circuitry succeeding the interface. The output part of the Asyn-

chronous register should be implemented according to the data format that is

required by the succeeding circuitry. If asynchronous processing is employed after-

wards, the next element will perform a regular 4-phase handshake with the N-bit

Asynchronous register / PCFB.

In case all further processing (after the interface) is synchronous, the output

should be converted back to single rail data. If dual rail encoding was utilized, we

would drop the false rail and use the true rail as single rail data. At the time the

data is passed from the last PCFB stage to the succeeding element, it is still aligned

with the global CLK delayed signal. Part of the next clock cycle has already been

taken up by the propagation delay through the Asynchronous register, and that

delay has to be taken into account during the synchronous timing simulations. If

synchronous processing is employed afterwards, the right enable signal is not part

of the interface and can be controlled by one of the local signals, for example by the

clock edges, which would provide one clock phase for synchronous processing and

second phase for acknowledging the neutral phase. In case of dual rail encoding, the

all 0-s output form the Asynchronous register does not correspond to a valid data

token and should be treated by the succeeding synchronous circuitry accordingly.

93

Chapter 6

Additional Related Research

Various CAD tools exist for VLSI synthesis using standard cells such as the indus-

trial synthesis tool offerings from Cadence and Synopsys. Standard tools, such as

Synopsys Design Compiler [4], mainly use synchronous static CMOS standard cell

synthesis. These tools can take a high-level Verilog/VHDL description and synthe-

size it into synchronous gate-level netlist using a supplied library of standard cells.

Since most of the standard cell libraries do not supply transistor-level descriptions,

the flexibility of performing transistor-level optimizations is taken away from the

designer.

Some work has been done in academia to extend/replace the standard indus-

trial tool flow to allow circuit family-specific synthesis. Several researchers have

achieved substantial improvements of an optimized metric (area/power/throughput)

using asynchronous circuit implementation and synthesis.

A. Martin, et al. showed general techniques for compiling asynchronous circuits

from a high-level description language CHP into transistor-level designs using data-

driven decomposition such as control-data and projection [39].

Farhoodfar, et al. illustrated asynchronous circuit synthesis from the high-

94

level description language, Communicating Sequential Processes (CSP) [37], into

a library of asynchronous standard cells based on Pre-Charge Half Buffer (PCHB)

and Pre-Charge Full-Buffer (PCFB) templates [15].

P. Beerel, et al. demonstrated a back-end design flow for asynchronous stan-

dard cells that allows low-level (transistor-level) circuits to be implemented from a

schematic description using a single-track full buffer (STFB) template [12]. Bereel

and his colleagues have also released an asynchronous standard cell library, the

High-Speed Asynchronous Pipeline Cell Library, that is available for public use [11].

Ellervee, et al. described their techniques for automatic synthesis of asyn-

chronous circuits for RTL-based design descriptions [28]. While both single- and

dual-rail asynchronous circuits were considered, no transistor-level analysis was

shown.

To the current knowledge of the authors, no general tools or techniques for

compilation of an industry accepted high-level description language (Verilog or

VHDL) into synchronous and asynchronous transistor-level circuit families have

been previously demonstrated using a unified toolflow.

95

Chapter 7

Suggestions for Further

Improvements

The Toolflow Evaluation section demonstrated that our proposed toolflow is effi-

cient for both circuit families under consideration, depending on the applications

and targeted metrics. The design cycle time is drastically improved, if our tech-

niques are used.

As for further improvements to this work, we suggest to focus on the synchronous-

to-asynchronous conversion algorithm. Improvements in the algorithm may lead

to significant benefits in terms of asynchronous circuit power consumption and

occupied area.

A good starting point to improve the conversion would be to add an option

of having the ability to control the ”effective pipeline depth” of the asynchronous

circuit. This can be done by combining several consecutive CMOS standard cells

into one evaluation stack of the asynchronous template. This technique will rad-

ically decrease the effective transistor overhead per asynchronous standard cell.

96

Depending on the complexity of the standard cells under consideration, a different

number of standard cells should be used per asynchronous template. The optimal

number may be determined through simulation in each given design.

The previously described technique does not involve any complex toolflow mod-

ifications or additions. In case the obtained power savings are not sufficient, we

advise to create a compiler to perform further asynchronous specific optimizations.

As an example, such compiler could take a high level circuit description and trans-

form it into efficient asynchronous Verilog-type primitives still at high level. A

compiler could also operate on the asynchronous gate-level netlist obtained after

running Verilog-to-ACT tool. This compiler should be able to read asynchronous

Verilog-level description of the design and/or an asynchronous gate-level ACT type

netlist.

The asynchronous circuit compiler can perform various types of optimizations

to further improve the power consumption. A few things worth mentioning for

such compiler design are the following. The number of copy-elements should be

minimized, thus the number of high-fanout out nodes should be reduced by the

compiler. This can often be done by means of using asynchronous splits and

merges throughout the computation. The compiler can also perform control-data

decomposition [20]; busses should be combined into separate instances with control

actions performed only once per entire bus, instead of once per each bit. Instead

of using highly pipelined templates, such as PCHB and PCFB, function blocks

and asynchronous register ’read’ and ’write’ ports may be used to reduce tran-

sistor overhead. Some additional techniques that may be used are described by

Manohar [20], Martin [23,39] and Teifel [35].

It is also important to evaluate other asynchronous families to further under-

stand the synchronous / asynchronous tradeoffs. The templates that we advise to

97

consider are: PCHB (pre-charge half buffer without validity forwarding) for higher

throughput, WCHB (weak-condition half buffer, where computation is performed

on both p- and n- stacks) for smaller number of gates [20], HCHB (half cycle half

buffer that doesn’t check the neutrality phase) for lower power consumption [16],

STFB (single track full buffer with reduced transistor count) for lower power con-

sumption [12].

98

Chapter 8

Conclusion

In this thesis we have proposed a novel way of designing complex VLSI circuits. We

have presented a new hybrid synchronous / asynchronous toolflow that drastically

reduces the design time for VLSI projects. The presented approach is especially

useful in mixed-circuit type medium-scale projects, where accurate measurements

early in the design cycle can drive many high-level architectural decisions. Using

our methodology, the designer can obtain accurate transistor-level measurements,

including throughput, power, and area, at the initial stages of design development.

Our toolflow allows designers to select the ideal circuit family for each digital

block based on the original design metrics, without necessitating thorough exper-

tise in all logic families. Furthermore, we bypass the cumbersome layout place and

route step until the final stage of the design cycle, which greatly accelerates the

design phase.

We also present an innovative tool, called COSIM that interfaces various high-

level and low-level simulators (both synchronous and asynchronous). This tool

allows the designers to perform mixed-circuit simulations at various levels of ab-

straction. COSIM also has the capability of automatically generating proper test-

99

ing environments for both synchronous and asynchronous circuit implementations.

Based on the evaluation results of our toolflow, we conclude that depending on

the application, there are scenarios were it is beneficial to use synchronous circuits,

and other scenarios were asynchronous circuits provide better results. We provide

guidelines that help designers determine which type of circuit family to consider,

based on the high-level structure of their designs and on the metrics that designers

are striving for.

Lastly, we present a highly efficient asynchronous-to-synchronous interface for

applications that require deterministic behavior of the global system. This interface

allows partial implementation of the design in an asynchronous manner without

loosing exact event sequencing in terms of clock cycles. Such system behavior can

easily be modeled in a software discrete event simulator which will have an exact

correspondence with the actual hardware system.

100

Bibliography

[1] Nangate 45nm open cell library. In http://www.nangate.com/, 2009.

[2] ITC-99 benchmark homepage from University of Texas. In
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html, 2010.

[3] Overview of ITC-99 benchmarks form Torino, Italy. In
http://www.cad.polito.it/downloads/tools/itc99.html/, 2010.

[4] Synopsys tool references, simulation manuals, tool executables. In
https://solvnet.synopsys.com/, 2010.

[5] F. Akopyan, R. Manohar, and A. B. Apsel. A level-crossing flash asynchronous
analog-to-digital converter. In Proc. of the 12th IEEE International Sympo-
sium on Asynchronous Circuits and Systems, pages 11–22, 2006.

[6] R.E. Bryant and et al. Limitations and challenges of computer-aided design
technology for CMOS VLSI. In Proc. of the IEEE, pages 341–365, 2002.

[7] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and
arbiter circuits. In IEEE Transactions on Computers, pages 421–422, 1973.

[8] D. M. Chapiro. Globally-Asynchronous, Locally-Synchronous Systems. PhD
thesis, Stanford University, October 1984.

[9] D. Fang, S. Peng, C. LaFrieda, and R. Manohar. A three-tier asynchronous
FPGA. In International VLSI/ULSI Multilevel Interconnection Conference,
2006.

[10] David Fang. Width-adaptive and non-uniform access asynchronous register
files. Master’s thesis, Cornell University, December 2003.

101

[11] M. Ferretti and P. A. Beerel. USC’s PCHB based asynchronous gate library.
In http://jungfrau.usc.edu/new/research/current/last/index.html, 2004.

[12] M. Ferretti, R. O. Ozdag, and P. A. Beerel. High performance asynchronous
ASIC back-end design flow using single-track full-buffer standard cells. In
Proc. 10th IEEE International Symposium on Asynchronous Circuits and Sys-
tems, pages 95–105, 2004.

[13] R. Ginosar. Synchronization and arbitration. In ACiD Summer School on
Asynchronous Circuit Design, Grenoble, France, July 15-19 2002.

[14] G. Jung, V. Perepelitsa, and G.E. Sobelman. Time borrowing in high-speed
functional units using skew-tolerant domino circuits. In Proc. of the 2000
IEEE International Symposium on Circuits and Systems (ISCAS), page 641,
2000.

[15] H. Pedram K. Saleh, M. Naderi, M. H. Shafiabadi, H. Kalantari, and A. Far-
hoodfar. Synthesis tool for asynchronous circuits based on PCFB and PCHB.
In Proc. 9th Annual Computer Society of Iran Computer Conference, 2004.

[16] C. LaFrieda and R. Manohar. Reducing power consumption with relaxed quasi
delay-insensitive circuits. In Proc. of 15th IEEE Symposium on Asynchronous
Circuits and Systems, pages 217–226, 2009.

[17] W. Lim. Design methodology for stoppable clock systems. In IEEE Proc. on
Computers and Digital Techniques, pages 65–72, 1986.

[18] Andrew Matthew Lines. Pipelined asynchronous circuits. Technical report,
Caltech, 1998.

[19] R. Manohar, M. Nyström, and A. Martin. Arbiters are forever. Discussion
and analysis of various arbiter circuits, 1995.

[20] Rajit Manohar. Asynchronous VLSI systems. Class Notes for ECE 574 at
Cornell University, 1999.

[21] L. R. Marino. The effect of asynchronous inputs on sequential network relia-
bility. In IEEE Transactions on Computers, C-26, pages 1082–1090, 1977.

[22] D. Markovic, B. Nikolic, and R. W. Brodersen. Analysis and design of low-
energy flip-flops. In International Symposium on Low Power Electronics and
Design, pages 52–55, 2001.

102

[23] Alain J. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed Computing, 1(4), 1986.

[24] Alain J. Martin. The limitations to delay-insensitivity in asynchronous cir-
cuits. In ARVLSI, pages 263–278. MIT Press, 1990.

[25] A. Mitra, W.F. McLaughlin, and S.M. Nowick. Efficient asynchronous proto-
col converters for two-phase delay-insensitive global communication. In Proc.
of the 13th IEEE International Symposium on Asynchronous Circuits and
Systems, page 186, 2007.

[26] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D. Mullins, and P. Robin-
son. Using stoppable clocks to safely interface asynchronous and synchronous
subsystems, 2000.

[27] M. Nystrom and A. J. Martin. Crossing the synchronous-asynchronous divide.
In Workshop on Complexity-Effective Design, 2002.

[28] J. Oberg, J. Plosila, and P. Ellervee. Automatic synthesis of asynchronous
circuits from synchronous RTL descriptions. In 23rd NORCHIP Conference,
pages 200–205, 2005.

[29] M. Pechoucek. Anomalous response times of input synchronizers. In IEEE
Transactions on Computers, C-25, pages 133–139, 1976.

[30] M.-W. Phyu, W.-L. Goh, and K.-S. Yeo. Low-power/high-performance
explicit-pulsed flip-flop using static latch and dynamic pulse generator. In
IEE Proceedings on Circuits, Devices and Systems, pages 253–260, 2006.

[31] F. Rosenberger and T. J. Chaney. Flip-flop resolving time test circuit. In
IEEE Journal of Solid-state circuits, SC-17, pages 731–738, 1982.

[32] J.N. Seizovic. Pipeline synchronization. In Proceedings of International Sym-
posium on Advanced Research in Asynchronous Circuits and Systems, pages
87–96, November 1994.

[33] M. Shams, J. C. Ebergen, and M.I. Elmasry. A comparison of CMOS im-
plementations of an asynchronous circuits primitive: the C-element. In In-
ternational Symposium on Low Power Electronics and Design, pages 93–96,
1996.

[34] Dennis Sylvester and Himanshu Kaul. Future performance challenges in

103

nanometer design. In Proc. Design Automation Conference, pages 3–8, NY,
USA, 2001. ACM Press.

[35] J. Teifel and R. Manohar. Static tokens: Using dataflow to automate concur-
rent pipeline synthesis. In Proc. of 10th International Symposium on Asyn-
chronous Circuits and Systems, pages 17–27, 2004.

[36] A. K. Uht. Uniprocessor performance enhancement through adaptive clock
frequency control. In Proc. of the IEEE Transactions on Computers, page
132, 2005.

[37] C.H. van Berkel and R.W.J.J. Saeijs. Compilations of communicating pro-
cesses into delay-insensitive circuits. In Proc. of the 1988 IEEE International
Conference on Computer Design: VLSI in Computers and Processors, pages
157–162, 1988.

[38] H. J. M. Veendrick. The behavior of flip-flops used as synchronizers and
prediction of their failure rate. In IEEE Journal of Solid-State circuits, SC-
15, pages 169–176, 1980.

[39] C. G. Wong and A. J. Martin. High-level synthesis of asynchronous systems
by data-driven decomposition. In Proc. Design Automation Conference, pages
508–513, 2003.

104

