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DNA replication is a fundamental process in all organisms. Using single 

stranded DNA (ssDNA) as a template, DNA polymerase synthesizes new DNA to 

produce an exact copy of the genome. However, most DNA polymerases lack the 

ability to unwind the double stranded DNA (dsDNA) necessary to expose ssDNA [1]. 

Therefore, an additional DNA helicase is required to initiate DNA replication by 

unwinding dsDNA and exposure of ssDNA as a template. In eukaryotes, genetic and 

biochemical assays have shown the MCM (minichromosome maintenance) family of 

proteins functions in a hexameric complex as the genomic DNA replication helicase 

[2]. MCMs have been well studied through in vitro biochemistry, cells in culture, and 

simple model organisms including S. cerevisiea and Xenopus laevis. These 

experimentally tractable systems have shown that misrelated or dysfunctional MCMs 

have deleterious consequences, especially genomic instability (GIN). However, there 

are still several major unresolved issues that need to be addressed. (1) The “MCM 

paradox” described that the MCMs are in excess of the number of origins. What is the 

function of these excess MCMs, and how does it relate to cells and animals? (2) The 

“MCM puzzle” indicates that mini-MCM complexes exist, but their functions are still 

unclear (3) Very little is known about the function of the MCM helicase with respect 

to the health of whole animals. 

 

To accomplish these issues and explore the relationship between MCMs and 

disease, I generated mice deficient in MCMs as a model of in vivo disease in this 

thesis. The mice which carry 50% reduction of Mcm2, 3, 4, 6, and 7 is phenotypically 



 

identical to wild-type at least through 1 year of age. Further reduction of Mcms to 70% 

causes several detrimental phenotypes, including embryonic lethality, growth 

retardation, genomic instability, and cancer susceptibility. Most importantly, the 

reduction of MCM3 rescues most of the detrimental phenotypes in other MCM 

deficient mice, suggesting a unique function of MCM3. Highly similar to in vitro 

results, I showed that the MCM3/5 dimer inhibits the MCM2-7 complex from binding 

chromatin and hinders cell cycle. I also discovered that the Mcm4
Chaos3

 mutation 

induces a pan-downregulation of Mcm2-7 post-transcriptionally. The pan-down 

regulation of Mcm2-7 is a self-preservation mechanism because it reduces MCM3 

levels that block the recruitment of chromatin bound MCM2-7. Finally, I identified 

that Mcm hypomorphic mice possess a unique gender bias phenotype. The male 

animals are more resistant to MCM insufficiency due to a testosterone protective 

effect.  

 

In summary, this dissertation explores the function of the excess MCMs in 

aspects of cell cycle and in whole animals. It builds understanding about the regulation 

of MCMs with emphasis upon cancer formation as a result of MCM deficiency. The 

MCM hypomorphic mice also reveal a post-transcriptional regulation of Mcms that 

responded to helicase complex instability or insufficiency. The unique negative 

function of the MCM3/5 dimer overturns the current theory that the MCM2-7 

heterohexamer is the only type of replication helicase that forms. 
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INTRODUCTION 
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1. The discovery of MCMs 

The MCM series of genes was identified through mutation screens for genes 

required to maintain a minichromosome or cell cycle control in Saccharomyces 

cerevisiae and Schizosaccharomyces pombe [1-4]. The MCM series of proteins 

includes MCM1, MCM2, MCM3, MCM4, MCM 5, MCM6, MCM7 and MCM10. 

Only MCM2 through 7, as known as “MCM family”, function as the DNA helicase in 

DNA replication [1-4]. MCM1 does not function in the hexameric helicase and has 

been shown to be a transcription factor [5]. MCM10 plays a role in stabilizing the 

replication fork but does not belong to canonical MCM2-7 complex [6-8]. 

Subsequently, MCM8 and MCM9 were identified on the basis of sequence similarity 

to the MCM2-7[9, 10]. However, MCM8 and MCM9 are not present in all eukaryotes 

and their functions are yet to be elucidated fully [11-13]. To simplify and standardize 

the nomenclature in this thesis, I will focus upon MCM2-7, hereafter known as the 

“MCMs”. 

 

2. The Role of MCMs in DNA replication 

During the late M and early G1 phase of the cell cycle, the DNA origins of 

replication are bound by origin recognition complex (ORC1-6) (Fig. 1.1A) [14, 15]. 

The binding of ORC1-6 in DNA is competent to recruit CDC6 [16]. When CDC6 

binds ATP, it recruits CDT1 bound to MCMs to form pre-replication complex (pre-

RC) (Fig. 1.1B). ATP hydrolysis by CDC6 leads to the loading of MCM2-7 at origins 

and the release of CDT1. After MCMs are loaded, ORC1-6 and CDC6 will dissociate 

from DNA [17, 18]. As the cell enters S phase, the cyclin-dependent kinases (CDKs) 

and the Dbf4-dependent kinase (DDK) CDC7 activate the replication forks [15, 19]. 

This helps recruit additional replication factors such as CDC45 [20], the GINS 

complex [21], and MCM10 [22]. After the complete assembly of the replication 

complex, the DNA can unwind and begin to replicate (Fig. 1.1C).  
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Figure 1.1. Model for MCM proteins function in replication initiation and 

elongation. (A) During the late M/early G1 phase, origin recognition complexes 

(ORC1-6) bind to the DNA origins of replication. (B) In the G1 phase, ORC1-6 and 

CDC6 recruit CDT1 and load MCM2-7 to origins of replication to form pre-RC. (C) 

In the S phase, CDKs and DDK activate pre-RC and facilitates the loading of 

additional replication factors such as CDC45, GINS, DNA polymerase ε, and PCNA. 

MCMs start to unwind the dsDNA at the origin. During the S phase, CDC6 and CDT1 

are degraded or inactivated to block additional pre-RC formation on the newly 

synthesized DNA. 
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Replication fork integrity is highly critical. The abnormal dissociation of the 

replication fork can cause DNA double-strand breaks and trigger the S phase 

checkpoint. The checkpoint will stop DNA replication and stimulate DNA damage 

responses [23-25]. The physical stabilization of the replication fork requires multiple 

proteins including Mrc1, Tof1, and Csm3 (M/T/C complex) in yeast. In the absence of 

these proteins, the MCM helicase activity will continually unwind DNA, but the DNA 

polymerase dissociates from the replication fork. This is a typical type of replisome 

collapse [26-28].  

 

DNA re-replication can have serious genomic instability (GIN) outcomes such as 

DNA double-strand breaks and chromosome rearrangements, or aneuploidy [24, 29-

32]. The re-loading of the replication complex may initiate a new replication fork on 

the newly synthesized DNA, leading to DNA aneuploidy and damage. Therefore, the 

excess or free MCMs must be inactive to prevent the re-loading after entering S phase. 

This is accomplished by following means [33]. Firstly, in addition to the loss of Orc1-

6 and Cdc6 from chromosomes as mentioned previously, Cdc6 is also transported out 

of nuclei by CDK activity in yeast [34-37]. Secondly, another protein, GEMININ, 

interacts with CDT1 and blocks the function of CDT1 to bind ORCs or MCMs [38, 

39]. Thirdly, in yeast, excess Mcms are also transported out of the nuclei immediately 

after passage into S phase [40]. It bears mentioning that results suggest that nuclear 

membrane integrity may play a role in the regulation of MCMs and their ability to 

bind to chromatin. In Xenopus extracts, adding complete nuclear membrane was 

sufficient to block MCMs loading onto DNA and stopping replication while broken 

nuclear membrane showed no effect [41]. Also, MCMs physically associate with 

nuclear pore proteins ELYS/MEL-28, suggesting that nuclear membrane integrity is 

required to shut down licensing prior to entry into S phase [42]. 

 

3. The transcription and expression of MCMs 

Based on their function in DNA replication, Mcms are predicted to be transcribed 

during the G1/S phase in actively dividing cells. However, only Mcm5, 6, 7 have E2F 
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binding sites located on the promoter regions [33]. Although Mcm7 was predicted to 

be up-regulated by E2F, evidence for increased transcription of Mcm7 was shown in 

G2/M phase, suggesting that E2F is not the only regulating factor [34]. Mcm3 was also 

proven to be transcribed after entering S phase without any known regulation sites on 

the promoter [35]. Interestingly, although MCMs function in DNA replication, the 

MCM protein levels do not fluctuate during the cell cycle, even though the mRNA 

expression levels differ in different phases of cell cycle [36-41].  

 

MCMs are highly abundant proteins, and several experiments suggest that the 

protein levels of MCMs exceed the requirements of the pre-RC. Results of cytological 

studies have shown that MCMs are liberally distributed in the nucleus and not 

concentrated on the chromatin, suggesting that only a fraction of the MCMs are bound 

to the chromatin [42-44]. The chromatin bound MCMs are in excess of the number of 

origins. Using a Xenopus egg extract system, the number of MCMs bound to ORC at 

the origin was examined and found to be approximately 20 to 40 molecules (varies by 

different MCMs) per ORC. Additionally, only 10% to 20 % of chromatin-associated 

MCMs are bound by CDC45 which is required for replication fork activity [45]. These 

data indicate an important issue. Not all MCMs function as a component of the 

replication fork. This suggests that certain amounts of MCMs functions are distinct 

from the origin (termed the MCM paradox [46, 47]).  

 

4. The protein structure of MCMs 

Each of the MCM2-7 proteins are essential. They share significant sequence 

similarity; however, they cannot be substituted by each other. The “MCM box” is a 

nearly 250 amino acid region which encodes an ATPase domain (AAA+ domain) in 

the center of each protein (Fig. 1.2)[48]. MCMs oligomerize into a ring-shaped 

hexamer to create a central pore for holding DNA, and the AAA+ domain hydrolyzes 

ATP to unwind the substrate DNA within the pore [49, 50].  Most of the MCM AAA+ 

domains include two sub-domains, a series of parallel beta-strands loops (P loop) and 

a lid P loop C-terminal to the beta-strand loops [51]. The first P loop contains a  
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Figure 1.2. Conserved protein motifs in MCMs.  MCM2-7 share significant 

sequence similarity. Each MCM contains zinc finger motif at the N terminus and an 

ATPase domain in the center of each protein.The MCM AAA+ domain, which is a 

nearly 250 amino acid region, includes two sub-domains. “WA” represents Walker A 

box; “WB” represents Walker B box; “S1” represents sensor 1 motif; “RF” represents 

arginine finger; and ”S2” represents sensor 2 motif.   
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Walker A box (WA), Walker B box (WB) and a sensor 1 motif (S1); the lid P 

loop contains an arginine finger (RF) and a sensor 2 motif (S2) (Fig. 1.2). Commonly 

for proteins with AAA+ domain, a complex is formed to hydrolyze ATP. In this 

complex, the P loop (cis motif) tends to form an active ATP hydrolysis site with the 

lid P loop (trans motif) from a partner protein within the same complex. Additional to 

the AAA+ domain, MCMs contain zinc finger motifs in the N termini. Those zinc 

finger motifs do not directly bind to DNA (Fig. 1.2), however, mutation analysis in 

yeast has shown they are required for viability [37, 52]. Biochemical analysis suggests 

that the zinc finger motif contributes to MCM complex stability and ATPase activity 

[53-55].  

 

In both yeast and metazoans, only Mcm2 and Mcm3 have identifiable nuclear 

localization sequences (NLS) and these NLS signals have been functionally verified 

[56-58]. Besides, Mcm3 contains a putative nuclear export sequences (NES) that has 

been molecularly characterized in S. cerevisiae [59]. The homologous MCM3 NES 

has been identified in mouse and human but the function and importance is yet 

unknown in these disease-relevant higher eukaryotes [60]. The function of the MCM3 

NES remains a topic of much controversy due to the observation that the bulk of 

MCM proteins, including MCM3, are constitutively located in the nucleus regardless 

of cell cycle stage.   

 

5. The formation of MCM2-7 hexamers 

The formations of yeast Mcms have been well characterized by different 

means. Genetic evidence, such as co-suppression and synthetic lethal interactions, 

suggest Mcms form a protein complex [37, 53, 61-63]. Cell extract fractions yield a 

variety of Mcm sub-complexes: dimer, trimer, tetrameric [22, 35, 64-75], and the 

intact Mcm hexamer [64-66, 68, 70, 71, 73, 74]. By coimmunoprecipitation assays in 

yeast [65], it was demonstrated that any Mcm subunit can associate physically with 

other Mcms. Gel filtration analyses have shown the size of the Mcm heterohexamer to 

be about 600 kDa and contains each Mcm subunit in a 1:1:1:1:1:1 stoichiometry [65, 
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66, 71, 74, 76]. Furthermore, electron microscopy studies indicate that eukaryotic 

Mcm2-7 forms a ring-shaped toroidal complex similar to archaeal MCM proteins and 

other AAA+ proteins [49, 65], however, the architecture of the heterohexameric 

complex is still unknown. Systematic studies of the pairwise interactions to individual 

Mcm subunits utilizing the yeast two-hybrid system and co-immunoprecipitation have 

identified five dimeric subunit pairs: Mcm5/3, Mcm3/7, Mcm7/4, Mcm4/6, and 

Mcm6/2 [66, 77, 78]. These interaction results suggest the hexameric arrangement for 

Mcms is: Mcm5-3-7-4-6-2 (Fig. 1.3). Although Mcm2 and Mcm5 are predicted to 

physically interact in the toroidal Mcm2-7 structures observed in electron micrographs, 

a direct interaction between them has never been demonstrated. In vitro MCM 

complex reconstitution assays have shown that the Mcm2/5 interaction is highly 

unstable [66, 77], suggesting a structural discontinuity between Mcm2 and Mcm5. It 

has been suggested that a “switch or shut off” mechanism exists between Mcm2/5 on 

the toroidal hexamer [79]. 

 

Interestingly, the situation is different in mammalian cells. Using various 

purification methods, MCM4, MCM6, and MCM7 subunits bind most tightly together 

to form a trimeric complex commonly called the “MCM core”. The MCM4/6/7 core 

will then dimerize to form a dimertrimer (MCM4/6/7)2. MCM3/5 interacts together 

and weakly binds to the MCM4/6/7 core, probably through Mcm7 (Fig. 1.3). MCM2 

also binds to the core with low affinity, however the binding of MCM2 disrupts the 

dimertrimer of (MCM4/6/7)2 [67, 73, 80]. The observation of MCM sub-complexes 

has proven very important, because instead of MCM heterohexamer only 

(MCM4/6/7)2 has been shown to possess helicase activity in vitro [67, 81].  This 

“MCM puzzle”, which point out an obvious conflict between in vivo and in vitro, is an 

unresolved issue. Further studies are required to understand the role of MCMs and 

their assembly in vivo.  

  

6. The function of MCMs 

In order to ensure that genomic DNA is only replicated once per cell cycle,  
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Figure 1.3. MCM2-7 hexamers and sub-complex assembly.  The MCM hexameric 

arrangement is: Mcm5-3-7-4-6-2. MCM heterohexamer can break into two major sub-

complex, MCM4/6/7 and MCM3/5.  The MCM4/6/7 core will then dimerize to form a 

dimertrimer (MCM4/6/7)2. 
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DNA replication is strictly regulated at every stage. DNA replication can be 

divided into two steps, initiation and elongation. The individual MCM2-7 proteins are 

essential for viability in every model that has been tested [29, 53]. All MCMs 

colocalize to origins of replication during pre-RC formation that including ORC1-6, 

CDT1, and CDC6 [54-57]. 

 

A yeast temperature-sensitive allele of MCM4 was used to show that Mcms are 

involved in DNA synthesis [4]. In the Xenopus extract system, depletion of MCMs 

from the reaction resulted in failing to initiate DNA replication [58-60]. MCMs also 

have been proven to be involved in the step of elongation. As shown in chromatin 

immune-precipitation experiments, all MCMs co-localize with the DNA polymerases 

during elongation. Inactivation of MCMs also inhibits elongation during S phase [54-

57]. 

 

Based on previous results and protein structure, MCMs were predicted as a 

DNA helicase which unwinds DNA during replication. The helicase includes three 

essential activities: ATP hydrolysis, DNA binding, and DNA unwinding. However, in 

vitro studies showed that this Mcm hexamer lacked helicase activity [36, 37, 45, 47]. 

Instead, the dimeric heterotrimer (Mcm4/6/7)2 (only contained two copies each of the 

Mcm4, Mcm6, and Mcm7) which exists in most systems, possessed an ATP-

dependent, 3` to 5` DNA unwinding activity [37, 41, 61, 62]. The helicase activity 

remains in the absence of Mcm6 [39], suggesting helicase activity only requires the 

Mcm7/4 sub-complex. Furthermore, the addition of Mcm2 or the Mcm5/3 dimer 

inhibits Mcm4/6/7 helicase activity [63]. These results predict a model in which the 

Mcm2-7 helicase activity is contributed by Mcm4, Mcm6, and Mcm7, while Mcm2, 

Mcm3, and Mcm5 function as negative regulators [45]. 

 

Both Mcm2-7 and Mcm4/6/7 complexes from S. cerevisiae possess ATP-

dependent DNA binding activity. Additionally, the binding affinity for ssDNA is 100-

fold-greater than dsDNA [17], suggesting ssDNA is the major substrate. Although 
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both Mcm2-7 and Mcm4/6/7 bind ssDNA with similar affinities, however, the abilities 

to bind circular ssDNA are different. The binding of Mcm4/6/7 to circular ssDNA is 

20 times lower than that of Mcm2-7 [39, 64]. Interestingly, if Mcm2-7 is mixed with 

ATP prior to the DNA, then the binding becomes poor [64]. These results suggest a 

simple hypothesis, that Mcm2-7 has the ATP-dependent ability to transiently open and 

then clamp the circular ssDNA to its central channel.  

 

7. MCMs mouse model 

Little is known about MCMs in relation to the health of whole animals  Mcms 

are essential genes so homozygous  knock-out animals are not viable. Therefore, only 

heterozygous knock-out or hypomorphic mice exist. One Mcm hypomorphic mouse 

model is the Mcm4
Chaos3 

mouse, which was generated by ethylnitrosourea (ENU). The 

Mcm4 Chaos3 point mutation changed PHE to ILE at residue 345 (Phe345Ile). This 

amino acid is conserved across diverse eukaryotes and is important for interaction 

with other MCMs [54]. In previous work, Shima et al found that the Mcm4
Chaos3 

allele 

caused high levels of GIN and extreme mammary cancer susceptibility in the 

C3HeB/FeJ background [82]. This provided the first concrete evidence that 

endogenous mutations in replication licensing machinery may have a causative role in 

cancer development. Surprisingly, MEFs from Mcm4
Chaos3

 mice not only had reduced 

levels of MCM4, but also MCM7 [82], suggesting that the point mutation might 

destabilize the MCM2-7 complex.  

 

The first Mcm2 hypomorphic mouse model was generated by integration of a 

Cre recombinase into the Mcm2 coding sequence that decreases the amount of Mcm2 

mRNA [83]. The heterozygous Mcm2 
CreERT2

 mouse expresses 70% of Mcm2 mRNA 

and is phenotypically identical to wild-type at least through 1 year of age  The 

homozygous  Mcm2
(IRES-CreERT2)

 mouse only expresses 30% Mcm2 mRNA and 

develops early onset lymphomas. These studies demonstrate that deficiencies in the 

MCMs result in a chronic phenotype leading to cancer, and also points out an 



 

13 

 

important concept that the 30% to 60% loss of MCMs might be tolerable to animals 

and consistent with good health.  

 

8. Brief outline of dissertation research 

The function of MCMs in DNA replication has been extensively investigated 

by yeast genetic and Xenopus extracts models. However, very little is known about 

MCMs related to health of the whole animal. MCMs deregulation has been reported in 

many clinical cases, especially in tumor samples, suggesting that MCMs are highly 

relevant to cancer formation. In this dissertation, the overall goal is to generate the 

animal models to test the hypothesize that insufficient MCMs result in failure to 

completely replicate genomic DNA and hinder cell cycle, which causes serious 

physiological problems.  

 

Chapter II reports phenotypic studies of MCMs insufficient mice. In this 

chapter, I generated Mcm2, 3, 4, 6, and 7 hypomorphic mice from gene trap-

containing ES cells. The gene trap alleles are disrupted by a beta-geo DNA fragment 

and lead to truncated hybrid MCM proteins. Therefore, each gene trap mouse has only 

half the amount of the corresponding normal MCM level. I also crossed Mcm2, 3, 4, 6, 

and 7 gene trap mice to Mcm4
Chaos3

 mice to generate further reduced MCMs levels. 

These studies showed that MCMs insufficiency causes several detrimental phenotypes, 

including embryo lethality, growth retardation, genomic instability, and cancer 

susceptibility. Most importantly, I found that the reduction of MCM3 rescues most of 

detrimental phenotypes in other MCMs insufficient mice, suggesting a unique function 

of MCM3. In chapter III, I examined how Chaos3 mutation affects MCM2-7 complex 

stability. I found that MCM6 cannot interact with MCM4
Chaos3

. Furthermore, the 

Chaos3 mutation induces a pan-downregulation of Mcm2-7 from post-transcriptional 

events. The pan-down regulation of Mcm2-7 is a self-preservation mechanism because 

it reduces MCM3 levels that block the recruitment of chromatin bound MCM2-7. In 

chapter IV, the analysis of genetic data from MCMs hypomorphic mice indicates a 

unique gender bias phenotype. I found that male animals are more resistant to MCMs 
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insufficiency due to testosterone protection. Finally, Chapter V summarizes my data, 

discusses the significance of results and point out future directions for this research 

area. 
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CHAPTER II 

INCREMENTAL GENETIC PERTURBATIONS TO MCM2-7 EXPRESSION 

AND SUBCELLULAR DISTRIBUTION REVEAL EXQUISITE SENSITIVITY 

OF MICE TO DNA REPLICATION STRESS 
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Abstract 

 Mutations causing replication stress can lead to genomic instability (GIN).  In vitro 

studies have shown that drastic depletion of the MCM2-7 DNA replication licensing 

factors, which form the replicative helicase, can cause GIN and cell proliferation 

defects that are exacerbated under conditions of replication stress.  To explore the 

effects of incrementally attenuated replication licensing in whole animals, we 

generated and analyzed the phenotypes of mice that were hemizygous for Mcm2, 3, 4, 

6, and 7 null alleles, combinations thereof, and also in conjunction with the 

hypomorphic Mcm4
Chaos3

 cancer susceptibility allele.  Mcm4
Chaos3/Chaos3 

 embryonic 

fibroblasts have ~40% reduction in all MCM proteins, coincident with reduced Mcm2-

7 mRNA.  Further genetic reductions of Mcm2, 6, or 7 in this background caused 

various phenotypes including synthetic lethality, growth retardation, decreased cellular 

proliferation, GIN, and early onset cancer.  Remarkably, heterozygosity for Mcm3 

rescued many of these defects.  Consistent with a role in MCM nuclear export 

possessed by the yeast Mcm3 ortholog, the phenotypic rescues correlated with 

increased chromatin-bound MCMs, and also higher levels of nuclear MCM2 during S 

phase.  The genetic, molecular and phenotypic data demonstrate that relatively minor 

quantitative alterations of MCM expression, homeostasis or subcellular distribution 

can have diverse and serious consequences upon development and confer cancer 

susceptibility.  The results support the notion that the normally high levels of MCMs 

in cells are needed not only for activating the basal set of replication origins, but also 

“backup” origins that are recruited in times of replication stress to ensure complete 

replication of the genome. 
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Author Summary 

 Proper replication of the genome is essential for maintenance of the genetic 

material and normal cell proliferation. DNA replication can be compromised by 

exogenous factors and genetic disruptions.  Such compromise can lead to disease such 

as cancer, which is characterized by genomic instability (an elevated mutation rate).  

Because the DNA replication apparatus is essential, relatively little is known about 

how genetic variants impact the health of whole animals.  In this report, we studied 

mice bearing combinatorial mutations in a component of the replication apparatus, the 

MCM2-7 helicase.  MCM2-7 is a complex of 6 proteins that are essential for initiating 

DNA replication along chromosomes, and to unwind the DNA during DNA 

replication.  We find that although cells have excess amounts of MCM2-7 to support 

proliferation under normal circumstances, that incremental MCM depletions have 

multiple drastic effects upon the whole animal, including embryonic lethality, stem 

cells defects, and severe cancer susceptibility.  Additionally, we report that mouse 

cells regulate and coordinate the levels of usable MCM proteins, both at the level of 

synthesis and also by regulating access to chromatin.  The implication is that genetic 

variants that impact MCM levels, even to a minor degree, can translate into disease. 
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Introduction 

In late mitosis to early G1 phase of the cell cycle, DNA replication origins are 

selected and bound by the hexameric origin recognition complex (ORC; [1]).  ORC 

then recruits the initiation factors CDC6 and CDT1, which are required for loading 

MCM2-7, thereby forming the “pre-replicative complex” (pre-RC).  The formation of 

pre-RCs is termed origin “licensing” and this gives origins competency to initiate a 

single round of DNA synthesis before entering S phase.  MCM2-7 is a hexamer of six 

distinct but structurally-related minichromosome maintenance (MCM) proteins 

(reviewed in [2-5]).  In vivo and in vitro evidence indicates that the MCM2-7 complex 

is the replicative helicase [6-8]. 

  

 MCM2-7 proteins are abundant in proliferating cells [9], and are bound to 

chromatin in amounts exceeding that which is present at active replication origins or 

required for complete DNA replication [10-14].  Although these and other studies 

showed that drastic decreases in MCMs are tolerated by dividing cells, there are 

certain deleterious consequences.  In Xenopus extracts and mammalian cells, excess 

chromatin-bound MCM2-7 complexes occupy dormant or "backup" origins that are 

activated under conditions of replication stress, compensating for stalled or disrupted 

primary replication forks [11, 15, 16].  The depletion of these backup licensed origins 

was associated with elevated chromosomal instability and susceptibility to replication 

stress, factors that might predispose to cancer. 

 

 In previous work, Shima et al found that a hypomorphic allele of mouse Mcm4 

(Mcm4
Chaos3

) caused high levels of GIN and extreme mammary cancer susceptibility 

in the C3HeB/FeJ background [17].  This provided the first concrete evidence that 

endogenous mutations in replication licensing machinery may have a causative role in 

cancer development.  The ethylnitrosourea (ENU)-induced Mcm4
Chaos3

 point mutation 

changed PHE to ILE at residue 345 (Phe345Ile).  This amino acid is conserved across 

diverse eukaryotes and is important for interaction with other MCMs [18].  Budding 

yeast engineered to bear the orthologous mutation exhibit DNA replication defects and 
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GIN [17, 19].  Surprisingly, MEFs from Mcm4
Chaos3

 mice not only had reduced levels 

of MCM4, but also MCM7 [17], suggesting that the point mutation might destabilize 

the MCM2-7 complex.  Subsequently, it was reported that mice containing 1/3 the 

normal level of MCM2 succumbed to lymphomas at a very young age, and had 

diverse stem cell proliferation defects [20].  These mice also had 27% reduced levels 

of MCM7 protein, and their cells exhibited decreased replication origin usage when 

under replication stress (treatment with hydroxyurea) conditions [21].  These studies 

imply that relatively modest decreases in any of the MCMs may be sufficient to cause 

cancer susceptibility, developmental defects, and GIN [20]. 

 

 Here, we report that genetically-induced reductions of MCM levels in mice, 

achieved by breeding combinations of MCM2-7 alleles, caused several health-related 

defects including increased embryonic lethality, GIN, cancer susceptibility, growth 

retardation, defective cell proliferation, and hematopoiesis defects.  Remarkably, 

genetic reduction of MCM3, which mediates nuclear export of excess MCM2-7 

complexes in yeast [22], rescued many of these defects, presumably attributable to 

observed increases in chromatin-bound MCM levels.  These data suggest that 

relatively minor misregulation or destabilization of MCM homeostasis can have 

serious consequences for health, viability and cancer susceptibility of animals. 

 

Results 

Mcm4
Chaos3/Chaos3

 cells exhibit pan-reduction of total and chromatin-bound 

MCM2-7 due to decreased mRNA levels 

 To extend previous findings that Mcm4
Chaos3Chaos3

 cells exhibited decreases in 

MCM4 and MCM7 protein, and to determine if the decreased levels were 

differentially compartmentalized in the cell, we quantified soluble and chromatin-

bound MCM2-7 levels in mouse embryonic fibroblasts (MEFs) by Western blot 

analysis.  As shown in Figure 1A, all MCMs were decreased in both compartments by 

at least 40% compared to WT cells.  Because Mcm4
Chaos3/Chaos3

 MEF cultures have 

slightly decreased proliferation and G2/M delay (Fig. 2.1A and [17]), it is possible  
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Figure 2.1. MCM2-7 proteins and mRNA are reduced in Mcm4
Chaos3/Chaos3 

 MEFs, 

particularly in early S phase (A) Western blot analysis of MCM2-7 (left panel).  

Soluble or chromatin-bound protein was electrophoresced on PAGE gels, 

electrotransferred, and the blots were immunolabeled with the indicated antibodies.  
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The bands correspond to the predicted molecular weights of these proteins, and for 

MCM2, the identity of the band was verifed by RNAi knockdown and transient 

overexpression in NIH 3T3 cells.  TBP = TATA box binding protein.  Quantification 

of Western blot data by densitometry is shown in the center panel.  The amounts 

relative to WT cells (after normalization to the controls) are plotted.  Error bars 

represent SEM, derived from 4 replicate experiments.  The rightmost panel graphs the 

results of flow cytometric analysis of unsynchronized MEF culture cell cycle profiles, 

based on DNA content.  (B) Flow cytometric quantification of MCM2 content 

(fluorescence intensity of antibody staining) is plotted on the Y axis, vs DNA content 

on the X axis.  Plotted at the right is the mean fluorescent intensity of the 3 gated 

(boxed) regions from the flow data.  Se = early S phase; SL = late S phase.  The labeled 

cell cycle stages are based on DNA content.  However, because light scatter was 

inadequate to distinguish individual nuclei from clumped nuclei or artifactual 

structures, the 4c category (denoted G2/M*) contains events other than G2/M nuclei.  

*We drew a dashed line representing an arbitrary cutoff above which contains such 

undefined events.  (C) qRT-PCR analysis of Mcm mRNAs (left panel) and control 

genes (right panel), in the three indicated genotypes of MEFs.  Relative transcript 

levels were normalized to β-actin.  Charted are the percent levels of the indicated 

RNAs in mutant compared to WT (considered to be 100%).  At least 3 replicate 

cultures were analyzed for each genotype.  Error bars are SEM.  In all panels, the raw 

data shown are from MEFs established from littermates.  Furthermore, the replicates 

involved MEFs from pairs of littermates. Chaos3 = Mcm4
Chaos3/Chaos3

; WT = +/+. 
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that the lower MCM levels in mutant MEFs are entirely attributable to growth defects.  

To test this, we assessed the levels of nuclear MCM2 in S-phase cells by flow 

cytometry (Fig. 2.1B).  Although MCM2 levels in WT and Mcm4
Chaos3/Chaos3

 G1 nuclei 

were essentially the same (P=.65; t-test), mutant cells transitioned from G1 to S with 

40% less nuclear MCM2 content than in WT (P<.02; t-test).  The levels of nuclear 

MCM2 in WT decreased through S phase more sharply than in mutants, which 

transitioned to G2 with only ~23% less than controls (Fig. 2.1B).  This differential 

decline is apparent in the flow plots, where WT cells exhibit a greater downward slope 

in the S compartment (Fig. 2.1B).  The decreases in MCM2 from early to late S were 

51% in WT and 38% in mutants.  The MCM2 intra-S modulation phenomenon is also 

addressed in subsequent experiments.  The marked differences in nuclear MCM2 

concentration between actively proliferating (S-phase) WT and mutant cells indicates 

that a biochemical or regulatory basis, rather than a population skewing, underlies the 

differences in protein levels.   

  

 Another possible explanation for the coordinated decrease in MCMs is that the 

mutant MCM4
Chaos3

 protein destabilizes the MCM2-7 hexamer and causes subsequent 

degradation of uncomplexed MCMs.  Other groups reported that knockdown of Mcm2, 

Mcm3, or Mcm5 in human cells decreased the amount of other chromatin-bound 

MCMs [15, 16], leading to a similar proposition that the cause was MCM2-7 hexamer 

destabilization [16].  If true, then we would expect mRNA levels to be unchanged in 

mutant cells.  To test this, we performed quantitative RT-PCR (qRT-PCR) analysis of 

Mcm2-7, and several control housekeeping genes in Mcm4
Chaos3/Chaos3

 MEFs.  Analysis 

of 5 littermate pairs of primary MEF cultures revealed that transcript levels for each of 

these genes in mutant cells was 51-65% of WT, similar to the protein decreases (Fig. 

2.1C).  Levels of mRNA in the 7 housekeeping genes analyzed were not altered 

significantly (Fig. 2.1C, right panel).  This data suggest that either reduced MCM4 

levels per se, or defects resulting from the Mcm4
Chaos3

 allele, cause a decrease in the 

levels of all Mcm mRNAs.  Interestingly, the mRNA reduction appears to occur post-
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transcriptionally, a phenomenon that is currently under investigation (Chuang and 

Schimenti, unpublished observations). 

 

Decreased Mcm gene dosages cause elevated chromosomal instability and Mcm2-

specific pan-decreases in Mcm mRNAs. 

 The Mcm4
Chaos3

 allele was identified in a forward genetic screen for mutations 

causing elevated micronuclei (MN) in red blood cells, an indicator of GIN [17].  

While the altered MCM4
Chaos3

 protein may cause DNA replication errors as does a 

yeast allele engineered to contain the same amino acid change [19], it is also possible 

that the decrease in overall MCM levels in Mcm4
Chaos3

 mutants contributes to, or is 

primarily responsible for, elevated S-phase DNA damage and GIN as is seen in 

various cell culture models (see Introduction).  To test this possibility, we generated 

mice from ES cells bearing gene trap insertions in Mcm2, Mcm3, Mcm6, and Mcm7 

(Fig. 2.2A; alleles are designated as Mcm#
Gt

).  These gene traps are designed to 

disrupt gene expression by fusing the 5’ end of the endogenous mRNA (via use of a 

splice acceptor) to a vector-encoded reporter, resulting in a fusion protein lacking the 

C-terminal portion of the endogenous (MCM) protein.  As with a previously-reported 

Mcm4 gene trap [17], each of these alleles proved to be recessive embryonic lethal.  

Furthermore, each allele appeared to be a null, since mRNA levels in heterozygous 

MEF cultures were ~50% lower than WT controls (Fig. 2.2B).  To determine if 

heterozygosity for various Mcms caused pan-decreases in Mcm mRNA levels as does 

homozygosity for Mcm4
Chaos3

, mRNA levels for each of the Mcm2-7 genes were also 

quantified.  Whereas Mcm2
Gt/+

 cells did show ~20% decreases in the other Mcms, the 

Mcm3, Mcm4, Mcm6 and Mcm7 gene trap alleles did not (Fig. 2.2B). Thus, it appears 

that the marked Mcm pan-decreases in Mcm4
Chaos3/Chaos3

 cells are not due to decreased 

Mcm4 RNA per se, but rather a response to replication defects cause by the mutant 

protein.  Notably, the pan Mcm2-7 downregulation in Mcm2
Gt/+

 cells is consistent with 

the observation that MCM7 is decreased in Mcm2
IRES-CreERT2/ IRES-CreERT2

 mice, although 

mRNA levels were not evaluated in that study [20]. 
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Figure 2.2. Mcm gene trap alleles, associated mRNA levels, and peripheral blood 

micronuclei  (A) Genomic structures of mutated Mcm genes.  Indicated is the 

intron/exon structure of each gene (not to scale), the locations of the gene trap 

insertions, and qPCR primer locations.  (B) qRT-PCR analyses of MEF mRNA from 

gene trap heterozygotes.  Charted are the percent levels of the indicated RNAs in 

mutant compared to WT (considered to be 100%).  For all but Mcm7, the data were 

obtained from at least 3 MEF cultures from different embryos.  The Mcm7 data 

represents the average of three replicates from 1 MEF culture, hence there are no error 

bars.  Otherwise, error bars show SEM.  (C) Micronucleus levels in Mcm gene trap-

bearing male mice.  At least 5 animals were analyzed for each single gene trap mutant 

allele.  The “2GT” (two gene trap) group contains: 4 mice doubly heterozygous for 

Mcm2
Gt

 and Mcm3
Gt

 (“Mcm2/3”), 4 Mcm2/4 mice, and 4 Mcm3/4 mice  The 3GT 

group contains: 4 Mcm2/3/4 mice, 1 Mcm2/3/6 mouse, 1 Mcm2/4/6 mouse, and 3 

Mcm3/4/6 mice.  The 4-5GT group contains: 3 Mcm2/3/4/6 mice, 1 Mcm2/3/6/7 

mouse, and 2 Mcm2/3/4/6/7 mouse. SEM bars are shown. 
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After breeding the gene trap alleles into the C3HeB/FeJ genetic background for at 

least 2 generations (Mcm4
Chaos3/Chaos3

 females get mammary tumors in this 

background), blood MN levels were measured.  Heterozygosity for each allele caused 

an increase in the fraction of cells with MN (Fig. 2.2C).  Compound heterozygosity 

further increased MN on average, as did heterozygosity for 3 or more gene traps (Fig. 

2.2C), indicating that genetically-based decreases in any of the MCMs precipitate GIN. 

 

Genetic reductions of Mcm2, Mcm6 or Mcm7 in an Mcm4
Chaos3/Chaos3

 background 

causes partial synthetic lethality, severe growth defects and (for Mcm2) 

dramatically accelerated cancer onset. 

 As outlined above, previous studies showed that reductions of particular MCMs in 

cells or mice reduces the levels of other MCMs, causing GIN, cancer, and 

developmental defects.  However, the reduction in MCM levels required to precipitate 

these consequences, and whether there is a threshold effect, is unclear.  To explore the 

consequences of incremental MCM reductions on viability and cancer in mice, we 

crossed the Mcm4
Chaos3

 and gene trap alleles into the same genome.  In the case of 

Mcm2, there was a striking and highly significant shortfall of Mcm4
Chaos3/Chaos3

 

Mcm2
Gt/+

 offspring at birth (Fig. 2.3A).  Heterozygosity for Mcm2
Gt

 itself was not 

haploinsufficient, as indicated by Mendelian transmission of Mcm2
Gt

 in crosses of 

heterozygotes to WT (119/250; χ
2
 = 0.448).  These results demonstrate that there is a 

synthetic lethal interaction between Mcm4
Chaos3

 and Mcm2
Gt

 that is related to MCM2 

levels.  Additionally, the surviving Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 offspring were severely 

growth retarded; males weighed ~50% less than Mcm4
Chaos3/Chaos3

 siblings (Figure 3B; 

this genotype causes disproportionate female lethality).  Another indication of a 

quantitative MCM threshold effect is that C3H-Mcm4
Chaos3/Chaos3

 mice are 

developmentally normal, but Mcm4
Chaos3/Gt

 animals die in utero or neonatally (Fig. 

2.3A)[23]. 
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Figure 2.3. Synthetic lethality and growth retardation between Mcm4
Chaos3

 and 

Mcm2, Mcm6 and Mcm7  (A) Graphed are viability data from genotype presented in 

the right, which includes statistics.  Unless otherwise indicated, the values represent 

expected proportions of indicated genotypes that were present at wean. (B) Weights of 

surviving animals are graphed over time. SEM bars are shown 
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The synthetic interaction between Mcm4
Chaos3

 and Mcm2
Gt

 might be specific, or it may 

reflect a general consequence of reduced replication licensing (and consequent 

elevated replication stress).  We therefore tested whether hemizygosity for Mcm3,  

Mcm6 or Mcm7 would also cause synthetic phenotypes in the Mcm4
Chaos3/Chaos3

 

background.  The Mcm4
Chaos3/Chaos3

 Mcm6
Gt/+

 genotype caused highly penetrant 

embryonic lethality; only 10% of the expected number of such animals survived to  

birth (Fig. 2.3A).  The Mcm4
Chaos3/Chaos3

 Mcm7
Gt/+

 genotype caused both embryonic 

and postnatal lethality.  The number of liveborns was ~50% of the expected value, and 

only 8% of those (5/62) survived to weaning (Fig. 2.3A).  Additionally, as with Mcm2, 

hemizygosity for Mcm6
Gt

 and Mcm7
Gt

 in the Mcm4
Chaos3/Chaos3

 background caused 

growth retardation (Fig. 2.3B).  The decrease in male weight was ~20% and ~80% 

respectively, compared to Mcm4
Chaos3/Chaos3

 siblings at the oldest age measured 

(Mcm4
Chaos3/Chaos3

 Mcm7
Gt/+

 animals died before wean, so the oldest weights were 

taken at 10 dpp).  In contrast to the synthetic phenotypes with Mcm2, 4, 6 and 7, there 

was no significant decrease in viability (Fig. 2.3A) or weight (not shown) in 

Mcm4
Chaos3/Chaos3

 Mcm3
Gt/+

 mice.  This seeming inconsistency is addressed in the 

following section. 

  

 As mentioned earlier, mice with ~35% of WT MCM2 protein, but not 62%, 

showed early latency (10-12 week) lymphoma susceptibility [20].  To identify if there 

is a critical MCM threshold for cancer susceptibility, we aged a cohort of Mcm2
Gt/+

 

mice, representing approximately intermediate MCM2 levels.  As shown in Figure 4A, 

these animals did not show a dramatic cancer-related mortality in the first 12 months 

of life.  However, we did find that ~3/4 of these animals had tumors at death or 

necropsy by 18 months of age (data not shown).  These combined data are suggestive 

of a potential gradient of susceptibility, but that there is a critical minimum threshold 

of MCM levels, between ~35 and 50% in the case of MCM2, required to avoid early 

cancer and other developmental defects. 
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Figure 2.4. Premature morbidity and cancer susceptibility in Mcm4
Chaos3/Chaos3

 

Mcm2
Gt/+

 mice  (A) Kaplan-Meier survival plot of the indicated genotypes.  Animals 

of both sexes are combined   “C3” = Chaos3. (B) Spleen and liver histopathology of a 

Mcm4
C3/C3 

Mcm2
Gt/+

 male diagnosed with T cell leukemic lymphoma.  i. H&E stained 

spleen. Neoplastic cells have abundant cytoplasm, 1-2 nucleoli and a high mitotic rate, 

consistent with lymphoblastic lymphoma. Bar = 20 µm.  ii. Neoplastic cells in spleen 

demonstrate immunoreactivity with anti-CD3 (brown; immunoperoxidase staining 

with DAB chromogen & hematoxalin counterstain), indicating T lymphocytes.  Bar = 

200µm.  iii.  In spleen, immunoreactivity (brown) with anti-PAX-5 (a B cell marker) 

is limited to follicular remnants and scattered individual cells.  Bar = 200 µm.  iv. In 

liver, neoplastic cells surround central veins and expand sinusoids and demonstrate 

immunoreactivity (brown) with the anti-CD3 T lymphocyte marker. Bar = 50 µm. 
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 To further resolve this phenomenon, surviving Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 mice 

were aged and monitored.  They began dying at 2 months of age, and all were dead (or 

sacrificed when they appeared moribund) by 7 months (Fig. 2.4A).  Gross necropsy 

and histopathological analyses revealed or suggested lymphomas/leukemias in 20 of  

these animals (detailed histopathology analysis of a T cell leukemic lymphoma is 

presented in (Fig. 2.4B).  Six of these had chest tumors that were likely thymic 

lymphomas.  The cause of death for the remaining 7 animals was undetermined.  

Consistent with previous studies [17], most Mcm4
Chaos3/Chaos3

 mice hadn’t yet 

succumbed from tumors or other causes by 12 months of age. Additional animals of 

these genotypes are incorporated in Figure 6, but histopathological analyses weren’t 

conducted.  These data show clearly that removing a half dose of MCM2 from 

Mcm4
Chaos3/Chaos3

 cells is sufficient to produce greatly elevated cancer predisposition to 

the already-underrepresented survivors at wean.  Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 MEFs 

had 45% the amount of Mcm2 mRNA as Mcm4
Chaos3/Chaos3 

cells (Fig. 2.7C), which 

already had a 38% reduction compared to WT (Fig. 1).  Thus, Mcm2 RNA was 

reduced to ~17% of WT.  To determine if elevated GIN might be responsible for the 

cancer susceptibility phenotype, we measured erythrocyte MN.  Whereas the 

percentage of micronucleated RBCs in Mcm4
Chaos3/Chaos3

 mice was 4.18 + 0.26 (mean+ 

SEM, N=12), Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 mice averaged 5.85 + 0.47 (N=16), 

indicating a synergistic increase (P< 0.01).  Overall, the data support the notion that in 

whole animals, reduction of MCMs to under 50% of WT causes severe developmental 

and physiological problems.  

 

Rescue of phenotypic defects in Mcm4
Chaos3/Chaos3

 and Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 

mice by reducing Mcm3 genetic dosage. 

 The data reported here and elsewhere [17, 20] support a model where phenotypic 

severity is proportionally related to MCM concentrations.  However, our genetic 

experiments uncovered one notable exception: hemizygosity for Mcm3 did not cause 

any severe haploinsufficiency phenotypes (increased lethality and decreased weight) 

as did Mcm2/6/7 in the Mcm4
Chaos3/Chaos3

 background, or Mcm4
Gt

 in trans to 
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Mcm4
Chaos3

 (Fig. 2.3A).  Since extreme reductions of MCM3 in cultured human cells 

caused GIN and cell cycle arrest [16], the absence of synthetic effects with Mcm
Chaos3

 

led us to hypothesize that either mice are more tolerant to lower levels of this 

particular MCM, or that MCM3 is present in a stoichiometric excess compared to the 

other MCMs, at least in a subset of cell types.  To explore these issues we performed 

additional phenotype analyses, and also sought to uncover potential effects of MCM3 

reduction by reducing other MCMs simultaneously.   

  

 Strikingly, rather than exacerbating the synthetic lethality in Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+ 

mice, Mcm3
Gt

 heterozygosity significantly rescued their viability to 72.5% 

from 29.7% (Fig. 2.5A).  Not only was viability rescued, but also growth (weight) of 

Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+ 

Mcm3
Gt/+

 survivors compared to Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+ 

 animals produced from the same matings (Fig. 2.5B).  Mcm3
 
hemizygosity 

also significantly rescued the near 100% lethality of Mcm4
Chaos3/Gt

 animals (nearly 6 

fold increased viability), and doubled the viability of Mcm4
Chaos3/Chaos3 

Mcm6
Gt/+

  mice 

(Fig. 2.5A).  Rescue of Mcm4
Chaos3/Chaos3 

Mcm7
Gt/+

 was not observed (not shown).  

  

 The rescue of the reduced growth phenotype by Mcm3 hemizygosity led us to 

evaluate the proliferation of compound mutant cells.  Whereas Mcm4
Chaos3/Chaos3

 and 

Mcm4
Chaos3/Chaos3 

Mcm3
Gt/+

 primary MEFs proliferated at identical rates, 

Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+

 MEFs showed a severe growth defect beginning ~5 days in 

culture (Fig. 2.5C).  As with whole animals, MEF growth was partially but 

significantly rescued by Mcm3 hemizygosity. 

  

 Since the Mcm4
Chaos3

 and Mcm2
Gt

 alleles causes elevated GIN (micronuclei in 

RBCs), we considered the possibility that the Mcm3 rescue effect might be related to 

an attentuation of GIN.  Accordingly, we measured MN levels in Mcm4
Chaos3/Chaos3

 

mice with different combinations of other Mcm mutations.  As shown in Fig. 2.5D, 

hemizygosity for Mcm2 and Mcm7 caused a significant elevation in MN levels, unlike 

Mcm3.  However, the increased MN in Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+

 was not rescued by  
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Figure 2.5.  Rescue of phenotypes by Mcm3 hemizygosity (A) Heterozygosity for 

Mcm3
Gt

 rescues the low viability of various mutant genotypes (asterisk indicates 

significance at P< 0.05 by FET).  The raw data are presented in Figure S4. (B) Male 
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body weights of combination mutant mice.  The weights of Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 

Mcm3
Gt/+

 mice are significantly higher (asterisk; P< 0 01, Student’s t-test) at 90 days 

than Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 mice.  Error bars represent SEM. (C) 

Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 MEF proliferation defects are partially rescued by Mcm3
 
 

hemizygosity.  The effect is significant after 6 days in culture (P< 0 05, Student’s t-

test; Error bars represent SEM). (D) Micronucleus levels in Mcm4
Chaos3/Chaos3

 mice 

bearing additional gene trap alleles.  At least 5 males were analyzed for each genotype.  

Error bars represent SEM.  Asterisk indicates P< 0 05 (student’s t-test.) compared to 

Mcm4
Chaos3/Chaos3

 alone. (E) CD71+ reticulocyte ratios in mutant male mice.  At least 5 

animals were analyzed from each class   The samples are identical to those in “D”   

All scored cells were anucleate peripheral blood cells Error bars represent SEM.  

Asterisks and “#” indicate P< 0 05 (Student’s t-test) when compared to 

Mcm4
Chaos3/Chaos3

 and Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 cohorts, respectively. (F) Mcm2 

hemizygosity decreases efficiency of reprogramming Mcm4
Chaos3/Chaos3

 MEFs into iPS 

cells, and Mcm3 hemizygosity significantly increases reprogramming efficiency.  Two 

methods of quanitifying reprogramming were used as described in Materials and 

Methods  “Cell number” refers flow cytometric quantification of LIN28/SSEA1 

double positive cells from primary cultures of reprogrammed MEFs.  Relative 

reprogramming efficiencies were normalized to Mcm4
Chaos3/Chaos3

 MEFs (considered to 

be 100%).  Error bars represent SEM.  All samples within quantification class are 

significantly different from one another (P< 0 05, Student’s t-test). C3 = Mcm4
Chaos3

; 

M = Mcm. 
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Mcm3 hemizygosity.  This suggests that the synthetic lethality and mouse/cell growth 

defects are not related to GIN per se.  However, in the course of measuring MN in 

enucleated peripheral blood cells, we noticed that the ratio of CD71+ cells was 

significantly higher in both Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+

 and Mcm4
Chaos3/Chaos3 

Mcm7
Gt/+

 

mice (3.3 and 6.2 fold, respectively; Fig. 2.5E).  This increase in the ratio of 

reticulocytes (erythrocyte precursors; immature RBCs) to total RBCs is characteristic 

of anemia.  Hemizygosity for Mcm3, which alone had no effect on CD71 ratios of 

Chaos3 mice, corrected completely this abnormal phenotype in Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+

animals (Fig. 2.5E). 

  

 Because MCM2-depleted mice were reported to have stem cell defects [20], and 

Mcm4
Chaos3/Chaos3 

Mcm#
Gt/+

 mice had clear developmental abnormalities, we examined 

the efficiency of reprogramming mutant MEFs into induced pluripotent stem cells 

(iPS).  The efficiency was quantified using either : 1) iPS-like colony formation, or 2) 

cells counts of SSEA1 and LIN28 positive cells by flow cytometry.  Both gave similar 

results.  Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+

 cells were severely compromised in the ability to 

form iPS cells compared to Mcm4
Chaos3/Chaos3

 (~ 200 fold less efficient; Fig. 2.5F).  

However, additionally reducing Mcm3 by 50% increased iPS formation from both 

Mcm4
Chaos3/Chaos3

and Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+

 MEFs by ~2.5 and 10 fold, 

respectively.  

  

 Finally, we found that reduced MCM3 levels could rescue the cancer susceptibility 

of two different Chaos3 models.  As shown earlier (Fig. 2.4), Mcm4
Chaos3/Chaos3 

Mcm2
Gt/+

 mice were highly cancer-prone with an average latency of <4 months.  

When a dose of Mcm3 was removed from mice of this genotype, lifespan was 

extended dramatically in both sexes as a consequence of delayed cancer onset, and the 

cancer spectrum shifted from lymphoma/thymoma towards mammary tumors (Fig. 

2.6A).  Additionally, hemizygosity of Mcm3 delayed (or eliminated) the onset of 

mammary tumorigenesis in Mcm4
Chaos3/Chaos3

 females by ~4 or more months (Fig. 

2.6B).  However, although Mcm3 hemizygosity rescued viability of Mcm4
Chaos3/Gt
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Figure 2.6.  Inhibition of Chaos3 cancers by MCM3 reduction  (A) Kaplan-Meier 

graphs of cohorts of the indicated genotypes. C3 = Mcm4
Chaos3

; M# = Mcm#
Gt

.  In the 

left panel, the experiment was terminated at 12 months, with ~1/3 animals tumor-free 

and healthy at the time (see “B”)  Unless otherwise indicated, the cohorts contained 

both sexes   (B) Pie charts of cancer types in mice from “A ” COD= cause of death; 

Unkn = unknown.  Classification of cancer types was assigned during necropsy, not 

from histological analysis. 
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mice (Fig. 2.5A), these animals were cancer prone with a shorter latency (by ~ 6 

months) and different spectrum (primarily lymphomas) than Mcm4
Chaos3

 homozygotes.  

 

Decreased MCM3 increases chromatin-bound levels of other MCMs.  

 We considered two possibilities to explain the surprising phenotypic rescues of 

reduced MCM genotypes (Mcm4
Chaos3/Chaos3 

; Mcm4
Chaos3/Chaos3 

Mcm2/6
Gt/+

 ; 

Mcm4
Chaos3/Gt

) by additional MCM3 reduction (Mcm3
Gt/+

).  One is that the phenotypes 

are related to altered stoichiometry of MCM monomers, and that disproportionally 

high amounts of MCM3 relative to MCM4 and MCM2/6/7 have a dominant negative 

effect.  However, as demonstrated above, levels of MCM3 are proportionally reduced 

in Mcm4
Chaos3/Chaos3

 cells (Fig. 2.1).  The second possibility is that decreased levels of 

MCM3 leads to a favorable change in the amounts or subcellular localization of 

MCMs.  Various experiments have indicated that MCM2-7 hexamers or subcomplexes 

must be assembled in the cytoplasm before nuclear import in yeast [4], and in mice, 

nuclear import appears to require MCM2 and MCM3 [24].  MCMs shuttle between 

the nucleus and cytoplasm during the cell cycle in S. cerevisiae.  Although in most 

other organisms MCMs are reported to be predominantly and constitutively nuclear 

localized throughout the cell cycle, dynamic redistribution between the nucleus and 

cytoplasm has been observed in hormonally-treated mouse uterine cells [25].  In 

budding yeast, nuclear export is dependent upon Mcm3, which has a nuclear export 

signal (NES) that is recognized by Cdc28 to promote export of MCM2-7 [22].  

Analysis of mouse and human MCM3 using NES prediction software 

(www.cbs.dtu.dk/services/NetNES/)[26] revealed the presence of homologously-

positioned, leucine-rich potential NESs (Fig. 2.7A).  Therefore, we hypothesized that 

the rescue of phenotypes by Mcm3 hemizygosity is due to decreased MCM protein 

export from the nucleus, or alternatively, increased nuclear import or stabilization that 

allows greater access of all MCMs for licensing chromatin. 

  

 To explore this hypothesis, we performed Western blot analysis of MCM levels in 

Mcm4
Chaos3/Chaos3

 MEFs with or without the Mcm3
Gt

 and/or Mcm2
Gt

 alleles, and  

http://www.cbs.dtu.dk/services/NetNES/
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Figure 2.7. MCM3 regulates nuclear and chromatin-bound MCM levels  (A) 

Predicted nuclear export sequences (NES) in mouse MCM3 (see text). (B) Western 

blot analysis of MCM2/3/4 in the indicated genotypes of MEFs.  Three different 
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protein fractions were examined, with the indicated (arrow) loading controls at the 

bottom. (C) qRT-PCR analysis of Mcm2-7 mRNAs in MEFs of the indicated 

genotypes. (D) Nuclear MCM2 dynamics during the cell cycle.  The flow plot is of 

isolated nuclei stained for DNA content (PI = propidium iodide) on the X-axis, and 

MCM2 on the Y-axis.  NIH3T3 cells show dramatically the decrease in nuclear 

MCM2 through S phase.  Flow cytometric data from the 4 MEF genotypes indicated 

in the right panel were used to calculate two values, ΔG1 and ΔS   The regions for the 

calculation of these values are indicated, and the values plotted in the right panel.  The 

G1 (1N DNA content) phase nuclei were divided into two equal groups based on 

MCM2 signal intensity (Y-axis): the lower half, considered to be early-G1, and the 

upper half, considered to be late-G1   The ΔG1 value was calculated as the difference 

between the early and late MCM2 signal intensity averages  The ΔS value was 

calculated as : (average MCM2 intensity in the S population) – (early G1 average 

intensity).  C3 = Mcm4
Chaos3

; M# = Mcm#
Gt

.  C3 is set at 100%.  The asterisk indicates 

significance by Student’s t-test (P< 0.05). 
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examined the effects of Mcm3 dosage on the levels of nuclear and chromatin-bound 

MCM2 and MCM4.  The results are presented in Fig. 2.7B.  In all cases, the genetic 

reductions of Mcm2 and Mcm3 led to corresponding decreases in the cognate mRNA 

levels (Fig. 2.7C), with only minor additional decreases of other MCM mRNAs 

(beyond that already caused by homozygosity for Mcm4
Chaos3

) occuring in the context 

of Mcm2 hemizygosity (similar to Mcm2
Gt/+

 MEFs in Fig. 2.2B).  The overall levels of 

total, nuclear, and chromatin-bound MCM2 and MCM4 were unaffected by 

hemizygosity of Mcm3 in Mcm4
Chaos3/Chaos3

 cells (Fig. 2.7B).  When Mcm2 levels were 

genetically reduced by half, a condition causing the severe phenotypic effects 

described earlier, this caused a marked decrease in the level of chromatin-bound 

MCM3 and MCM4 (in addition to MCM2 itself), although total and nuclear MCM3/4 

levels were affected to a lower degree or not at all.  Strikingly, the decreased levels of 

chromatin-bound MCM2/3/4 in Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 MEFs were reversed by 

Mcm3 heterozygosity, but levels of total MCM2 and MCM4 were not restored.  The 

increase of chromatin-bound MCMs occured despite the presence of less MCM3, 

suggesting that MCM3 is present at levels in excess of that needed to bind chromatin, 

presumably for pre-RC formation in the context of the MCM2-7 hexamer.  In 

conclusion, a 50% reduction in total MCM3 increases MCM2/4 loading onto 

chromatin when MCM2 is otherwise limiting, and this rescue is associated with 

amelioration of several phenotypes.   

  

 We found that elevation of nuclear MCMs in the Mcm3
Gt/+

 MEFs was often (as 

shown in Fig. 2.7B), but not consistently elevated across samples by Western analysis 

(not shown).  Therefore, we quantified MCM2 during the cell cycle by flow 

cytometric analysis of nuclei from 7 replicate MEF cultures.  Similar to WT MEFs 

(examples in Fig. 2.1B), NIH3T3 cells showed a decrease of nuclear MCM2 during S 

phase progression (Fig. 2.7D, left panel).  However, all genotypes with in the 

Mcm4
Chaos3/Chaos3

 background had a reduced decline.  Thus, for comparative 

quantitation across genotypes, we compared the levels of MCM2 levels at the 

beginning of G1 vs. that in S phase (regions used for these calculations are indicated in 
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the left panel), using the calculation described in the Fig. 2.7 legend.  The data are 

graphed in the right panel.  The data revealed that regardless of genotype, the 

difference in average amounts of nuclear MCM2 at the beginning and end of G1 (ΔG1) 

did not vary.  Compared to Mcm4
Chaos3/Chaos3

, cells lacking 1 dose of Mcm2 had 

relatively lower levels of S phase MCM2 (ΔS) compared to early G1   Additional 

removal of an Mcm3 dose partially rescued the ΔS value, indicating that these cells 

had ~16% more nuclear MCM2 in S phase compared to Mcm4
Chaos3/Chaos3

 cells 

hemizygous for Mcm2 alone, despite overall reduced MCM2 levels in the cell (Fig. 

2.7B, left panel). 

 

Discussion 

 

 MCM2-7 proteins exist abundantly in proliferating cells and are bound to 

chromatin in amounts exceeding that required to license all replication origins that 

initiate DNA synthesis [9-12, 14].  The role of excess chromatin-bound MCM2-7 has 

been a mystery referred to as the “MCM paradox” [27], perpetuated by observations 

that drastic MCM reductions in certain systems can be compatible with normal DNA 

replication or cell proliferation [13, 28-30].  However, these circumstances are not 

universal, and reductions are not entirely without consequences.  Early studies showed 

that a reduction in MCMs resulted in decreased usage of certain ARSs [12] and 

conferred genome instability [31] in yeasts.  In cell culture systems, depletion of 

certain MCMs have been found to cause cell cycle defects, checkpoint abberations and 

GIN [13, 16, 17, 29, 32].   

  

 Recent work has shed light on aspects of the MCM paradox.  Using Xenopus egg 

extracts attenuated for licensing by addition of geminin (an inhibitor of CDT1, which 

is required for MCM loading onto origins), one study proposed that excess chromatin-

bound MCM2-7 complexes license “dormant” origins that can be activated to rescue 

stalled or damaged replication forks, a situation that can become important under 

conditions of replication stress [11].  Similar results were subsequently reported for 
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human cells depleted of MCMs by siRNA [15, 16], and for replication stressed 

MCM2-deficient MEFs [21].  Our finding that nuclear MCM2 levels decrease as S-

phase progresses, and moreso in WT than in Mcm4
Chaos3/Chaos3

 MEFs, is consistent 

with the dormant origin hypothesis.  The decrease may reflect displacement of 

dormant hexamers by active replisomes, followed by subsequent degradation or 

nuclear export.  If WT nuclei have more dormant licensed origins than Chaos3 

mutants, then WT cells would be expected show a greater loss of MCMs.  

 The isolation of Mcm4
Chaos3

 provided the first demonstration that mutant alleles of 

essential replication licensing proteins can cause GIN and cancer [17].  Diploid 

budding yeast containing the same amino acid change in scMcm4 as the mouse 

Mcm4
Chaos3

 exhibited Rad9-dependent G2/M delay (Rad9 is a DNA damage 

checkpoint protein), elevated mitotic recombination, chromosome rearrangements, and 

intralocus mutations [19](Li, X. and Tye, B., personal communication).  One 

explanation for these outcomes is that the Chaos3 mutation impairs MCM4 

biochemically in a manner leading to elevated replication fork defects, and that these 

defects lead to the GIN and cancer phenotypes.  Alternatively, and/or in addition, the 

observed associated pan-reductions of MCMs in mouse cells [17] raised the possibility 

that decreased replication licensing might be the primary or ancillary cause for the 

mouse phenotypes.  

  

 The subsequent finding that mice (Mcm2
IRES-CreERT

) containing ~1/3 the normal 

level of MCM2 had GIN and and cancer lent support for the idea that reductions in 

MCMs contribute to the Chaos3 phenotypes [20].  Although amounts of all MCMs 

were not investigated in Mcm2
IRES-CreERT/IRES-CreERT

 mice, 65% reduction of MCM2 

caused a reduction of dormant replication origins in MEFs that were replication 

stressed by hydroxyurea [21].  In Mcm4
Chaos3/Chaos3

 mice, we hypothesize that in the 

context of Mcm2, 6 or 7 heterozygosity, which further reduces overall and chromatin-

bound MCM levels below that already caused by Mcm4
Chaos3

 (measured to be <20% of 

WT mRNA levels for Mcm2), MCMs are reduced to a degree that compromises cell 

proliferation.  This then translates into the various developmental defects and 
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increased cancer susceptibility we observed.  Whatever the exact mechanistic cause of 

these phenotypes, it is clear that the phenotypes are related to reduction of one or more 

MCMs below a threshold level that is <50%.  The severe developmental consequences 

of MCM depletion in mice suggests that certain cell types in the developing embryo 

are highly sensitive to the effects of replicative stress, and/or that relatively minor cell 

growth perturbations of such cells are not well-tolerated in the context of complex, 

rapidly-occuring developmental events.  The molecular basis for these phenotypes 

does not appear to be directly related to GIN, because whereas Mcm3 hemizygosity 

rescued several phenotypes, and delayed cancer latency in Mcm4
Chaos3/Chaos3

 mice, it 

did not concommitantly decrease MN.  This suggests that phenotypes such as 

decreased proliferation and embryonic death are caused by genetically-induced 

replication stress, moreso (or in addition to) than GIN alone. 

  

 Our genetic studies indicate that there is a quantitative MCM threshold required 

for embryonic viability, as demonstrated by the synthetic lethalities we observed when 

combining homozygosity of Mcm4
Chaos3

 with Mcm2
Gt

, Mcm6
 Gt

 or Mcm7
 Gt

 

heterozygosity, but not in the heterozygous single mutants.  Additionally, the 

Mcm4
Chaos3/Gt

 genotype, which reduced MCM levels below 50%, caused embryonic 

and neonatal lethality [17].  Underscoring the exquisite sensitivity of whole animals to 

subtle perturbations in the DNA replication machinery were the remarkable 

phenotypic rescues (viability, growth, iPS efficiency, etc.) by Mcm3 hemizygosity.  

The decreased MCM dosage led to increases in S phase nuclear MCMs and 

chromatin-bound MCMs, presumably reflecting increased replication origin formation.  

The various single and compound mutants described here and elsewhere [20], which 

show that 50% reductions of any one MCM is well-tolerated but decreases of ~2/3 are 

not, supports the idea of a threshold effect, and suggests that the threshold lies 

somewhere between 1/3 and 1/2 of normal MCM levels (at least in the cases of 

MCM2, MCM6 and MCM7). 

  



 

49 

 

 These results also emphasize the importance of relevant physiological models, 

both in general and with respect to the MCMs.  RNAi knockdown of MCM3 in human 

cells to ~ 3% normal levels was still compatible with normal short-term proliferation, 

although the cells had GIN and high sensitivity to replication stress [16].  It is doubtful 

such a drastic situation would be recapitulated in vivo (it would likely result in 

embryonic lethality as in Mcm3
Gt/Gt

 mice).  Nevertheless, it is noteworthy in that study 

that MCM3 depletion was better tolerated than knockdowns of any other member of 

the replicative helicase. 

 The finding that reductions in MCM3 rescued MCM2/4/6 depletion phenotypes 

lends insight into dynamics and regulation of mammalian DNA replication.  In 

budding yeast, MCMs shuttle between the nucleus and cytoplasm during the cell cycle.  

MCM2-7 multimers must be assembled in the cytoplasm before being imported into 

the nucleus during G1 phase [4].  The MCM2-7 importation is dependent upon 

synergistic nuclear localization signals (NLS) on Mcm2 and Mcm3 [22].  In order to 

prevent over-replication of the genome, MCMs are exported from the nucleus during S, 

G2 and M [4].  This export is dependent upon Mcm3, which has a nuclear export 

signal (NES) that is recognized by Cdc28 to promote  MCM2-7 export in a Crm1-

dependent manner [22]. 

  

 In contrast to budding yeast, MCMs that have been studied (MCM2/3/7) are 

primarily nuclear-localized throughout the cell cycle in metazoans and in fission yeast 

[4].  Upon dissociation from chromatin during S phase, MCM2-7 complexes are 

reported to remain in the nucleus but are sequestered via attachement to the nuclear 

envelope or other nuclear structures [24, 33-35].  Interestingly, mcm mutations in 

fission yeast that disrupt intact MCM2-7 heterohexamers triggers active redistribution 

of MCMs to the cytoplasm [36].  Additionally, re-distribution of MCMs between the 

cytoplasmic and nuclear compartments has been observed in hormonally-treated 

mouse uterine cells [25].   
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 Our observations support the idea that intracellular re-distribution of MCMs also 

occurs in mammals, and that it is an important regulatory process.  Staining of MCM2 

in intact nuclei of normal NIH 3T3 fibroblasts and MEFs show a steady decline (but 

not elimination) as S phase progresses.  Furthermore, it appears that the process of 

nuclear MCM2 elimination during S phase is regulated, since in situations of 

decreased MCMs (as in the Mcm4
Chaos3/Chaos3

 mutant), there is decreased loss of 

nuclear MCM2 during S phase.   

  

 Three lines of experimentation implicate MCM3 as playing a key role in 

regulating intracellular MCM localization: 1) Rescue of reduced-MCM phenotypes by 

genetic reduction of MCM3; 2) Increased S-phase nuclear MCM2 by Mcm3 

hemizygosity in MCM-depleted cells (Figure 7D); and increased chromatin-bound 

MCM2/4 by Mcm3 hemizygosity in MCM-depleted cells.  Our data suggests that 

MCM3 acts as a negative regulator that prevents re-assembly or reloading of MCM 

complexes as they dissociate from DNA during replication.  As described earlier, 

mouse and human MCM3 have predicted NESs in similar positions of their primary 

amino acid sequences as do the yeast genes.  Thus, one explanation for these 

phenomena is that decreased MCM3 suppresses MCM2-7 nuclear export, which 

occurs normally and which may be accentuated by the Chaos3 mutation in a fashion 

analogous to mcm mutant fission yeast discussed above [36].  This would effectively 

increase the amounts of MCMs available for replication licensing.  More work is 

required to determine if the rescue mechanism is indeed related to a decrease in 

MCMs export, as opposed to direct or indirect involvement in other events such as 

increased nuclear import or enhanced chromatin loading. 

  

 With respect to the early lymphoma susceptibility phenotype in Mcm4
Chaos3/Chaos3

 

Mcm2
Gt/+

 mice, it is unclear whether the type of tumor is dictated primarily by the 

particular Mcm depletion (in this case MCM2, thus resembling Mcm2
IRES-CreERT2/ IRES-

CreERT2
 animals), the genetic background, or the age of particular cancer onset (if 

animals die of thymic lymphoma at an early age, they will be unable to manifest later-
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arising mammary tumors).  The compound mutant mice used for the aging aspects of 

this study were bred to at least the N3 generation in strain C3H.  Mcm4
Chaos3/Chaos3

 

mice congenic in this background are predisposed exclusively to mammary tumors, 

whereas lymphomas were observed in mutants of mixed background [17].  Presently, 

we favor the idea that genetic background and age of tumor type onset are primary 

determinants of the cancers that arise in the mice we have studied thus far.  Genetic 

background has also been reported to influence tumor latency in MCM2-deficient 

mice [21]. 

 

 The MCM2-7 pan-reduction in Chaos3 cells is consistent with other studies 

involving mutation or knockdown of a single MCM in mammalian cells [16, 20, 29, 

37].  In these examples of parallel MCM decreases, the general assumption is that 

there is hexamer destabilization or impaired MCM chromatin loading followed by 

degradation of monomers.  However, we found that the protein decreases are related to 

decreased mRNA levels.  These large (~40%) decreases do not appear to be 

attributable to transcriptional alterations from cell cycle disruptions (these cells have a 

small elevation in the G2/M population), but rather occur at the post-transcriptional 

level (unpublished observations).  Since we also found that MEFs carrying only 1 

functional Mcm2 allele caused ~20% decreases of Mcm3-7 mRNAs, it is possible that 

mRNA downregulation drove MCM reductions in these other model systems.  

However, the mechanism for coordinated mRNA regulation, and what triggers it, is a 

mystery that we are currently investigating. 

  

 Our data contribute to a growing body of data that replication stress, which can 

occur via perturbations of the DNA replication machinery, plays a significant role in 

driving cancer [38-41].  While the Mcm4
Chaos3

 mutation is an unique case, the 

deleterious consequences of MCM reductions suggest that genetically-based 

variability in DNA replication factors can have physiological consequences.  Such 

variability in functions or levels may be caused by Mendelian mutations or multigenic 

allele interactions.  Mutations affecting transcriptional activity of one or more Mcms, 
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which might occur in non-coding cis-linked sequences or unlinked transcription 

factors, could have such effects.  This has implications for cancer genome 

resequencing projects, whereby such mutations would not be obviously associated 

with MCM expression.  The allelic collection we generated, when used alone or in 

combination with each other or Mcm4
Chaos3/ Chaos3

 mice, allow the generation of mouse 

models with a graded range of MCM levels.  These should be valuable for 

investigations into the impact of replication stress on animal development, cancer 

formation, and cellular homeostasis. 
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Materials and Methods 

 

MEF culture and proliferation assays 

 MEFs from 12.5- to 14.5-dpc embryos were cultured in DMEM + 10% FBS, 2 

mM GlutaMAX, and penicillin-streptomycin (100 units/ml).  Assays were conducted 

on cells at early passages (up to P3).  For cell proliferation assays, 5x10
4
 cells were 

seeded per well of a 6 well plate.  They were then cultured and harvested at the 

indicated time points to perform cell counts. 

 

iPS Induction from MEFs using Lentiviral Vectors 

 Doxycycline inducible lentiviral vectors [42] were prepared by co-transecting viral 

packaging plasmids psPAX2 and and pMD2.G along with vectors encoding rtTA, 

Oct4, Sox2, Klf4, or c-Myc (plasmids were obtained from Addgene.org, serial numbers 

12259, 12260, 20323, 20322, 20324, and 20326) into 293T cells using TransIT-Lt1 

transfection reagent (Mirus). Viral supernatants were collected at 48 and 72 hours, and 

concentrated using a 30kd NMWL centrifugal concentrator.  MEFs from 13.5d 

embryos, up to P3, were seeded to gelatin coated tissue plates at a density of 6.75x10
3 

cells/cm
2
 and allowed to attach in standard MEF media for 24 hours before infection 

with lentiviral vectors.  After 24 hours incubation the culture media was changed to 

KO-DMEM supplemented with 15% KO serum replacement (Gibco), recombinant 

LIF, 2 µg/mL doxycycline (Sigma), 100 µm MEM non-essential amino acids solution, 

2mM GlutaMax, 100 units/mL penicillin and 100 µg/mL  streptomycin (Gibco).  The 

induction media was refreshed daily for 13 days until the cells were passaged to 100 

mm plates prepared with irradiated feeders.  Cells were cultured for an additional 10 

days in the induction media in the absence of doxycyline before iPS colony counting, 

cell counts, and flow cytometry.   

  

 For flow cytometric quantification of iPS cells derived from reprogramming of 

MEFs, ~1 x 10
6
 cells were trypsinized for 10 minutes, then washed twice with cold 

PBS.  They were gently but completely resuspended in 1ml of 4% paraformaldehyde 



 

54 

 

in PBS at room temperature for 30 minutes.  The fixed cells were pelleted by 

centrifugation at 500 x G for 2 minutes and washed twice with 10 ml TBS-TX (0.1% 

Triton X-100) buffer.  For antibody staining, the cells were blocked with 1ml TBS-TX 

buffer with 1% BSA for 15 min at room temperature, then stained with primary 

“stemness” antibodies (monoclonal anti-SSEA1, Millipore; rabbit polyclonal anti-

LIN28, Abcam) for 60 min, washed twice, then secondary antibody was applied for 60 

minutes.  Immunolabeled cells were analyzed by flow cytometry using a 488nm laser. 

Secondary antibodies were goat anti-mouse IgG-FITC (South Biotech) and goat anti-

rabbit IgG-594 (Molecular Probes).  Cells were considered to be iPS cells if they were 

LIN28/SSEA1 positive.  Calibration of the flow cytometer and gates were set using 

untransfected MEFs as negative controls, and v6.4 ES cells as positive controls.  

  

 For quantification by colony formation, plates containing the passaged 

reprogrammed cells were examined microscopically at 20X, and 4 fields were scored 

and averaged.  Colonies were considered as iPS clones based on morphological 

criteria: well defined border, three-dimensionality, and tight packing of cells. 

 

Flow cytometric analyses of micronuclei and iPS cells 

 Micronucleus assays, which include CD71 staining, were performed essentially as 

described [43]. 

 

Nuclei isolation and immunofluorescence staining 

 MEFs were plated at 4 x 10
6
 cells/150 mm culture dish for 60 hr, trypsinized, then 

resuspended in 1ml PBS.  To the suspension was added TX-NE (320 mM sucrose, 7.5 

mM MgCl2, 10 mM HEPES, 1% Triton X-100, and a protease inhibitor cocktail).  The 

cells were gently vortexed for 10 seconds and incubated on ice for 30 min.  Dounce 

homogenization was unnecessary.  Nuclei were then pelleted by centrifugation at 

500xG for 2 min and washed twice with 10 ml TX-NE, then resuspended in 1ml TX-

NE.  Nuclei yield and integrity was monitored microscopically with trypan blue 

staining.  The nuclei were fixed by adding 15ml cold methanol for 60 min on ice.  The 
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fixed nuclei were pelleted by centrifugation at 500xG for 2 min, then washed twice 

with 10 ml TBS-TX (0.1% TX-100).  1 x 10
6
 nuclei were placed into 1.5ml tubes in 

1ml TBS-TX buffer + 1% BSA for 15 min at room temperature.  The primary 

antibody (Rabbit anti-mouse MCM2) was added for 60 min, then secondary antibody 

(FITC goat anti-rabbit) was added for 60 min.  Finally, the nuclei were stained with 

propidium iodide (PI), and RNAse treated (batches optimized empirically) for 30 mins.  

Immunolabeled nuclei were analyzed by flow cytometry (using a BD FACSCalibur 

cytometer with CellQuest software), exciting the PI and FITC with a 488nm laser. 

 

Generation and validation of mouse lines bearing mutant Mcm alleles 

 ES cell lines containing gene trap insertions in Mcm genes were obtained from 

Bay Genomics [Mcm3 (RRR002), Mcm6 (YHD248), Mcm7 (YTA285)] or the Sanger 

Institute [Mcm2 (ABO178)].  The Mcm4 line was previously reported [17].  Allele 

names are abbreviated as, for example, Mcm3
Gt

 instead of the full name 

Mcm3
Gt(RRR002)Byg

.  All of the original ES cells were of strain 129 origin, and the alleles 

were backcrossed into C3HeB/FeJ for ≥4 generations   

  

 To identify the exact insertion sites of the gene trap vectors, a “primer walking” 

procedure was used.  This involved priming PCR reactions with :1) a fixed vector 

primer, and 2) one of a series of primers series corresponding to the intron in which 

the vector presumably integrated.  PCR products were then sequenced.  Genotyping of 

gene-trap-bearing mice was performed either by PCR amplification of the neomycin 

resistance gene within the vector, or by using insertion-specific assays (Table 2.1). 

 

Western blot analysis. 

 Cytosolic and chromatin-bound protein was extracted as described [44].  Antibody 

binding was detected with a Pierce ECL kit.  Band were quantified using NIH Image J 

software.  Antibodies-  aMCM2: ab31159 (Abcam); aMCM3: 4012 (Cell Signaling); 

aMCM4: ab4459 (Abcam); aMCM5: NB100-78261 (Novus); aMCM6: NB100-78262 
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(Novus); aMCM7: ab2360 (Abcam); aBeta-actin: A1978 (Sigma); aTBP: NB500-700 

(Novus). 

 

Quantitative RT-PCR (qPCR).  

 Total RNA from P1 MEFs was DNAse I treated, then cDNA was synthesized from 

1 μg of total RNA using the Invitrogen SuperScript III ReverseTranscriptase kit with 

the supplied Olige-dT or random-hexamer primers.  qPCR reactions were performed 

in triplicate on 1 ng or 10 ng of cDNA by using the SYBR power green RT-PCR 

Master kit (Applied Biosystems; 40 cycles at 95°C for 10 s and at 60°C for 1 min), 

and real-time detection was performed on an ABI PRISM 7300 and analyzed with 

Geneamp 5700 software. The specificity of the PCR amplification procedures was 

checked with a heat-dissociation step (from 60°C to 95°C) at the end of the run and by 

gel electrophoresis.  Results were standardized to β-actin.  The PCR primers are listed 

in Table 2.1. 
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Abstract 

 

 The MCM2-7 complex provides essential replicative helicase function.  

Insufficient MCMs impair the cell cycle and cause genomic instability (GIN), leading 

to cancer and developmental defects in mice.  Depletion or mutation of one MCM can 

destabilize the hexamer and decrease all MCMs levels.  Here, we use mice and cells 

bearing a GIN-causing hypomophic allele of MCM4 (Chaos3), in conjunction with 

disruption alleles of other Mcms, to reveal new mechanisms of coordinate MCM pan 

down-regulation at two levels.  First, MCM4
Chaos3

 specifically destroys 

MCM4:MCM6 interaction, triggering a ~40% reduction in all MCM proteins that is 

attributable to Dicer1 or Drosha –dependent post-transcriptional reduction of Mcm2-7 

mRNA in Mcm4
Chaos3/Chaos3 

embryonic fibroblasts.  Second, we build upon genetic and 

biochemical evidence to show, in vivo, that MCM3 is a negative regulator of the 

MCM2-7 helicase.  Whereas the overexpression of WT MCM3 exacerbates cell cycle 

defects in MCM2-7 depleted Mcm4
Chaos3

 embryonic fibroblasts, the opposite occurs 

with hemizygosity of MCM3 or overexpression of a mutant MCM3 (MCM3
L4A

) that 

destroys helicase-inhibiting MCM3:MCM5 complexes.  Unlike WT MCM3, 

MCM3
L4A

 does not block the recruitment of helicase onto chromatin in vivo.  These 

data show that proper stoichiometry of MCM components is controlled post-

transcriptionally at both the mRNA and protein levels, and is the first in vivo evidence 

that a MCM3/5 complex negatively regulates assembly of the MCM2-7 helicase onto 

chromatin. 
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Introduction 

 

In eukaryotes, the amount and timing of DNA replication is tightly controlled 

to conduct a single duplication of the genome during S phase [1].  Perturbations of the 

underlying replication machinery can alter ploidy, genome stability, and the cell cycle.  

In late mitosis to early G1 phase, replication machinery assembles at numerous 

replication origins in the genome, beginning with the ORC complex, followed by 

CDC6 and CDT1 which load the MCM2-7 replicative helicase [2], then other factors 

needed for helicase activity [3] and full competence (“licensing”) of this pre-

replicative complex (pre-RC) to initiate DNA replication.  Although MCM2-7 proteins 

are bound to chromatin in amounts exceeding that which is required for complete 

DNA replication the excess chromatin-bound MCM2-7 complexes occupy dormant or 

"backup" origins which are needed under the conditions of replication stress, 

compensating for stalled or disrupted primary replication forks [4-6].  Humans with 

mutations in any of several pre-RC components are afflicted with a severe 

developmental syndrome known as Meier-Gorlin [7-9].  Mice with decreased (40% or 

more) levels of MCMs are highly susceptible to genomic instability, cancers and 

developmental defects [10-13].   

 

While these studies demonstrate that proper homeostasis of the DNA licensing 

process is critical for health, little is known about the regulation of these factors in 

mammals.  However, multiple studies in cultured cells and mice reported a 

phenomenon whereby genetic- or siRNA-induced depletion of a single MCM causes 

depletion of the other MCMs [5, 6, 10, 11, 13-16].  It was generally assumed that the 

pan-decreases were due to MCM2-7 hexamer destabilization.  However, single MCM 

knockdown in Drosophila, induced MCM2-7 instability in human cultured cells, and a 

hypomorphic allele of mouse Mcm4 (Mcm4
Chaos3

) all showed an mRNA 

pandownregulation coordinate with decreased protein levels [12, 17, 18].  The 

underlying mechanism is unknown.  
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DNA replication can also be regulated at the level of loading the existing pool 

of pre-RC components. The six MCM proteins form a ring-shaped toroidal 

heterohexamer in yeast [19-21].  Nevertheless, in mammalian cells, the MCM3/5 

dimer and MCM4/6/7 trimer are the main complexes instead of the MCM2-7 

heterohexamex [22-25]. MCM4/6/7 are typically co-isolated as a dimerized 

(MCM4/6/7)2 sub-complex during biochemical purifications, the “MCM core,” which 

has helicase activity in vitro [26, 27].  MCM3 and MCM5 dimer bind weakly to the 

MCM core, probably via Mcm7 [28].  However, this binding disrupts (MCM4/6/7)2 

formation and inhibits robustly its helicase activity [26, 28, 29].  These biochemical 

observations suggest that the degree and level of individual MCM components will 

influence the dynamics and degree of helicase loading and activity.  In previous work, 

we found that genetic reduction of MCM3 ameliorates numerous mutant phenotypes 

exhibited by MCM-depleted mice and cells, including cancer susceptibility, 

embryonic lethality, and cell cycle/proliferation [12].  Paradoxically, this occurred by 

increasing the amounts of the other MCMs bound to chromatin in vivo.  

 

In this study, we exploit the Mcm4
Chaos3 

model to reveal two novel mechanisms 

for post-transcriptional regulation of replication licensing in vivo.  One occurs at the 

mRNA level and is modulated by the small RNA regulatory pathway to trigger pan-

downregulation of all MCMs.  This suggests the existence of a novel regulatory 

relationship for governing the stoichiometry of the MCM DNA replication licensing 

complex.  The other mechanism involves negative regulation of MCM2-7 access to 

chromatin by a MCM3:MCM5-containing complex, possibly involving the nuclear 

export factor XPO1. 

 

Results 

 

The Mcm4
Chaos3

 mutation disrupts MCM4:MCM6 interaction 

 The Mcm4
Chaos3

 allele (hereafter abbreviated as “C3”) encodes a PHE>ILE change 

at a highly conserved residue (Phe345Ile) [10].  This ultimately causes a reduction in 

both mRNA and protein levels for MCM2-7, a decrease of dormant origins, high GIN, 
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and extreme cancer susceptibility in homozygous mice [10, 12, 13].  We considered 

two possibilities to explain these consequences.  The first is that the Chaos3 mutation 

disrupts an intra-hexamer interaction(s) between MCM4 and another MCM(s).  This 

idea is based on the structural prediction that Phe345 resides at the protein-protein 

interface region of MCM2-7 monomers [30].  Biochemical studies have indicated 

most MCMs also exists in several major subcomplexes, such as MCM4/6/7 and 

MCM3/5 [26, 31-34], so the mutation might disrupt interactions within or between 

subcomplexes.  The second possibility, based on the finding that MCM2-7 complexes 

are loaded as double hexamers into pre-RCs [21], is that inter-hexamer interactions are 

disrupted, which might somehow affect the coordination of firing in S, or stability of 

the pre-RC.  

 

 To distinguish between these possibilities, we determined the ability of MCM4
C3

 

to associate with other MCMs in HEK cells.  Whereas MCM7 could be co-

immunoprecipitated with epitope-tagged mouse MCM4
+
 or MCM4

C3
, MCM6 was 

only pulled down with MCM4
+
 (Fig. 3.1A).  Little or no MCM2, 3, or 5 was co-

precipitated with MCM4
+
 or MCM4

C3
.  These results are consistent with MCM4, 6, 7 

forming a sub-complex in human cells, and the Phe345Ile mutation disrupting 

MCM4/6 intrasubunit interaction. Furthermore, since MCM4
+
 and MCM4

C3 
co-

immunoprecipitated each other but not MCM2,3 or 5, we conclude that there are little 

or no stable inter-MCM2-7 hexamer interactions in unsynchronized HEK cells, but 

rather that MCM4,6,7 may form a double-trimer as reported in yeast [31].  

 

 To assess how the Mcm4
C3

 mutation affects MCM4,6,7 interactions in a more 

physiological context, we immunoprecipitated protein complexes from WT or 

Mcm4
Chaos3/Chaos3 

immortalized MEFs with anti-MCM6 or 7.  Consistent with the co-

transfection studies, no detectable MCM4 could be immunoprecipitated by anti-

MCM6 in Mcm4
C3/C3

 MEFs.  Additionally, although anti-MCM6 immunoprecipitated 

MCM7 in WT cells, it did not immunoprecipitate detectible MCM7 in mutant cells 

(Fig. 3.1B).  However, MCM4
Chaos3

-MCM7 interaction remained, albeit at a slightly  
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Figure 3.1. MCM4
C3

 disrupts interaction with MCM6 specifically. (A) Western 

blot analysis of proteins immunoprecipitated with ectopically-expressed epitope-

tagged MCM4 in HEK cells. (B) Western blot analysis of proteins 

immunoprecipitated with MCM6 or 7 in the indicated genotypes of immortalized 

MEFs. (C) Consequence of Chaos3 mutation on MCM2-7 interactions  “X” = Chaos3 

mutation. (D) Micronucleus levels in indicated genotypes of male MEFs  “C3” = 

Chaos3  “M4” = Mcm4.  Asterisk indicates P< 0 05 (student’s t-test.) compared to 

Mcm4
Chaos3/Chaos3

 alone. At least 5 embryos were analyzed for each genotype.  ±SEM 

bars are shown.  
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lower level than between the MCM4-MCM7 (Fig. 3.1B).  The disrupted MCM4/6 

interaction likely causes the MCM2-7 to break into sub- complexes (Fig. 3.1C), as was 

also suggested by gel filtration studies [13].  Taken together, these results show that 

the Phe345Ile change in MCM4
Chaos3

 greatly weakens the MCM4/6 interaction, 

possibly destabilizing the entire MCM2-7 complex, and ultimately leading to 

downstream consequences such as GIN and tumorigenesis.   

 

 Given the known relationship amongst MCM2-7 monomers in the intact hexamer 

(Fig. 3.1C) and the disrupted MCM4/6 interaction in Mcm4
C3/C3

 cells, we surmised 

that the already reduced MCM4
C3

-MCM7 interaction becomes critical for hexamer 

function, since this link is the only one left tethering MCM4 to the rest of the MCM2-

7 complex.  If true, we would expect severe phenotypic consequences if this 

interaction were compromised.  To test this, we assessed GIN (measured as 

micronucleus levels in peripheral blood) in Mcm4
C3/+

 and Mcm4
C3/C3

 mice combined 

with heterozygosities for Mcm gene trap (“Gt”) mutations   Mcm7 heterozygosity 

cause a dramatic increase of micronuclei in Mcm4
C3

/+ mice that was even higher than 

in Mcm4
C3/C3

 cells.  Notably, the genotype Mcm4
C3/C3 

Mcm7
Gt/+

 also causes higher 

embryonic or neonatal lethality in 97% of mice, compared to 70% lethality for 

Mcm4
C3/C3 

Mcm2
Gt/+

, 80% lethality for Mcm4
C3/C3 

Mcm6
Gt/+

, and no lethality for 

Mcm4
C3/C3 

Mcm3
Gt/+

 [12].  This underscores that the MCM4
C3

:MCM7 interaction 

becomes critical when the MCM4/6 interaction is abolished.  

 

Mcm RNA levels are regulated posttranscriptionally.   

 We reported previously [12] that the ~40% decreases of MCM2-7 protein levels in 

Chaos3 cells were mirrored by similar reductions in Mcm2-7 mRNA (Fig. 3.2A).  One 

possible explanation is that Mcm2-7 transcription is differentially regulated during the 

cell cycle, and that alterations of cell cycle distribution in mutant cell populations 

underlie the changes.  However, the cycle profile in Mcm4
C3/C3

 cells has only minor 

differences relative to WT: 10% more G1, 10% fewer S, and 20% more G2/M cells 

[12].  qRT-PCR analysis of a cadre of cell-cycle regulated genes revealed only  



 

68 

 

 

 

Figure 3.2. Mcm2-7 mRNAs are reduced in Mcm4
Chaos3/Chaos3

 cells  (A), (B), (C) 

qRT-PCR analysis of Mcm mRNAs, control genes, and cell cycle related genes in the 

WT or Chaos3 MEFs.  Relative transcript levels were normalized to -actin.  Charted 

are the percent levels of the indicated RNAs in mutant compared to WT (considered to 

be 100%).  At least 3 replicate cultures were analyzed for each genotype.  Error bars 

are ±SEM.  *p<0.01 vs WT, **p<0.05 vs Mcm4
C3/C3 

Mcm2
GT/+

. 
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minimal (<14%) alterations of the G1/S and S gene mRNA levels (Fig. 3.2B).  The 

most “dysregulated” non-MCM gene was Cdc6, but the 24% decrease was not nearly 

as drastic as the 40~50% decrease in Mcm2-7 (Fig. 3.2A).  Additionally, there was no 

evidence for involvement of the E2F transcription factor family in downregulating 

Mcm2-7 transcription in Chaos3 cells, which was a potential consideration given that 

the promoter regions of Mcm3, 5 ,6, and 7 contain potential E2F binding sequences 

[35].  Neither the E2F family, nor key downstream targets of E2F (Pcna, Dhfr and 

Ccne1/2) [36], were downregulated at all or nearly as much as Mcm2-7.  Furthermore, 

upon rescue of the abnormal cell cycle and cdc6 mRNA level (Fig. 3.2 C) by reduction 

of Mcm3 as previously described [12], Mcm2-7 mRNA levels were not restored (Fig. 

3.2 C).  These results suggest the drastic pan-reduction of Mcm mRNAs is not due to 

abnormal cell cycle distribution per se, but rather to another consequence of the 

Chaos3 mutation. 

 

 Mcm2-7 mRNA pan-reduction could be due to decreased transcription or increased 

postranscriptional degradation.  We tested the former using four approaches.  First, we 

quantified Mcm2-7 heterogeneous nuclear RNA (hnRNA; pre-spliced transcripts) 

which, due to its short half-life, reflects transcriptional activity [37, 38].  In contrast to 

the mRNA (Fig. 3.2A), Mcm hnRNAs were at WT levels in Chaos3 MEFs (Fig. 3.3A).  

Second, we compared the activity of luciferase reporters under the control of Mcm2, 

Mcm5 and Mcm7 promoters in WT and Chaos3 MEFs.  There were no significant 

differences for any of the promoters (Fig. 3.4A).  Third, we measured LacZ reporter 

mRNAs in MEFs bearing gene trap alleles.  These transcripts are driven by their 

respective Mcm promoters.  There was no decrease in Mcm2
Gt

 or Mcm3
Gt

 mRNA in 

Chaos3 vs WT MEFs; in fact, the levels of these mRNAs were actually slightly higher 

in the mutant cells (Fig. 3.4B).  Fourth, we measured RNA polymerase II occupancy 

within Mcm transcriptional units by ChIP-qPCR.  The levels in mutant cells were 

similar to or higher than in WT (Fig. 3.3B). These four lines of experimentation show 

that the reduction of Mcm2-7 mRNAs in Chaos3 cells is not due to decreased  
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Figure 3.3.  Depletion of Mcm2-7 mRNAs in Mcm4
Chaos3/Chaos3

 cells occurs 

postranscriptionally  (A) Mcm2-7 hnRNA levels in Mcm4
Chaos3/Chaos3

 MEFs are 

unchanged compared to WT.  Plotted are qRT-PCR data (% compared to WT), of 

intron/exon amplimers produced with primers listed in Supplemental Table 2.  N = 3 

replicates; ±SEM bars are shown. (B) ChIP-qPCR analysis of RNA Pol II occupancy 

within the Mcm2-7 transcription units of Mcm4
Chaos3

 mutant MEFs. N = 4 replicates; 

±SEM bars are shown.  

 

 



 

71 

 

 

 

Figure 3.4. MCMs promoter activity does not decrease in Mcm4
Chaos3/Chaos3

 cells 

Luciferase reporter assays.  Plotted are the luciferase activities of in Mcm4
Chaos3/Chaos3

 

MEFs transfected with the indicated promoter-luciferase (Luc) expression constructs 

(see Methods), with the values relative to transfections into WT MEFs. N = 5 

replicates; ±SEM bars are shown. (B) LacZ mRNA levels in Mcm4
Chaos3/Chaos3

 MEFs 

are unchanged compared to WT. N = 3 replicates; ±SEM bars are shown. 
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transcription or alterations in cell cycle distribution, but rather to post-transcriptional 

mechanisms. 

 

Mcm mRNA levels are affected by RNAi machinery.   

 Because the decrease in Mcm mRNAs occurs post-transcriptionally, we 

hypothesized that an RNAi-mediated mechanism might be involved.  To test this, 

Chaos3 MEFs were transfected with siRNAs against Drosha or Dicer1, followed by 

measurement of Mcm transcripts by qRT-PCR.  Depletion of Dicer1 mRNA by ~68% 

was accompanied by increases in Mcm2, 3, 4, 5, and 7 (Fig. 3.5A) by up to 1.6 fold 

compared to scrambled siRNA controls.  Knockdown of Drosha by ~72% caused 1.3-

1.7 fold increases of Mcm RNAs (Fig. 3.5B).  These data are consistent with the 

possibility that endogenous RNAi is responsible for depletion of Mcm mRNAs in 

Mcm4
Chaos3

 cells.  Interestingly, Dicer mRNA itself also increased (Fig. 3.5B), 

indicating a regulatory relationship between these components as observed by others 

[39] 

 

MCM3 interaction with MCM5 via a Leucine rich motif correlates with 

chromatin-bound MCM levels  

 In previous work, we reported that genetic reductions of MCM2, 6 and 7 in 

Chaos3 mice had severe phenotypic consequences including embryonic lethality, 

growth defects, anemia and early onset cancer [12].  Surprisingly, further reducing 

MCM3 was found to rescue most of these detrimental phenotypes.  This rescue was 

associated with increased chromatin-bound MCMs, presumably improving pre-RC 

density that is already decreased in Chaos3 cells [13].  Based on the following 

observations: 1) mammalian MCM3 encodes two predicted leucine-rich potential 

nuclear export signals (NES) in the same approximate location as a functional NES in 

yeast Mcm3 (scMcm3) [12, 40]; 2) the scMcm3 NES interacts with Crm1 to export 

Mcms through nuclear pores at after DNA synthesis [40]; and 3) MCM interaction 

with nuclear pore complex components regulates binding of MCMs to chromatin and 

replication licensing in Xenopus egg extracts [41, 42]; we speculated that this 

redistribution of the chromatin depleted MCM pool was attributable to a reduction in  
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Figure 3.5. Depletion of Mcm2-7 mRNAs in Mcm4
Chaos3/Chaos3

 cells is Dicer1 and 

Drosha dependent.  The graphs showed qRT-PCR analysis of the indicated genes in 

Mcm4
Chaos3/Chaos3 

MEFs that were treated with siRNA against (A) Dicer1 and (B) 

Drosha.  The values shown are % of levels in the same cells treated with scrambled 

siRNA controls. N = 3 replicates; SEM bars are shown.  Data were standardized 

against -actin as control. 
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MCM3-mediated MCM2-7: XPO1 (exportin 1; the mammalian ortholog of Crm1) 

interaction.  

 

 Consistent with this hypothesis, lentivirally-expressed MYC-tagged mouse MCM3 

indeed co-immunoprecipitated XPO1 in HEK cells (Fig. 3.6B, first lane), whereas a 

mutant version in which 3 leucines and 1 isoleucine within the predicted NES were 

changed to alanines (“L4A”) abolished MCM3:XPO1 interaction   To test the 

consequences of the leucine mutations on MCM2-7 chromatin loading, we infected 

HeLa cells with control (LacZ), MCM3, MCM3
S5A

 , and MCM3
L4A

 lentiviral 

expression constructs.  Cell extracts were divided into a detergent-soluble fraction 

(“Soluble” control for which was GAPDH, Fig  3.7A) and a fraction containing 

nuclear scaffold protein, DNA, and chromatin binding forms of MCMs (“Chromatin” 

controls = Fibrillarin and Lamin A/C; Fig. 3.7A). Overexpression of MCM3 but not 

MCM3
L4A

 caused a decrease of chromatin-bound MCM2,4,5,6, and 7, as detected 

both by Western blot (Fig. 3.7A).  This thereby increased the soluble/chromatin MCM 

ratio (Fig. 3.7B).  These changes in MCM2-7 localization had functional correlates 

with cell growth; overexpression of MCM3 markedly decreased colony formation 

compared to MCM3
L4A

.  Since CDK phosphorylation of scMcm3 regulates its nuclear 

transport ability [40], we also tested whether a presumed phosphorylation-dead 

version of MCM3 (MCM3
S5A

), in which 5 predicted MCM3 CDK phosphorylation 

sites were mutagenized (Fig. 3.6), would also abolish the ability to increase MCM2-7 

loading and improve cell growth.  However, this was not the case (Fig. 3.7A&B); 

MCM3
S5A

 transfection had similar effects as the WT construct.  Furthermore, 

dephosphorylation of protein extracts did not disrupt MCM3:XPO1 interaction (Fig. 

3.6B), suggesting that the anti-licensing effects of MCM3 may occur via a mechanism 

not involving, or in addition to, XPO1 interaction.  We posited that these anti-

licensing effects involve interaction with another protein at the mutated leucine rich 

domain.  

 

 



 

75 

 

 

Figure 3.6. The mutation of MCM3 NES motif disrupts interaction with XPO1 

and MCM5. (A) Schematic of putative NES motif and CDK phosphorylation sites 

within MCM3. mMcm3
L4A 

represent mMcm3-L322A/L481A/I484A/L485/A; 

mMcm3
S5A

 represents mMcm3-S112A/T464A/T555A/S611A/T719A. (B) MCM3 

loses interaction with XPO1 after mutation of the NES motif. Western blot analysis of 

ectopic mMCM3-WT (with or without Calf intestinal alkaline phosphatase (CIAP)) 

and mMCM3-L4A precipitation and probed for MCM3 and XPO1. (C) MCM3 loses 

interaction with MCM5 after the NES motif is mutated.  Interaction of MCM3-MCM5 

or MCM3-MCM7 is evaluated by Western blot analysis.  Hela cells were transduced 

with vectors expressing LacZ, MCM3
WT

 , MCM3
L4A

 , and MCM3
S5A 

, and cell lysates 

were immunoprecipitated with Anti-Myc and probed for MCM3 ,MCM5, and MCM7. 
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Figure 3.7. Mutation of the MCM3 NES motif disrupts the ability of MCM3 to 

reduce chromatin MCMs levels. (A) Cells that express ectopic LacZ, MCM3WT, 

MCM3L4A, and MCM3S5A were fractionated into Soluble and Extracted fractions. 

Western blot analysis of different fractions were probed for MCM2 , MCM4, MCM5, 

MCM6, MCM7, ACTIN, GAPDH, FIBRILLARIN, LAMIN A/C, and Myc-TAG.  

Numbers represent normalized values of band intensity against GAPDH in soluble 

fractions, or fibrillarin in extracted fractions (B) Quantification of Western blot data 

by densitometry is shown in the center panel. The amounts relative to WT cells (after 

normalization to the controls) are plotted.  Experiments are repeated twice with 

reproducible results. 
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In mammalian cells, MCM3 dimerizes robustly with MCM5.  It also binds 

MCM7, but with lower affinity [28].  To determine if the Leucine rich motifs in 

MCM3 mediate these interactions, the abilities of MYC-tagged MCM3 and MCM3
L4A

 

to bind these partners were compared in co-IP experiments.  As expected, WT MCM3 

bound both MCM5 and MCM7, but the L4A mutation completely abolished 

intreraction with MCM5 specifically (Fig. 3.6C).  Although CDK phosphorylation of 

Mcm3 S/T sites is believed to modulate Mcm3 to bind other MCMs [22], MCM3
S5A

 

maintained robust interactions with MCM5 and MCM7. 

 

MCM3 modulates cell cycle via controlling MCM2-7 loading onto chromatin   

 To investigate MCM3’s apparent role as a negative cell cycle regulator in a 

physiologically accurate system, we utilized primary, non-transformed cells (MEFs) 

with well-characterized phenotypic consequences of MCM modulation.  Chaos3 

MEFs, with ~60% WT of MCM2-7, exhibit a mild accumulation of G2/M stage cells 

[10, 12].  Further genetic reduction of MCM2 to ~17% WT levels (in Mcm4
Chaos3/Chaos3

 

Mcm2
Gt/+

 cells) severely impacted cell growth and viability of mice [12].  Cells of this 

genotype had a dramatically increased G2/M population, indicative of cell cycle arrest 

(Fig. 3.8A).  Further genetic reduction of MCM3 (Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 

Mcm3
Gt/+

), which was shown to partially rescue the poor growth and early senescence 

of Mcm4
Chaos3/Chaos3

 Mcm2
Gt/+

 MEFs by increasing MCM binding to chromatin [12], 

also decreased the degree of G2/M arrest (Fig. 3.8A).  This genotype of MEFs has 

~17% of WT MCM2-7 levels, but mice do not suffer the extreme embryonic lethality 

as do those of the Mcm4
Chaos3/Chaos3

 Mcm2
GT/+

 genotype.  The half dose of Mcm3 also 

permits sufficiently adequate growth of MEFs, which, as mentioned above, otherwise 

undergo growth arrest beginning at early passages [12].  Another advantage of this 

model is that the decreased MCM3 levels allow us to replace the “lost” MCM3 with 

mutant versions (see below) without necessitating an overall level above WT.   

 

 In the first set of experiments, these cells were infected with lentiviruses encoding 

MYC-tagged expression vectors for Mcm2, 3, or 4.  The epitope tag was used to  
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Figure 3.8. MCM3 NES motifs are required for causing G2/M arrest in MCM-

depleted cells.  (A) Flow cytometric analysis of unsynchronized MEF culture cell 

cycle profiles, based on DNA content. The MEF culture cells established from 

littermates include Mcm4 
Chaos3/Choas4

, Mcm4 
Chaos3/Choas4

 Mcm2
+/-

, Mcm4 
Chaos3/Choas4

 

Mcm3 
+/-

 , and Mcm4 
Chaos3/Choas4

 Mcm2/3 
+/-

. Results show Mcm4 
Chaos3/Choas4

 Mcm2
+/-
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have significant G2/M arrest when compared to Mcm4 
Chaos3/Choas4

, whereas Mcm4 

Chaos3/Choas4
 Mcm2/3 

+/-
 showed a reduction of G2/M arrest phenotype. Error bars 

represent SEM, derived from at least 14 independent experiments.  

 (B) Cell cycle histograms of Mcm4 
Chaos3/Choas4

Mcm2/3 
+/- 

MEF cells expressing LacZ, 

Mcm2, Mcm4, Mcm3, Mcm3-L4A, Mcm3-S5A by lentviral transduction. Only 

Express MCM3 and MCM3
S5A

 cause more G2/M arrest.  (C) Quantification of G2/M 

population data.  The percentages of G2/M population were normalized against LacZ 

controls (set to 100%).  Error bars represent SEM from 3 independent experiments.  
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specifically analyze the growth of cells expressing the transfected Mcm.  As expected, 

ectopic Mcm2 or Mcm4 expression rescued the G2/M delay (Fig. 3.8A&B).  In 

contrast, the expression of WT Mcm3 aggravated the G2/M arrest (Fig. 3.8A&B), 

consistent with our model.  Whereas ectopic WT Mcm3 increased the G2/M 

population, expression of Mcm3-L4A rescued the G2/M arrest even more efficiently 

than Mcm2 or Mcm4 (Fig. 3.7A&B). 

 

Discussion 

 

Post-transcriptional regulation of MCM mRNA levels    

 The pan downregulation of Mcm mRNAs in Mcm4
Chaos3/Chaos3

 cells constitutes a 

previously unrecognized mode of regulation of replication licensing.  Because 

transcriptional activity of the Mcm genes appears normal, we propose 3 potential 

explanations for this reduction: 1) decreased splicing of the primary transcripts; 2) 

decreased mRNA stability; or 3) active degradation of the mRNAs.  Since knockdown 

of Dicer1 or Drosha increased Mcm2-7 mRNA levels, this lends support for the latter, 

and suggests that miRNAs might be responsible for mRNA degradation.  If true, the 

regulation could be indirect.  In support of this are observations that Mcm4
Chaos3

 

causes detectable alterations in cell cycle (G2/M delay; [10, 30]), and that miRNAs are 

involved in cell cycle control [43].  Therefore, the MCM downregulation may be just 

one component of a more general impact of miRNAs on cell cycle perturbation.  

Alternatively, the coordinate decrease of all the Mcm2-7 RNAs might be controlled by 

a single miRNA that binds multiple Mcm mRNAs.  To explore this possibility, we 

used (primarily) the TargetScan algorithm (www.targetscan.org) to identify candidates.  

Most notable were predicted binding sites for the following miRNAs in 3 or more 

Mcm 3’UTRs: miR-103/107 (Mcm4,5,6,7); miR-465a,b,c-5p (Mcm2,3,4); miR-

495/1192 (Mcm2,3,4,5); and miR-214/761 (Mcm2,6,7).  We do not know if any of 

these miRNAs actually bind the predicted targets in vivo.  However, all Mcms were 

found to carry multiple cleavage sites targeted by unknown small RNAs [44]. 
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In cell culture [6] and mouse studies [11] showing that MCM2 depletion caused 

decreases in other MCM proteins, the corresponding mRNA levels were not 

investigated.  Since we found that MEFs carrying only 1 functional Mcm2 allele 

caused ~20% decreases of Mcm3-7 mRNAs [12], it is possible that mRNA 

downregulation drove MCM reductions in those other systems.  However, MEFs 

hemizygous for Mcm4 or Mcm6, while having 50% or lower levels of the 

corresponding mRNAs, did not exhibit a decrease in the other Mcm mRNAs.  This 

suggests that decreased levels of some (including Mcm2 and Mcm3 but not Mcm4 or 

Mcm6) but not all MCM proteins/mRNAs are sensed by a novel mechanism in 

mammals, leading to mRNA degradation or decrease.  In the case of Mcm4
Chaos3

, it is 

possible that the destabilized MCM2-7 hexamer, or the consequence thereof, generates 

the signal. 

 

 Observations in other systems indicate that the coordinated downregulation 

phenomenon is complicated, and may vary according to organism, system, and 

particular MCM.  Numerous studies have reported MCM protein decreases in 

response to mutation or knockdown of a single MCM, including Drosophila [17] and 

human cells [15, 22].  In these examples of parallel MCM decreases, the general 

assumption is that there is hexamer destabilization or impaired loading followed by 

degradation of monomers.  This may indeed be true in some cases, but mRNA levels 

were rarely assessed.  The nature of the MCM sensing mechanism that reduces Mcm 

mRNA levels in response to decreased MCMs (the data presented here) is a matter of 

speculation and the subject of ongoing research. 

 

Inter-MCM regulation    

 Electron microscopy studies indicate that MCM2-7 forms a ring-shaped toroidal 

heterohexamer on DNA [19, 20] [21].  Furthermore, gel filtration analyses in a variety 

of systems identify a ~600 kDa MCM complex that is consistent with each subunit 

being present in a 1:1:1:1:1:1 stoichiometry [33, 34, 45].  However, in vitro studies 

have shown that a dimeric trimer of MCM4/6/7 has helicase activity, and that MCM2, 

3, and 5 function as negative regulators [26, 27, 31, 46, 47].  The exact relationship 
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between in vitro helicase activity of reconstituted MCM components and the 

constitution of in vivo complexes remains unclear.  The situation in mammalian cells 

appears to be more complex, in that a variety of MCM sub-complexes have been 

identified in vivo, especially the MCM4/6/7 sub-complex [22-25].  In this study, only 

MCM6 and MCM7 were robustly coimmunoprecipitated by anti-MCM4 from total 

cell extracts, consistent with our data and other reports [24, 29].  Interestingly, we also 

found that MCM4
Chaos3

, like WT MCM4, immunoprecipitates other MCM4 molecules 

in addition to MCM7, indicating that an MCM4/7 double dimer is stable even in the 

absence of MCM6.   

 

 Our results showing that MCM3:MCM5 blocks the assembly of MCMs onto 

chromatin in vivo, and that alteration of MCM3 levels has phenotypic consequences in 

parallel with the effects upon MCM loading, support the idea that the primary function 

of certain MCMs are regulatory in nature.  Regarding the exact mechanism behind the 

inhibitory role of MCM3, we suggest two models that are not necessarily mutually 

exclusive, and are based upon prior knowledge that are consistent with our 

observations.  Model 1: since the stoichiometry of MCM2-7 in mammalian cells has 

been reported to be 1:2:1:1:1:1 [25, 48], the excess MCM3 obstructs the assembly of 

toroidal heterohexamers by binding other MCMs (especially MCM5 and MCM7).  

However, since MCM3
L4A

 lacks negative effects on MCM2-7 loading but retains the 

ability to interact with MCM7, the obstructive effect would be due to interaction with 

MCM5.  It would therefore be of interest to test the effects of MCM5 knockdown in 

cells and mice.  Our finding that MCM3 interacts with XPO1 (similar to interaction 

between the yeast orthologs) raises the possibility that the MCM3/5 interaction occurs 

in the context of nuclear pore association. 

 

 Model 2 is based on two prior sets of data.  The first is that (MCM4/6/7)2 appears 

to be the “core complex” of the replicative helicase   Not only is it a major complex 

isolated from mammalian cells, but it has several in vitro activities expected for a 

replicative helicase.  These include DNA binding, ATP hydrolysis, and DNA 

unwinding [49-51].  (MCM4/6/7)2 can bind and unwind the circular DNA, suggesting 
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an ability to load and clamp DNA at positions without open ends, such as genomic 

DNA [19].  (MCM4/6/7)2 can also bind CDC45, which links to DNA polymerase [52].  

The second set of data is that MCM3/5 not only blocks the formation of (MCM4/6/7)2 

but also inhibits (MCM4/6/7)2 helicase activity in vitro [32, 53].  Therefore, we 

suggest that mammalian cells may utilize (MCM4/6/7)2 as the replicative helicase at 

least to some extent, and that the MCM3/5 dimers negatively regulate the formation of 

these double heterotrimers.  This model does not negate the existence and the function 

of MCM2-7 heterohexamers, but it is possible that two forms of helicase might be 

employed under different circumstances.  The existence of two distinct subcomplexes 

could explain the beneficial effects of reducing MCM3 levels in Chaos3 cells and 

mice.   

 

Materials and Methods 

 

MEF culture  

 Mouse embryonic fibroblasts (MEFs) from 12.5- to 14.5-dpc embryos were 

cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% 

FBS, 2 mM GlutaMAX, penicillin-streptomycin (100 units/ml) and b-mercaptoethanol.  

All assays were conducted on cells at early passages (up to P3). 

 

RNA interference  

 ON-TARGETplus SMARTpool small interfering RNA (siRNA) was purchased 

from Dharmacon (Lafayette, CO).  MEFs were seeded on six-well plates at 1 × 10
5
 

cells/well and grown for 12 hr.  The cells were then transfected with siRNA against 

mouse DicerI (Dicer I: 5-GGUAGACUGUGGACCGUUU; Dicer II: 

GGAAAUACCUGUACAACCA; Dicer III:GCAAUUUGGUGGUUGGUUU; Dicer 

IV: ACAGGAAUCAGGAUAAUUA), Rnasen (Rnasen I:UGGAAGGAGUUACG-

CUUUA; Rnasen II: GCCAAAUACGGAUCGGCAA ; Rnasen III: UGUGUAA-

AGUGAUUCGAUU ; Rnasen IV: GGAUGGAAUUUCUGGGCGA), or a nonrelated 

scrambled siRNA (CCUACUAAGCGACACCAUUdTdT) at a final concentration of 
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100 nM using DharmaFECT1 (Dharmacon).  After 24 h, the transfection medium was 

replaced with DMEM. The cells were harvested 96 or 120 hr posttransfection. 

 

Micronucleus assays  

 These were performed essentially as described [54].  

 

Chromatin immunoprecipitation assays 

 MEFs were plated at 4 x 10
6
 cells/150 mm culture plate for 60 hr, then treated for 

10 min at room temperature in 1% formaldehyde to crosslink chromatin proteins to 

DNA.  The reaction was stopped with 0.125M glycine for 5 min.  Cells were pelleted 

and resuspended in 1 ml sonication buffer (Upstate) for 10 min on ice.  450 µl were 

sonicated to generated 500-bp fragments on average (300–700 bp).  100ug of DNA-

chromatin complexes were processed according to the EZ ChIP™ (Upstate) kit 

protocol.  Monoclonal anti-RNA polymerase II (phospho S2; Covance) and rabbit 

anti-mouse IgM antibody (Millipore) were incubated together for immunoprecipitation.  

DNA was purified by phenol-chloroform extraction and ethanol precipitation. 

For quantitative PCR analysis of RNA polymerase II -bound targets, the 

immunoprecipitated DNA was resuspended in 100 µl of water.  Input DNA was used 

as reference.  

 

Co-immunoprecipitation 

 1 x10
6
 cells were transfected with expression plasmid using Lipofectamine™ 2000. 

After 72 hours, the total proteins were extracted using RIPA buffer (50mM Tris-HCl 

pH 8.0, 150mM NaCl, 0.1% SDS, 1% NP-40, 1mM EDTA, 0.5% Sodium 

Deoxycholate, 50mM NaF) with proteinase inhibitor (Protease Inhibitor Cocktail 

Tablets, Roche Cat. No. 11836153001). After centrifugation (10,000 xg for 10 mins), 

the supernatant was incubated with primary antibody at 4 C overnight and then with 

Protein A Agarose (Millipore, Cat. No. 16-125) at room temperature for1h, followed 

by 3 Washs using RIPA buffer. Bound proteins were denatured by boiling in Sample 

buffer and used for western blotting. 
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For Mcm4 over-expression in HEK cells, anti-FLAG (Sigma F3165) was used for Co-

IP. For reciprocal co-IPs, anti-MCM6 (Santa Cruz sc-9843) and anti-MCM7(cell 

signaling #4176) were used separately.  

 

Protein and cellular fractionation  

 These were performed essentially as described [55]. A Triton-100 based 

fractionation of chromatin-bound vs non-chromatin-bound proteins was used. In this 

protocol, nuclei pelleted from lysed cells contained nuclear scaffold proteins, DNA, 

and chromatin binding forms of MCMs  The supernatant (“detergent soluble fraction”) 

contained proteins of the cell membrane, cytosol, and free forms of MCMs (4, 24). For 

protein extraction, the nuclear pellet was washed 2X with 1ml TX-NE (320 mM 

sucrose, 7.5 mM MgCl2, 10 mM HEPES, 1% Triton X-100, and a protease inhibitor 

cocktail) and resuspended in 0.5ml RIPA. Successful partitioning was assessed not 

only with Western blotting controls, but with flow cytometric analysis of detergent-

extracted whole nucleus preps, which were consistent with prior studies (25). 

 

 

Western blot analysis. 

 The concentration of protein samples were quantified with a BCA kit (Pierce).  15 

μg of total protein were separated by SDS-PAGE, electrotransferred onto a pure 

nitrocellulose membrane (Bio-Rad), and probed with the relevant antibodies.  Binding 

was detected with a Pierce ECL kit. The antibodies used were as follows.  aMCM2: 

ab31159 (Abcam); aMCM3: 4012 (Cell Signaling); aMCM4: ab4459 (Abcam); 

aMCM5: NB100-78261 (Novus); aMCM6: NB100-78262 (Novus); aMCM7: ab2360 

(Abcam); aMYC: Mouse Monoclonal Anti-c- Myc M4439 (Sigma); aFLAG: Rabbit 

Polyclonal Anti-FLAG #2368 (Cell Signaling) 

 

Luciferase constructs and assays 

 The promoter regions of Mcm2, Mcm5, Mcm7 and Pgk2 (300 bp upstream of the 

annotated transcriptional start sites) were PCR amplified from mouse genomic DNA 
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(PCR primers are listed in  Table 3.1) and cloned into the pGL4.14 luciferase-

containing plasmid (Promega).  MEFs were plated at 7.5 x 10
4
 cells/well in 24-well 

plates.  Cells were transfected using FuGENE HD reagent and a total of 850ng 

DNA/well consisting of mouse Mcms (2, 5, or 7) and Pgk2 reporter contructs.  Cells 

were transfected then lysed in reporter lysis buffer (Promega) after 24 hr, and assayed 

for luciferase (Promega) activity.  Results were standardized to the Pgk2-Luc activity 

levels. 

 

Quantitative RT-PCR (qPCR).  

 Passage 1 MEFs were plated at 1 x 10
6 

cells/100 mm culture plate for 24 hr.  Total 

RNA isolated from passage 1 MEFs was isolated using Qiagen RNeasy kits.  After 

DNAse I (Invitrogen) treatment, cDNA was synthesized from 1 μg of total RNA using 

the Invitrogen SuperScript III ReverseTranscriptase kit in a total volume of 20 μl with 

the supplied Olige-dT or random-hexamer primers.  qPCR reactions were performed 

in triplicate on 1 ng or 10 ng of cDNA by using the SYBR power green RT-PCR 

Master kit (PerkinElmer Applied Biosystems; 40 cycles at 95°C for 10 s and at 60°C 

for 1 min), and real-time detection was performed on an ABI PRISM 7300 (Applied 

Biosystems) and analyzed with the Geneamp 5700 sds program (PerkinElmer/Applied 

Biosystems).  The specificity of the PCR amplification procedures was checked with a 

heat-dissociation step (from 60°C to 95°C) at the end of the run and by agarose gel 

electrophoresis.  Results were standardized to -actin expression levels. The PCR 

primers are listed in Table 3.1. 

 

Construction of Mcm2,3,4 and Mcm3 mutants.  

 Mouse Mcm2, 3, 4 DNA fragment were amplified from the cDNA library which 

generated from a C3HfeB strain mouse. Chaos3 Mcm4 DNA fragment were amplified 

from Chaos3 mouse. Those DNA were clone into pCDNA4-TO-His-Myc express 

plasmid for transient transfection, and pFUW vectors for Lentiviral infection. Mcm3 

mutants were generated by site-directed mutagenesis with the QuikChange kit 

(Stratagene) according to the manufacturer’s instructions  Total sequences were 



 

87 

 

confirmed after finishing the mutagenesis. The primers used in plasmid construction 

are listed in Table 3.1.   

 

Expression of Mcms in primary MEFs using Lentiviral Vectors 

 Doxycycline inducible lentiviral vectors [56] were prepared by co-transecting viral 

packaging plasmids psPAX2 and and pMD2.G along with vectors encoding rtTA, 

LacZ, Mcm2, Mcm3, Mcm4, or Mcm3 mutant into 293T cells using TransIT-Lt1 

transfection reagent (Mirus). Viral supernatants were collected at 48 and 72 hours, and 

concentrated using a 30kd NMWL centrifugal concentrator.  MEFs from 14.5d 

embryos, up to P3, were seeded to gelatin coated tissue plates at a density of 6.75x10
3 

cells/cm
2
 and allowed to attach in standard MEF media for 24 hours before infection 

with lentiviral vectors.  After 24 hours incubation the culture media was changed to 

normal medium with 2 µg/mL doxycycline (Sigma). Cells were cultured for an 

additional 5 days in the induction media and then analyzed by flow cytometry.   

 

For flow cytometric quantification of virus infected MEFs; ~1 x 10
6
 cells were 

trypsinized for 10 minutes, then washed twice with cold PBS.  They were gently but 

completely resuspended in 1ml of 4% paraformaldehyde in PBS at room temperature 

for 30 minutes.  The fixed cells were pelleted by centrifugation at 500 x G for 2 

minutes and washed twice with 10 ml TBS-TX (0.1% Triton X-100) buffer.  For 

antibody staining, the cells were blocked with 1ml TBS-TX buffer with 1% BSA for 

15 min at room temperature, then stained with anti-Myc antibodies for 60 min, washed 

twice, then secondary antibody goat anti-mouse IgG-FITC (South Biotech) with 

Hoechst 33258 DNA dye was applied for 60 minutes.  Immunolabeled cells were 

analyzed by flow cytometry using a 488nm laser.  Cells were considered to be virus 

infected cells if they were FITC positive. Only FITC positive cells were future 

estimated cell cycle prolifiles which were determined by Hoechst 33258 staining. 

Calibration of the flow cytometer and gates were set using uninfected MEFs as 

negative controls. 
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Table 3.1. Primers used in this chapter. 
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CHAPTER IV 

ANDROGEN PROTECTS MALE ANIMALS FROM MCMS INSUFFICIENCY 
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Abstract 

 

The MCM2-7 proteins form the DNA replicative helicase and are essential for 

viability. In previous work, we generated Mcm hypomorphic mouse models using 

gene disruption alleles. Animals with a 50% reduction of Mcms mRNA levels are 

grossly normal and do not show any early stage abnormality. However, further 

reduction of Mcms mRNA levels to 30% by introducing the Mcm4
Chaos3

 allele into 

these mice causes embryo lethality, growth retardation, and increased cancer incidence. 

These detrimental phenotypes are due to insufficient pre-replication complex 

formation and result in a slowed cell cycle.  

 

From the genetic analyses, we observed a unique phenotype in Mcm4
Chaos3/Chaos3

 

& Mcms gene trap mice that only have 30% of WT Mcms mRNA levels. Females had 

higher embryonic and postnatal lethality than males, indicating the males are less 

susceptible to MCMs insufficiency  Furthermore, XX males bearing the “male 

determinant” Sry gene had increased viability, suggesting that androgen protects 

animals from MCMs insufficiency. Testosterone injection into pregnant females 

significantly rescued the viability of their daughters. Finally, we have shown that 

testosterone can up-regulate Mcm2, 3, 5, 6, and 7 mRNA expression. Our results 

reveal a novel relationship between Mcms and androgens, which can influence the 

animals’ phenotype when MCMs are insufficient. 
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Introduction 

 

During the late M and early G1 phase of the cell cycle, the DNA origins of 

replication are bound by origin recognition complex (ORC1-6) [1, 2]. The binding of 

ORC1-6 in DNA is competent to recruit CDC6 and CDT1, which are required for the 

loading of MCMs complex [3]. As the cell enters S phase, the cyclin-dependent 

kinases (CDKs) and the Dbf4-dependent kinase (DDK) CDC7 activate the MCMs 

complex, therefore, the DNA can unwind and begin to replicate [2, 4]. Based on their 

function in DNA replication, Mcms are predicted to be highly transcribed in actively 

dividing cells. However, only E2F family is experimentally proved to regulate Mcm5, 

6, 7 which have E2F binding sites located on the promoter regions [5]. Although 

Mcm7 was predicted to be up-regulated by E2F, which activate G1/S phase genes, 

evidence for increased transcription of Mcm7 was shown in G2/M phase, suggesting 

that E2F is not the only regulating factor [6].  

Sex steroid hormones, including estradiol, progesterone, and testosterone, play 

a very important role in many physiological processes by regulating cell proliferation 

[7-9]. The regulation of Mcms by steroid hormones remains unclear. The Mcms 

expression pattern from microarray analysis after hormone treatments showed that 

estradiol and testosterone up-regulate all Mcms, and progesterone has opposite effect 

[10-12]. The detailed mechanism that how steroid hormones regulate Mcms and the 

physiological relevance need to be future addressed.  

In Chapter II, the results showed that 70% reductions of the Mcms mRNA 

cause elevated embryonic and neonatal lethality. Further analyses of the survival rate 

reported in this chapter indicate that the females are more susceptible to MCMs 

reduction. This gender bias correlates with embryonic lethality after 9.5 dpc. Mouse 

embryonic sexual development also occurs after 9.5 dpc, suggesting that the gender 

bias lethality relates to sexual differentiation. In early embryogenesis, the mammalian 

Y chromosome acts as a dominant male determinant due to the action of a single gene, 

Sry [13, 14]. The activation of Sry drives the production of testosterone to initiate 

testis rather than ovarian development from the early bipotential gonads [15], then it 

triggers the differentiation of Sertoli cells from supporting cell precursors, which 
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would otherwise become granulosa cells [16]. Sex determination and the activation of 

Sry occurs between 9.5 and 12.5 dpc, paralleling the gender bias lethality phenotype in 

Mcms deficient mice.  

Based on the difference of embryonic lethality between genders, I 

hypothesized that Sry expression, and elevated testosterone that comes with maleness, 

is responsible for the protection of MCM-depleted animals. In this chapter, I describe 

genetic evidence that embryonic and neonatal lethality in Mcms deficient animals 

exhibit a female preference and that hormones are specifically responsible.  

 

Results 

 

Female newborn mice are more susceptible to Mcms insufficiency than males. 

 The genetic interaction results from chapter II showed that 70% reduction of 

the Mcms mRNA level caused a high incidence of embryonic or neonatal lethality. 

Interestingly, males and females were affected differentially. (Fig. 4.1A); the numbers 

of viable female newborns with the MCM-depleted genotype were significantly lower 

than males of the same mutant genotype. There was no gender bias in animals of non-

lethal genotypes   For example, the ratio of females vs males (“F/M ratio”) in 

Mcm4
Chaos3/Chaos3

 and Mcm4
Chaos3/Chaos3

 Mcm3
GT/+

 are 100.7% and 90.3% (Fig. 4.1A).  

In the Mcms deficient animals such as Mcm4
Chaos3/Chaos3

 Mcm2
GT/+

, Mcm4
Chaos3/GT

, 

Mcm4
Chaos3/Chaos3

 Mcm6
GT/+

, and Mcm4
Chaos3/Chaos3

 Mcm7
GT/+

, the F/M ratio are 32.1%, 

0%, 16%, and 47.89%, respectively (Fig. 4.1A). Heterozygosity of Mcm3 rescued this 

bias in the Mcm4
Chaos3/GT

 and Mcm4
Chaos3/Chaos3

 Mcm6
GT/+

 animals. 
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Figure 4.1.  Female newborn mice are more susceptible to MCMs insufficiency 

than males.   (A) Graphed are F/M ratios of different genotypes. Viable newborn 

mice from different crosses were genotyped by Mcms and Sry PCR. “Chaos3” in the X 

axis represents Mcm4
Chaos3/Chaos3

 . M”s” represents Mcm”s”
GT/+.

 (B) Neonatal lethality 

occurs in Mcm4
Chaos3/Chaos3

 Mcm7
Gt/+  

 animals, and it occurs earlier in females than in 

males.  
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The F/M ratios in the Mcm4
Chaos3/Chaos3

 Mcm3
GT/+

 and Mcm4
Chaos3/Chaos3

 Mcm3/6
GT/+

 

are 76% and 80%. However, the reduction of MCM3 does not rescue this bias in the 

Mcm4
Chaos3/Chaos3

 Mcm2
GT/+

 animals, because the F/M ratio in Mcm4
Chaos3/Chaos3

 

Mcm2/3
GT/+

 is 29.6% which similar to 32.1% in the Mcm4
Chaos3/Chaos3

 Mcm2
GT/+

 

animals (Fig. 4.1A). The gender bias also appears in neonatal lethal phenotype in the 

Mcm4
Chaos3/Chaos3

 Mcm7
GT/+

 animals. The life span for male pups is significantly longer 

than female pups (Fig. 4.1B) 

 

Gender bias occurs coincident with the appearance of the embryonic lethal 

phenotype 

    To further characterize this phenomenon, several timed mating experiments 

conducted to identify when females loss occurs in Mcm4
Chaos3/Chaos3

 Mcm2
GT/+

 

embryos. Viable 9.5dpc, 12.5dpc, 14.5dpc embryos and newborn pups were 

genotyped by Mcms and Sry PCR. The F/M ratios were 100%, 73.1%, 50%, and 

32.1%, respectively (Fig. 4.2A). Therefore, the gender bias starts between 9.5 dpc to 

12.5 dpc. We also observed that the embryonic lethal phenotype starts as early as 

between 9.5 dpc to 12.5 dpc (Fig. 4.2B). The simultaneous occurrences of two 

phenotypes suggest that the gender bias is due to the female embryos undergoing 

death. 

 

Sry expression or Testosterone administration rescues Mcms-insufficient 

embryos from lethality  

The time mating experiment shows that the gender bias starts from 9.5dpc to 

12.5dpc when sex determination occurs. Therefore, gender bias may be due to the 

activation of sex determination events. In early embryogenesis, the mammalian Y 

chromosome acts as a dominant male determinant due to the action of a single gene, 

Sry. Because only males have a Y chromosome, Sry is only expressed in males. Based 

on the fact that male embryos tolerate Mcms-insufficiency better than females, the 

activation of Sry was speculated to protect embryos. Therefore, an Sry transgene was 

introduced into Mcm4
Chaos3/Chaos3

, Mcm2
Gt/+

 and Mcm4
Chaos3/Chaos3

 Mcm2/3
GT/+

mice  
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Figure 4.2.   Gender bias correlates with embryonic lethality.  (A) Viable embryos 

were genotyped by PCR and the gender was determined by Sry gene.  Gender bias 

occurs between 9.5 dpc to 12.5 dpc.  “Chaos3” in the X axis represents 

Mcm4
Chaos3/Chaos3

 . M”s” represents Mcm”s” 
GT/+.

 (B) Viable embryos were genotyped 

by PCR.  Embryonic lethality occurs between 9.5 dpc to 12.5 dpc.   
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and sex ratios of offspring were measured. The results show that, in the groups of Sry 

transgene animals, the viable F/M ratios increased in both Mcm4
Chaos3/Chaos3

 Mcm2
GT/+

 

and Mcm4
Chaos3/Chaos3

 Mcm2/3
GT

 animals while compared to non-Sry transgene animals 

(Fig 4.3), demonstrating a protective effect of Sry.   

 

The expression of Sry is critical for appropriate male genital development during 

the 9.5 dpc to 12.5 dpc time period. By coordinating with Sox9, Sry initiates testis 

development from early bipotential gonads [15], then it triggers the differentiation of 

Sertoli cells from supporting cell precursors. Sry also activates the downstream genes 

responsible for testosterone production. Therefore, the protective effect against Mcms-

insufficiency may be due to testosterone. To test this, 7.5-14.5 dpc embryos were 

supplied with extra testosterone by injecting testosterone propionate into the pregnant 

mothers (MCM4
Chaos3/Chaos3

 MCM2/3
GT/+

♂ vs MCM4
Chaos3/Chaos3

♀). Newborn 

offsprings were genotyped for Mcms and Sry. The survival rates of female embryos 

(both MCM4
Chaos3/Chaos3

 MCM2/3
GT/+

and MCM4
Chaos3/Chaos3

MCM2
GT/+

) treated with 

testosterone were significantly increased compared to the untreated embryos (Fig 4.3). 

These results demonstrate the protective effect of testosterone in aminals from Mcms-

insufficiency.  

  

Testosterone protects Mcms insufficient embryos by up-regulating Mcms mRNA 

levels 

 Given the fact that testosterone can protect male embryos from Mcms-

insufficiency, one explanation is that androgen produced in the embryonic gonad after 

9.5 dpc diffuses to other tissues. These trace amounts of androgen may directly 

stimulate Mcm expression to maintain in levels higher than female embryos. To test 

this hypothesis, the mRNA level of all six Mcms were measured in male and female 

MEFs that were generated from the following genotypes: Mcm4
Chaos3/Chaos3

, 

Mcm4
Chaos3/Chaos3

 Mcm3
GT/+

, Mcm4
Chaos3/Chaos3

 Mcm2
GT/+

, and Mcm4
Chaos3/Chaos3

 

Mcm2/3
GT/+

. In the groups of Mcm4
Chaos3/Chaos3

 and Mcm4
Chaos3/Chaos3

 Mcm3
GT/+

 MEFs  
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Figure 4.3.  Sry transgene and testosterone rescues lethality in female mice.  

Viable newborns were genotyped by PCR and the gender was determined by Sry 

genotyping.   Unless otherwise indicated, the values represent expected proportions of 

indicated genotypes that were present by birth. Both Sry transgene and testosterone 

treatment restore the viability. “Chaos3” in the X axis represents Mcm4
Chaos3/Chaos3

 . 

M”s” represents Mcm”s” 
GT/+

. Asterisk indicates P< 0.05 (Fisher exact test).  
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which do not have gender bias phenotype, the Mcm2-7 mRNA levels were equal 

between sexes (Fig. 4.4A). However, in the groups of Mcm4
Chaos3/Chaos3

 Mcm3
GT/+

 and 

Mcm4
Chaos3/Chaos3

 Mcm2/3
GT/+

 MEFs which show gender bias, the mRNA levels in 

females were 60% ~ 70% of that in males (Fig. 4.4A). To test if testosterone alone is 

responsible for this difference in Mcm mRNAs, I treated both Mcm4
+/+ 

and 

Mcm4
Chaos3/Chaos3 

immortalized MEFs with testosterone and measured mRNA level of 

Mcms. Mcm3, 6 and 7 mRNA were increased after 8 hours treatment (Fig. 4.4B), and 

Mcm2, 3, 5, 6, and 7 are up regulated after 24 hours treatment (Fig. 4.4B). The results 

show that testosterone stimulates Mcms mRNA levels, and this is the basis for 

protection of males against Mcms insufficiency. 
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Figure 4.4.  Testosterone up-regulate Mcm2, 3, 5, 6, 7 mRNA expressions.   (A) 

Mcm2-7 mRNAs are reduced in Mcm4
Chaos3/Chaos3

 Mcm2
+/-

 and Mcm4
Chaos3/Chaos3

 

Mcm2/3
+/-

 female MEF cells.  qRT-PCR analysis of Mcm mRNAs, control genes, and 

in the MEFs.  Relative transcript levels were normalized to -actin.  Charted are the 

percent levels of the indicated RNAs in mutant compared to male MEFs (considered 
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to be 100%).  At least 5 replicate cultures were analyzed for each genotype.  Error bars 

are SEM.   (B) mRNA expression levels of  Mcm2, 3, 5, 6, 7 after 10nM testosterone 

treatment were quantified by Real-time PCR.  Results showed up-regulation of Mcm3, 

6, 7 after 8hr treatment, and Mcm2, 3, 5, 6, 7 after 24 hr treatment.  
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Discussion 

  

Estradiol and progesterone modulate many physiological mechanisms 

predominantly in female animals [17, 18], whereas testosterone primarily plays a key 

role in the development of male reproductive tissues [19-21]. In general, steroid 

hormones promote cell proliferation and growth of those tissues with receptors. 

Therefore, steroid hormones have been proposed to be involved in regulating Mcms 

gene transcription or protein function [11, 22]. Mcms-insufficient mice exhibit many 

detrimental phenotypes, including early stage lethality, development retardation, 

genomic instability, and cancer formation [23]. The lethality phenotype occurs as early 

as 9.5 dpc, whereas cancer formation takes place after one-year of age. Interestingly, 

lethality phenotypes occur in a gender-dependent manner that is an unexpected finding. 

Given the fact that the gender bias was observed as early as 9.5 dpc when testosterone 

is the only steroid hormones begins produced, we speculate that testosterone protects 

embryo from Mcms insufficiency through an unknown mechanism. 

 

There are at least two possibilities that can be addressed and the first was shown 

in this chapter. (1) The results from microarray analyses of testosterone-treatment cells 

show that testosterone can up-regulate almost all  Mcms [24, 25]. Consistent with 

these results, mRNA levels of Mcm2, 3, 5, 6, and 7 in MEFs increased after 

testosterone treatment. This activation probably depends on the increased expression 

of E2F genes or a decreased in RB protein. (2) In Mcms-insufficient mice, stem cell 

deficiency has been report [23, 26-28]. One major consequence of stem cell deficiency 

is to hinder development of the embryo. However, the capacity of androgens to 

stimulate increased differentiation of mouse ES cells to cardiomyocytes has been 

demonstrated and it can take place as early as 5.5 dpc [29]. It is reasonable to 

speculate that testosterone might protect embryos from Mcms insufficiency via 

boosting stem cell activity.  

 

 

http://en.wikipedia.org/wiki/Androgen_receptors
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Materials and Methods 

 

MEF culture 

 MEFs from 12.5- to 14.5-dpc embryos were cultured in DMEM + 10% FBS, 2 

mM GlutaMAX, and penicillin-streptomycin (100 units/ml).  Assays were conducted 

on cells at early passages (up to P3).   

 

Testosterone propionate (TP) injection in mouse and treatment in MEFs 

 To treat embryos, testosterone propionate (TP) (20ug/g/day in Corn oil) were 

subcutaneously injected (hind leg) into pregnant females, from days 7.5-14.5 post 

coitus. To treat MEFs, testosterone propionate was added into culture media in final 

concentration of 10 nM.  

 

Validation of genotype in mouse lines 

 Genotyping of gene-trap-bearing mice or gender was performed either by PCR 

amplification of the neomycin resistance gene within the vector, or by using insertion-

specific assays (Table 3.1). Primer SryT-F: 5’ CTCAGTGTGGAATTCATCTGC 3’ 

and SryT-R: 5’ GAGGGCATGGTCAGTTGAAC 3’ were used for Sry transgene 

genotyping. 

 

Quantitative RT-PCR (qPCR).  

 Total RNA from P1 MEFs was DNAse I treated, then cDNA was synthesized from 

1 μg of total RNA using the Invitrogen SuperScript III ReverseTranscriptase kit with 

the supplied Olige-dT or random-hexamer primers.  qPCR reactions were performed 

in triplicate on 1 ng or 10 ng of cDNA by using the SYBR power green RT-PCR 

Master kit (Applied Biosystems; 40 cycles at 95°C for 10 s and at 60°C for 1 min), 

and real-time detection was performed on an ABI PRISM 7300 and analyzed with 

Geneamp 5700 software. The specificity of the PCR amplification procedures was 

checked with a heat-dissociation step (from 60°C to 95°C) at the end of the run and by 
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gel electrophoresis.  Results were standardized to β-actin.  The PCR primers are listed 

in Table 3.1. 
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CHAPTER V 

DISCUSSION AND FUTURE DIRECTIONS 
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1. Summary of findings 

My thesis projects dealt with the organismal effects of MCM protein family 

deficiency, and the underlying mechanisms regulating MCM levels. I conducted these 

studies using several lines of mice containing gene trap disruption alleles of Mcm 

genes, a hypomorphic ENU-induced allele called Chaos3, and combinations of these 

mutations produced by breeding. My general conclusion was that whereas a 50% 

decrease in Mcm mRNA levels was well tolerated, >50% reduction resulted in 

multiple phenotypes including embryonic lethality, grow retardation, anemia, genomic 

instability, and increasing cancer formation (Fig. 5.1). Interestingly, the outcomes of 

individual MCMs reduction were quite different. Insufficient MCM2 caused 

significant embryonic lethality (70%) and early onset cancer formation in almost 

100% of surviving animals. Insufficient MCM4 and MCM6 caused more than 80% 

embryonic lethality, though it was below 50% for insufficient MCM7. However, the 

surviving MCM7 deficient animals show the most severe growth retardation, anemia, 

and genomic instability phenotypes among all of the MCM deficient mice. My 

experiments also revealed a very unique function of MCM3. The reduction of MCM3 

rescued almost all the detrimental phenotypes caused by insufficiency of MCM2, 4, 6, 

but not 7. The rescue function of MCM3 involves the re-distribution of soluble and 

chromatin bound forms of MCMs. 

 

In Chapter III, the biochemical effect of Chaos3 breast cancer susceptibility 

mutation in MCM4 was identified (Fig. 5.1). This mutation dramatically disrupts the 

interaction between MCM4 & 6 and causes instability of the MCM2-7 complex. 

Moreover, all of Mcm mRNAs are down-regulated posttranscriptionally in response to 

MCM2-7 complex instability, and this regulation is likely mediated via the miRNA 

pathway.  One consequence of Mcm mRNA down-regulation is to decrease MCM3-

MCM5 protein levels, and resulting reduction of MCM3:5 interaction complex which 

can block the MCM2-7 complex from binding to chromatin.  My in vivo studies 

characterizing the MCM3-MCM5 interaction, which has negative regulatory effects 

on the MCM2-7 helicase, are the first ever conducted on animal models and 
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Figure 5.1 Thesis projects Summary.  In chapter II, I report that genetically-induced 

reductions of MCM levels in mice caused several health-related defects including 

increased embryonic lethality, GIN, cancer susceptibility, growth retardation, 

defective cell proliferation, stem cell failure, and hematopoiesis defects.  Remarkably, 

genetic reduction of MCM3 rescued many of these defects, presumably attributable to 

observed increases in chromatin-bound MCM levels.  This chapter suggests that 

relatively minor misregulation or destabilization of MCM homeostasis can have 

serious consequences for health, viability and cancer susceptibility of animals. In 

chapter III, I identify the MCM3/5 interaction as negative regulator, which blocks the 

assembly of MCMs onto chromatin in vivo. Therefore, MCM3 reduction benefits the 

MCM deficient cells and animals from detrimental phenotypes or disease.  In chapter 

III, I descripted how androgen protects male embryos from MCM insufficiency by up 

regulating Mcm mRNA levels.  
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underscore the physiological intracacies of regulating DNA replication (Fig. 5.1).   

 

In Chapter IV, a unique gender bias phenotype was described for MCM 

deficient mice.  I found that male embryos and animals are more resistant to MCMs 

insufficiency   Furthermore, “Male determinant” Sry gene and testosterone rescue the 

high lethality in female MCM deficient embryos. We also proved that testosterone up-

regulates Mcms mRNA level. Based on the observation that female MCM deficient 

embryos have lower Mcms mRNA levels, I conclude that testosterone protects male 

MCM deficient embryos by maintaining the higher transcription of Mcms than in 

females (Fig. 5.1). 

 

2. The function of excess MCMs 

In Xenopus egg extracts, each preRC (pre-replication complex) contains 

approximately 20–50 MCM hexamers that attract only 1–2 Cdc45 molecules during 

initiation of replication. Also in mammalian somatic cells, for each origin of 

replication there are 4–5 total MCM hexamers on average, and only two Cdc45 

recurred in ~15 origins. It is clear that Cdc45 is the rate-liming factor and MCMs are 

in excess [1]. The function of excess MCMs was unclear and known as “MCM 

paradox”   In both Xenopus egg and cultured cells, these excess MCMs were found to 

be “dormant helicases” that are activated under stress conditions [2, 3]. Insufficient 

levels of dormant helicases fail to respond to spontaneous replication fork stalling and 

resulting DNA breaks. In this thesis, I initially used a mouse model to study the 

response to MCMs insufficiency. Consistent with previous studies, I observed the 

induction of genomic instability and the pathogenic outcome. One of my interesting 

findings is that MCMs insufficiency induces cell cycle G2/M arrest instead of S phase, 

suggesting S phase ATM/ATR dependent checkpoint is not responsible for repair 

caused by dormant helicase insufficiency. This concurs with the observation that 

ATM/ATR functional deficient mouse is not synthetic with Chaos3 mutation (CH 

Chaung, M Wallace, et al. data not show). Furthermore, Kawabata et al showed that 

the Chaos3 mutation causes stalled forks in the absence of replication stress, and a 
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fraction of these persist into M phase. The majority of these stalled forks are resolved 

by the Fanconi anemia pathway [4]. This may explain why Mcm4
Chaos3

 cells arrested 

at the G2/M phase. 

 

My finding of the post-transcriptional Mcm pan-down regulation in response to 

helicase complex instability raises several interesting questions. First, it is not clear 

how cells sense the instability of the helicase complexes. The sensors might belong to 

DNA checkpoint mechanism because the instability of helicase complex causes DNA 

damage. Therefore, it would be interesting to use RNAi to knock-down different DNA 

checkpoint pathways and monitor which knock-down could attenuate the Mcms pan-

down regulation. Another unsolved question is which miRNA or small RNA performs 

the function to decrease Mcms mRNA levels. RNA sequencing might answer this 

question. 

 

3. The real core helicase  

Biochemical fractionation of cell extracts has yielded a variety of MCMs sub-

complexes, such as dimer, trimer, and tetramer [5-18], and as well as the intact MCMs 

hexamer containing all six subunits [6-8, 10, 12, 13, 15, 17]. Interestingly, during most 

purification methods, MCM4, MCM6, and MCM7 subunits were most tightly bound 

together to form a trimeric complex called the MCM core. MCM4/6/7 core will 

dimerize itself to form a double-trimer (MCM4/6/7)2. In vitro result show that MCM3 

and MCM5 dimerize together and bind to the MCM4/6/7 core, probably through 

MCM7. MCM3/5 blocks the formation of (MCM4/6/7)2 and inhibits the (MCM4/6/7)2 

helicase activity. Interestingly, (MCM4/6/7)2 retains several activities required of the 

DNA replicative helicase, such as DNA binding, ATP hydrolysis, and DNA 

unwinding. Additionally, (MCM4/6/7)2 can bind and unwind circular DNA, 

suggesting its ability to clamp genomic DNA which does not have open end [11]. 

(MCM4/6/7)2 via MCM7 can also bind CDC45 which links it to DNA polymerase. In 

vitro systems shows that of all the sub-complexes isolated, only (MCM4/6/7)2 has 

helicase activity [9, 19]. However, in normal cell physiological situation, all of MCM 
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sub-complex or MCM2-7 should not have helicase activity unless bound to DNA and 

other preRC molecules such as CDC45. The uncertain functions of MCM sub-

complex leads to the dilemma known as “MCM puzzle” [20] and has not been solved.  

 

In Xenopus egg extracts and yeast cells, the major complex is a MCM2-7 

hetero-hexamer, suggesting they employ MCM2-7 to be the DNA helicase. In contrast, 

in mammalian cells, the MCM3/5 dimer and MCM4/6/7 double trimer are the most 

abundant complexes [14, 21, 22]. Besides, in vitro data showed that (MCM4/6/7)2 can 

bind and unwind DNA without ORC protein [9, 11], raising the question whether 

(MCM4/6/7)2 substitutes for MCM2-7 as the functional helicase after S phase. In this 

thesis, we proved that MCM3 is a negative factor for MCMs loading into chromatin. 

Furthermore, MCM3/5 dimers block other MCMs from binding to chromatin, and the 

blocking activity is MCM3/5 interaction dependent. These discoveries are the first in 

vivo evidence to support in vitro results. Taken together, we propose that mammalian 

cells utilize the (MCM4/6/7)2 as the replicative helicase and the MCM3/5 dimers are 

able to negatively regulate DNA replication. This assumption does not negate the 

existence and the function of MCM2-7 hetero-hexamer. The two forms of helicase 

might be employed on different occasions and/or MCM3:5 functions as the switch.  

To further understand the function of MCM3/5 dimer, it would be interesting to 

generate MCM5 gene trap animals again to answer whether MCM5 is also a negative 

factor similar to MCM3. We can also purify the active DNA replication folk (as know 

as “iPOND technique” [23]) and analyze the stoichiometry of MCM components with 

different MCM3:5 levels. Another approach to distinguish the function of each MCM 

could be through the use of inducibly degraded MCM proteins. This way we could 

examine different MCMs role by inducing a single MCMs to degrade at different cell 

cycle stages. 
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