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Pulmonary emphysema is an irreversible disease of the lungs characterized by the
destruction of the alveolar air sacs. Given the nature of the disease, it becomes
important to be able to accurately quantify disease state in order to track progres-
sion. The advent of computed tomography has allowed for quantification of the
anatomical basis of the disease, and multiple densitometric measures have been
proposed for the quantification of emphysema from CT. However, two primary
issues are common to density-based image scores of emphysema and remain unre-
solved: measure variability and poor correlation to pulmonary function test (PFT)
scores.

In this body of research, four primary measures have been implemented: the
emphysema index, the fractal dimension, the n-th percentile of the histogram, and
the mean lung density. While all have been proposed as measures of emphysema
from CT, limited work has been done to analyze these measures for their validity
in measuring emphysema progression, due to the variability inherent in these mea-
sures, due to inspiration variation and inconsistent scan acquisition parameters.
In order to reduce this inter-scan variability, an inspiration-compensation method
for reducing inter-scan measure variation based on multivariate modeling of the
relationship between inspiration and metric change was developed and evaluated.
Application of this system on a short time-interval longitudinal dataset was able

to improved metric repeatability, with up to 45% reduction in metric variation



depending on measure. This shows that inspiration compensation is possible and
should be applied to future longitudinal studies of emphysema.

In addition to metric variation, density-based image scores of emphysema are
known to poorly correlate (r<<0.5) with pulmonary function test scores, the gold
standard in clinical assessment of emphysema by pulmonologists. This is particu-
larly true with regards to relatively asymptomatic patients. To address this issue,
a geometry-based, diaphragm curvature assessment of emphysema severity was
implemented to take advantage of an associated symptom of emphysema: hyper-
inflation. The diaphragm curvature measure correlated with pulmonary function
tests (r=0.24) and gas-diffusion measures (r=0.57). In addition, the geometry score
did not correlate with emphysema index or fractal dimension (r</0.1), indicating
that the new score provides information on disease state distinct from what is
given by the densitometric measures. Multivariate modeling incorporating various
image scores of COPD severity to predict pulmonary function test scores managed
to further improve these findings, with a final correlation of r=0.54 between spiro-
metric PFT scores and image-derived predicted values for non-severe stage COPD

patients, who are often asymptomatic, and thus of relevant clinical interest.
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CHAPTER 1
INTRODUCTION: COPD, EMPHYSEMA AND MEDICAL
IMAGING

The respiratory system allows for gas exchange between the human body and
the outside world. The lungs form the primary component of the respiratory
system, so good lung health is generally regarded as an important aspect to ensure
high quality of life [1]. It has been long known that tobacco smoke and other
pollutants are damaging to lung tissue, with the first examples and descriptions of
emphysema being annotated in the early 18th century by the physician Ruysh [2].
A major disease-class of the lungs, chronic obstructive pulmonary disease, is a
chronic condition in which airflow to and from the lungs becomes increasingly
obstructed and reduced [3]. Of the components of COPD, emphysema is considered
irreversible 4], due to emphysema being the break down of lung tissue, which is

believed to be a non-regenerative tissue.

According to the National Institutes of Health’s National Heart Lung and Blood
Institute (NHLBI), 11.2 million U.S. adults were estimated to have COPD |3, 5].
The presence of COPD reduces overall quality of life and is noted for being the
4th leading cause of death in the U.S. [6]. Furthermore, the economic burden
associated with COPD is considered to be quite substantial [7] with an estimated
total (direct plus indirect) annual cost of COPD to the U.S. economy in terms of
health care costs and lost productivity approaching $38.8 billion in 2005 dollars
according to NHLBI [8]. Given that emphysema, being a destructive process of
the lung parenchyma, is considered irreversible, it becomes important to develop
ways of monitoring disease progression, in order to determine if treatments are

working to reduce rate of progression. Classically, progression of emphysema has



been monitored by pulmonary function tests through spirometry [9]. However,
spirometry is known to be limited, as it can only give a global overview of patient
health and respiratory strength, and is unable to asses the health of the lung tissue

directly [10].

In contrast to lung function testing and spirometry, the introduction of high-
resolution, multi-row detector computed tomography (CT) has allowed radiologists
to view the anatomical basis of emphysema from CT scans [11]. Given that em-
physema is defined as the destruction and breakdown of the alveolar air sacs in
the lung, emphysematous regions are visually described as being regions of lung
parenchyma that are of a significantly low density. This allows for a qualitative
scoring of the extent to which an individual has emphysema present in the lungs
by radiologists [12]. Computer-based scoring systems have been developed that
extend this concept to allow for quantitative evaluation of emphysema from CT
scans, with the majority of methods focusing on the use of density information
as the primary index [13-21]. In light of these facts, one of the major research
goals undertaken by the author was to develop a series of experiments to bet-
ter understand and evaluate the measures proposed for emphysema quantification
from whole-lung, low dose CT scans in the context of a computer aided diagnosis
schema. This would in turn increase the understanding of the usefulness and lim-
itations of quantitative measures of emphysema when it comes to the evaluation
of disease progression and develop recommendations for the use quantitative mea-
sures for the purposes of disease state evaluation. This work also seeks to propose,
develop, implement, and evaluate new measures for emphysema quantification and

propose and evaluate improvements to already existing measures.

Emphysema is clinically defined as the destruction and breakdown of the alve-



olar air sacs in the lung into large, coalescing pockets of anatomically dead-air
space, emphysematous regions are visually described in CT images as being re-
gions of lung parenchyma that are of a significantly low density. This allows for
a qualitative scoring of the extent to which an individual has emphysema present
in the lungs by radiologists. As CT systems are calibrated systems with regards
to density, computer-based scoring systems have been developed that extend this
concept to allow for quantitative evaluation of emphysema from CT scans, with
the majority of methods evaluated focusing on the use of density information as
the primary index, either through relative area or distribution of region sizes. Thus
to understand computer-aided diagnosis of pulmonary emphysema, it is important
to understand both the pathophysiology of COPD, and in particular emphysema,
as well as the ability of CT technology to allow for the quantification of the effects

of this disease on the lungs themselves.

1.1 Chronic Obstructive Pulmonary Disease (COPD)

Chronic obstructive pulmonary disease is a group of diseases of the respiratory sys-
tem that are characterized by chronic inflammation of the airways, lung parenchyma
(lung tissue) and vascular structure and is associated with obstructed, and thus
reduced, airflow [3,5]. This in turn leads to an overall reduction in airflow, dur-
ing both inspiration and especially expiration, associated dyspnea (shortness of

breath), and is marked by some degree of permanence.

Although there are multiple conditions that are classified as COPD, their are
two major diseases that are the primary contributors to COPD, chronic bronchitis
and emphysema |7,22|. Chronic bronchitis is inflammation of the airway tree that

leads to a narrowing of the airway lumen, and thus restriction of overall airflow.



Figure 1.1: Diagrammatic Representation of Chronic Bronchitis and Emphysema
(COPD) versus Healthy Tissue. Note the constricted airways (chronic bronchitis)
and large alveolar air sacs (emphysema) in the COPD case versus the healthy case.
Image Source: US National Heart Lung and Blood Institute

Emphysema is a disease of the lung parenchyma that is marked by the breakdown
of the alveolar air walls, leading to coalescing of the alveoli and reducing the surface
area available for gas exchange [23]. An illustration of the two conditions versus a
healthy case can be seen in figure 1.1. As airway constriction is considered to be
reversible through the use of interventional therapies such as bronchodilators [24],
while the destruction of the alveolar air-sacs that defines emphysema is considered
permanent as lung tissue is not known to regenerate, monitoring the progression
of this disease becomes clinically relevant. Therefore, one of the primary aspects

of this research project is to focus on monitoring and evaluating emphysema.



Figure 1.2: Histological Specimen of Emphysematous Tissue. The right portion
of the image shows an intact alveolar structure, where lung tissue (pink) forms
thin barriers between alveoli allow for gas exchange between air-spaces (white
regions) and blood. In contrast, the left portion of the image illustrates severe
emphysema where there is severely reduced surface area for gas exchange. The
Author: Nephron. Copied under the Creative Commons Attribution-Share Alike
3.0 Unported license.



1.2 Pathophysiology of Emphysema

Emphysema is classically defined as the destruction of the walls of the alveolar air
sacs and the enlargement of the distal air-spaces beyond the terminal bronchioles
[25]. The alveolar air sacs coalesce and merge to form large pockets of air with
relatively less surface area, as was illustrated previously in figure 1.1. Furthermore,
the destruction of the alveoli leads to a reduction of the elasticity in the lung
parenchyma, decreasing lung compliance and leading to hyperinflation [22, 26—
29]. The marked reduction of the elasticity and elastic recoil of the lung tissue
also increases the collapsibility of the now enlarged alveolar air sacs and leads to
constriction of the smaller airways during exhalation [30]. This leads to impeded
expiratory air flow, and thus air trapping, where relatively fresh air cannot replace
the air already present in lungs [31]. Destruction of the alveoli also leads to a
reduced surface area for gas-exchange with the blood. This in turn limits the
overall amount of oxygen that can be absorbed to and carbon dioxide that can be
removed from the blood stream, which in turn leads hypoxaemia (decreased blood
partial pressure of oxygen) and hypercapnia (increased blood partial pressure of
carbon dioxide) [23]. A histological specimen of emphysema can be seen as figure

1.2.

1.3 Clinical Practice in the Measurement of Emphysema

Emphysema, as well as chronic obstructive pulmonary disorder in general, has
been classically diagnosed and evaluated through the use of pulmonary function
tests [32], which give an overview of lung function. Spirometry is the most widely

used lung function test, due to the simplicity and quickness of the test, as well as the
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Figure 1.3: Spirometrically Obtained Diagram of a Flow-volume loop from a
Healthy Subject. Several key values are noted on the figure including FEV1
(Forced Expiratory Volume in 1 second) and FVC (Forced Vital Capacity). Au-
thor: Silverlight, Image copied under: GNU Free Documentation License, Source:
http://en.wikipedia.org/wiki/File:Flow-volume-loop.png



Table 1.1: NIH/WHO GOLD Criterion for Staging COPD Severity. In general,
the FEV1/FVC ratio of a patient is used to establish whether COPD or restrictive
disease is present, and FEV1% is used to gauge disease severity.

| Stage | FEV1/FVC | FEV1% |
Normal - Stage 0 >0.7 >80%
Mild - Stage I <0.7 >80%
Moderate - Stage 1T <0.7 50-79%
Severe - Stage 111 <0.7 30-49%
Very Severe - Stage IV <0.7 <30%

relatively low cost of the test [9,33]. Spirometry specifically measures the volume
and rate of inspiratory and expiratory air flow [34]. Two graphs are commonly
created in spirometry: a volume-time curve which shows volume versus time, and
a flow-volume loop, which graphically depicts the rate of airflow versus total volume
inspired and expired. A sample flow-volume loop can be seen as figure 1.3 with

several key values marked on the graph.

Some of the key values derived from spirometry that indicate lung health and
the presence of COPD and emphysema include forced vital capacity (FVC), forced
expiratory volume in 1 second (FEV1), and the ratio of FEV1 to FVC. Forced
vital capacity is the maximum amount of air that can forcibly be blown out after
maximal inspiration. FEV1 is the volume of air that can be forcibly exhaled
within one second. Finally, FEV1 is also normalized to patient demographics (i.e.
sex, height, weight, race) and is reported as a percentage of expected level for
the given demographics (FEV1%). The ratio of FEV1 to FVC is also used to
normalize the exhalation volume to the total lung volume, as those with greater
lung capacities will inherently be able to expel more air in one second than those
with less lung capacity. In adults, an FEV1/FVC ratio above 0.7 is used to preclude
obstructive disease. This is a useful guideline due to the fact that while FEV1%

is reduced in both cases of obstructive (emphysema, chronic bronchitis, asthma)



and restrictive (pulmonary fibrosis, sarcoidosis) respiratory diseases, restrictive
diseases also reduce the forced vital capacity of the lungs, which can give the
FEV1 to FVC ratio a normal score when viewed independently. When COPD is
determined to be present, the patient-normalized FEV1 is used to gauge severity,
with the different levels as stated by the National Institutes of Health (NIH) and

World Health Organization (W.H.O.) guidelines listed in Table 1.1 [35].

It should be noted that spirometry is wholly dependent on patient effort [36],
and thus limited to those patients who can understand and follow instruction, as
well as only being able to give under-estimates for scores such as FVC and FEV1.
Furthermore, spirometry can only provide a global assessment of lung function and

is unable to fully describe or distinguish emphysema phenotype directly [37].

1.4 Computed Tomography (CT)

As has been stated previously, the presence of emphysema cannot be directly
detected by spirometry and pulmonary function testing due to multiple factors
and diseases contributing to the observed scores. In order to assess the level of
parenchymal damage, and thus the severity of emphysema, directly, a way in which
parenchymal structure can be evaluated directly becomes necessary. Computed to-
mography is a medical imaging modality that produces three-dimensional images
of the object of interest, allowing for viewing of internal structures of said object.
It is commonly used in radiological procedures for chest imaging as it offers several
advantages over standard chest radiography for imaging the lung organs. CT also
has an added advantage for the application of quantitatively assessing emphysema

levels and distribution as radiologists already qualitatively assess emphysema visu-



ally as part of routine reporting, usually on a four point scale of increasing severity

(0-3: normal, mild, moderate, severe) [38-42].

1.4.1 X-Ray Imaging Background

The medical field of radiology started in 1895 with the discovery of X-rays, a high-
energy form of electromagnetic radiation, that are able to pass through human
tissue and were able to be captured on some form of detector, such as film. X-rays
have also referred to historically as Rontgen rays after Wilhelm Conrad Rontgen
who first described their properties in rigorous detail. Tt was soon discovered that
various structures of the human body absorbed the X-rays at different rates, based
primarily on the density of the tissues through which the radiation wave traversed,
a process known as x-ray attenuation. The linear attenuation coefficient for a given

material is related to the density of the material by

N
n = u * Otot (11)

A

where p is the density of the material, N4 is Avogadro’s’s constant, A is the atomic
number of the material, and oy, is the total photo-atomic cross-section for either
scattering or absorption. Effectively, higher density materials will thus have higher
attenuation coefficients and absorb more X-ray radiation relative to materials of a

lower density.

Because it was determined that different density materials would have unique
attenuation rates, Rontgen realized that irradiation of anatomical structures with
an x-ray source would create different attenuation patterns depending on the un-
derlying composition of tissues, and that these patterns were capturable on film.

In this way, images could be created in order to determine the location and struc-
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Figure 1.4: Reproduction of X-ray Image of Mrs. Rontgen’s Hand. This image
is considered one of the earliest x-ray images ever acquired. Note that the bone
structure and metal ring are of significantly darker intensity versus the soft tissues
of the hand and fingers, indicative of their higher material density.
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Figure 1.5: Example of a Chest Radiograph Image. Chest x-ray images are pro-
jection images where regions of high attenuation (i.e. bone structure, abdomen)
are indicated by being relatively bright white and regions of low x-ray attenuation
(i.e. lung parenchyma, soft tissues) are primarily black or dark gray.

ture of different density structures within the body. This discovery lead to the
first radiological image seen, that of a human hand, reproduced in figure 1.4, and

x-ray imaging has thus become a ubiquitous radiological procedure for its ability

to rapidly image anatomical structures.

Due the nature of x-ray imaging, all images acquired using x-ray technology
are two-dimensional projection images, an example of which is given in figure 1.5.
Thus, the detected absorption level is the superposition of the absorption caused
by all objects traversed by the x-ray between source and detector. This causes
x-ray images to have several key limitations. The first is that there are no usable

reference values of image intensity, which can make it difficult to separate air from
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low density tissue using image information Also related is the fact that as the
image intensity seen is due to a superposition of all objects, it becomes difficult
to distinguish whether a higher density object is present, as is the case for bone,
or whether there are multiple objects superimposed. The second limitation of
projection images is that there can be signal starvation, or enough attenuation
(T100% absorption by tissue) that no or little addition x-ray radiation remnant
arrives at the detector versus a slightly less dense region, leading to a loss of detail.
This can be problematic in regions of high density, such as bones or the abdomen,
the latter of which can also be seen in figure 1.5. The final limitation discussed
here is the fact that while emphysema would lead to the appearance of relatively
less dense regions of the lung (darker regions on chest x-ray), diseases such as
fibrosis would lead to an increase in tissue density, which, when superimposed on
the existing emphysema, would likely lead to a “normal” appearing lung, masking
the presence of emphysema and confounding the diagnosis of either disease. Thus
investigating the use of a fully three dimensional imaging modality that avoids

these limitations is desire able.

1.4.2 Computed Tomography: Three-dimensional X-ray Im-
agery

The first clinical scans from a CT, those of the human head and brain, were
acquired and published in 1973 by Hounsfield [43]. These experiments showed that
detailed, internal anatomical structure could be acquired using medical imaging
technology. Since then CT technology has advanced to point where full three-
dimensional images of the body can be acquired in a matter of seconds, making it

an ideal imaging modality for rapid imaging of internal anatomical structures [44].
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Figure 1.6: Example CT TImage Slice. Axial CT image where density is mapped
in to image intensity, thus similar intensity objects are of similar density. In this
example, the range -300 H.U. to 1200 H.U. (1501 values) is mapped to a standard
256 gray-level image (0-255) using a linear transformation (with rounding). Map-
pings such as these are commonly referred to as “windowing”, which is of relevance
for image display. Anatomical data is contained in a circular region in the center
of the image, with the remainder masked out in black. Lung tissue and air are low
density regions in dark gray. High density bone appears white.
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In order to acquire CT images, an x-ray source is used to irradiate a three-
dimensional object to produce a 2D projected image, not unlike standard 2D x-ray
radiograph. To create three-dimensional images, and thus image interior structures
of the human body while avoiding the issues caused by superposition, the x-ray
source is rotated about the the three-dimensional object in a two-dimension plane
and a series of two-dimensional projections, also called a sinogram, for that single
plane is created. These two dimensional projections can then be back-projected to
recreate the source image (in this case, the object being imaged) using the inverse
of the Radon Transform. The source can then be repositioned along the object to
take another series of projections along a new plane, otherwise called a “slice”. This
leads to CT images being a stack of adjacent two-dimensional slices, an example

of which can be seen in figure 1.6.

Computed Tomography has an added advantage that CT image data, recorded
in Hounsfield Units (HU), is calibrated to the physical material density of the
object being images. Objects of specific image intensity have a specific density,
and two objects of the same intensity are thus the same intensity, even across
different scans. The calibration scale used in CT is such that the density of air
and water are set to -1000 HU and 0 HU respectively, and other densities are
mapped to that scale. Thus each pixel value represents a specific density of the
materiel imaged, which is a useful and unique feature of CT not found in other
common modalities such as magnetic resonance imaging or chest x-ray. This fact

is incredibly useful in assessing emphysema as will be discussed in the next section.
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Figure 1.7: Tlustration of Emphysematous vs. Healthy Tissue as Seen in CT.
Sample axial CT region magnified to show both emphysematous and healthy lung
parenchyma. Emphysematous regions of lung parenchyma (left portion of image)
tend to be of notably lower density than those regions comprised of healthy tissue
(right portion of image). This is due to increased levels of air trapped in the
lungs as a result of hyperinflation. Radiologists use the appearance, amount and
distribution of emphysematous regions in order to issue qualitative assessments of
emphysema severity.

1.5 Visual Presentation of Emphysema in Radiological Stud-

ies Involving Computed Tomography

As computed tomography is used by radiologists for imaging anatomical structures
of the chest, it provides an ideal tool for assessing the presentation emphysema in
radiological studies by being able to capture the breakdown of lung tissue [42].
Due to lung tissue being primarily comprised of a tissue micro-structure, alveoli,
inflated with air, lung parenchyma generally has a density between that of soft
tissue (0 H.U.) and air (-1000 H.U.). However, as emphysema progresses, the thin
tissue wall separating individual alveoli breaks down. This in turn leads to alveoli
coalescing into large pockets of trapped air due to associated hyperinflation, giving
the appearance of low-density “holes” in CT images. This is due to the fact that as
the lung parenchyma breaks down, the overall density of the finite region in space,
as measured through computed tomography, would also decrease as the relatively
higher density lung tissue is replace with low density air that is now trapped in the
lungs. These holes are, in turn, of relatively low density, being comprised mostly

of air and much less tissue than normal healthy parenchyma, as can be seen in
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Figure 1.7.

Beyond the visual appearance of emphysematous regions in CT, another key
facet of how emphysema presents in radiological studies is the distribution of em-
physematous regions in the lung. Emphysema does not necessarily have a ho-
mogeneous distribution in the lungs, but rather, the distribution is dependent on
the source of the disease. Studies have shown that smokers primarily have severe
emphysema localized in the apical lobes of the lung, which is commonly thought
to be due to the fact that smoke rises and thus travels the upper airway branches
into the upper portions of the lungs [45]. However, those patients with alpha-1
anti-trypsin (A1AT) deficiency, a disease in which A1TAT production is reduced,
tend to have a relatively homogeneous distribution of emphysema throughout the
lungs as result of the connective tissue damage caused throughout the lungs by the

neutrophil elastase enzyme, whose activity is down-regulated by A1AT [46].

1.6 Quantitative Measures of Emphysema from Computed

Tomography — Previous Work

Computer-based scoring systems have been developed that attempt to quantitate
the qualitative visual descriptions of emphysema outlined in Section 1.5, with the
primary focus of past work in emphysema severity analysis from whole lung CT
scans being in the use of density measures. This was first noted in 1988 by Miiller
in his work on using density masks to quantify the presence of emphysematous
regions of the lung [13|. Miiller et al. suggested that the ratio of emphysema
volume (defined a lung tissue below a density threshold) to total lung volume

would serve as a measure of emphysema severity (range: 0-100). An example
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Since then several measures have been proposed that either incorporate and/or

extend these findings.

Of all the density based measures that have been developed for use in quan-
tifying emphysema severity, four distinct types of emphysema quantification have
been commonly cited in the literature. The first, the ratio of low density tissue to
the whole lung volume was developed by Miiller [13], and has come to be called the
emphysema index (EI), or alternatively, low-attenuation area percentage (LAA%).
The second method, histogram percentiles, is in effect the inverse of the emphy-
sema index and gives the density threshold needed for emphysema index to return
a specific percentile [17,47,48|. Also, as the breakdown of lung parenchyma leads
to the creation of new air-pockets, or holes, while already existing pockets coalesce
into fewer, but bigger pockets, a fractal dimension measurement [20,21]has been
often used in order to incorporate hole-size frequency distributing into the descrip-
tion of emphysema severity. Finally it has also been shown the overall mean lung
density (MLD) of the lung can be altered as a result of emphysema [14,49,50]. As
a result, these four measures have become the most cited in literature and thus are
of importance to anyone studying emphysema severity in CT. More detail on the
comprehensive emphysema analysis system developed in this work incorporating

previous work can be found in Chapter 2.

1.7 Current Limitations of CT Image-based Densitometric

Scores of Emphysema

There are multiple methods proposed in the literature for assessing emphysema

severity, with the majority based on density information derived from image data.

18



However, several key limitations are associated with density scores. The most
notable is the fact that densitometric scores of emphysema severity have poor
correlation to spirometry and pulmonary function test scores, with correlations
of less than 0.5 for asymptomatic patients having been reported [51]. Stronger
correlations between PFT data and image-derived metrics have been shown for
Stage III+ patients, but those are symptomatic patients and are not of diagnostic
relevance. Furthermore, it has been suggested that this may also be due in part to
COPD being a class of diseases of the lung, of which emphysema is one component,
while patient lung function is a combination of several factors, which prevents any

single factor, like an emphysema score, from having predictive strength.

Another issue is that density-based CT scores are inherently dependent on user
selected density thresholds. For example, as was stated in section 1.6, thresholds
can be used to determine emphysematous regions of the lung, and are the primary
component in determining scores such as the emphysema index. However, proper
selection of threshold level is still debated, with various levels proposed depending

on desired effect, and is discussed in more detail in section 2.2.1.

Finally, densitometric scores of emphysema have poor precision, or repeatabil-
ity, between scans when no change in disease severity is expected. For example, for
the 100-point emphysema index metric defined in section 2.2.1, it has been shown
to have a low level of reproducibility (Bland-Altman Limits of Agreement: —13.4
to +12.6) between short time-interval scans [16], where no disease progression is
expected, limiting its application in clinical settings. This is especially problem-
atic as metric variability interferes with measurements of progression as measured
change has to surpass inherent measure variation in order for changes in disease

severity to be detectable using a given metric. This in turn limits imaging metrics
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Figure 1.8: Example of Volume Change Altering Apparent Lung Density Distribu-
tion. Above are the lung-density distribution histograms of a single patient from
two CT images acquired 30 days apart. A total lung volume change of +700mL
(16%) was measured between the lower inspiration level scan (74300 mL) and the
larger inspiration level scan (T5000mL). For the above case, overall density levels
decreased due to expansion of lung tissue as can be seen between the two his-
tograms, which is associated with emphysema index indicating a positive change
of +8.6.

20



from being used in longitudinal assessment of severity. Several reasons for this
variation have been identified, such as density-based measures being sensitive to
scanner calibration [52|, scan acquisition settings such as slice thickness |41], and
inspiration levels [53,54] as all cause variations in the apparent density of the lung
parenchyma, with the primary source of variation being inspiration volume [55].
An example illustrating the effect of inspiration volume on emphysema metric score
in a case with two scans taken in a 30-day time-interval is given in Figure 1.8. This
example illustrates the fact that densitometric scores tend to indicate more sever-
ity in larger inspiration scans of a given patient. This is especially problematic
due to the slow-progression of emphysema in the majority of cases, as scans taken
in over a relatively small time-interval should indicate constant disease severity.
Zero-change datasets and image-pairs such as these are advantageous in that they
allow for the isolation of sources of variation, in this case inspiration volume levels.
In order to be useful for the monitoring of the progression of emphysema severity
in longitudinal studies, this variability must be accounted and compensated for.
Thus, in order to improve emphysema quantification through CT, evaluation and
compensation of measure variability is also investigated over the course of this

research project.

1.8 Description and Outline of Research Undertaken to Im-
prove Emphysema Quantification from CT-image Data
In order to improve assessment of emphysema from computed tomography images

and address the issues laid out in 1.7, the research undertaken by the author is

focused on two key aspects of disease monitoring. The first focus is to address the
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first two limitations of current emphysema quantification techniques as described
in section 1.7: the low correlation of emphysema to pulmonary function data and
the dependence of current measures to density information. In order to accom-
plish this, the implementation of previous image based emphysema metrics is first
described in Chapter 2. In order to improve correlation and prediction of image-
based scores of emphysema severity to pulmonary function test scores, a geometry-
based, diaphragm curvature assessment of emphysema severity was implemented.
This new measure takes advantage of the fact that hyper-inflation associated with
emphysema leads to a flattening of the diaphragm, as seen in radiological obser-
vation of image data from patients with severe emphysema. Incorporation of a
new measure not dependent on density information which could lead to improved
correlation of pulmonary function data. Use of such a measure also addresses the
second issue of densitometric measures previously outlined: the fact that density-
based measures rely on density information which is variable between two scans,
even of the same patient. Discussion and analysis of the correlation of image-based
measures to clinical standards, such as visual assessment by radiologists and PF'T
score data, as well as the improved prediction of pulmonary function data through

modeling of contributions of different components, is discussed in Chapter 3.

The second major topic of research addressed in this dissertation is work done
in analyzing measurement variation and developing a compensation method for
reducing inter-scan variation culminating in an inspiration-compensation method
for reducing inter-scan measure variation. In order to address low inter-scan metric
reproducibility, the variability of multiple emphysema measures derived from image
data is analyzed. The effects of changes in both scan acquisition settings and
inspiration volume are investigated for both the density based scores. A univariate

regression model is then investigated as compensation method for reducing inter-
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scan metric variation. Finally, a multivariate linear regression method is proposed
and analyzed as a superior method for reducing emphysema measure variation in
order to improve longitudinal assessment of emphysema progression. These topics

are discussed in Chapter 4 and a final summary is provided in Chapter 5.
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CHAPTER 2
EMPHYSEMA ANALYSIS SYSTEM DESIGN

To quantitatively analyze emphysema from whole-lung CT scans, a infrastruc-
ture needed to be established that could handle the evaluation of any given CT
image. A system designated for this purpose must first be able to take an input
image and extract and separate the lung parenchyma from the remaining body or-
gans and background present in that image. From this segmentation, it must then
be able to analyze the lung parenchyma with a variety of metrics as well as allow
for the storage both the image and the metrics for use in longitudinal analysis.
A flowchart of the desired system is given as figure . This chapter discusses the

design and development of this system.

2.1 Development System - VisionX Environment

The Emphysema - Lung Analysis System described above was implemented in
the VisionX environment system. VisionX is a development system designed un-
der the direction of Dr. Anthony Reeves of Cornell University that offers many
tools for computer aided diagnosis and image analysis system design. It has been
used in research projects for a wide range of applications on various modalities:
2D chest radiography for the detection of catheter placement, 3D chest computed
tomography for the detection and characterization of pulmonary lesions, airway

segmentation from whole lung, cardiac angiography, and organ and bone segmen-

B Calculation of .
Lung Airway Desired Severity
CT Scan . —» Segmentation —| Score
Segmentation Emphysema
and Removal Metric Output

Figure 2.1: Flowchart of an Emphysema-Lung Analysis System
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tation, among others.

VisionX also provides many built-in tools and functions for image quantification
and generation. It handles image input, output, and format conversions for ease of
image manipulation regardless of image and format. It also provides multiple tools
for binary, byte, integer, double, and float data formats (among others), as well
as image manipulation tools, such as morphological filtering, logical operations,
and connected component analysis. It also provides tools to a acquire multiple
levels of image statistics. VisionX also provides image processing libraries for the
C and C++ programing languages, and works with TCL scripting for larger image
analysis programs, allowing for modular development of code. Recently, VisionX
has also integrated VTK within its development system, providing the opportunity

for the development of advanced visualization tools.

Another related advantage of the VisionX system is that also allows for tele-
radiology to be possible is also possible through the SIMBA Image Management
and Analysis System. Tele-radiology allows radiologists at remote locations to
view and evaluate and analyze images through a Internet-interface. Through tele-
radiology, rapid feedback can occur between radiologists and system developers,
enhancing the software development process. SIMBA offers image transfer and
archiving functionality, image documentation tools, and a case-based image man-
agement system, which aids in the analysis of long term studies where multiple
images are likely to be acquired for any given case. It also provides a method for
integrating image analysis software, further facilitating tele-radiology. For these
reasons, VisionX was selected for use as the development system for the Emphy-

sema Lung Analysis System.
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Figure 2.2: Flowchart of a Lung Segmentation System. The four stages of the
implemented lung segmentation are noise filtering, thresholding, selection of the
lung region, and a final morphological closing. This provides a robust method for
obtaining a binary image representing the volume and location of the lung region
in a CT scan.

2.1.1 Lung Segmentation as provided by the VisionX envi-

ronment

An accurate and efficient lung segmentation algorithm is the most important basis
for any evaluation of emphysema from Computed Tomography image data. A
robust lung segmentation algorithm is provided by the VisionX environment and
is thus used in this work. The lung segmentation occurs in four major stages
as outlined in Figure 2.2. The first stage, a pre-processing filter stage, applies a
median filter to top 25% of image slices in order to smooth noise from apicies of
the lung, which tend to have higher noise levels versus the remainder of the image
due to the presence of more dense tissue and bone mass with respect to the rest

of the chest cavity.

After noise filtering, the remainder of the algorithm is followed, and an illus-
tration of the intermediate stages of the different sequential image processing steps
can be seen in Figure 2.3. The second stage of the segmentation algorithm is to
apply a threshold at -450 HU to separate low-density lung tissue from bone. -450
HU has been identified as being an optimum density level to serve as a separation
threshold, as it is an established minima between lung tissue distribution and solid
tissue density distributions. Third, connected-component labeling is applied to the

resultant binary image and the largest volume in the binary image not adjacent
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Figure 2.3: Ilustration of Stages of a Lung Segmentation Algorithm. The above
images illustrate the intermediate stages of a lung segmentation algorithm. Top-
Left) Original axial CT-slice, Top-Center) Binary image after application of a -450
H.U. threshold, Top-Right) Selection of the largest component in 3D space not
adjacent to the image border selected to be the lung region (note: while not visible
from a single axial slice, lungs are inter-connected through the airway tree, hence
the selection of both lungs and airway lumen). Bottom-Left) Lung mask after
morphological filtering. Bottom-Right) Extracted lung region.
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Figure 2.4: Sample Volume Rendering of a Segmented Lung. A transparent light
shade volume rendering of a segmented lung is given as illustration of a sample
segmentation of the lung field from CT image data. Segmentation of the lung field
is key in emphysema analysis as it identifies the region in the image on which to
compute emphysema metrics. Note that the major airways, a known source of
error in emphysema quantification from image data, are included in the segmented
lung field and need to be addressed in a second stage segmentation.
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Figure 2.5: Flowchart of an Airway-tree Segmentation Algorithm. The tree is
grown from the automatically-identified seed point, and the optimal threshold is
found by incrementing until a leak is detected. The locally detected leaks are
removed from the final segmentation outcome.

to the image border is kept as being the lung field. A final morphological filter-
ing step then occurs in order to fill in small noise “holes” in binary image due to
the discrete threshold level selected. A three-dimensional rendering of an example

segmentation is provided in Figure 2.4.

2.1.2 Airway Segmentation

Once lung segmentation is accomplished, it becomes important to exclude those
regions within the lung field that could confound the detection of emphysematous
regions. As emphysema is defined in computed tomography scans as regions of

sufficiently low density, approaching that of air, the major airways become the
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Figure 2.6: Sample Airway Segmentation within a Segmented Lung. A segmented
airway tree is identified by heavy shading with a transparent light shade model of
a segmented lung. Segmentation and removal the major airways from considera-
tion in emphysema analysis eliminates a major source of bias in CT measures of
emphysema.

primary anatomical feature that can produce bias in emphysema measurements.
Adequate extraction of the major airways then becomes an important step in the
reduction of this bias. To that end, an airway lumen extraction algorithm based

on work by Lee et al. [56] outlined in Figure 2.5 is used to identify and thus remove

remove the airways from consideration in evaluating emphysema severity.

Algorithm

Briefly, the airway segmentation algorithm is a region-growing algorithm that be-
gins at an automatically detected seed point in the trachea of the second CT slice.
Neighboring pixels in 3D-space are then checked to determine if it is below a density
threshold close to that of air. If so, a second check is made to determine if at least
one-half of the pixels 26-connected neighbors are also below the density threshold.

If this second criterion is met, then the pixel is added as an “airway-lumen” pixel,
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and the process repeats by checking that pixels neighbors. Segmentation ceases
when no more pixels meet the inclusion criterion or if the segmented airway volume
surpasses an upper limit signifying that the growing algorithm has over-segmented
the airways by exceeded the bounds of normal anatomical volume, which effec-
tively acts as a leak detection check. An example of a segmented airway structure
within a segmented lung field can be seen in Figure 2.6. By only investigating the
region of the lung that have been identified as not being airway, and thus regions
of the long not expected to be on significantly low density, a systematic bias can

be eliminated.

2.2 Implementation of Previously Established Densitomet-

ric Measures of Emphysema from CT

Density-based measures of emphysema are the most commonly discussed and in-
tensely studied method for quantifying emphysema from image data beginning
twenty years ago with Miiller et al. and their work on using density masks to
quantify the presence of emphysematous regions of the lung [13]. The rational for
this approach is that as the lung parenchyma breaks down, the overall density of
the finite region in space, as measured through computed tomography, would also
decrease as the relatively higher density lung tissue is replace with low density air

that is now trapped in the lungs.

There has been considerable interest in evaluating the variability and repeata-
bility of emphysema measures [16,57| and the sources of this variability [58-61].
However, these studies have all been limited in scope in someway, whether in terms

of data size and quality |57]or their restriction to single measures |62]|. Further-
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Figure 2.7: Calculation of Emphysema Index (EI) from CT Through Density Mask-
ing. Left) Axial slice depicting relatively mild emphysema (EI717%). Right) Ax-
ial CT slice depicting relatively severe emphysema (EI739%). Emphysematous
regions in the lung field are shown in white.

more, as all the analysis published in the literature are being performed on multiple
datasets, limited comparisons that can be made between the various works. As
one of the primary focuses of this research is in the analysis of the stability and
repeatability of emphysema measures, it becomes important to implement previ-
ously established methods to allow for more thorough and concurrent analysis to
be performed across the multiple measures to allow for more accurate comparisons
to be made, as well as providing baseline comparison scores for any new proposed
measures to be compared to and analyzed against. These measures would also
only be computed for the regions of the lung not identified as airway by the seg-

mentation algorithm described in section 2.1.2; thus eliminating once source of

bias.
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Figure 2.8: Three-dimensional Visualization of Emphysema Index. Left) Light
shade model of the lungs denoting relatively mild emphysema Right) Light shade
model of the lungs denoting relatively severe emphysema. Emphysematous regions
within the lung field are denoted by opaque shading where the volume in image
spaces fall below the specified threshold for the emphysema index calculation. As
emphysema progresses, more volume within each CT scan is occupied by emphy-
sematous regions. The volume computed is effectively equal to the computation
of emphysema index over the entire image space.
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2.2.1 Emphysema Index: The Low-Attenuation Area Ratio

The emphysema index is the base measure of emphysema severity from whole
lung CT scans. Developed in 1988 by N.L. Miiller [13], the emphysema index has
become the most reported score in literature related to automated quantification of
emphysema severity [17,19,57,63-68|. It also commonly referred to in the literature
as low-attenuation area percentage (LA%) or relative area (RA). As emphysema
progresses, there is an increased amount of low-attenuation volume within the lung
regions as a result of decreased tissue volume. The emphysema index is used to
quantify this low-attenuation volume relative to the what could be the maximum
amount of healthy tissue volume in a given image, which would effectively be the
volume of the lungs in a given CT scan absent any emphysematous regions. In
essence, the emphysema index is effectively a density mask applied to a lung field
acquired in a CT scan, giving the relative percentage of the lung field that falls
below a specified density level. Given L as a set of pixels belonging to the lung
field contained within a CT image, the emphysema index (EI) can be calculated

as

_ ‘{pz : piel, f(pi) < T}’

EI
L]

(2.1)

where I(p;) is the density value of the pixel p; in the CT image being analyzed
and T is the density level for which the emphysema index is being calculated. Tt
is worth noting the EI is effectively bounded [0-1] or [0% - 100%]. Two samples of
emphysema index illustrating differing amounts of segmented emphysema regions,
denoted by heavy shading, for mild and severe disease using a T of -910 H.U. is
shown in Figure 2.7 for a single axial CT slice and as a 3D visualization in Figure

2.8.
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Several density levels have been proposed and evaluated for use in the emphy-
sema index for various reasons such as the slice thickness of scans [69] and dose.
The most commonly used levels range from -970 H.U. to -850 H.U. |52, 70-72].
Lower thresholds are often referred to as being most indicative of lung morphome-
try [64] and -950 H.U. is often used when attempting to correlate emphysema index
and pulmonary function scores [51]. However, higher thresholds (> -910H.U.) have
been shown to be more indicative of emphysema in thick-slice (> 5mm) scans as
well as being useful for including regions of air-trapping in the denotation of em-
physematous regions [73|. Thus, as there is no overall consensus in which density
threshold is most appropriate for analysis [16,66], we selected our threshold based
on the desired task. When attempting to create a predictive model of pulmonary
function scores and underlying physiology (Chapter 3), we selected our threshold
to be -950 H.U. for thin-slice (< 5mm) scans and -910 H.U. for thick-slice (> 5mm)
scans as these thresholds have been shown to better correlate emphysema index
with physiologic indicies versus other levels. When investigating longitudinal ef-
fects and measure repeatability (Chapter 4), we selected -910 H.U. as the threshold
level used in our system in order to ensure that all possible emphysematous and
air-trapped regions of the lung were included for quantitative evaluation while also
minimizing issues that can arise through the use of lower density levels, such as
altered metric distributions invalidating statistical methods that require Gaussian

distributions or constant variance [74].

Emphysema index, and density-based measures in general, have been shown
to have several short-comings. High levels of noise can cause image voxels to
significantly alter their intensity, which can change whether or not a particular
voxel will be considered emphysematous or not. This is due to the fact that density-

based assessments of emphysema are based on the shape of the X-ray attenuation
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distribution, which in turn is dependent on the signal-to-noise ratio. Thus any
factor that has an effect on the shape of the X-ray attenuation distribution curve,
will affect the measurement of emphysema |75]. This effect is most significant in
low-dose scans [76], which tend to be associated with high levels on noise, as well as
in scans with significant levels of beam-hardening. Another drawback is that the
measures are sensitive to both scan-calibration [52] and inspiration levels [53,54], as
both cause variations in the apparent density of the lung parenchyma. Emphysema
index has also been shown to have a low level of reproducibility between scans, with
changes in score of up to —13.4% to +12.6% for stable cases being reported [16],

and needs to be addressed in any long-term study .

Finally, as emphysema can be considered to have differing levels of hetero-
geneity |77], which is important in candidate selection for lung-volume reduction
surgery |78], a single global score of emphysema severity can be considered mis-
leading. Therefore, we have implemented a scoring system for emphysema index
that also calculates severity in each lung individually as well as in each third (by

volume) of the lung: upper, middle and lower.

2.2.2 Histogram Percentiles of Lung Density

Another density-based measure, histogram percentiles of lung density, has been
suggested as an alternative to emphysema index for the measuring of severity of
disease [79]. The histogram percentile seeks to capture the degradation of lung
parenchyma based on the fact that as emphysema progresses, the density of lung
parenchyma will decrease, which in turn cause a shift in the lung density histogram
profile. Thus as the severity of disease increases, the N** percentile point decreases.

computed by This effect is illustrated in figure 2.9. The histogram percentile has
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Figure 2.9: Illustration of Histogram Percentile Analysis of Emphysema Severity.
The right/green distribution plot shows the distribution of densities present in
relatively healthy lung. The left/red distribution plot shows the distribution of
densities present in relatively diseased lung. Both lungs are of similar volume. Tt
can be seen that as disease severity increases, the density profile shifts, leading to
decreased density level for any given percentile point. In this example, the 15th
percentile point (N=0.15) is approximately -890 H.U. for the healthy lung and -970
H.U. for the diseased lung.
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been shown to have good correlation to underlying lung morphometry [62, 70],
indicating its usefulness as a measure. Stoel et al. have also suggested that as
truncation of severity score is common when a low density level is used to compute
emphysema index, due to the fact that it is physically impossible to obtain EI<0,

that the percentile score [74].

The calculation of the histogram percentile can be considered the inverse of
emphysema index, a calculation the density level required to obtain a given em-
physema index. As such, given L as the set of pixels belonging to the lung field

contained within a CT image, the N percentile point T can be calculated as

s d . P piel, I(p;) < T}
T = p{ . ] SN} (2.2)

where 7 is any density level that allows for satisfaction of the given conditions,
I(p;) is the density value of the pixel p; in the CT image being analyzed, and N
is bounded [0-1]. As solving for 7 in this manner returns a set of density levels
that could satisfy this condition, we take the supremum of the set as the percentile
point. It is worth noting that as CT lung density distributions are discretized, as
in CT image values will be contained in the set {...-1000 H.U. , -999 H.U., -998
H.U., ..., 999 H.U, 1000 H.U.,...}, we only consider discretized 7 in the same set for
the above calculation. In our work, while N is allowed be set to any value between
0.0 and 1.0, in order to have a comparable parameter setting to the emphysema
index computed at , we use a default percentile point of N = 0.15, or the 15
percentile of the histogram. This level has also been recently suggested by [72] as

being the most sensitive index of emphysema progression.

38



500
|

100 200

50

Count
20

10

2 5 10 20 50 100 200 500 1000 5000

Emphyseme Size

Figure 2.10: Tllustration of Fractal Dimension Measurement of Emphysema Sever-
ity. The green (small points) plot shows the cumulative frequency distribution of
hole sizes present in relatively healthy lung. The red (large points) plot shows the
cumulative frequency distribution of hole sizes present in relatively diseased lung.
The fractal dimension is calculated as the slope of the cumulative frequency distri-
bution in log-log scale. As severity of emphysema increases, several holes coalesce
into larger holes, causing the slope of the plot to decrease.

39



2.2.3 Fractal Dimension

Previous work has noted that in addition to increasing volumes low-attenuation
area present in CT, the continued breakdown of the lung parenchyma would cause
several adjacent low-attenuation areas, originally separated by thin regions of
parenchyma, to coalesce into a single larger hole [80]. This would have the ef-
fect of increasing maximum size of emphysematous holes while reducing the total
amount of emphysematous regions present in an image, although it is to be ex-
pected that increasing disease severity would lead to more emphysematous regions
being created. It has been proposed that this is due to terminal airspace enlarge-
ment and that the inverse cumulative frequency distribution of hole sizes, Y, can

be described by a power law of size X of the form
Y=Kx*X7P (2.3)

due to the fractal properties of the lung airways. The exponent D indicates the
level of disease severity and has been shown to be mostly related to emphysematous
change and, in addition, can help categorize emphysema severity in persons with
asthma [21]. The fractal dimension of the emphysematous regions of a CT scan,
D, can be calculated through linear regression of the inverse cumulative frequency
distribution (CFD) of emphysema holes (Y) versus size (X) in the log-log domain.
Figure 2.10 gives two examples of plots for two cases with different emphysema
severity levels the related linear regression lines illustrating the difference between

healthy and diseased lung.

The flowchart given in Figure 2.11 gives the general steps to compute the
fractal dimension of a given lung segmentation. By applying a threshold, T, to
a lung segmentation, the emphysematous region of the lung can be identified,

which is identical to the first stage in computing emphysema index. From there,
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Figure 2.11: Flowchart Describing Steps to Calculate Fractal Dimension from Lung
Segmentation. To compute the fractal dimension, the emphysematous regions
of the lung are identified by applying the emphysema-threshold to a segmented
lung image, as is done for emphysema index. Individual regions are identified
and separated through a connected-component labeling step, and the identified
regions are passed to the fractal dimension calculation algorithm. The calculation
algorithm computes the areas and the cumulative frequency distribution of areas
in log-log scale to determine the fractal dimension of the given scan.

connected-component labeling can be used to separate the emphysematous region
into individual holes. Once the individual emphysema holes in a scan are identified,
the inverse CFD of emphysema hole-sizes can be computed and fractal dimension

computed by following algorithm 1, described below.

Beginning with the definition of s as the set of hole sizes (areas) existing in a

given scan, the set s can be computed as

s = {Moo(r)} (2.4)

where r is the set of binary, emphysematous regions present in an image. In order
to limit the effect of noise in the calculation of D, we do not include single pixel-
sized regions in the above calculations, effectively setting a lower bound of 2 to the
possible values of s. Once the set of s emphysema areas is obtained, the cumulative

frequency distribution function Fj(A) can be obtained by computing
s— Fy(A) = [{r : Myo(r) > A} (2.5)

for all unique region sizes, A, present in the set s. This gives F,(A;) a value equal
to the number of emphysematous regions with a size greater than or equal to A;
where A; is the i-th area present in the set of emphysema hole sizes, s. Once

the cumulative frequency distribution function is obtained, the exponent D can be
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Figure 2.12: Diagrammatic Illustration of the Calculation of Fractal Dimension.
The top left image is a diagrammatic representation of two lungs with emphy-
sematous regions marked in gray. The top right image illustrates the result of
thresholding and calculating each regions individual area (indicated by the num-
The center table shows the computation of the cumulative
frequency distribution and conversion to log-scale: 8 holes of at least size 10, 3
holes of at least size 50, 1 hole of at least size 100. Plotting the right two columns
of the table give the log-log plot of the CEFD, and linear regression on the log-log

ber in the ellipse).

CFD gives the fractal dimension for the image, in this case: -0.85.
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Algorithm 1 Algorithm to Compute Fractal Dimension from Set of Segmented
Emphysematous Regions. From an input of a set of individually labeled emphy-
sematous binary regions, r, the fractal dimension, D, can be computed by first
calculating the area of each region in the set r to build set s. From the set of
region-sizes, s, the inverse cumulative frequency distribution function of emphy-
sematous region-sizes can be constructed by calculating the number of regions, vy,
that are at least of size x, both in log-scale. From there, the standard linear re-
gression equation can be used to determine D as being the slope of the line defined
by the set of points (x,y).
comment : Compute Areas
1=1
n=|r|
while i < ndo

S; — M070(T‘i)

1=1+1
end while
comment : Compute Cummulative Frequency Distribution
i = min(s)
j=1
while i < max(s)

ifi€s

7; = log(i)
y; = log([{s : s> i})

Jj=Jj+1

endif

1=1+1
end while

D= Z’ =1 y comment : Calculate Fractal Dimension

1= 1
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obtained through ordinary least squares regression of the log-log transform of the

function F, by calculating

Yisy log(Ai)log(Fi(Ai))
iz1 log(A;)

D = (2.6)

where n is simply the number of different area sizes present and thus can be

calculated as

n = |Al (2.7)

The Pearson’s coefficient of determination (R?) for D is also computed and recorded
in this analysis as well. An illustration of the computation of fractal dimension is

provided in Figure 2.12.

In the work by Mishima et al. [20], the fractal dimension score was obtained
using 3 manually-selected slices and the results averaged to create a composite
fractal dimension score for the scan being analyzed. In order automate this process,
we opt to use three central slices in the scan at specific intervals within the lung
field. Given a normalized slice numbering schema where the apical peak of the
lung appears on slice 0.0 and the bottom most portion of the lung appears on slice
1.0, we opt to select slices 0.2, 0.4 and 0.6. Selection of slices in this way allows for
full automation of the process while providing three relatively independent slices
for analysis. This method also has the additional advantage of avoiding noise
that is often present in the apicies and diaphragmatic regions of the lung in CT
images. Finally, it should be noted that while the method presented is computed
in two-dimensions, a three-dimensional analysis requires trivial extension through
the inclusion of all slices in a scan and calculation of 3D moments versus 2D.
However, to date there have been no published analysis on 3D computation of

fractal dimension versus 2D, so our system allows for calculation of both.
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2.2.4 Mean Lung Density

The final most commonly reported measure of emphysema is known as the mean
lung density and is often reported along side other measures [17,19,72,81-85|. The
rational for using mean lung density for evaluating emphysema severity is similar
to that of using histogram percentiles, namely that as emphysema progresses, the
density of lung parenchyma will decrease, which in turn cause a shift in the lung
density histogram profile, creating a net reduction in overall lung density. Given a
set of pixels belonging to the lung field contained within a CT image, L, the mean

lung density of a CT image can be calculated as

_ S AI(pi) : piel}

MLD
L]

(2.8)
where I(p;) is the density value of the pixel p; in the CT image being analyzed.

The mean lung density has been shown to differentiate normal emphysematous
patients [84]. It has also been shown that the mean lung density can differenti-
ate obstructive and restrictive ventilatory impairment from normal subjects [86].
Finally, a good correlation (r=-0.83) between change in mean lung density and
change in inspiration volume has also been reported [19]. This last point suggests
that the mean lung density may be useful as a covariate for compensating for

inspiration change.

2.2.5 Normalization of Emphysema Measure Scales

Given that the measures described above are on different scales relative to one an-
other, normalization of the practical range was used to allow for direct comparison

of the disease scores [87]. A linear transform is proposed, as it has certain advan-
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tages over comparing percentage changes, most notably that percentage changes
are sensitive to scale. For example, if one index of disease severity commonly
ranges from 100-200 for normal to severe and another from 1000-1100 for normal
to severe, a 10 point change from normal to severe would equal 10% in the first
case and 1% in the second case, making direct comparison impossible. In order to
normalize the above measures, we empirically determine the range of the measures
as seen in the dataset, and bringing them in line with a 0 to 100 scale. So for a
given set of disease indicies, F, we calculate the linear transform of the set, F’,
using
100

E' = man(E) —min(E) (E; — min(E)) (2.9)

where E; is the i*" score in set F that is to be transformed.

2.3 Emphysema Measurement from Lung Geometry

It has been noted that the density-based measures described in Section 2.2 have
several short-comings, however, primarily with noise causing misclassifications of
regions. In order to circumvent these limitations, a new, non-density based ap-
proach of evaluating emphysema severity using diaphragm curvature evaluation
was developed and evaluated. It has been seen that the diaphragm flattens as a
result of the hyperinflation that occurs with emphysema [22,26-29], as can be seen
in figure 2.13, and it has been suggested that the measurement of this ‘flattening’
may be a useful method for quantifying emphysema. The effectiveness of evalu-
ating emphysema through the use of diaphragm curvature in radiographs has also
been discussed briefly in a recent review of the field by Litmanovich et al. [65],
and such a target for analysis could be extended to computed tomography. It has

also been suggested that part of the functional benefit provided by lung volume
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Figure 2.13: Sagittal projection of two right-lungs demonstrating diaphragm cur-
vature. This figure shows how increased emphysema relates to decreased lung cur-
vature. Both images have identical window settings and the diaphragm outlined
by a gray curve. Left) Healthy lung associated with higher diaphragm curvature.
Right) Emphysematous lung associated with low diaphragm curvature.

reduction surgery (LVRS) may be related to improvement in respiratory muscle
function resulting from changes in diaphragm dimension and configuration [88],
which would suggest that accurate measurement of diaphragm morphology could
also be of clinical relevance. Therefore, extraction the diaphragm and establish-
ment of a diaphragm curvature measurement could allow for a new method of

evaluation of emphysema from CT data that would offer new information over

previously established measures.

2.3.1 Diaphragm Segmentation from Lung Field

In order to extract the diaphragm, an automated segmentation algorithm based
on surface-normals was developed and the major stages can be seen outlined in

Figure 2.14. A mask of the lung region and major airways of a given scan is first
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Figure 2.14: Flowchart of a Diaphragm Segmentation Algorithm
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Figure 2.15: Two-dimensional selection of diaphragm using downward curvature.
Object is the lung mask in the sagittal-plane, with arrows showing the surface-
normals at points along the surface. The diaphragm is primarily associated with
downward normals (thick arrows).

extracted using a standard automated procedure, and then each extracted lung is
analyzed individually to determine the location of the diaphragm. Given that the
lower region of the lung parenchyma are flush against the surface of the diaphragm,
the lowest surfaces of the lung can be considered the equivalent of the diaphragm
in a CT image. In order to extract the lower surface of the lungs from the lung
mask, all surface voxels of the extracted mask are selected and a surface normal
is computed for each individual voxel using the algorithm described by Monga et
al. Given that all voxels associated with the lower surface of the lung, and thus
the diaphragm, will have a strong downward component in the image gradient, an
empirically established threshold was used to select all surface voxels that contained
significant downward gradients. Figure 2.15 provides a 2D illustration the use of

downward curvature to select the diaphragm.

As the diaphragm may not be the only object containing significant downward
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components in the extracted mask, a relative size criterion was used to differentiate
the diaphragm surface, which was found to be single largest, contiguous surface
from the tresholded image, from other parts of the mask containing downward
surface normals, such as the lower surface of the bronchial airway walls. Two-
dimensional morphological operations are then performed to fill small gaps in the
diaphragm due to noise. Finally, a pruning process is implemented as a secondary
operation in order to ensure elimination of spurious artifacts that could be acquired
in the extracted diaphragm, such as portions of the lower outer lung wall. Due
to the nature of the diaphragm having a primarily axial orientation, and therefore
large in-plane surface areas, each CT slice containing extracted diaphragm under-
goes connected component labeling, and all components above a certain area are
kept. The output of this pruning step is kept as the final diaphragm mask used for

analysis. A sample segmentation using the described method can be seen in2.16.

2.3.2 Diaphragm Curvature Measurement Acquisition

Several surrogate measures were considered in order to estimate curvature from
the extracted diaphragm mask. In general, measures that would would be repre-
sentative of the macro-scale curvature of an arbitrary surface were curvature is not
expected to be constant were sought. To that end, the height of the diaphragm
surface (z-axis extent) and the x-axis and y-axis extents (coronal and sagittal ex-
tents respectively) as well as the whole-lung height were calculated. Diaphragm
curvature was measured indirectly as the ratio of the height of the diaphragm to
the lung height was computed, as is previously described by Tanaka et al. [89]
using manual measurements, as well as through the computation of the ratios of

the x-extent, y-extent and average-extent to the diaphragm height were computed.
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Figure 2.16: Three-dimensional visualization of segmented diaphragm mask super-
imposed on lung segmentation. The region of the diaphragm is denoted in dark
gray and the lungs are denoted by a transparent light model.
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Figure 2.17: Two-dimensional representation of the computation of diaphragm
curvature measures on the sagittal-plane projection. Left: Lung-Diaphragm Height
Ratio Right: Diaphragm Extent Ratio, which is the diaphragm width normalized
against the diaphragm height. Diaphragm extent ratio is also computed on the
sagittal projection.

The measures were computed for each of the two lungs in a scan individually and
then averaged together to give a composite score for each case. A diagrammatic

representation of the ratios can be seen in figure 2.17. The equation for generating

the lung-diaphragm height ratio is shown in equation 2.10

LHpcrt LHRignt
DHrpeft DHRignt

2

LDHR = (2.10)

where LDHR is the lung-diaphragm height ratio, LHLeft and LHRight are the
height of the left lung and right lung, respectively, and DHLeft and DHRight are
the height of the left diaphragm and right diaphragm, respectively. To generate

the coronal diaphragm extent ratio, we compute equation 2.10

CELeft CERight
DHyp. sy DHRignt

2

DERc =

(2.11)

where DERc is the diaphragm extent ratio in the coronal (x-axis) plane, CELeft
and CERight are the coronal extents of the left and right diaphragms, respectively,
and DHLeft and DHRight are the height of the left diaphragm and right diaphragm,
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respectively. The diaphragm extent ratio in the sagittal (y-axis plane) is computed
in the same manner, only using the sagittal extents for each diaphragm instead of

the coronal extent.

2.4 Description of Principle Data Sources

Three primary sources of data were available for use in conducting this research.
A brief description is provided below in this section in terms of quantity and scan
acquisition settings, as well as supplemental information that was made available,

such as pulmonary function test scores.

2.4.1 Cornell University Dataset

The first dataset established in this work originates from the Weill Medical College
of Cornell University. This data set consists of over 3000 cases with multiple CT
scans acquired using a variety of parameter settings. All were acquired using a
low-dose protocol. Specific subsets were selected for the various works established

in Chapter 4, and are outlined in their respective sections.

2.4.2 Columbia University Dataset

The second dataset originates from Columbia University Medical Center. Being
an exploratory dataset for new measures, the Columbia University dataset is not
nearly as large as the Weill dataset with only 24 scans at either 5mm or 10mm slice.

However, this dataset has an added advantage of having pulmonary function data
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associated with specific scans. This allows for relationships to be built between
lung function data and CT scoring. Some of the lung function measures associated
with this data includes forced vital capacity (FVC) and forced expiratory volume
in 1 second (FEV1), as well as diffusion data including diffusing capacity of the
lung for carbon monoxide (DLCO), patient-normalized DLCO (DLCO%), alveolar

volume (VA), and DLCO normalized by alveolar volume.

2.4.3 University of Navarra Dataset

The final dataset originates from the University of Navarra, Spain. This dataset
contains over 1000 cases with scans acquired at multiple slice thicknesses and
also has with it associated spirometric pulmonary function data. As with the
University of Columbia dataset, this allows for relationships to be built between
lung function data and CT scoring. Some of the lung function measures associated
with this data includes forced vital capacity (FVC) and forced expiratory volume
in 1 second (FEV1), as well as patient-normalized scores FVC%, FEV1%, and the

ratio of FEV1 to the forced vital capacity (FEV1/FVC).

2.4.4 Low Dose versus Standard Dose Computed Tomogra-
phy

One common feature across the different established datasets is the fact that they
are all low-dose CT scans. However, the selection x-ray dose, effectively how
much x-ray energy is used to irradiate the object being imaged, has known effects

on image quality An example of the effect of dose on image detail for assessing
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Figure 2.18: Low Dose CT Image Juxtaposed with Reference Standard Dose CT
Image. A low-dose CT image (left) is shown in contrast to a standard dose CT
image (right) illustrating the effect additional x-ray dose has in capturing anatom-
ical detail. Notable features (noted by black arrows outlined in white) include
increased visual homogeneity of parenchymal density and additional patterned or
streak noise in low dose images. In addition, standard dose CT images often cap-
ture additional anatomical features not seen in low dose images, including small
pulmonary vessels, airway, and finer parenchymal structure.

parenchymal structure can be seen in Figure 2.18.

Consideration of dose is important in the discussion of CT image-based em-
physema analysis, and in CT imaging in general. Due to the harmful effects of
excessive radiation on the human body, reduction of x-ray dose is important in
terms of patient safety as it minimizes the radiation which patient is subjected
too. The trade-off in dose reduction is that less parenchymal tissue structure de-
tail can be acquired by CT and more image noise is introduced. While some work
has indicated that low dose CT imaging is still sufficient for evaluating emphy-
sema [90], it is worth noting the greater challenge to assessing emphysema severity

that working with low dose images entails.
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CHAPTER 3
IMPROVED PREDICTION OF VISUAL AND PULMONARY
FUNCTION TEST SCORES

The primary focus of this chapter is on the analysis of quantitative emphysema
metrics as related to correlations to clinically relevant measures. As such we focus
on assessment of both the standard densitometric emphysema scores as well as
the newly developed diaphragm curvature analysis. In addition we analyze how
quantitative metrics correlate to both pulmonary function tests and radiological

assessment.

3.1 Prediction of Radiological Grade of Emphysema Sever-

ity through Quantitative Measures of Emphysema

Little work has previously gone into the evaluation of using quantitative measure-
ments as a surrogate scoring system for visual scoring. Therefore, the purpose
of this work was to evaluate the predictability of radiological scoring of emphy-
sema through the analysis of the four commonly used quantitative measurements
low-dose CT scans as described and implemented in Chapter 2: the emphysema
index at, 15-th percentile of the histogram, the mean lung density, and the fractal

dimension.

3.1.1 Methods and Materials

In order to determine the predictability of the visual grade from these measures,

and thus which measures correlate most closely with radiologist observations, 148
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low-dose, whole lung scans were randomly selected from the Weill Cornell dataset.
Each scan was retrospectively graded on the extent of emphysema present based on
expert radiologist visual interpretation and was classified normal, mild, moderate,
or severe. A single classification was given for the whole scan overall, for each
of the two lungs independently, and for each of the three divisions of each lung
independently (upper, middle, and lower third), giving a total of nine grades per
case. For this work the three regional-divisions are denoted as ‘global’, ‘lung’,
and ‘six-partition’ schema. For each of the nine established divisions, the four

quantitative measures were computed as described previously.

One-way ANOVA using F-test and all pair-wise comparisons among means
tested using Tukey-Kramer’s HSD test were performed to show that means of
objective scores associated with each visual score are significantly different from

another. The equation for Tukey-Kramer’s HSD is given below as equation 3.1

M, — M,

MSE
np

t (3.1)

where i and j represent the pair of means to be tested, M; — M; is the difference
between the i-th and j-th means, MSE is the Mean Square Error, and ny is the

harmonic mean of the sample sizes of groups ¢ and j.

The critical value of ts is determined from the distribution of the studentized
range. The number of means in the experiment is used in the determination of the
critical value, and this critical value is used for all comparisons among means. If ¢
surpasses this critical value, the two means are considered significantly different.
All statistical computations and tests in this work were performed with the use of

the R statistical software package.

In order to determine the overall usefulness in using quantitative score to predict
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Table 3.1: Confusion Matrices of Classification of Emphysema Index Classifica-
tion (rows) to True Visual Grade (columns) in the six-partitioned lung segments.
Above) Mild and Moderate as separate classes Below) Mild and Moderate as a
single severity-class. It is worth noting that mild and moderate classes were essen-
tially indistinguishable from one another by EI alone, so the more prevalent class
was selected by the classifier, leading to complete misclassification of all moderate
cases (top table). Combining mild and moderate visual grades into a single class
improved classification rate of 75% versus the original 656% when separated.

EI\ Visual Normal Mild | Moderate Severe
(n=97) | (n=238) | (n=114) | (n=426)
Normal 27 13 0 5
Mild 57 151 50 49
Moderate 0 0 0 0
Severe 13 74 64 372
Mild-
EI\Visua 1(\;0“51%1 Moderate (Isleigg)
N (n=352) N
Normal 16 9 1
Mild -
Moderate 73 247 89
Severe 8 96 337

the subjective visual score for a given lung region, multinomial logistic regression
was used to compute the probability that a objective score would predict a visual
grade and classification accuracy was computed using each measure. Finally, a
pair-wise implementation of the McNemar’s test was used to determine if the four

objective scores are significantly different in predicting visual score.

3.1.2 Results

It was found that for all measures, both normal and severe grades were shown
to be statistically different from all groups (p<0.05) for all three lung partition
schema. However mild and moderate did not show statistical significance, and

a large overlap in the ranges of scores for mild and moderate was found, with
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moderate cases tending to have quantitative scores in the upper range of mild
cases. Figure 3.1 provides a box-plot that shows this effect for emphysema index
in the six-partition schema. The average correct classification rate of visual score
from quantitative measurements was approximately 65%, with greatest confusion
occurring between mild and moderate grades due to the classification schema failing
to separate mild and moderate cases, classifying all ‘moderate’ cases as ‘mild’ or
‘severe’. Accuracies of over 75% could be achieved when mild and moderate were
combined into single class to minimize this confusion. Table 3.1 illustrates this

effect for emphysema index on the regional level of the lungs.

Overall, FD, EI, and HIST were found to be superior to MLD at the global
and lung levels (p<<0.1) and EI and HIST being superior to FD and MLD at the
regional level (p<0.1) for predicting visual grade from quantitative score. Table
4.1.2 gives the overall classification accuracies for the four measures across the
three lung division analysis for both the four visual grade scoring method and

three visual grade scoring method.

3.1.3 Discussion and Impact

This work shows that automated measures show good agreement with visual grade,
particularly emphysema index, and these scores could be used as surrogate scores

for the interpretation and assessment of emphysema severity in lung CT scans.

The findings in this work show that the quantitative scores can most easily
distinguish between normal and severe cases of emphysema, regardless of the lung
partition schema used. All four quantitative measures could also distinguish be-

tween normal and mild cases as well as between moderate and severe, although the
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Emphysema Index Score vs. Visual Grade
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Figure 3.1: Box plot of distributions of Emphysema Index vs. Visual Grade. Both
normal and severe grades were shown to be statistically different from all groups
(p<0.05) for all three lung partition schema. Of particular interest is the large
overlap between mild and moderate emphysema scores.
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distinction between these groups is not as clear as between normal and severe cases.
However, no measure at any level was able to distinguish between mild and severe
cases. The primary reason for this outcome is that in general, an average increase
in emphysema score can be seen for the various measures when advancing visual
grade from mild to moderate, the variation of scores falling within the mild case
is enough to provide large overlap between scores of the mild and moderate cases.
This is most clearly seen in figure 3.1, where approximately 50% of the moderate
scores for emphysema index are shown to fall within a single quartile of the mild
case. When the two categories are combined, we find that overall accuracies of clas-
sification increase for the measures by 10-15%, indicating that misclassification of
moderate cases is the largest single source of error. Another possible reason is that
there were fewer ‘moderate’ observations (n=114) as opposed to ‘mild’ (n=238)
or ‘severe’ (n=426), which, when combined with the reason above, could have ul-
timately biased the multinomial logistic regression to not classify observations as

moderate.

When we compare the accuracy rates of three lung-division schema, a trend to-
wards increased prediction accuracy of visual scores increases as we analyze larger
sub-regions of the lung parenchyma at once, for example each whole lung individ-
ually versus analyzing the 3 divisions of a single lung, as is shown in Table 3.1.
There are two possible explanations for this occurrence. The first is that the by
analyzing divisions of a lung, the sample-size of the measurements taken increases
substantially, which could account for increased accuracy in the larger. The sec-
ond possible explanation is that the measures were originally designed to be used
on whole lung scans, so that smaller variations within a sub-region could cause
increased error rates, such as increased noise in the apicies of the lungs. Normally,

local variations would have a larger lung volume to be averaged against, thus mit-
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igating their effects on the measures accuracy, but the limited regional volume
could allow for the variations to have a larger effect. This could be considered a

limitation of the measures for local analysis.

To summarize, this work shows that there is a strong relationship between visual
grade and quantitative measures when distinguishing between normal, mild /moderate,
and severe cases. We also find that 65% predictability is possible for all divisions of
the lung, with EI and HIST being the most indicative of visual grade. The predic-
tion accuracy can be further increased to 75% if mild and moderate cases can be
grouped as a single class. Given that automated measures show good agreement
with visual grade, quantitative measures could be used as surrogate scores for the

interpretation and assessment of emphysema severity in lung CT scans.

3.2 Geometric Assessment of Emphysema and Comparison

with Pulmonary Function Data

The purpose of this work was to evaluate the efficacy of a novel method of em-
physema quantification and associated hyperinflation from whole lung CT scans
through the use of diaphragm curvature estimation and the relationship between
diaphragm curvature and pulmonary function data as compared to standard quan-
tification metrics. As these measures describe clinically relevant information, it is
important to see their relative relationship to the clinical gold standard of em-
physema evaluation. This work directly focuses on comparing the proposed non-
density based diaphragm curvature measures described in Section 2.3 to the most
commonly used density-based score reported in the literature: the emphysema

index. All density-based methods work from the underlying assumption that em-
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physema is marked by the breakdown of alveolar air sacs in the lung, which can
visually be described as being regions of lung parenchyma that are of a signifi-
cantly low density. One major concern with the use of any density-based measure,
however, is that the measures reliance on density or attenuation information from
CT, which varies by scanner and can be hard to standardize across sites and time.
By evaluating a new non-density based approach, this work seeks to augment em-
physema quantification from CT scans by providing a new, supplemental approach
that correlates with well known anatomic changes that are known to occur with
emphysema as well as some pulmonary function (PFT) and lung diffusion capacity

(DLCO) data, without being reliant on density information.

3.2.1 Methods and Materials

To evaluate the ability of the diaphragm curvature measures to quantitatively
measure the presence of emphysema in lung parenchyma from CT data, Pearson’s
correlations between the diaphragm curvature measures and two pulmonary func-
tion test score types, flow-volume rates or PFTs (FEV1% and FEV1/FVC) and
gas diffusion capacity (DLCO), were computed. The PFT comparison dataset
was comprised of 388 scans acquired at the University of Navarra, Spain. All scans
were thin-slice (<1.25mm), whole-lung, low-dose CT scans. All PFT dataset scans
had an associated FEV1% and FEV1/FVC score that indicated mild or moderate

COPD with which to correlate the CT image metrics.

The DLCO dataset was comprised of 24 whole-lung scans were acquired from
Columbia University Medical Center. 19 scans were acquired using with a Sen-
sation 16 scanner at a Smm slice-thickness and 5 scans were acquired using a

Somatom Plus 4 scanner at a 10mm slice-thickness. All scans had DLCO data
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Table 3.2: Pearson Correlations between Image-based Emphysema Scores and PF'T
Data

| | FEV1% | FEV1/FVC |

Emphysema Index -0.02 -0.31%
L-D Height Ratio -0.17* -0.24*
Diaphragm Extent Ratio | 0.13* 0.22%*

associated with them, including diffusing capacity of the lung for carbon monoxide
(DLCO), percent DLCO (DLCO%), alveolar volume (VA), and DLCO corrected
by VA. Pearson correlation coefficients were computed between both diaphragm
measures and the DLCO measures. Finally, the emphysema index computed at
-910 H.U. was used as the standard quantification measure from CT with which
to compare the efficacy proposed diaphragm measures, and thee correlations of
the proposed measures to clinical lung function data were then compared to the

correlation of emphysema index to the same data.

3.2.2 Results

When comparing diaphragm curvature and emphysema index to PFT data, it
was found that diaphragm curvature measures correlated with FEV1% (r=0.17 vs.
r=-0.02) while emphysema index correlated more strongly with FEV1/FVC ratio
(r=-0.31 vs. r=-0.24). However, it was also found that the diaphragm curvature
scores do not correlate well with the density based emphysema index (r=0.02-
0.04). This would indicate that diaphragm curvature provides useful information

different from emphysema index and, by extension, density based measures.

When comparing image-based emphysema scores to DLCO, it was found that

several of the proposed diaphragm curvature measures have higher correlation with

DLCO, DLCO% and VA than does the emphysema index. Table 3.3 shows the cor-
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Table 3.3: Pearson Correlations Between Investigated Image-derived Severity
Scores and Gas-diffusion Pulmonary Function Scores. The coronal Diaphragm
Extent Ratio (DER) bolded to show trends in correlation vs emphysema index
(EI) and the Lung-Diaphragm Height Ratio (LDHR). P-values are indicated as
follows: *(p<0.1), **(p<0.05), ***(p<0.01)

| [ DLCO [DLCO%| VA  [DLCO/VA [ DLCO/VAY% |

ElI -0.081 -0.081 0.097 -0.347* -0.408**
LDHR | -0.446** -0.234 -0.327* -0.311* -0.318*
DER | -0.571%** | -0.367* | -0.543*** -0.219 -0.260

relation of all evaluated measures to the DLCO measures investigated in this work.
The highest correlation found was between DLCO and the coronal diaphragm ex-
tent ratio (r=-0.571). Adjustment for body size, sex and age (DLCO%) attenuated
the associations, although they remained significant. The lung-diaphragm height
ratio showed the strongest correlation of the proposed measures to DLCO data cor-
rected by alveolar volume. Finally, it was also found that the coronal diaphragm
extent ratio has a correlation of only r=0.27 to emphysema index, indicating that

they measure different aspects of the disease state.

3.2.3 Discussion and Impact

Evaluation of the extracted diaphragm showed sufficient segmentation accuracy
of the diaphragm surface for the curvature estimates analyzed to be considered
reliable. Given that most of the segmentation errors in the diaphragm extraction
were either small under-segmentations at the periphery of the diaphragm, leading
to a slight fraying of the diaphragm edges, or a failure to eliminate small lung
wall attachments from the edges, the primarily one-dimensional measurements
are not sensitive to small variations in segmentation. This particularly notable

with regards to over-segmentation at the lung wall, as the height of these over-
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Figure 3.2: Sample Diaphragm and Lung Segmentations. A sample segmentation
of low-curvature (left) and high-curvature (right) diaphragms. Curvature has been
seen to be related to hyper-inflation and correlates with PFT scores, with the
low-curvature example being associated with FEV1/FVC score of 0.56 and the
high-curvature example being associated with FEV1/FVC score of 0.80

segmentations will fall between the true apex and base of the diaphragm, and thus
not affect the measures. As the assumptions used in the segmentation algorithm
are fairly simple, the proposed diaphragm segmentation algorithm could also be
used to extract the diaphragm from any whole-lung CT scan except for those cases

in which extreme disease-state/treatment altered anatomy, such as a partial lung

resection causing what would appear to be two “bottom” surfaces of the lung.

It was found that the diaphragm measures offers some correlation to spiromet-
ric pulmonary function data and moderately-strong correlation values with DLCO
measures versus standard emphysema index, particularly the diaphragm extent
ratio in the coronal plane, indicating that the new measures would be useful in
quantitatively measuring emphysema. Figure 3.2 provides a pair of cases illus-
trating the correlation of diaphragm curvature to spirometric pulmonary function
tests. Even after correction factors are applied, the correlation remains significant,

although attenuated. It can also be seen that the lung-to-diaphragm height ratio
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achieves a stronger correlation to the DLCO data once corrected, achieving compa-
rable results to the emphysema index for that measure. The correlation obtained
in this work for emphysema index versus DLCO corrected by VA is in line with the
correlations often seen in literature for various comparisons of quantitative scores
to pulmonary function data (approximately r=0.4) [91]. This is useful in estab-
lishing the relative strength of new measures against standard measures. As the
measures proposed in this work are on the same level as or surpass the correlation
of standard measures to pulmonary function data, the proposed measures can be
considered useful in quantifying emphysema. Also, as the correlation between the
diaphragm curvature measures and emphysema index is relatively low (r = 0.27),
the use of the proposed measures would offer new information on disease state and
could be used in conjunction with established measures to create a better quanti-
tative model of emphysema analysis, although a larger dataset would be needed to
accurately assess the advantages gained through the use of multiple quantitative

measures for the evaluation of emphysema.

The use of proposed diaphragm curvature estimates for emphysema quantifi-
cation offers several advantages over density-based measures in terms of quanti-
tatively analyzing emphysema. The primary advantage of these measures is the
lack of reliance on hard density limits for determining what is and is not an em-
physematous region. As these density limits are known to be sensitive to noise,
reconstruction algorithm, and scan parameters such as slice thickness, having a
measure robust to these variation would allow for more accurate of assessment of
disease progression over multiple scans, where noise levels and scan acquisition pa-
rameters will vary |61]. Furthermore, the segmentation of the diaphragm is fairly
reproducible from the lung mask, allowing for more consistent measurements of

curvature.
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Overall, this work offers a novel approach to emphysema quantification and
hyperinflation and offers a new metric that can allow for further estimation of
emphysema present in a whole lung CT scan when combined with standard quan-
tification metrics such as emphysema index. Diaphragm measurement can have
higher correlation to certain DLCO measurements than standard measures, indi-
cating usefulness as a measure of COPD from whole-lung CT data. As a non-
density based measure, it also offers several advantages over density measures,
especially robustness to noise and the lack of fixed density threshold. Further-
more, it could be used augment standard measures in COPD analysis from CT
data, as the lower correlation of the standard measures to diaphragm measures
indicates that the proposed measure evaluates a different aspect of the disease to

the standard measures.

3.3 Improved Prediction of Spirometric PFT Scores through

Multivariate Modeling

Pulmonary function tests are the standard method for diagnosing COPD (a com-
bination of emphysema and airway disease). Through the use of CT, direct assess-
ment of the extent of emphysema in a given patient is possible. However, CT can
be used to determine the individual contributions of different diseases to COPD
severity in asymptomatic patients in order to create a better representation of the
components of COPD. This in turn could lead to improved modeling and prediction
pulmonary function test data. The goal of this particular research was to develop
a method to predict PFTs that accommodates our understanding the disease in

order to better describe the disease. Table summarizes findings from previous
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Table 3.4: Summary of Findings from Previous Studies of the Relationship between
PFT Scores and Image Data. Each row lists the author, study size, severity of
COPD in study (by NTH/W.H.O. GOLD staging), metrics used in the work, and
the correlations to FEV1% and FVC. The main airway score was the ratio of air-
wall area to airway lumen cross-sectional area (WA%). Emphysema index (EI),
percentile of the histogram (HIST) and mean lung density (MLD) are considered
as the parenchymal health scores. Although high correlation is achievable between
PFT and CT data, this is only for cases involving severe emphysema (GOLD Stage
3+). Tt is worth noting that when looking at healthy (GOLD Stage 0) or relatively
asymptomatic patients (GOLD Stage 1-2), the correlation strength is much lower.
| Author | Study N [ Severity Stage [ Metric | FEV1% [ FEV1/FVC |

Nakano et al. 114 1-4 WA% -0.34 -
Nakano et al. 114 1-4 EI and WA% 0.66 -
Berger et al. 24 0-3 WA% 0.51 -
Heussel et al. 104 3-4 EI -0.35 -0.63
Heussel et al. 104 3-4 MLD 0.43 -0.69
Heussel et al. 104 3-4 HIST 0.34 0.62
Heussel et al. 44 0 EI 0.11 -0.43
Heussel et al. 44 0 MLD -0.23 0.34
Heussel et al. 44 0 HIST -0.29 0.3

studies that correlated image metrics of COPD severity (airway and parenchymal

health) and spirometric PFT scores.

Previous work in this area has primarily focused on combining two features
of COPD, an airway disease score and an emphysema severity score, in order to
better correlate CT image measures to spirometric PFT scores and is summarized
in Table 3.4. For example, using 114 standard-dose CT images to evaluate airway
wall thickening in smokers with COPD, Nakano et al. found that the ratio of wall
area to lumen area (WA%) correlated with FEV1% (Pearson’s r=-0.34) [92]. They
further found that by combining the wall thickness measure with emphysema index
in multivariate regression model, the correlation of image scores to emphysema
scores could be improved to r = 0.66. Further work by Berger et al. comparing

airway wall thickness ratio in 24 patients with and without COPD also correlated
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well with FEV1% (r = -0.51), indicating that airway disease scores might be a

dominant factor in predicting FEV1% [93].

However, a recent study by Heussel et al. comparing density-based emphysema
measures (i.e. emphysema index) to PFT data found that correlation strength de-
pended on COPD severity [51]|. For example, Heussel et al. reported a correlation
of emphysema index to FEV1% (r=-0.35) similar to the correlation reported by
Nakano et al. for airway score (r=-0.34) for cases with severe COPD (Stage 3+),
and that the trend holds true for correlating emphysema index to FEV1/FVC
(r=-—0.63). However, Heussel et al. also found that the strength of correlation is
greatly reduced when image scores are compared to pulmonary function scores in
healthy patients, with a reduced Pearson’s correlation to FEV1% of r=0.11 and
to FEV1/FVC of r=-0.43, indicating disease severity is a confounding factor in
analyzing the effectiveness of image measures to predict pulmonary function data.
This is an important distinction, as severe stage COPD patients would already be
symptomatic at the time of an incidental CT scan, yet assessing and predicting
future COPD complications in asymptomatic patients would be a more clinically
relevant task. This particular work is thus focused on developing an improved
model for predicting pulmonary function in non-severe COPD patients through

multivariate modeling using image-based scores of COPD as covariates.

3.3.1 Methods and Materials

For this study, we established four covariates as measures of COPD to account for
different disease components that contribute to COPD at a global level as a means
to develop a predictive model. As functional vital capacity is a known factor in

PFT scores, total lung volume was included as the first covariate. The second
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Figure 3.3: Hlustration of Airway Wall-thickness Scoring. Airway disease severity
score is computed as the ratio of airway wall thickness to airway lumen diameter
(WA%). Both a narrowing of the airway lumen and thickening of the airway
walls is associated with obstruction of the peripheral airways. The severity of the
obstruction is thus positively correlated with the WA% ratio.

covariate that was used is a density-based measure parenchymal tissue health,
the emphysema index computed at -950 HU, as emphysema index is the most
widely used measure for computing emphysema from CT data and the -950 HU
has been shown in previous work to be sensitive to indications of emphysema even

in asymptomatic patients [94]. The implementation and background are discussed

in section 2.2.1.

In order to capture the effect of hyper-inflation on COPD severity, the second
metric of emphysema introduced to the model was diaphragm curvature, in partic-
ular the lung-diaphragm height ratio. The lung and diaphragm heights are based
on coronal projections of the segmented surface of both, an example of which is
given in Figure 3.2. Segmentation of the diaphragm is done based on segmentation
of the lower surface of the lung using surface normals and has been described in

section 2.3.

Finally, in order to capture the contribution of small airway disease to COPD,
the ratio of airway wall thickness (WT) to lumen diameter (LD) was included
as the final covariate (WA%). The calculation of this airway score was based on

previous work by Lee et al. and effectively computes the ratio of the average wall
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thickness and lumen diameter of the 6th-generation bronchial tree. Such a measure
is beneficial as deeper generations of the airway tree have more impact on airway
obstruction. For reference an illustration of an airway and the related measure is

provided in Figure 3.3.

Using a dataset of 388 thin-slice CT scans with pulmonary function test scores
(FEV1/FVC < 0.8) from patients with primarily GOLD stage 1-2 COPD acquired
in collaboration with the University of Navarra. We computed the Pearson’s corre-
lation coefficient between the four individual covariates and the two main spiromet-
ric PET scores: FEV1% and FEV1/FVC. In order to determine the effectiveness
of a emphysema-based multivariate model in predicting pulmonary function test
scores we will then define a three-term multivariate model excluding the airway

score given as

PFT =a-EI+B-LDHR+~-VOL +¢

where EI is the emphysema index score of a scan, LDHR is the lung-diaphragm
height ratio as computed from the image data, VOL is the total lung volume, and
a, B,y and ¢ are the coefficients and intercept of the regression model. The model
was trained twice, once for each of two PFT scores (FEV1% and the FEV1/FVC).
The correlation between the predictive model and true PFT score was computed
and compared to the univariate case. Finally, an expanded four-term model in-

cluding airway disease score, given as
PFT =«a-EI+(-LDHR+~-VOL+n-WA% + ¢

was defined, using the same terms as above with the addition of airway wall thick-
ness score WA%. This model was be used to determine the contribution of airway
obstruction to pulmonary function scores and the additional gain in correlation

strength reported. For each of the models, a four-fold cross-validation scheme was
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used to evaluate the predictive strength of the model, where the 388 cases was split
into four groups of 97 cases using random assignment, three folds used to train the
model, with the last fold used to test the model. This process was repeated four
times, each time withholding a different fold for testing. Finally, analysis of vari-
ance (ANOVA) was performed to determine which model covariates are significant
and if there is statistical improvement in the model when additional covariates are

added.

3.3.2 Results and Discussion

Table 3.5: Pearson Correlations between Image-based COPD Scores and Lung
Volume Models vs. PE'T Data

Model Terms Used | FEV1% | FEV1/FVC |
Emphysema Index (EI) -0.02 -0.31
Lung Diaphragm Height Ratio (LDHR) | -0.17 -0.24
Wall Area Ratio (WA%) -0.33 -0.15
Lung Inspiration Volume (VOL) 0.02 0.40
EI+LDHR+VOL 0.11 0.46
EI+LDHR+VOL-+WA% 0.34 0.54

When investing the correlation of image metrics of COPD to PFT scores indi-
vidually, it was found that correlations were generally stronger for FEV1/FVC
versus FEV1% for all measures except the airway score. A summary of the cor-
relations between the four covariates (Emphysema Index,Lung Diaphragm Height
Ratio,Wall Area Ratio, and Lung Volume) can be seen in Table 3.5. The hyper-
inflation based diaphragm curvature score achieved higher correlation than the
density based emphysema index for FEV1% (r=-0.17 vs r=-0.02), but achieved

lower correlation when looking at the FEV1 to FVC ratio (r—-0.24 vs. r—-0.31).
As is also seen in Table 3.5, multivariate modeling using the three-term model
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increased correlation of FEV1/FVC by the emphysema scores to r=0.46 from
r=0.31 (r=0.4 for the volume term) in the univariate case. The correlation to
FEV1% was reduced from r=-0.17 to r=0.11, which may indicate the FEV1%
is primarily effected by airway scores and not parenchymal health. ANOVA for
the three-term FEV1/FVC spirometry model found that all terms and model sig-
nificant and model (p<0.001). It was also found that the multivariate model of

FEV1/FVC was statistically significant over univariate cases (p<0.001).

Inclusion of the airway score was further found to improve prediction of FEV1/FVC
over the 3-term model with a Pearson’s correlation of r=0.54 between predicted
and actual PFT score obtainable (three-term model correlation: r=0.46), as was
also seen in Table 3.5. ANOVA for the four-term FEV1/FVC spirometry model
found that all terms and model significant and model (p<0.001) and that the four-
term model was statistically significant over the three-term model. The four-term
model was not able to achieve improved correlation to FEV1% over the univariate
WA% airway score model. A plot of the predictive models for FEV1/FVC using
the emphysema index univariate model and the four-term, emphysema and airway

score multivariate model are shown in Figure 3.4.

One interesting finding from these experiments compared to previous studies
outlined in Table 3.4 is that we achieved a lower baseline correlation between
emphysema index score and FEV1% for all but the stage 0 control group in the
study by Heussel et al. However, this is most likely due to the lack of severe stage
(Stage 3+) COPD patients in the dataset used in this work and further shows the
impact of patient severity on correlation strength. Further investigation into the
work by Nakano et al. also shows this to be the case. Although a correlation of

r—-0.529 can be achieved between FEV1% and Emphysema Index (LAA) when
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Figure 3.4: Emphysema Index vs. Multivariate Linear Regression Models for Pre-
dicting FEV1/FVC. Plots for both the emphysema index univariate prediction
model (left) and the four-term, emphysema and airway score multivariate predic-
tion model (right) of FEV1/FVC are shown above using the complete dataset of
388 scans. Pearson’s correlation for the univariate model was found to be r=0.31
and the improved multivariate model was able to achieve a Pearson’s correlation
of r=0.54. It is worth noting that for both models, the correlation line had a slope
of approximately unity (slope=0.99).
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Figure 3.5: Reproduction of Plot Illustrating Correlation of EI to FEV1 from
Nakano et al. [92]. This plot is a reproduction of a plot shown in the Nakano et al.
study published in 2000. In this plot, it is shown that a correlation of r=-0.529 can
be achieved between FEV1% and Emphysema Index (LAA) when looking at cases
covering the full spectrum of COPD severity (stage 0-4). However, the greater
correlation can be seen to come as a result of the inclusion of severe stage COPD
patients (FEV1%<50%, stage 3+) outlined in the in the thin gray box on the
left. A much weaker correlation can be inferred if only relatively healthier cases
(FEV1%>50, thick dashed box) are investigated.

looking at cases covering the full spectrum of COPD severity (stage 0-4), the
greater correlation can be seen to come as a result of the inclusion of severe stage
COPD patients (FEV1%<50%, stage 3+) as seen in Figure 3.5, where as relatively

healthier and asymptomatic patients (stage 0-2) may be a more clinically relevant

and interesting group to study.

3.3.3 Conclusion

This work showed that a multivariate model incorporating various image scores
of COPD severity, including both emphysema and airway disease scores, could
be used to predict spirometric pulmonary function test scores. For example, a
four-term multivariate model was able to obtain a Pearson’s correlation of r=0.54

between predicted and actual FEV1/FVC scores on a dataset of 388 patients. The
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particular usefulness, though, is that this predictive strength was achievable for
non-severe stage COPD patients, which have often had lower correlations to PFTs
versus severe-stage COPD. Such work would be useful in establishing a predictive
model for asymptomatic patients which is a more clinically relevant topic in terms

of early diagnosis of possible COPD.
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CHAPTER 4
EMPHYSEMA METRIC REPEATABILITY AND INSPIRATION
COMPENSATION

The primary focus in this chapter is on the analysis of quantitative metric varia-
tion and subsequent compensation of this variation. As one of the major limitations
in the clinical application of image-derived emphysema metrics is their lack of re-
peatability, characterizing the variation of these measures becomes paramount. To
that end, the beginning of this chapter is focused on investigating and quantifying
measure variability in terms of scan-acquisition protocol (Section 4.1) and inspi-
ration change (Section 4.3), which are two known sources of measure instability.
Given that the ability to correct for this variation and improve metric repeata-
bility is important to improve the reliability of longitudinal studies, a univariate
compensation model for inspiration volume change is implemented and discussed
in Section 4.3. This chapter then concludes with the introduction and evaluation
of an improved multivariate inspiration compensation model for densitometric em-

physema measures on zero-change datasets in Section 4.4.

4.1 The Impact of Scan-Acquisition Protocol on Emphy-
sema Measure Repeatability

Quantitative emphysema measures from CT, such as emphysema index, have been

shown to have a low level of reproducibility between scans, even short-time-interval

scans [16], limiting its application in clinical settings. CT scanner settings and

dosing can have significant effects on quantitative measurements and have been

implicated as a source of bias. As would be expected to occur during long-term
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longitudinal studies, technology advancements are incorporated into updated study
protocols. Subsequently, the CT scanner protocol used in the study would be al-
tered in order to take advantage of the improved capabilities of the new equipment.
This however leads to biases introduced for each measure on subsequent scans. In
order to accurately compare longitudinal scans for a given patient, as well as accu-
rately compare the distribution of measured diseased state for a population, these

biases need to be quantified in order to correct for them.

4.1.1 Methods and Materials

In order to understand how the quantitative emphysema measures vary for a par-
ticular population, two datasets comprised of 2 different acquisition parameters
were used to investigate the bias introduced when altering scan acquisition set-
ting. The first dataset consisted of scans taken at a 5mm slice thickness at 140
kVP using a GE LightSpeed QX/i. There were 241 scans at this resolution. This
parameter setting is referred to in this section as parameter setting ‘A’. Subse-
quently, a second dataset consisting of 1293 scans was acquired using a different
scanner using a 1.25mm slice thickness at 120 kVP using a GE LightSpeed Ultra.

This parameter setting is referred to in this section as parameter setting ‘B’.

For each dataset, the distribution of the four primary emphysema measures,
including the mean and empirical 90% confidence interval, was computed for all
four measures of interest in this study. For both of these datasets, the normal-
ized measures are reported, as this allows for direct comparison of the measures.
The measures were then compared directly to one another across both parameter

settings as well as the change in mean and variation.
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To determine if there were differences in the inter-scan variation between these
measures based on varying scanner parameters, the second aspect of this research
examined at the inter-scan variability of the measures of interest. The available
cases were sub-divided into 3 sets of scan-pairs by combining two sequential scans
from a single case where the scanner parameters met specific criterion in the base-
line scan and the sequential scan. The first two sets were comprised of scans that
did not change scanner parameters in going from the initial to follow-up scan.
These were termed the ’A-to-A’ set, as in first scan was acquired using parameter
set A as was the follow-up scan, of which there were 223 pairings with a mean time
difference between scans of 402 days (6—=49 days), and the 'B-to-B’ set, of which
there were 1109 number of pairings with a mean time difference between scans of
414 days (0=92 days). A third dataset was compiled using 695 sequential scans
that went from using parameter set A in the initial scan to parameter set B in the
sequential scan. This set of pairings was labeled the ’A-to-B’ set and had a mean

time difference between scans of 439 days (0—103 days).

For each of these three datasets, the inter-scan differences and absolute dif-
ferences in value between each normalized measure was computed. In order to
understand the variability of the measures overall, the median difference for ab-
solute change as well as the empirical 90% confidence interval were calculated.
Further comparing the three scan-pair datasets and their variation would allow for
the identification and quantification of a bias introduced when changing protocol

in a longitudinal study and possibly allow for a method for correcting said bias.
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Table 4.1: Distribution of normalized emphysema measures for specific parameter
settings. Reported values are mean and standard deviation (u,o)

| Parameter\Measure | EI(-910) | HIST(15) | MLD | FD(-910) |
Setting A 33.2,15.0 | 41.6, 20.1 | 57.1, 13.7 | 50.9, 18.1
Setting B 39.1, 14.7 | 52.6, 32.4 | 54.0, 18.5 | 49.7, 20.1

Table 4.2: Absolute Differences between sequential scans for normalized measures.
Reported values are median and empirical 90% confidence interval.

| Dataset\Measure | EI(-910) | HIST(15) | MLD | FD(-910) |
A-to-A 5.0 (0.4-19.7) [ 7 (0.1-26) | 4.7 (0.7-19.0) | 3.8 (0.3-17.1)
A-to-B 9.6 (1.1-25.2) | 20 (4-48) | 6.4 (0.6-27.5) | 5.4 (0.5-26.5)
B-to-B 4.6 (0.3-16.0) | 6 (1-25) | 4.5 (0.5-21.0) | 4.7 (0.3-19.6)

4.1.2 Results

Table 4.1 gives the mean and standard deviations for the distribution of the nor-
malized measures for scans using the thick slice protocol, parameter setting ‘A’,
and scans using the thin slice protocol, parameter setting ‘B’. Reported values are
mean and standard deviation. Table 4.2 shows the median and empirical 90% con-
fidence interval of absolute differences between normalized measures in subsequent
scans. ‘A-to-A’ denotes the first data set where both the initial scan and follow-
up scan are acquired using parameter setting A as previously described. ‘A-to-B’
denotes the data set where the initial scan is taken using parameter setting A and
the follow-up scan is acquired using parameter setting B. ‘B-to-B’ denotes both

scans being acquired using parameter setting B.

Table 4.3: Relative differences in emphysema measures between subsequent scans
of varying protocols for normalized measures. Reported values are mean and stan-
dard deviation (u,0)

| Dataset\Measure | EI(-910) | HIST(15) | MLD [ FD(-910) |
A-to-A 3.6,10.5 [ 55,162 [ 2.9,11.3 [ -2.2,9.9
A-to-B 8.8,9.6 | 19.9,16.4 | -4.4,12.4 | 0.6, 12.6
B-to-B -0.1,83 | -0.7,13.1 | 0.7, 11.1 | 0.8, 10.3
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When comparing constant inter-scan parameter settings (A-to-A and B-to-B)
to altered settings (A-to-B), it was found that the median absolute variation to
increase between 25% for the fractal dimension to approximately 250% for the
histogram percentile. The range of variation also increased in a similar manner for

the A-to-B dataset versus the constant datasets.

Table 4.3 shows the mean and standard deviation of the inter-scan difference
of the normalized measures for each of the three parameter setting combinations,
as described for Table 4.2. When comparing the A-to-B cohort to the consistent
parameter pairings, there was a trend towards a bias for all measures except the

fractal dimension.

4.1.3 Discussion and Impact

Comparing the differences in normalized emphysema scores between longitudinal
scans for both constant and varying scan acquisition parameters allows for the
determination of biases introduced by the specific protocol change. It was found
that the mean difference was greater for the varying parameter dataset for all
the measures other than the fractal dimension. The histogram percentile score
was found to be the most affected by the change in scan acquisition protocol.
This would imply that the fractal dimension could be very useful as a measure
of emphysema in long-term studies as it appears to be the least sensitive to the
variation and biases introduced by changes in scan acquisition protocol, which
can be expected to occur as clinical practice will inevitably update equipment to

account for advances in CT technology.

The inter-scan variability of quantitative measures of emphysema is important
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to understand in longitudinal studies in order to accurately asses true change in a
person’s status versus random variability in the measure. In that context, Table
4.2 shows that while emphysema index, mean lung density and the fractal dimen-
sion had comparable median differences, with the histogram percentile tending to
have the largest variation. A slight trend toward emphysema index and fractal
dimension to have similar variation was found and that both are superior when
compared to the other measures. Inter-scan alteration of scanner parameters was

also found to impact the overall variability of the emphysema measures.

When comparing scan-pairs where both scans are acquired using the same set-
tings to scan-pairs acquired with altered settings, it was found that there is a large
increase in measure variability across the various measures. Overall the fractal
dimension had the least amount of change in variability due to varying scanner pa-
rameter settings. This indicates that the fractal dimension is the most robust of the

four measures against the biases introduced by altered scan acquisition protocols.

4.2 Emphysema Metric Difference Correlations and Rela-

tion to Inspiration Change

In this section, the distribution and variation of established quantitative measures
for emphysema from low-dose, whole-lung CT scans is evaluated. The relationship
of the measures to lung volume is also analyzed. Finally, to quantify the amount
of related information provided by the emphysema quantification scores, inter-
measure correlations are computed as well. The primary measures of interest
are the emphysema index, mean lung density, histogram percentiles, and fractal

dimension; all of these have been promoted as measures for quantification of the
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underlying anatomical basis for emphysema. The inter-scan variability of these
measures over a one year time period is examined in which the actual change due
to the progression of emphysema is expected to be small relative to the random

variation present in the measures.

As previously shown by Gietema et al., a major concern with the use of these
emphysema measures has been their clinical lack of repeatability as a result of
large inter-scan variations as this would limit the usefulness in measuring disease
progression [16]. Beyond altered scanner settings between longitudinal scans of a
patient [61], measure variation has been attributed to multiple sources, including
varying dose [76] and inspiration levels [53,54]. It is therefore important to quantify

measure distributions, to understand overall and underlying measure variability.

In section 4.1, the effect of altering scan acquisition parameter settings on
reported emphysema metrics was considered [87]. However, to date, little work has
gone into evaluating the effect of inspiration on multiple emphysema measurements
or into evaluating the relationship between various measures. Information such
as the correlation between inspiration and measurement change as well as inter-
measurement correlation is therefore useful as it identifies which measures offer the

most unique information and how much redundancy there is between measures.

The aim of this study was to expand upon the work first presented in section
4.1 by evaluating emphysema measures in a large cohort and determine measure
distribution and variation over a standard scan interval of approximately 1 year. In
addition, it was also sought to establish what measures were offered similar infor-
mation when compared with other scores and which measures were most affected
by inspiration level changes for use in future work focusing on reducing inter-scan

variation.
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4.2.1 Methods and Materials

Four primary densitometric measures commonly used for the quantification of the
anatomical basis of emphysema from CT data were investigated in this work:
emphysema index, mean lung density, histogram percentiles, and fractal dimension.
As before, to minimize bias due to the low density volume in the major airways
on the density-based metrics, the major airway structures (trachea, main bronchi,
etc. .. ) were removed from consideration using a segmentation method as described
by Lee et. al. [56]. Given that the measures investigated in this study are on
different scales relative to one another, normalization of the practical range was

used to allow for direct comparison as described in Section 2.2.5.

To understand how these measures vary for a screening population, we first
computed the distribution of the emphysema measures, including the mean and
empirical 95% confidence interval for both the non-normalized and normalized
measures. To assess variability of these measures, we compute relative and abso-
lute differences between the measures for each scan pair. These differences are also
reported using original and normalized score. Spearman’s rank correlation coeffi-
cient is also calculated to determine how much unique information is provided by
each measure relative to the others with regards to detecting disease state change.
Finally, in order to determine how much variation can be attributed to volume
differences in a cohort, Spearman correlation coefficients are computed for change
of each measure versus lung inspiration volume. Pearson correlation is also com-
puted to determine the strength of linear dependence, if any. The dependence of
the measures on lung volume would indicate how much the measure variability
can be accounted for by inspiration volume differences and, therefore, not directly

related to the anatomical basis of the disease.
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The image data used in this work was derived from a long term CT study at
the Weill Medical College of Cornell University. In order to eliminate the variation
caused by changes in scanner acquisition settings, only cases where two consecutive
scans were acquired with constant settings were used for this work. For this work,
626 cases with 2 scans (1252 scans) taken at an interval time difference between
9 months and 15 months (y: 381 days, o: 31 days) were selected. All scans were
acquired at a 1.25mm slice thickness with a LightSpeed Ultra MDCT scanner
at 120 kVP using a low dose protocol. Recently, low-dose protocols have been
shown to offer comparable information to standard dose scans for the purposes of
evaluating COPD and emphysema [90,95|. For each scan, the emphysema index,
15th percentile of the histogram, fractal dimension, and mean lung density were

computed using in-house developed software.

4.2.2 Results

Emphysema Metric Distributions

For the study cohort of 1252 scans analyzed, we found 95% of emphysema indicies
fell in the range of 8.7 to 48.1, covering the range of mild to severe. All scans
were acquired using the same scanner parameter settings. Table 4.4 gives the
distribution of measures for the study cohort for the four most commonly used
emphysema measures. In order to allow the most accurate comparison between
the measures, both original and normalized scores of the various measures are
reported. Using emphysema index as a baseline, both mean lung density and the
15th percentile of the histogram have a slight, comparable bias toward severity

of emphysema for this cohort when all measures are normalized, while the fractal
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Table 4.4: Measurement Distributions for Emphysema Index (EI), Mean Lung
Density (MLD), 15th Percentile of the Histogram (HIST), and Fractal Dimension
(FD). Top: Distribution of original scores, Bottom: Distribution of normalized
scores. Reported statistics are mean (u), median, standard deviation (o) and the
lower and upper bounds of the empirical 95% confidence interval (95% CI).

Measure EI MLD HIST FD
U 27.05 -806.27 -933.07 -1.24
Median 26.40 -809.90 -935.00 -1.16
o 10.13 30.90 20.29 0.42
95% CI | 8.72 to 48.11 | -853.10 to -734.40 | -966.00 to -884.90 | -2.25 to -0.64
Measure El MLD HIST FD
U 38.64 53.14 53.07 58.59
Median 37.71 54.95 55.00 61.65
o] 14.48 15.45 20.29 16.61
95% CI | 12.45 to 68.73 | 17.20 to 76.55 | 4.90 to 86.00 | 17.82 to 82.52

dimension shows a large degree of additional severity.

Measurement Variability

626 scan pairs between with an interval time difference between 9 months and 15
months (u: 381 days, o: 31 days) using identical scanner parameter settings were
analyzed to determine the inter-scan differences in measurements associated with a
screening cohort. Table 4.5 shows the variability of the normalized measures when
taking account both relative and absolute change distributions of the measures.
When looking at the relative variation of the measures; both emphysema index
and the fractal dimension have roughly equivalent distributions, as do the mean
lung density and 15th percentile of the histogram, with the latter measures having
slightly more variability. However, when looking at the the absolute variation
between measures, a larger discrepancy in the variability between the measures is
observed, with the emphysema index having the least absolute variation and the

15th percentile of the histogram being most variable.
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Table 4.5: Distribution of Score Variation for Normalized Emphysema Measures.
Top: Distribution of relative change in normalized score, Bottom: Distribution of
absolute change in normalized score. Reported statistics are mean (u), median,
standard deviation (o) and the lower and upper bounds of the empirical 95%

confidence interval (95% CI).

Measure AEI AMLD AHIST AFD
u -0.24 0.42 -1.03 -0.52
Median -0.14 0.40 -1.00 -0.78
o 7.72 10.12 11.65 9.29
95% CI | -15.00 to 14.97 | -18.56 to 20.39 | -26.40 to 20.00 | -18.45 to 18.36
Measure AEI AMLD AHIST AFD
U 5.75 6.69 8.07 6.51
Median 4.57 4.55 6 4.8
o] 5.15 7.60 8.47 6.63
95% CI | 0.14 to 18.40 | 0.30 to 31.1 | 0.10 to 34.0 | 0.18 to 24.37

Table 4.6: Pairwise Inter-measure Variation Correlation. Moderate to strong cor-
relations can be found when the comparing the inter-scan change in one measure

to the variation in another measure.

Measures Spearman’s o
AEI : AMLD -0.89
AEI : AHIST -0.92

AEI : AFD 0.83
AMLD : AHIST 0.80
AMLD : AFD -0.86
AHIST : AFD -0.72

Intra-metric Correlation

Table 4.6 presents the inter-measure correlations in variation between the 4 mea-
sures investigated in this study. Using emphysema index variation as the baseline
metric of disease progression, we found that the most additional information comes
from the fractal dimension (p=0.72, p<.001) and the mean lung density (0=0.83,
p<.001). We also found that the 15th percentile of the histogram provides little
additional information beyond the emphysema index, as evidenced by a strong cor-

relation (p=0.92, p<0.001) between the two measures. The weakest relationship
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Table 4.7: Correlation between Inspiration Volume Change and Emphysema Mea-
surement Change. Moderately strong correlations can be found between all mea-
sures and inspiration change, with mean lung density showing the strongest rela-
tionship (p=-0.87, p<0.001).

Measures Pearson’s r* | Spearman’s p
AVolume : AEI 0.772 0.743
AVolume : AMLD -0.850 -0.857
AVolume : AHIST -0.664 -0.611
AVolume : AFD 0.723 0.714

overall was between the fractal dimension and the 15th percentile of the histogram.

Correlation to Inspiration Volume

For most measures, there is a moderately-strong correlation between variation in
inspiration volume and measure difference, as is seen in Table 4.7. Figure 4.1
illustrates this relationship between inter-scan change in inspiration volume and
associated change in emphysema index. Interestingly, we found that mean lung
density had the strongest correlation to volume (p=-0.87, p<0.001), which implies

that most of the variation can be explained by varied inspiration levels.

4.2.3 Discussion and Impact

This study provides information regarding the inter-scan variability of several com-
monly used quantitative measures of emphysema from whole-lung CT scans on a
large cohort. Investigating the distribution of the measures allows for the under-
standing of the relationship between them as they represent a cohort. We found
that after normalization, the mean lung density, the 15th percentile of the his-

togram, and particularly the fractal dimension, tend to report higher severities of
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Variation of Emphysema Index
vs. Inspiration Volume Variation

Difference in Emphysema Index
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Figure 4.1: Emphysema Index variation as a function of inter-scan inspiration
change in a large cohort. Linear regression analysis provides a line-of-best-fit
(shown) and a Pearson correlation of 72= 0.596.
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emphysema present in a given scan as compared to emphysema index. This is most
notable when viewing the normalized distribution of measures in Table 1. This
effect should be noted during longitudinal COPD studies, especially when one of

these measures is used as a baseline scoring from CT data.

Several thresholds have been proposed and evaluated for use in the emphysema
index for various reasons such as the slice thickness of scans [69] and dose, and
commonly has a range ranging from -970 H.U. to -850 H.U. [52,70,71|. As there
is no overall consensus in which density threshold is most appropriate [66], -910
HU was used in order to ensure that all possible emphysematous regions of the
lung were selected in our quantitative evaluation, and comparable parameters were
used in all measures in order to allow valid comparisons to be made between the

four measures investigated.

The inter-scan variability of quantitative measures of emphysema is important
to understand in longitudinal studies in order to accurately asses true change in
a person’s status versus the random variability present in the measure. Previous
studies have found that CT scanner settings and dosing, as well as the level of
inspiration, can have significant effects on quantitative measurements [53, 61, 76,
87]. However, no study to the author’s knowledge has compared several of these
quantitative measures concurrently and on a very large cohort. In that context,
we found the emphysema index tended to produce lower inter-scan measurement
variation, indicating that it may be the most useful single measurement for gauging
patient change. The fractal dimension had a comparable variation, which agrees
with Mitsunobu et al. in that the fractal dimension is more correlated with changes
in disease state versus other possible causes of variation, such as changes in fibrosis

and asthma [21]. In contrast, we found that both the mean lung density and 15th
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percentile of the histogram had almost twice the inter-scan variability, implying
that neither measure would be useful in long-term observation. However, since
it has been noted that an increase in extent emphysema tends to be associated
with hyperinflation [96], the high correlation of change in mean lung density and
change in lung volume agrees with the idea that the mean lung density may still
be useful in detecting that aspect of disease progression. The challenge remains in
determining how much of the effect is caused by inspiration changes versus true

disease progression and would require further investigation.

As has been described in previous works [59, 68|, lung density is affected by
changes in inspiration level. It is also commonly known that quantitative emphy-
sema measures from CT scans are depend ant on the level of inspiration. Even
using spirometry-gated inspiration, there can still be upwards of thirty percent
variability in inspiration volumes [53]. Therefore, as there appears to be no ap-
parent advantage in using spirometric gating [55], this study also looked at the
relationship between the measures evaluated and lung volume change in order to
determine how much variation can be attributed to volume differences in a cohort.
We found that in general that the variation in fractal dimension and histogram per-
centiles are least related to changes in inspiration level, which would imply that the
two measures could be beneficial in measuring emphysema in studies where spiro-
metric gating is unavailable due to the reduction of one known source of measure

variation.

The investigation of inter-measure correlation is also relevant to longitudinal
studies of emphysema as it gives the relationship between how much additional
information can be gained through the use of multiple measures versus the use

of a single measure. This can become critical in some instances, as the use of
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multiple measures to make a singular conclusion could allow for random variations
in a particular measure to become misleading in analysis. Therefore it becomes
important to note how much overlap there is between measures. Both mean lung
density and the fractal dimension give similar levels of additional information when
used to supplement the emphysema index. Given the lower inter-scan variability
of the fractal dimension, it would seem likely the fractal dimension should be used
in place of mean lung density when analyzing emphysema. It should be noted,
however, that change in mean lung density more correlated to volume change
than the fractal dimension, and therefore could be giving different, yet relevant
information about disease state. Given the strong correlation between emphysema
index and the 15th percentile, in general, only one should be used for assessment,

and the other reported for completeness.

In conclusion, this work establishes several inter-measurement relationships for
the primary measures of emphysema from CT. It was found that fractal dimension
and emphysema index have less inter-scan measurement variability as compared
to N-th percentile of the histogram and mean lung density. It was shown that
inter-scan variation of the four measures have moderately strong relationships to
one another (|o|=0.72-0.92). Finally, all measures were shown to have moderate
correlation to the volume change (|o|=0.61-0.86), with the weakest being fractal

dimension and the strongest relationship being with the mean lung density.
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4.3 Analysis of Diaphragm Curvature Variation and Uni-

variate Inspiration Compensation

Given that one of the most useful purposes for scoring emphysema from CT is to
measure and track the progression of disease, selection of measures with reduced
inter-scan variation would be advantageous. For this task then, it is beneficial to
use measures which are inherently less variable. In this way, it becomes possible
to equate changes in measurement with actual changes in disease state. However,
there has been concern that the variation of emphysema index, and densitomet-
ric measurement of emphysema in general, over time would limit the usefulness
in measuring disease progression. As has been previously stated, measure varia-
tion in density-based measures has been attributed to multiple sources, including
varying dose levels between scans [76], variable inspiration levels [53], and altered
scan acquisition settings [61]. A non-density based approach for emphysema quan-
tification would also have the benefit of avoiding some of the limitations noted
above, such as diaphragm curvature analysis described in section 3.2, which shows
that diaphragm curvature estimates are as useful as emphysema index in quanti-
fying COPD from CT image scans. However, while the previous two experiments
(Sections 4.1 and 4.2) have analyzed the variability of densitometric measures of
emphysema, such as emphysema index, no work has been done in investigating the
variability of the diaphragm curvature measure introduced in Section 3.2. Thus,
analysis and quantitative comparison of the two metrics would thus benefit and

add to the knowledge-base gained by previous studies.

In addition to understanding the inherent variability of image-based emphy-
sema metrics, investigation of techniques for reducing the inter-scan variability of

metric can also be beneficial for longitudinal studies of emphysema. Although
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inherently less variable metrics are desirable, if random variation of another met-
ric can be significantly reduced by accounting for sources of random variation, the
metric for which variation can be compensated for can be considered superior when
it comes to its use in longitudinal studies. As previous work has shown, inspiration
level at can have a noticeable effect on apparent lung density. Thus a univariate

inspiration-level based model for compensating is also analyzed in this work.

The objective of this work was to compare the variation of emphysema index
from low-dose, whole-lung CT scans on a number of short time-interval scan pairs
with equivalent scan acquisition parameters (slice thickness and dose), in which
true emphysema change would be expected to be negligible, and evaluate the effect

of an inspiration-based correction factor on both measures simultaneously.

4.3.1 Methods and Materials

To quantify the variation of diaphragm curvature estimates as compared to em-
physema index, 43 scan-pairs of whole-lung, low-dose CT scans comprised of 73
individual scans were analyzed using in-house developed software algorithms for
lung segmentation and analysis. For each scan, the lung volume and height, as
well as the emphysema index and diaphragm extent ratio in the coronal plane were
computed. Then for each scan-pair the absolute differences of the emphysema in-
dex and diaphragm extent ratio are computed, as well as the percent difference in
volume and lung height. In order to account for the fact that the emphysema index
and diaphragm score are on different scales, a linear transformation is performed
on the scores to scale the two metrics into a standard 0-100 range [87] as described
in Section 2.2.5. For each of the two normalized metrics, the mean and standard

deviation of the differences as well as the 95% confidence interval were computed
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and reported. A two-sample F-test is also performed to compare the two measures’
variances and determine if there is any statistically significant difference between

the two measures in terms of measure variation.

Variation Compensation of Emphysema Metrics

Compensation for change in emphysema scoring methods due to outside sources
of variation is also considered in this work using a linear regression model for
both the emphysema index and diaphragm extent ratios. As emphysema index
is known to be affected by inspiration volume changes, the effectiveness of a uni-
variate compensation model for the reduction of this variation is also evaluated.
Change in inspiration volume has been found to best correlated with emphysema
index change, and thus is used as the compensation metric in this work. Empiri-
cally, we have also found inspiration volume change and change in lung height to
correlate with the diaphragm extent ratio change, though to a more limited degree
as compared to volume and emphysema index change. Therefore, both variation
in inspiration volume and in lung height are used to correct for variation found.
It should be noted that lung height differences were found to correlate extremely
poorly with emphysema index, and thus is omitted from emphysema index com-
pensation so as to not increase the variation by chance. To show the effectiveness
of compensation, the mean and standard deviation of the differences as well as the
95% confidence interval are computed and reported for the two measures. A two-
sample F-test is also performed to compare two measures variances. Furthermore,
two-sample F-test’s are computed between the compensated and non-compensated

measure

96



Table 4.8: Variation of Emphysema Index and Diaphragm Curvature Scores. The
mean, standard deviation (SD) and 95% Confidence Interval are reported for nor-
malized Emphysema Index (EI) and Coronal Diaphragm Extent Ratio (DERC).

Mean of SD of 95% Confidence
Differences | Differences Interval
El -1.98 7.55 -15.8 - 12
DERC -0.11 6.8 -9.7-14.7

Table 4.9: Variation of Emphysema Scores after Compensation for Known Sources
of Variation. The mean, standard deviation (SD) and 95% Confidence Interval are
reported for normalized Emphysema Index (EI) and Coronal Diaphragm Extent
Ratio (DERC).

Mean of SD of 95% Confidence
Differences | Differences | Interval
El 0.26 6.42 -11.8 - 10.9
DERC | 0.11 6.28 -9.1-12.9

Description of Principle Dataset

All scans used in this study were acquired at the Weill Medical College of Cornell
University using a whole lung, low dose protocol at 120 kVP. Through retrospective
selection, 43 short-time-interval CT scan-pairs across 28 cases were analyzed in
this work. All scans were acquired either on a GE LightSpeed Ultra, VCT, or
Pro 16, with a 1.25 mm slice thickness. In order to analyze variation of the
measures without variation due to change in disease state being, the scan-pairs
were selected to have a mean time interval of less than 100 days (mean: 73 days,

standard deviation: 24 days, max: 98 days, min: 21 days), as this would ensure

relative stability of disease state.
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4.3.2 Results

The mean, standard deviation (SD) and 95% Confidence Interval for the emphy-
sema index and the diaphragm extent ratio is given in table 4.8. In this work, we
found that there is a trend towards smaller variation of the diaphragm extent ratio
score than emphysema index prior to compensation, though this was not found to
be statistically significant (p=0.24). Table 4.9 shows the same statistics for the two
measures computed after compensation. After compensation, the perceived trend
is eliminated as the two measures are brought into better agreement and there
was no statistical difference between the measures (p=0.44). What is interesting
to note is the trend to decreasing variability for the compensated measures ver-
sus the non-compensated measures, although this was not found to be significant

(p=0.12).

4.3.3 Discussion and Impact

In this work we have found that, although not statistically significant, a trend exists
for decrease variation in the diaphragm curvature measure as compared to the
emphysema index. Using measures that are more repeatable is especially important
in evaluating the progression of disease, so work has gone into the measurement
of the variability of measures. As diaphragm curvature measurement has been
proposed as a new quantitative metric for measuring emphysema progression, it is

necessary to further evaluate the variability of the proposed measure.

As has been noted in other work and again seen in this work, the emphysema
index can be see to be highly variable between two subsequent scans because of

changes in inspiration volume, as well as being susceptible to changes in things
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such scan dose [76] and reconstruction algorithm [61]. However, this work shows
that by compensating for known sources of variation, better estimation of true
disease change can be obtained by requiring less of a difference in quantitative
score to be seen in order to detect progression. This was found to be true for both
the diaphragm curvature measure and particularly the emphysema index. This
indicates that compensation is a useful technique and should be used to eliminate

possible quantitative biases in emphysema measurements.

Linear regression was shown to be useful as a model of measure variability to
in order to compensate for inspiration level changes, primarily with regards to the
emphysema index. Although a simpler model, it was found to be useful in reducing
the overall variability of emphysema index without the risk of over-fitting that more
complex models would have on smaller datasets. This would be advantageous in
larger studies that attempt to correlate emphysema index with other changes in

image data.

An interesting point is that while compensation allowed for a slight reduction
in variability of diaphragm curvature, it was not as large a reduction as was seen
with the emphysema index, as is shown in Figure . This is because lung curvature
has been found to be relatively stable despite changes in lung volume [88], though
some variability can still be attributed to lung volume change. Although it was not
found to be a primary issue in this analysis, it was noted that the highest variabil-
ity in diaphragm curvature tended to come from a limited number of cases were
the lung was found to have an uncommon morphometry, such as can be caused
by a pleural effusion or partial lung resection. This is due to a limitation in the
diaphragm segmentation algorithm which assumes as standard lung morphometry

and orientation. Thus if the diaphragm surface is not effectively oriented down-
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Boxplot of Normalized Differences for
Pre- and Post- Compensated Emphysema Metrics
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Figure 4.2: Effect of Univariate Inspiration Compensation on Emphysema Index
and Diaphragm Curvature Scores of Emphysema Severity. Compensation of inter-
scan changes in inspiration volume was seen to be effective primarily for emphy-
sema index.
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ward, or the patient is angled in some manner, the algorithm is more likely to fail.
As such, further improvements to the segmentation algorithm should be sought in

order to account for these more difficult cases.

In summary, this study offered a detailed analysis of the variation of a new
metric for emphysema quantification as compared to a standard measure. It was
shown that there is a trend towards decreased variability in diaphragm curvature
estimation versus emphysema index. Furthermore, a compensation methodology
was presented that allowed for some correction of the variation within these mea-
sures. This allows for more accurate analysis of these measures in long term longi-
tudinal studies of emphysema progression, where indication of true change in these

measures is the most important indicator of disease state change.

4.4 Multivariate Inspiration Compensation of Densitomet-

ric Emphysema Measures

As has been shown in sections 4.1 and 4.2, densitometric measures are highly vari-
able. Several reasons have been identified, such as density-based measures being
sensitive to both scan-calibration [52], acquisition settings [87] and inspiration lev-
els [53,54], as all cause variations in the apparent density of the lung parenchyma,
with the primary source of variation being inspiration volume [55]. In order to be
useful for the monitoring of the progression of emphysema severity in longitudinal
studies, this variability must be accounted and compensated for, but little work

has directly focused on methods for the reduction of metric variation.

Previous work in this area has focused on the prevention of large variations in
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inspiration volume change between two scans through spirometric-gating, which
attempts to acquire multiple CT scans of the lungs of a single patient at the same
lung inspiration volume. Spirometric gating is thought to be useful in reducing
inter-scan variation in emphysema metrics, as varied inspiration volume between
two scans is a known source of error in longitudinal studies of emphysema [54].
However, it has been shown that the increase in measurement repeatability gained
by the application of spirometric-gating is unlikely to offset the additional effort
required to obtain them, due to the variability of patient cooperation [55|. Also,
given that spirometric gating must be performed at the time of scan acquisition,

it is not an applicable solution in retrospective studies of emphysema.

Due to the limitations of spirometric gating, modeling of observed variations
due to known sources of variation has become increasingly useful in retroactively
compensating for variation. Recently, Stoel et al. proposed that a linear mixed-
effects model could allow for volume correction to reduce variation [97]. While
it appears to be effective, it has several limitations. First the model used was
developed primarily on longitudinal scans taken 2.5 years apart, thus increasing
the difficulty in assessing how much of the variation seen in the data was associated
with actual changes in disease state for any given patient. Secondly, Stoel et al.
suggested taking multiple scans of a patient at different inspiration levels, which is
both unfeasible in a standard screening as well as restrictive in allowing the model
to be applied to retrospective studies. Finally, the authors only reported variation
means over several small cohorts, and not at the individual level. This limits its
usefulness to clinical practice, where detection of disease progression in individuals
is considered the most important clinical task, such as to monitor the effectiveness

of intervention strategies [16].
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To address these issues, a linear random-effects model was implemented as is
described in section 4.3. Compensation for changes in inter-scan inspiration was
shown to offer a notable reduction in emphysema index variation. Extension of
the model to a multivariate case accounting for would possibly further improve

performance.

Therefore, this study seeks expand on the work in section by developing and
evaluating a multivariate random-effects model for quantifying and directly com-
pensating for the variation in several quantitative image-based densitometric em-
physema measures. While the univariate inspiration-compensation model was
moderately effective in reducing variation of emphysema index, and therefore can
be expected to be effective when applied to densitometric measures in general, it
was not seen to be particularly effective in reducing diaphragm variation, a geo-
metric measure. Therefore, only density-based measures of emphysema severity

are analyzed in this study.

It is expected that application of this model would lead to a reduction mea-
surement variation due to compensation inter-scan inspiration volume changes and
related effects, which is a prevalent, known source of emphysema metric variation.
Such a model would be useful in retrospective studies where acquisition of addi-
tional data is impossible. As has been previously suggested [16], two short-time
interval datasets of less than one-year are evaluated in this work in order to ensure

stability in patient severity as well as provide for a second validation dataset.
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4.4.1 Inspiration Volume Compensation of Emphysema Met-

rics

In order to compensate for inter-scan variability due to the effect of inspiration
volume change between two subsequent scans, a random effects linear model was
developed and implemented. The response of this model was set as the difference
between the quantitative measure of interest (in this work the Emphysema Index,
Nth Percentile of the Histogram or Fractal Dimension) with the percentage vol-
ume change given as an explanatory variable. Although it has also been shown the
overall mean lung density (MLD) of the lung can be altered as a result of emphy-
sema [14,49,50], it has also been shown that apparent lung density would also be
changed as a function of inspiration volume [98]. A relatively strong correlation
(r—-0.83) between change in mean lung density and change in inspiration volume
has been reported [19], which indicates that mean lung density would be useful as
a covariate for compensating for inspiration change. Therefore this work the mean
lung density calculated from a CT scan is included in the inspiration-compensation

model as a covariate instead of as a primary metric of emphysema severity.

Given a set of pixels belonging to the lung field contained within a CT image,

L, the mean lung density of a CT image can be calculated as

_ X {I(p) : piel}

MLD
L]

where I(p;) is the density value of the pixel p; in the CT image being analyzed.
Finally, the intercept term of this model was suppressed to account for the as-
sumption that there should be no change in the quantitative measure of interest if

there is no change in the covariates. The final model then takes the form of
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AMepp, = (A%Vol) + B(AMLD) + y(A%Vol - AMLD)

where AM,,,,, is the change in the emphysema metric explained by the effect
of the percentage difference in lung volume between the 2 scans (A%Vol), the
effect of the difference in mean lung density between the two scans (AMLD), and
the effect of the interaction term between the two covariates (A%Vol x AMLD).
a, 3, and v are the model coefficients to each of these three effects, respectively.
As a univariate volume compensation model has recently been shown to reduce

the variation of standard emphysema index, it is also implemented as follows
AMeppn, = C(A%V 0l)

where ( is the coefficient of the effect of altered inter-scan inspiration volume.
The univariate model is used as a baseline comparison to the multivariate model

proposed in this work.

4.4.2 Quantitative Analysis of Measurement Variation

We perform leave-one-out cross validation of the random effects model described
above on 142 short time-interval scan pairs. All scans pairs were taken less than
four months apart and had an average time interval between scans of 76 4+ 28 days
and ranged from 7 to 119 days. As emphysema is a relatively slow progressing
disease, a short time-interval data set can be treated as a zero-change data set
in terms of overall disease severity [16|, therefore all variations seen between two
subsequent scans can be treated as inherent metric variability. In order to eval-
uate the robustness of the model in terms of reduction of metric variation, the

compensation model trained using the entire short-term data set is then validated
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on a second data set of 144 CT scan pairs, with both scans taken 4 to 8 months
(123 to 239 days) apart with an average time interval 186 + 31 days. Although
not a zero-change data set, the relative time between scans is still short enough
that only a minor progression, if any, in emphysema would exist. To minimize the
influence of other known sources of error, all scans in both data sets were taken
on 16-slice CT scanners using a low-dose protocol and had a slice thickness of 1.25

ImIn.

To establish the relationship between the quantitative measures and the co-
variates, the Spearman rank correlation coefficient p is computed between each
measure and both covariates for both datasets. Secondly, Bland-Altman analysis
is performed on both data sets before and after compensation and the 95% limits
of agreement of the variation are reported in order to fully describe the datasets as
well as show the effectiveness of the model [99]. Analysis of variance is performed
on the full model to determine which terms in the model are statistically signif-
icant. Finally, an F-test for equal variances is performed to test for statistically
significant reduction in the variation of the measures after inspiration volume com-
pensation. All statistical analysis and modeling in this work is performed in the
R statistical computing environment (version 2.9.2, R Foundation for Statistical

Computing, Vienna, Austria) [100].

4.4.3 Results

The inter-scan inspiration volume variability seen in the short-term data set ranged
from -21.9% to 46.1% with an average volume change of 1.3% =+ 9.2%. Good cor-
relation was found between all measure changes and both percentage change in

inspiration volume and change in mean lung density as can be seen in Table 4.10.
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Figure 4.3: Bland-Altman Plots for Emphysema Index Variation Before and After
Inspiration-Compensation Model Application: Left) Plot of baseline emphysema
index variation prior to the application of any compensation model, Center) Plot
of emphysema index variation after application of univariate volume compensation
model, Right) Plot of emphysema index variation after application of multivariate
volume compensation model. Both compensation models show noticeable reduc-
tion in Bland-Altman limits of agreement

Table 4.10: Spearman rank correlation coefficients between change in emphysema
index (EI), histogram percentile (HIST), and fractal dimension (FD) versus per-
centage change in inspiration volume (%Vol) and change in mean lung density
(MLD) for the short time interval (At < 4 mo.) dataset. All correlations found to
be statistically significant (p<0.001)

| | A%Vol [ AMLD |

AEI 0.709 | -0.892
AHIST | -0.603 | 0.816
AFD 0.703 | -0.830

Table 4.11: Bland-Altman 95% confidence intervals for the short time interval
(At < 4 mo.) dataset before and after application of the random-effects models on
emphysema index (EI), histogram percentile (HIST), and fractal dimension (FD).
All measures showed statistically significant reduction in variance after application
of the compensation model.

Before After Univariate | After Multivariate
Compensation | Compensation Compensation
AET %] -10.38, 10.95 -8.12, 7.61 -6.18, 6.06
AHIST [H.U/| -23.08, 20.99 -17.88, 17.69 -13.78, 14.31
AFD [dimensionless| | -0.474, 0.514 -0.363, 0.353 -0.277, 0.261
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Table 4.12: Goodness-of-fit adjusted-R? for univariate and multivariate compen-
sation models. All fits for both types of models were found to be statistically
significant

Metric Univariate Multivariate
Compensated Compensation Model | Compensation Model
Emphysema Index 0.47 0.71
Histogram Percentiles 0.36 0.63
Fractal Dimension 0.49 0.74

Bland-Altman analysis, Table 4.11, shows an approximate 35% (for HIST) to 45%
(for EI and FD) reduction in the limits of agreement of measurement variation
when the multivariate compensation model was applied, and an approximate 25%
(for HIST) to 35% (for EI and FD) reduction when the univariate compensation
model was applied. A visual representation of Bland-Altman analysis for em-
physema index showing measurement variation reduction after inspiration model
compensation in the 4-month time-interval dataset can be seen in Figure 4.3. F-
tests showed that the observed reduction in variation was statistically significant
for all emphysema metrics when using either the univariate compensation model
(p<0.01) or the multivariate compensation model (p<<0.001). Finally, it was also
found that for all metrics, multivariate compensation provided a statistically signif-
icant reduction in variation versus univariate compensation (F-test: p<0.01), with
multivariate compensated emphysema metric differences showing approximately

50% of the variance as compared to univariate compensated metric variance.

ANOVA showed that both the univariate and multivariate compensation mod-
els fits were statistically significant (p<0.001). It was found that the univariate
compensation models, while being statistically significant, had relatively poor fit,
with goodness-of-fit adjusted-R? values ranging from 0.36 to 0.49, as is seen in
Table 4.12. Multivariate compensation models showed better fits, with adjusted-

R? values ranging from 0.63 to 0.74. ANOVA of the multivariate random-effects
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Table 4.13: Bland-Altman 95% confidence intervals for the medium (4 mo.<At<8
mo.) time-interval dataset before and after application of the random-effects mod-
els on emphysema index (EI), histogram percentile (HIST), and fractal dimension
(FD). All measures showed statistically significant reduction in variance after ap-
plication of the compensation model.

Before After Univariate | After Multivariate
Compensation | Compensation Compensation
AET %] -11.15, 11.03 -9.90, 9.50 -7.97, 8.50
AHIST [H.U.] | -23.55, 25.82 -23.23, 26.01 -19.87, 22.24
AFD || -0.388, 0.420 -0.313, 0.332 -0.206, 0.246

model also found that for emphysema index, change in mean lung density term
(p<0.001) and the interaction term between change in mean lung density (p<0.01)
were statistically significant. For histogram percentiles it was found that both the
percent volume change (p<0.05) and mean lung density change terms (p<0.001)
were significant, but not the interaction term between them. Finally for fractal
dimension it was found that only the mean lung density change term (p<0.001)

was statistically significant.

The 4-8 month dataset was found to have an average inspiration volume change
of 0.3%+8.4%, and ranged from -33.5% to 20.8%. After application of the trained
compensation models, we found that a statistically significant reduction in metric
variation can be achieved when comparing variation of multivariate compensated
data to the original data (F-test: p<0.001 for EI and FD; p<0.05 for HIST)
and also univariate compensated data (F-test: p<0.001 for FD; p<0.05 for EI;
p<0.1 for HIST), as can be seen with the limits of agreement stated in table
4.13. As with the short term data, a reduction in the limits of agreement of
approximately 15% (HIST) to 40% (EFD) could be seen. Univariate compensation
was only found to provide statistically significant (p<<0.01) reduction of variation
for fractal dimension when compared to baseline variation, although a trend for a

reduction in emphysema index variation was also seen (p=0.11).
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4.4.4 Discussion and Impact

This work shows that lung inspiration volume compensation is a necessary step to
reduce inter-scan variability in tracking emphysema change and provides a method-
ology for accomplishing the inspiration compensation. It can be seen that a re-
duction of variation can be achieved through volume compensation, thereby mini-
mizing the bias introduced by inter-scan changes in inspiration. Performing such
compensation on longitudinal dataset would then allow for better quantification of
underlying random variation present in the measure. While volume compensation
is shown to be most effective for emphysema index and fractal dimension, provid-
ing for a approximately 40% reduction in metric variation, it still has observable

benefits when used to compensate for inter-scan variation in histogram percentiles.

When comparing the distribution statistics of the dataset used in this work
to other works in the literature, we find that the distribution in variation seen
for emphysema index computed at -910 H.U. for both datasets in this work is
close to that of other published literature, such as the findings by Gietema et
al. which reported Bland-Altman limits of agreement in the range of -13.4% to
12.6% [16]. Similar comparisons can be made for the histogram percentile [97] and
fractal dimension. This implies that, in terms of their use for evaluation of metric

variation, the datasets used in this work are comparable to other datasets.

Emphysema is often associated with pulmonary hyperinflation, a physiological
state of increased functional residual capacity of the lung [101]. A concern with
using volume correction techniques is that their use might cause overcompensation
of the volume change, incorrectly indicating regression of disease severity. How-
ever, as hyperinflation is considered a slowly progressing symptom that increases

primarily with the severity of emphysema, the overall net increase in emphysema
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severity as measured by CT would likely be over that which can be explained by
inspiration volume change alone. Therefore, its is unlikely that this overcompen-
sation would be a noticeable occurrence in clinical practice, especially given the

relatively large intra-metric variations seen.

This work is limited in scope in that it proposes a model based on a single
protocol, while changes in protocol have been shown to have an biasing effect
on densitometric measures of emphysema [87]. This is an important distinction
as longitudinal studies often allow for updated protocols, for example decreasing
slice thickness due to increased scan resolution, to account for advancements in
technology. Addition of a fixed-effect term to the model would allow for this effect
to be compensated, and obtaining a subset of data that represents this update in

protocol would allow for an appropriate compensation model to be trained.

Due to the individual metrics being on different scales, direct comparisons of
variation are difficult. While some work has looked at linear transformations [87] to
allow for basic analysis of variation, those methods are sensitive to the linearization
parameters selected. Percentage differences also have disadvantage in the fact that,
to the author’s knowledge, no study to date has investigated the equivalency of
measured change in image-based emphysema metrics to measured differences in a
gold standard, such as pulmonary function tests. An ideal solution would be to
model variation of a given metric to an equivalent variation of a clinically-accepted
gold standard, in this case pulmonary function tests obtained by spirometry. Such
an analysis could allow for transforming to a standardized severity-difference scale,
thus allowing comparisons to be made. Application of the proposed compensation

model would be useful in minimizing outside sources of error in such a study.

To summarize, this work shows a formal compensation analysis technique that

111



should be applied to future longitudinal studies of emphysema. Inspiration volume
compensation was shown to significantly reduce inter-scan variation regardless of
the metric used, which can be useful in longitudinal studies of emphysema measures
looking at an ensemble of density-measures. Finally, as the multivariate random-
effects model used in this work requires only pairs of longitudinal scans, it can

easily be implemented in retrospective studies.
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CHAPTER 5
CONCLUSION: CONTRIBUTIONS AND SUGGESTIONS FOR
FUTURE WORK

The overall goal of this research program was to develop, implement and eval-
uate the use of CT image derived measures of emphysema severity as a biomarker
for patient health status. CT has been stated to be useful for assessing and mon-
itoring of emphysema [41]. In addition, CT allows for the direct assessment of
the parenchymal damage the characterizes emphysema, something not possible
through global assessments of lung function such as spirometry. Furthermore,
given the fact that parenchymal damage is currently considered irreversible, it
has also been suggested that the monitoring of progression is the most clinically
relevant task with regards to emphysema. As such, this research had two main
aims: to develop methods for the improved assessment of emphysema directly and
to improve the repeatability of image-derived measures in longitudinal studies of

emphysema.

The primary accomplishment of this research was the introduction and analysis
of a novel geometry-based assessment of emphysema severity through the measure-
ment of diaphragm curvature. Diaphragm curvature is known to be affected by the
hyper-inflation often associated with emphysema, with high levels of air-trapping
leading to an overall flattening of the diaphragm surface. Through measurement
of the diaphragm curvature, a non-density based assessment of emphysema dis-
ease state can be made that avoids the limitations and restrictions of standard
density-scores, such as reliance on threshold selection. To that end, a diaphragm
segmentation algorithm was implemented and analyzed. It was found that the

curvature measure correlated with both spirometric PFT scores (r=0.24) and es-
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pecially gas-diffusion measures (r=-0.57), while not correlating to density-based

measures such as emphysema index (r=0.04).

In addition, further progress in improving the prediction of pulmonary function
scores was made through the development of a multivariate model of spirometric

PFTs that better reflects the contributions of the various components of COPD.

FEV,
FVC»

Given that pulmonary function test scores, such as are considered global
measures of COPD, the correlation of a measurement of any single component of
COPD (such as emphysema) has been found to be low, especially of asymptomatic
patients in the Gold 0-2 categories such as in the work by Heussel et al. (r=-
0.43) as well as in this research (r=-0.31, see Section 3.3). However, as diaphragm
curvature was found to not correlate to emphysema index, it was expected that two
measures would be complimentary in their description of emphysema severity based
on image data. Thus, by incorporating both the diaphragm curvature score and
emphysema index as covariates into a multivariate regression model along with lung
volume and airway disease score, it has been shown that improved correlations of
r=-0.54 between predicted and true pulmonary function test scores are achievable,
indicating an improvement of approximately 60%. Such a model would be useful for

the assessment of COPD asymptomatic patients, in which intervention therapies

may be beneficial.

While direct assessment of emphysema severity is key, it has also been noted
that the monitoring of disease progression is possibly a more clinically relevant
task due to the irreversibility of parenchymal damage. Thus methods that address
and compensate for sources of metric variation are also of benefit to the field. Over
the course of this research, a robust model for compensating for inspiration volume

change in longitudinal studies was developed that can be applied retrospectively.
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The multivariate model took into account changes inspiration volume as well as
associated changes in apparent lung density to predict the effect inspiration would
have on density-based scores of emphysema. The compensation model was found
to be effective at reducing the inter-scan variation for the three main densitometric
scores considered over the course of this research by approximately 40%. For exam-
ple, the baseline limits of agreement for change in emphysema index on zero-change
data was -10.38% to +10.95%, but after application of the compensation model,
the limits of agreement were reduced to -6.18% to +6.06%, a much smaller range.
The primary advantage of this reduction is the fact that for disease progression
to be detectable, change in a measure of disease state must be greater than the
inherent variability of the measure, thus reduction of this variability would lead to

more sensitive monitoring of individual disease progression.

It is also worth noting two additional accomplishments that occurred inciden-
tally over the course of this research program. The first is the establishment of
multiple datasets for the purposes of evaluating multiple image metrics of em-
physema severity, which can be useful for future studies and experiments to be
performed in this field of research, such as zero-change/coffee-break datasets. Es-
tablishment of longitudinal datasets such as these is essentially a requirement in
assessing measure variability and repeatability as well as for establishing sources
of measurement error and variation. Other datasets consisted of CT scans with
paired pulmonary function test scores, useful for evaluating the relevance of newly
proposed emphysema measures. The second is the acknowledgment of the col-
laborations established with other faculty at the Weill Medical College, Columbia
University, and the University of Navarra, Spain, that facilitated the identification

and establishment of the datasets used in this work.
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5.1 Suggestions for Future Work

One avenue for future improvement would be in the implementation of other non-
density based measures of emphysema. For example, emphysema is also associated
with pulmonary hyper-tension and vascular remodeling [102]. Measurement of the
pulmonary vasculature and comparison of changes either over time or to some
population baseline may lead to more insight into the various components that
contribute to emphysema [103]. In addition, further refinements to diaphragm
curvature measure to better quantify curvature, such as more precise curvature

estimates or measures of curvature consistency, would be beneficial as well.

A question that has yet to be answered is how the inter-scan variability of
image-derived emphysema measures compares to the variability seen in longitu-
dinal assessments of pulmonary function through spirometry. While it has been
shown that improved repeatability density-based scores can be achieved (Section
4.4), it is unknown how this improved repeatability compares to changes in spiro-
metric assessment over the same time-interval, or if these two changes are possibly
better correlated due to the correction model developed. This is important, as it
is known that pulmonary function test scores, especially spirometric measures, are
highly dependent on patient effort. Also, if it can be shown that image measures
of emphysema progression are more reproducible, that could be one advantage for

incorporating image assessment in the monitoring of individual progression.

The analysis of parenchymal texture features is often suggested as means for
avoiding the issues related to density-based approaches, such as fixed threshold,
and has been investigated extensively [17,38,104]. However, texture is a local
feature, and calculations of texture are highly dependent on the definition of the

region over which it is computed, which could introduce another source of vari-
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ability. Also, it is unknown at this time how to create an aggregate measure of
emphysema severity for a given patient using texture information, as evidenced
by poor correlations to PET scores such as DLCO or FEV; [17]. One interesting
question arises is if parenchymal texture information can be combined with the
densitometric score and airway disease measurement model described in Section
3.3 to further improve the prediction of spirometric PFT scores, and such analysis

could be a possible avenue for future investigation.

One potential application for the research and measures described in this re-
search is in studies that use quantitative image analysis as a way of assessing
therapeutic response. In general, one of the major limitations in using imaging
as an end-point in a study of is the lack of repeatability of derived quantitative
measures. Methods for reducing metric variation due to known sources of mea-
surement error, as is proposed in this work, could allow CT to be a used as a
quantitative measure in assessing therapeutic or stimulus response in other types
of studies. With regards to emphysema metrics, this could be particularly use-
ful in studies where alveolar structure could be altered as a primary or secondary
effect. For example, while emphysema is currently considered to be irreversible, re-
search by Ishizawa et al. has shown that progenitor cells, namely all-trans retinoic
acid (ATRA), has been shown induce lung regeneration in mouse models [105].
Anti-angiogenic effects, such as inhibition of vascular endothelial growth factor
(VEGF), show promise as therapeutics for malignant neoplasia [106]. However
VEGF suppression has also shown to can cause pulmonary emphysema in mouse-
models [107], which is consistent with smoking-induced VEGF suppression as a
possible pathogensis for emphysema [108]. Creating repeatable quantitative mea-
sures from C'T would therefore be useful in allowing future studies to quantitatively

assess reduction or progression of emphysema in the whole lung over time without
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the need for histological lung sections, which cannot be obtained without compro-

mising the model being studied.

Another avenue for future work is evaluating the relationship between measure-
ments of emphysema progression or stability obtained by both imaging metrics and
PFTs. Although work has been done to correlate image-derived scores of emphy-
sema to PF'T measures directly, little work has been done to correlated measured
change in image-based emphysema scores to measured differences in pulmonary
function scores in a longitudinal study. In such a study, the application of the

research presented in this body of work will be an invaluable tool.
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