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High throughput sequencing and expression characterization have lead to an

explosion of phenotypic and genotypic molecular data underlying both experi-

mental studies and outbred populations. We develop a novel class of algorithms

to reconstruct sparse models among these molecular phenotypes (e.g. expres-

sion products) and genotypes (e.g. single nucleotide polymorphisms), via both

a Bayesian hierarchical model, when the sample size is much smaller than the

model dimension (i.e. p � n) and the well characterized adaptive lasso algo-

rithm. Specifically, we propose novel approaches to the problems of increasing

power to detect additional loci in genome-wide association studies using our

variational algorithm, efficiently learning directed cyclic graphs from expres-

sion and genotype data using the adaptive lasso, and constructing genome-

wide undirected graphs among genotype, expression and downstream phe-

notype data using an extension of the variational feature selection algorithm.

The Bayesian hierarchical model is derived for a parametric multiple regres-

sion model with a mixture prior of a point mass and normal distribution for

each regression coefficient, and appropriate priors for the set of hyperparam-

eters. When combined with a probabilistic consistency bound on the model

dimension, this approach leads to very sparse solutions without the need for

cross validation. We use a variational Bayes approximate inference approach in

our algorithm, where we impose a complete factorization across all parameters



for the approximate posterior distribution, and then minimize the Kullback-

Leibler divergence between the approximate and true posterior distributions.

Since the prior distribution is non-convex, we restart the algorithm many times

to find multiple posterior modes, and combine information across all discov-

ered modes in an approximate Bayesian model averaging framework, to reduce

the variance of the posterior probability estimates. We perform analysis of three

major publicly available data-sets: the HapMap 2 genotype and expression data

collected on immortalized lymphoblastoid cell lines, the genome-wide gene ex-

pression and genetic marker data collected for a yeast intercross, and genome-

wide gene expression, genetic marker, and downstream phenotypes related to

weight in a mouse F2 intercross. Based on both simulations and data analysis

we show that our algorithms can outperform other state of the art model selec-

tion procedures when including thousands to hundreds of thousands of geno-

types and expression traits, in terms of aggressively controlling false discovery

rate, and generating rich simultaneous statistical models.
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CHAPTER 1

INTRODUCTION

1.1 The genotype-phenotype map

Identifying the mutations in the genetic code that give rise to variation in the

phenotype of an organism has been a central goal of the field of genetics since

its inception [42]. Specifically, the goal of mapping different regions of the

genome as being related to a given phenotype is an important first step in un-

derstanding the biology of a phenotype through its genetic architecture [90].

There have been many study designs and associated statistical methodologies

proposed to address this problem, including linkage mapping [1], family based

association tests [41], and genome-wide association studies [63] among oth-

ers. Phenotypes with Mendelian genetic architectures (i.e. few loci of strong

effect/penetrance) are more amenable to such analyses, since the test statistic

for a given region of the genome will be well powered, even for small sample

sizes [36]. Alternatively, when the underlying genetic architecture of a pheno-

type is complex, i.e. includes many loci of small effect and/or complex epistatic

interactions, then marginal test statistics (i.e. testing loci individually) can be-

come significantly underpowered, especially for realistic sample sizes and mul-

tiple testing corrections [63, 36]. Many phenotypes of interest have an underly-

ing complex genetic architectures including the human disease phenotypes of

Crohn’s disease, diabetes, hypertension, coronary artery disease, bipolar disor-

der [124, 132, 67, 126, 35, 152, 29], obesity [128], as well as height [139], among

others.
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If a phenotype has a complex, polygenic architecture, ideally one would use a

multiple feature statistical model to test which loci are linked to the phenotype,

because the ordering of the significance scores (e.g. P-values) can be different

between a multiple feature model and a marginal test statistic model [45]. The

reordering can happen, even in the case of a set of mutually orthogonal fea-

tures, because the estimate of the variance of the error term for a marginal test

statistic will be inflated from the other true, unmeasured features in the model.

Given that the P-value of a given feature in a linear model is a direct function

of this estimate of the error variance, the significance scores will be randomly

resorted based on how much the variance of the error is inflated because of the

variance of the predicted effect for all additional true features in the model. Un-

fortunately, standard multiple regression test statistics, such as a least squares

estimator, are ill-conditioned for realistic genomic data sets, where the sample

size is significantly smaller than the number of features being tested, (e.g. thou-

sands of samples, and millions of features in Genome-wide Association Stud-

ies) [65, 142]. These observations are the main motivation for the development

of the novel methods presented in this thesis, specifically development of novel

variational Bayes sparse feature selection methodologies presented in Chapters

2 and 4.

With the advent of high-throughput genotyping and sequencing, there has also

been an explosion in molecular phenotype characterization; specifically charac-

terization of the levels of expression of genes within the cell [110, 27]. These

intermediary phenotypes provide a window into possible modes of action for

genetic variation through expression quantitative trait loci (eQTL), as suggested

by previous authors [71, 108]. These different modes of action include both

2



cis (e.g. physically local) and trans (e.g. physically distant) genetic effects

[113, 16, 89, 161, 84]. The genomic distribution of these effects has been char-

acterized in a variety of organisms, including mice, [58], humans [39, 23], as

well as yeast [161] among others, where broad patterns such as numerous eQTL

hotspots, as well as on average strong cis effects have been observed across or-

ganisms and cell types. It has also been proposed that these eQTL effects can be

treated as perturbations of an underlying regulatory system, and can be used

to learn the nature of regulatory relationships among gene expression products

within the cell [108]. In chapter 3 we propose a novel methodology to leverage

cis-eQTL effects to learn the structure of a broad class of graphical models, in-

cluding directed cyclic networks.

The primary goal of this thesis is to motivate the results of the final chapter,

where all the levels of variation (e.g. genotypic, expression, and downstream

phenotype) for a biological system are integrated, and a highly sparse multi-

feature model is generated where all the interactions identified have strong sta-

tistical evidence. This type of approach has been proposed previously by many

authors [23, 39, 110, 112, 66, 161, 27, 91], but we provide the first computation-

ally scalable and rigorously statistically significant multiple feature methodol-

ogy that can be easily applied to these data. To arrive at that point we need

to motivate certain aspects of the modeling approach we take; specifically we

wish to define the rich statistical substrate of graphical models. In the follow-

ing we give a very brief introduction to some of the definitions and ideas used

in the field of graphical models. More detailed introductions are presented in

Lauritzen [80], Jordan [136] and Bishop [9].

3



1.2 An introduction to graphical models

The field of graphical models has grown in popularity over the last two decades,

with direct applications to genomics including modeling probabilistic regula-

tory networks [50], gene finders and comparative genomic analyses [121, 117],

and even admixture analyses [18]. A generative graphical model can be defined

for a particular joint distribution:

p (x1, x2, . . . , xn) (1.1)

if the distribution satisfies a set of conditional dependence and independence

relationships, that can be mapped onto the graph structure and vice versa [].

For example, a conditional distribution that factorizes as:

p (x1, x2|x3) = p (x1|x3) p (x2|x3) , (1.2)

where the random variables x1 and x2 are independent when conditioning on

the state of the variable x3. This type of relationships could be mapped onto

any of the graphs as shown in Figure 1.1, but not the graph shown in Figure

1.2, because conditioning on x3 induces a dependence between the marginally

independent variables x1 and x2. These mappings are generally represented

as different types of separation criterion [120, 100]. They can be used to de-

fined various Markov properties (i.e. conditional independence relationships)

of a network, including the pairwise, local, or global Markov properties [80].

One of the first graphical models proposed was the covariance selection model

[31], now known as the Gaussian graphical model [80]. The Gaussian graphi-

cal model is an alternative parameterization of a multivariate Gaussian random

variable, where the zero/non-zero structure of the inverse covariance matrix

acquires an additional interpretation in terms of conditional independence re-

lationships among the random variables in the system. This type of model has

4



Figure 1.1: Different undirected and directed graphical models consistent
with the conditional independence relationship specified by
Equation 1.2

been proposed to be used for analysis of expression data [114, 79], as well as

combined genotype and expression data by Chu et al. [25].

1.2.1 Markov random fields defined over undirected graphs

Consider an undirected graph GUG = (VUG,EUG) defined by a set of vertices,

VUG and a set of undirected edges EUG, consisting of unordered pairs of VUG.

A Markov random field defined with respect to this graph, GUG, satisfies three

equivalent levels of separation. The first level is pairwise separation, where for

5



Figure 1.2: A graphical model that is inconsistent with the conditional in-
dependence relationship specified by Equation 1.2. This is also
known as a v-structure

all pairs of random variables xi and x j, i , j and (i, j) @ EUG:

p
(
xi, x j|x−(i, j)

)
= p

(
xi|x−(i, j)

)
p
(
x j|x−(i, j)

)
, (1.3)

with x−(i, j) indicating all random variables except xi and x j. For a Gaussian

graphical model this would correspond to element (i, j) of the inverse covari-

ance matrix being zero [80]. The second level of separation is defined as local

separation [80]:

p
(
xi, xV\cl(i)|xne(i)

)
= p

(
xi|xne(i)

)
p
(
xV\cl(i)|xne(i)

)
, (1.4)

with ne(i) denoting all vertices inVUG directly connected to i, and cl(i) = i∪ ne(i)

denoting the closure of the neighborhood of i. We illustrate an example of a

6



local separating set for a node in an undirected graph, which is equivalent to

the Markov blanket for that node, in Figure 1.3. Finally, the global Markov

condition is satisfied if:

p (xA, xB|xC) = p (xA|xC) p (xB|xC) , (1.5)

for disjoint subsets of VUG : A, B,C, if all paths from A to B are blocked by

elements of C [80]. Given the necessary and sufficient conditions from the

Hammersley-Clifford theorem [80], a Markov random field can also be factor-

ized based on the cliques (or complete sub-graphs) of the graph.

1.2.2 Directed acyclic graphs

Define a directed acyclic graph as GDAG = (VDAG,EDAG), whereVDAG is the set of

vertices, and EDAG is a set of directed edges among vertices, where there are no

directed cycles defined by the edges. A probability distribution can be defined

with respect to this type of graph if it satisfies the d-separation criterion for all

disjoint subsets of variables. The d-separation criterion is stated as follows: for

disjoint subsets of VDAG : A, B,C, A is independent of B conditioned on C if all

paths from A to B in GDAG are blocked by C. In a directed acyclic graph a path

from any node in A to any node in B is blocked if there exists a node on the path

such that the arrows meet either head to tail or tail to tail at that node and it is in

C. Or, a path is blocked if the arrows meet head to head at the node, and neither

the node, nor any of its descendants exist in C [100, 9]. This criterion can be used

to show that unlike in the undirected graph, where the simple neighborhood of

a node can be used to separate it from the rest of the graph (i.e. become condi-

tionally independent), in addition the co-parents of the node must be used, as
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Figure 1.3: Markov blanket of an arbitrary node (depicted in red) in terms
of its surrounding neighborhood (depicted in blue) in an undi-
rected graph, where a Markov blanket is a minimal set of nodes
that blocks all paths from the red node, to other nodes in the
graph (e.g. the green nodes).

shown in Figure 1.4 [9]. This is also an example of a Markov blanket of a node

for a directed acyclic graph.

In addition, for directed acyclic graphs, different orientations of edges can pro-

duce the same sampling distribution, i.e. there are equivalence classes of graphs

in terms of the conditional independence and dependence statements they im-

ply. There exists a graphical criterion to generate all equivalent graphs for a

DAG because all equivalent DAGs have the same set of v-structures (i.e. the

motif in Figure 1.2). Therefore any edge orientation can be reversed and pro-
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Figure 1.4: Markov blanket of an arbitrary node (depicted in red) in a di-
rected acyclic graph. In this case the co-parents are also mem-
bers of the Markov blanket, because conditioning on the chil-
dren of the red node induces dependence between the red node
and the green nodes.

duce an equivalent DAG, as long as it does not create or destroy a v-structure

[100].

1.2.3 Directed cyclic graphs

For directed cyclic graphs, Spirtes showed that the same d-separation criterion

defined for directed acyclic graphs is satisfied by directed cyclic graphs defined

in the context of linear structural equations models [119]. In addition to this
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criterion, we show that the induced dependencies in the Markov blanket of a

node for one directed cyclic graph can actually correspond to directed edges

in an equivalent cyclic graph, restating and extending a result of Richardson

[107] by characterizing equivalence relationships in directed cyclic graphs using

signed permutation matrices. This phenomena never occurs for directed acyclic

graphs, where induced edges are always absent from the underlying generat-

ing graph. We prove this property of equivalence for directed cyclic graphs in

Chapter 3 in the build up to the ‘Recovery’ theorem. In addition, we show an ex-

ample of this equivalence property, where two different graph structures satisfy

the same set of conditional independence and dependence relations in Figure

1.5.

1.2.4 The importance of induced dependence

While in chapter four we focus on undirected graphs, which are fundamentally

a less rich class of graphical model than directed graphs, in chapter three we

propose a novel approach to learning the structure of a directed cyclic graph.

Specifically we prove that the structure learning problem can be mapped from a

curved exponential space (i.e. an exponential family model where the log like-

lihood has a polynomial parameterization) onto a linear exponential space (i.e.

an exponential family model where the log likelihood has a linear parameter-

ization) [19], with a sufficient set of additional perturbations in a conditional

Gaussian model. We solve the structure inference problem explicitly using a

regression approximation to the full likelihood problem with the adaptive lasso

feature selection algorithm. While the general problem of learning DAGs is

provably NP-hard [24], we propose a computationally efficient solution, when
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Figure 1.5: Two equivalent directed cyclic graphs, with the Markov blan-
ket of the red node illustrated in both. Note that the skele-
ton (i.e. topology of the graph without directionality of edges)
changes between equivalent models, which can not happen for
equivalent directed acyclic graphs.
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one has additional perturbation data. In addition, this mapping from a rich

parameter space to a larger less rich parameter space is motivated by the phe-

nomena of induced dependence, where variables are marginally independent,

but conditionally dependent. We use this asymmetric relationship to restrict the

class of possible directed cyclic graphs describing the data, given we know the

direction of a subset of edges.

1.3 Approximations

We wish to produce complex multiple feature models, where all the identi-

fied relationships between features are highly statistically significant for any

given neighborhood of a variable, be it an expression phenotype, a genotype, or

downstream phenotype. In the case of genome-wide expression and genotypic

variation, the number of variables is very high, i.e. in the tens of thousands

to millions of variables [63]. This makes the full likelihood form of the prob-

lem for any of the above graphical models ill-conditioned, since the sample size

is usually on the order of hundreds to thousands. To address this problem,

we decouple the joint neighborhood selection problem into a set of individual,

independent neighborhood selection problems by using a regression approxi-

mation to the full likelihood. One can imagine this as learning a type of series

expansion of the first order effects driving the local behavior of variables in the

model. In the context of neighborhood selection this approximation has been

proposed previously by Meinshausen and Bühlmann for the penalization prob-

lem with the lasso [97], and has the advantage of being well-conditioned, and
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highly scalable [151].

1.3.1 Variational approximations

In addition, in the context of each of the neighborhood selection problems de-

fined by the individual regressions we propose the other novel feature of this

thesis, a variational approximation to the fully Bayesian inference problem for a

spike a slab prior in a multiple feature model (i.e. a linear multiple regression).

This prior has many known theoretical advantages over other feature selection

priors including bounded shrinkage [72] and is likely model selection consistent

[147]. We use a mean field, or variational Bayes [136, 9] approximation, where

we can define an Expectation Maximization (EM) type algorithm on an approx-

imating distribution for the fully Bayesian inference problem in Chapter 2 (for a

slightly richer parameterization (with both positive and negative effect classes).

In chapter 4, we simplify the underlying statistical model, by reducing the num-

ber of non-zero effect classes, and identify closed form solutions to some of the

approximate updates from the original formulation presented in Chapter 2. We

also enrich this model by proposing an approximate Bayesian model averaging

step, as well as a rule for undirected network inference. Our algorithm is highly

scalable, and will be a practical tool for practitioners interested in identifying

richer sets of simultaneous strongly supported gene interactions from genome-

wide gene expression, genotype, and downstream phenotype variation.
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CHAPTER 2

A VARIATIONAL BAYES ALGORITHM FOR FAST AND ACCURATE

MULTIPLE LOCUS GENOME-WIDE ASSOCIATION ANALYSIS

2.1 Abstract

Background: The success achieved by genome-wide association (GWA) stud-

ies in the identification of candidate loci for complex diseases has been accom-

panied by an inability to explain the bulk of heritability. Here, we describe the

algorithm V-Bay, a variational Bayes algorithm for multiple locus GWA anal-

ysis, which is designed to identify weaker associations that may contribute to

this missing heritability.1

Results: V-Bay provides a novel solution to the computational scaling con-

straints of most multiple locus methods and can complete a simultaneous anal-

ysis of a million genetic markers in a few hours, when using a desktop. Using

a range of simulated genetic and GWA experimental scenarios, we demonstrate

that V-Bay is highly accurate, and reliably identifies associations that are too

weak to be discovered by single-marker testing approaches. V-Bay can also out-

perform a multiple locus analysis method based on the lasso, which has simi-

lar scaling properties for large numbers of genetic markers. For demonstration

purposes, we also use V-Bay to confirm associations with gene expression in cell

lines derived from the Phase II individuals of HapMap.

1This chapter was published as a methodology article in BMC bioinformatics on January 27,
2010 [87].
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Conclusions: V-Bay is a versatile, fast, and accurate multiple locus GWA anal-

ysis tool for the practitioner interested in identifying weaker associations with-

out high false positive rates.

2.2 Background

Genome-wide association (GWA) studies have identified genetic loci associated

with complex diseases and other aspects of human physiology [37, 62]. All repli-

cable associations identified to date have been discovered using GWA analysis

techniques that analyze one genetic marker at a time [96]. While successful, it

is well appreciated that single-marker analysis strategies may not be the most

powerful approaches for GWA analysis [65]. Multiple locus inference is an al-

ternative to single-marker GWA analysis that can have greater power to identify

weaker associations, which can arise due to small allelic effects, low minor al-

lele frequencies (MAF), and weak correlations with genotyped markers [65]. By

correctly accounting for the effects of multiple loci, such approaches can reduce

the estimate of the error variance, which in turn increases the power to detect

weaker associations for a fixed sample size. Since loci with weaker associa-

tions may contribute to a portion of the so-called ‘missing’ or ‘dark’ heritability

[69, 27, 92], multiple locus analyses have the potential to provide a more com-

plete picture of heritable variation.

Methods for multiple locus GWA analysis must address a number of prob-

lems, including ‘over-fitting’ where too many associations are included in the

genetic model, as well as difficulties associated with model inference when the

number of genetic markers is far larger than the sample size [156]. Two gen-
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eral approaches have been suggested to address these challenges: hierarchi-

cal models and partitioning/classification. Hierarchical modeling approaches

[148, 149, 150, 86, 155, 142] employ an underlying regression framework to

model multiple marker-phenotype associations and use the hierarchical model

structure to implement penalized likelihood [149], shrinkage estimation [144],

or related approaches to control over-fitting. These methods have appealing sta-

tistical properties for GWA analysis when both the sample size and the number

of true associations expected are far less than the number of markers analyzed,

which is generally considered a reasonable assumption in GWA studies [156].

Alternatively, partitioning methods do not (necessarily) assume a specific form

of the marker-phenotype relationships but rather assume that markers fall into

non-overlapping classes, which specify phenotype association or no phenotype

association [157, 155]. Control of model over-fitting in high dimensional GWA

marker space can then be achieved by appropriate priors on marker representa-

tion in these classes [155].

Despite the appealing theoretical properties of multiple locus methods that

make use of hierarchical models or partitioning, these methods have not seen

wide acceptance for GWA analysis. There are at least two reasons for this. First,

an ideal multiple locus analysis involves simultaneous assessment of all mark-

ers in a study and, given the scale of typical GWA experiments, most techniques

are not computationally practical options [28, 40, 148, 149, 157]. Second, there

are concerns about the accuracy and performance of multiple locus GWA anal-

ysis. This is largely an empirical question that needs to be addressed with sim-

ulations and analysis of real data.
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Here we introduce the algorithm V-Bay, a (V)ariational method for (Bay)esian

hierarchical regression, that can address some of the computational limitations

shared by many multiple locus methods [28, 40, 148, 149, 157]. The variational

Bayes algorithm of V-Bay is part of a broad class of approximate inference meth-

ods, which have been successfully applied to develop scalable algorithms for

complex statistical problems, in the fields of machine learning and computa-

tional statistics [59, 61, 70, 10]. The specific type of variational method imple-

mented in V-Bay is a mean-field approximation, where a high dimensional joint

distribution of many variables (in this case genetic marker effects) is approxi-

mated by a product of many lower dimensional distributions [8]. This method

is extremely versatile and can be easily extended to a range of models proposed

for multiple locus analysis [150, 142, 93, 65].

The specific model implemented in V-Bay is a hierarchical linear model, which

includes marker class partitioning control of model over-fitting. This is par-

ticularly well suited for maintaining a low false-positive rate when identify-

ing weaker associations [155]. V-Bay implements a simultaneous analysis of all

markers in a GWA study and, since the computational time complexity per it-

eration of V-Bay is linear with respect to sample size and marker number, the

algorithm has fast convergence. For example, simultaneous analysis of a million

markers, genotyped in more than a thousand individuals, can be completed us-

ing a standard desktop (with large memory capacity) in a matter of hours.

We take advantage of the computational speed of V-Bay to perform a simula-

tion study of performance, for GWA data ranging from a hundred thousand to

more than a million markers. In the Results we focus on the simulation results
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for single population simulations, but we also implement a version of the algo-

rithm to accommodate known population structure and missing genotype data.

We demonstrate that in practice, V-Bay consistently and reliably identifies both

strong marker associations, as well as those too weak to be identified by single-

marker analysis. We also demonstrate that V-Bay can outperform a recently

proposed multiple locus methods that uses the least absolute shrinkage and se-

lection operator (lasso) penalty [142], a theoretically well founded and widely

accepted method for high dimensional model selection. V-Bay therefore pro-

vides a powerful complement to single-marker analysis for discovering weaker

associations that may be responsible for a portion of missing heritability.

2.3 Results and Discussion

2.3.1 The V-Bay Algorithm

The V-Bay algorithm consists of two components: a hierarchical regression

model with marker class partitioning and a variational algorithm for approx-

imate Bayesian inference. The underlying hierarchical model of V-Bay is a

Bayesian mixture prior regression [55] that has been previously applied to as-

sociation and mapping problems [155]. The regression portion of this hierar-

chical model is a standard regression used to model genetic marker-phenotype

associations, and allows for natural incorporation of population structure and

other covariates. The model partitioning incorporates global features of genetic

marker associations, which are assumed to be distributed among positive, nega-

tive, and zero effect classes. The zero effect class is used to provide a parametric
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representation of the assumption that most markers in GWA studies will not

be linked to causative alleles and therefore do not have true associations with

phenotype [155].

Approximate Bayesian inference with V-Bay is accomplished by an algorithm

adapted from variational Bayes methods [135]. As with other variational Bayes

methods, the goal of V-Bay is to approximate the joint posterior density of the

hierarchical regression model with a factorized form and then to minimize the

Kullback-Liebler (KL) divergence between the factorized form and the full pos-

terior distribution [6]. This is accomplished by taking the expectation of the log

joint posterior density, with respect to each parameter’s density from the factor-

ized form, and iterating until convergence [8]. The overall performance of V-

Bay will depend on how well the factorized form approximates an informative

mode of the posterior distribution of the hierarchical model. We have chosen a

factorization with respect to each regression and hierarchical parameter, which

appears to perform extremely well for identifying weak associations when ana-

lyzing simulated GWA data that include large numbers of genetic markers.

2.3.2 Computational speed

The computational efficiency of V-Bay derives from two properties: it is a deter-

ministic algorithm and the objective function has a factorized form. Since V-Bay

is deterministic it does not need the long runs of Markov chains required by ex-

act Bayesian MCMC algorithms [54]. For GWA analysis, these latter stochastic

algorithms can be very slow to converge, particularly when marker numbers

are large and when there are complex marker correlations produced by linkage
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disequilibrium [156]. The factorized form of V-Bay means that the minimization

is performed with respect to each parameter independently, where each itera-

tive update satisfies consistency conditions for maximizing the lower bound,

given the state of the other parameters. Unlike univariate update algorithms,

which may not necessarily have efficient updates with respect to the likelihood

gradient function [65], the consistency conditions produced by the factorized

form ensure that the univariate updates produce a computationally efficient ap-

proach to a KL-divergence minimum.

More precisely, V-Bay has linear time complexity scaling with respect to both

marker number and sample size per iteration (Appendix A.2, Methods). V-Bay

therefore has better computational scaling properties than most currently pro-

posed multiple locus algorithms for full likelihood or exact MCMC Bayesian

analysis, when simultaneously considering all markers in a GWA study [28, 40,

148, 149, 157]. While the total time to convergence will depend on the true un-

derlying genetic model, total computational times appear to be very tractable.

As an example, using a dual-quad core Xeon 2.8Ghz, with 16 Gb of memory,

V-Bay converges in less than four hours for data sets in the range of 1 mil-

lion markers, for a sample size of 200, and has average convergence around

ten hours for sample sizes of 1000.

2.3.3 Significance thresholds

We assessed significance of marker associations using −log10 p-vbay, the nega-

tive log posterior probability of a marker being in either the positive or negative

effect class. This is a natural statistic for deciding significance, since p-vbay is

20



the (approximate posterior) probability that the marker has an association with

the phenotype. While different significance thresholds based on −log10 p-vbay

can be assigned to control false positive rate, as illustrated in Figure 2.1, the

distribution of this statistic has an appealing property. The statistic has a value

of zero for most of the true hits and there is a large gap (about 1-2 orders of

magnitude) between significant markers and those with less significant scores.

This is true even when the individual heritabilities of the true hits are low. This

property of V-Bay is remarkably robust. A GWA practitioner using V-Bay can

therefore easily identify a significant association (a ‘hit’) in practice when ap-

plying a conservative significance threshold.

2.3.4 Performance of V-Bay compared to single-marker analysis

We empirically analyzed V-Bay performance on 150 simulated GWA data sets.

Marker numbers for these data were one-hundred thousand, six-hundred thou-

sand, or one million markers and were simulated using the approximate coales-

cent simulator MaCS [22]. We simulated a continuous phenotype with normally

distributed error under the conditions listed in Table 2.1, where each GWA data

set analyzed was produced by choosing a combination of these conditions. For

these simulated data sets, we analyzed the performance of V-Bay compared to

a single-marker analysis that was implemented by applying a linear regression

model individually to each marker.

As illustrated in Table 2.2, V-Bay can perform better than single-marker anal-
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Figure 2.1: Manhattan plots of the results of a single-marker (left) and V-
Bay analysis (right) of a simulated GWA data set. Data were
simulated with a sample size of 200, one million markers, 8 loci
with phenotype associations, and a total phenotype heritability
of 0.9. The locations of the loci with phenotype associations are
represented by the black squares. Each dot reflects the −log10 p-
value resulting from single-marker analysis (left) and the −log10

p-vbay output of V-Bay (right), where non-significant associa-
tions are represented as blue dots. The markers above the red
line for the single-marker analysis are significant when using a
Bonferroni correction. The markers in red for the V-Bay analy-
sis (connected by a black line) are significant using a conserva-
tive control of the false positive rate equal to a Bonferroni cor-
rection. In this case, the single-marker analysis correctly identi-
fies two of the true associations, while V-Bay identifies 7 of the
8 true associations. This result was typical for our simulation
analyses.
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Table 2.1: Components and range of values used to simulate GWA data.

Component Values

sample 200 or 1000

markers 0.1 to 1.0 million

missing 0% or 2%

loci 4, 8, or 32

effects gamma(2,1) or fixed

heritability 0.5 or 0.9

populations one or four

ysis given a sufficient sample size or a sufficient number of loci with high indi-

vidual heritabilities. Both the number of true associations identified and the

amount of heritable variation explained can be greater when employing highly

conservative false positive tolerances. For example, when using a false posi-

tive rate approaching a Bonferroni correction, V-Bay can on average double the

number of associations found by single-marker analysis and can explain 20%

more of the variance in phenotype under the most favorable conditions sim-

ulated. The reason for this increase in performance is that V-Bay has greater

power to detect weaker (true) associations by accounting for the effects of mul-

tiple loci.

Whether small associations are identified by V-Bay depends on the interplay

between the sample size of the GWA study and the percentage of variation ex-

plained by the individual marker associations. For example, Figure 2.2a and

2.2b present the Receiver Operator Characteristic (ROC) curves comparing the
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Table 2.2: Comparison of V-Bay and single-marker GWA analysis of simu-
lated data for 1 million markers. Phenotypes were simulated
with a fixed total heritability of 0.9. The false positive rate
was controlled to be < 10−7 for both the V-Bay analysis and
the single-marker analysis. (T P: average true positive rate).
aAverage, maximum, and minimum individual heritabilities of
the individual loci. bThe smallest individual heritability iden-
tified among the true positives. cThe average total heritability
accounted for by the true positives identified.

V-Bay single-marker

sample loci h2
m (min/max)a T P min(h2

m)b %h2c T P min(h2
m)b %h2c

200 4 0.24 (0.0032/0.75) 0.83 0.026 98.9 0.55 0.16 87.4

200 32 0.028 (6.7e-5/0.28) 0.053 0.033 26.9 0.072 0.050 35.3

1000 4 0.23 (0.0050/0.65) 1.00 0.0050 100 0.78 0.045 98.7

1000 32 0.028 (8.3e-5/0.30) 0.61 0.0037 95.6 0.32 0.0099 78.2

performance of V-Bay and single-marker analyses for 10 replicate simulations,

with 4 or 32 loci affecting a phenotype, total heritability of 0.9, and sample sizes

of 200 or 1000, respectively (note that we use these high heritability cases for

exploratory purposes; we also consider a total heritability of 0.5 in other sim-

ulations). With a sample size of 200 (Figure 2.2a), V-Bay outperforms single-

marker analysis for the 4 loci simulations, and is about the same for the 32 loci

simulations. The reason for the relative decrease in performance of V-Bay in this

latter case is the average individual heritability associated with each associated

marker is lower. Most of the true associations are therefore too small to detect

even when controlling for the largest effects with a multiple locus method like

V-Bay (Figure 2.2c). With a larger sample size however, V-Bay is able to detect a
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much larger proportion of the weaker associations in the case of 32 contributing

loci (Figure 2.2d). Also, since there are more loci to detect with 32 loci, V-Bay

has far better performance than single-marker analysis overall at a highly con-

servative false positive rate (< 10−7). Further simulations indicated that even

for a uniform distribution of individual heritabilities (i.e. constant minor allele

frequency and effect size), V-Bay performs better for similar sample sizes and

individual heritabilities. For example, for 32 loci with a sample size of 1000,

and false-discovery rate of 5.0% the average power of V-Bay was 93%. This is

greater than the corresponding power of 72% for single-marker analysis with

the same false-discovery rate. In general, regardless of sample size, if there are

enough loci with associations that are not too weak, then V-Bay outperforms

single-marker analysis.

V-Bay performance is a direct function of the individual heritabilities, and

not the total heritability of the phenotype. The individual heritability is defined

by both the minor allele frequency and the effect size (see Methods). Therefore

loci with large effects may still have low individual heritabilities if the minor

allele frequencies of the true loci are low (or vice versa). For example, for our

simulations where the total heritability was controlled to be 0.5, and the individ-

ual heritabilities were shifted to be smaller overall, V-Bay performance was far

closer to single-marker analysis. When we increased the individual heritabil-

ities associated with associations in these simulations, while holding the total

heritability at 0.5, V-Bay can outperform single-marker analysis. For all simu-

lations, when an individual heritability falls below a certain threshold, neither

approach could detect the association. There exists a limit to how weak an asso-
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Figure 2.2: Comparison of V-Bay and single-marker analysis for simulated
GWA data. The total heritability for the phenotype in each data
set was controlled to be 0.9. The Receiver Operator Charac-
teristic (ROC) curves in the upper graphs reflect the average
across 10 replicate data sets that included (a) 200 samples and
(b) 1000 samples. The lower graphs plot the distribution of in-
dividual heritabilities for the 32 loci simulations for the data
sets that included (c) 200 samples and (d) 1000 samples, where
the proportion of correctly identified loci for V-Bay are plotted
in red and for single-marker analysis in blue when controlling
the false positive rate at < 10−7.

26



ciation can be and still be detected by V-Bay, given the sample size of the GWA

study. Even in the worst case scenarios simulated, with many loci with small

individual heritabilities and a small sample size, the performance of V-Bay was

not significantly different from single-marker analysis across simulations. This

result suggests that even if the number of loci were increased (i.e. the aver-

age individual heritability was decreased), the performance of V-Bay would at

worst be the same as single-marker analysis.

The inset in Figure 2.3 illustrates another appealing property of V-Bay. In con-

trast to a single-marker analysis, where each marker in a linkage disequilibrium

block containing a true association will have an inflated −log10 p-value, V-Bay

identifies only a single marker as significant, which is in high linkage disequilib-

rium with the true association. We found in our single population simulations

that, while the specific marker assigned depends on the update order of the al-

gorithm, the correlation between the marker and the causative allele averages

r2 = 0.75, with 28% of hits on markers in perfect linkage disequilibrium, and

52% of markers with r2 ≥ 0.9. V-Bay can therefore provide high mapping reso-

lution within a linkage disequilibrium block.

2.3.5 Comparison to the Lasso

The V-Bay algorithm was compared to the lasso, one of the only other currently

proposed multiple locus methods that make use of a hierarchical regression

model and have similar scaling properties to V-Bay [142]. For comparison to

V-Bay, we use a form that implements a lasso type penalty [129], based on the

algorithm presented in Wu et al. [142], modified to allow continuous pheno-
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Figure 2.3: Quantile-Quantile plot of the genome-wide p-values obtained
in the single marker analysis of the data presented in Figure
2.1. The seven associations correctly identified by V-Bay are
circled in red. The locations of the loci with phenotype asso-
ciations (black squares) and the results of the V-Bay analysis
(red circles) are depicted with respect to their observed and ex-
pected quantiles from the single-marker analysis (blue circles).
In this analysis, V-Bay is able to detect true associations that are
undetectable with the single-marker analysis. The inset plot
shows one of the hits from V-Bay that does not lie exactly on
the marker in tightest linkage disequilibrium with the associ-
ated locus but is six SNPs away.
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types.

Figure 2.4 presents the power of V-Bay, the lasso, and single-marker analysis

for simulations with one-hundred thousand markers, 32 loci, and 1000 samples,

when the false-discovery rate is controlled to 0%. V-Bay, the lasso, and single-

marker analysis can all correctly detect a high proportion of loci in the upper tail

of the distribution, where the individual heritabilities of associations are high.

However, there is variability in the number of smaller heritability loci detected,

with multiple locus methods performing better. The reason for this result is

when multiple locus methods correctly identify loci with larger individual heri-

tabilities, they directly account for the effect of these loci in the statistical model.

This shrinks the estimate of the error term, which increases the power to detect

loci with even weaker associations. For these simulations, V-Bay outperforms

not only single-marker analysis, but also the lasso. We found V-Bay performed

better than the lasso (and single-marker analysis) for additional architectures

and sample sizes, when controlling the false discovery rate to 5.0% (Table 2.3).

2.3.6 Genome-wide association analysis of HapMap gene ex-

pression

To investigate the empirical properties of V-Bay, we performed a GWA analysis

on gene expression levels measured in eternal lymphoblastoid cell lines, gener-

ated from the 210 unrelated individuals of Phase II of the International HapMap

project [123]. Individuals in this sample were genotyped for upwards of 3.1 mil-

lion SNPs and were derived from four populations: Caucasian with European
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Table 2.3: Power comparison for V-Bay, the lasso, and single-marker GWA
analysis from simulated data with 100,000 markers. Phenotypes
were simulated with a fixed total heritability of 0.9. The false
discovery rate was controlled to 5% for all three analyses.

sample loci V-Bay the lasso single-marker

200 4 90.0% 87.5% 47.5%

200 32 14.1% 4.69% 7.19%

1000 4 97.5% 77.5% 60.0%

1000 32 80.6% 65.0% 33.1%

origin (CEU), Chinese from Beijing (CHB), unrelated Japanese from Tokyo (JPT),

and Yoruba individuals from Ibadan, Nigeria (YRI) [68]. In the original GWA

analysis of these data, Stranger et al. used a single-marker testing approach,

considering each population independently, and limiting the analysis to SNPs

in the cis-regions of each gene to control the level of multiple test correction

[123].

Using a version of V-Bay that accounts for population structure and missing

genotype data, we analyzed the pooled data from these populations. We did not

limit the analysis to cis-regions, although we did limit our analyses to SNPs with

MAF > .10, leaving 1.03 million markers genome-wide. To minimize computa-

tional cost, we also limited our analysis to the 100 expression probes Stranger et

al. found to have the most significant associations, and an additional 20 probes

with the largest residual variance, after correcting for population structure. For
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Figure 2.4: Histograms of loci identified by V-Bay, the lasso, and single-
marker analysis as a function of individual heritability. The
false-discovery rate is controlled to 0.0%. These graphs sum-
marize the results of ten replicate simulated data-sets with
100,000 markers, 32 loci with associations, a sample size of
1000, and a total phenotype heritability of 0.9. The power for
each method at 0.0% false-discovery rate is shown in the leg-
end.

comparison, we also applied a single-marker analysis to these pooled data, for

the 120 expression probes, incorporating a covariate to account for population

structure.

On average, V-Bay was able to complete the GWA of each of these expression

phenotypes in 1.5 hours using a dual-quad core Xeon 2.8Ghz (16 Gb of mem-

ory). In 90% of cases, where our single-marker analysis reproduced the most

significant cis-associations reported by Stranger et al., V-Bay also identified the

association. In addition, a total of 72 out of the 100 previously reported cis-
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associations [123] were identified with V-Bay (Appendix A, Table A.1,A.2). A

typical result from these analyses is presented in Figure 2.5. These Manhat-

tan plots are for the HLA-DRB1 expression probe, which was not reported by

Stranger et al. as having a strong cis-association. For this probe, V-Bay, the

lasso, and our multiple population single-marker analysis indicated a strong cis-

association. Since this association was also found with single-marker analysis,

identification was not due to V-Bay but to the analysis of the pooled data from

different populations (as opposed to testing within populations as in Stranger

et al. [123]). Still, the increased sensitivity of V-Bay was suggested in this case

by trans-associations identified by individual runs of V-Bay, which were not

identified by the single-marker analysis or the lasso. However, we imposed

the restrictive criteria that an association identified by V-Bay would only be

considered significant if it was robust to missing data resampling and marker

reordering runs. Using this conservative strategy, none of the putative trans-

associations were robust enough to report. With an increased sample size, we

believe that these trans-associations could be confidently assigned as true hits.

2.4 Conclusions

V-Bay addresses computational efficiency and performance concerns associated

with many multiple locus GWA algorithms. While V-Bay currently utilizes a

hierarchical partitioning model, the same approach could be used to implement

scalable algorithms for a wide range of models. For example, different shrink-

age or penalization models such as the lasso [150, 142], ridge regression [93], or a

normal exponential gamma distribution penalty [65] are easily implemented by

removing the partitioning and substituting the appropriate prior distribution.
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Figure 2.5: Manhattan plots of the results of a single-marker (left) and V-
Bay GWA analysis (right) of the gene expression product HLA-
DRB1 for individuals in HapMap. Each dot reflects the −log10

p-value resulting from the single-marker analysis (left) and the
−log10 p-vbay output of V-Bay (right), where non-significant as-
sociations are represented as blue dots (alternating shades are
used to distinguish chromosomes). The markers above the red
line for the single-marker analysis are significant when using a
Bonferroni correction. The marker in red for the V-Bay analysis
(in the black line) is significant at an equivalently conservative
false positive control. Note that the lasso was also able to iden-
tify this association. We did not incorporate the SNPs on the X
and Y chromosomes in our analyses.
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Further, the variational Bayes method used for computation does not require

specific closed form integrals arising from hyperparameter distributions, which

characterize many of the proposed algorithms for full penalized-likelihood or

Bayesian GWA analysis [150, 93, 65]. There is therefore the potential for de-

veloping an entire class of scalable multiple locus algorithms for GWA analysis

that could be tuned for different genetic and experimental conditions within the

V-Bay framework.

2.5 Methods

2.5.1 V-Bay Algorithm

The V-Bay algorithm consists of two components, a hierarchical regression

model with marker class partitioning and a variational Bayes computational al-

gorithm. The hierarchical regression is adapted directly from Zhang et al. [155]

with minor alterations. The first level of the hierarchical regression model for a

sample of n individuals with m markers is a standard multiple regression model:

yi = µ +

m∑
j=1

xi jβ j + ei, (2.1)

where yi is the phenotype of the ith individual, µ is the sample mean, xi j is the

genotype of the jth marker of the ith individual, β j is the effect of the jth marker,

and ei ∼ N
(
0, σ2

e

)
. While we limit the current presentation of the model to con-

tinuous traits with normal error, more complex error structures and extensions

to discrete traits is straightforward. Because equation (1) is a linear model, it can

be easily expanded to test for dominance or epistasis using a standard mapping

approach. In addition, confounding factors such as population structure can
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be accounted for by the addition of covariates. The effects of these additional

covariates can be modeled within the hierarchical regression framework or can

be treated simply as nuisance parameters and given uninformative priors. We

used an uninformative prior
(

1
σ2

e

)
for the error parameter, σ2

e , and a constant (im-

proper) prior for the mean parameter µ.

The second level of the hierarchical model consists of a partitioning of mark-

ers into positive, negative, and zero effect classes and the prior control over the

distributions of these classes. The partitioning is accomplished by modeling

each of the regression coefficients using mixture prior distributions:

β j ∼
(1 − pβ+

− pβ−)I{β j=0} + pβ+
N+(0, σ2

β+
)

+pβ−N−(0, σ
2
β−

)
, (2.2)

where I{β j=0} is an indicator function for β j with a value of zero, and N+ and N−

are positive and negative truncated distributions [155]. The priors on the popu-

lation distribution of positive and negative effect probability hyperparameters

(pβ+
and pβ−) are: (

pβ+
, pβ− , 1 − pβ+

− pβ−
)
∼ Dirichlet

(
θβ, φβ, ψβ

)
. (2.3)

In our analyses we chose an uninformative Dirichlet prior by setting the param-

eters θβ, φβ, ψβ all to one. The hyperparameters pβ+
and pβ− reflect the partitioning

aspect of the model. Within the positive and negative partitions, the population

variance parameters (σ2
β+

and σ2
β−

) have χ−2
1 priors. This choice of prior for the

regression coefficients in the positive and negative effect classes increases the

robustness to outliers. Assuming the number of markers in the GWA data set,

m, is greater than the sample size, n, we truncate the Dirichlet distribution such

that pβ−+ pβ+
≤
√

n/m, where the truncation puts a lower bound on the harshness

of shrinkage [156]. We found this truncation very important when considering
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data sets with large numbers of markers. Without truncation, the evidence in

the data is too weak to enforce harsh enough shrinkage for desirable model se-

lection.

The variational Bayes component of V-Bay is constructed by approximating the

joint posterior density of the hierarchical model:

p(β1, β2, . . . , βm, pβ+
, pβ− , σ

2
β+
, σ2

β−
, σ2

e , µ|y, x) (2.4)

in terms of a factorized form:

q(β1) · · · q(βm)q(pβ+
, pβ−)q(σ2

β+
)q(σ2

β−
)q(σ2

e)q(µ) (2.5)

and then minimizing the KL-divergence between the factorized and full form.

Equation 2.5 is a natural factorization for the V-Bay hierarchical model since

most of the priors are conjugate. The posterior factorized distributions all have

closed form expressions and each parameter is completely characterized by

an expected sufficient statistic [6] (Appendix A.2, Methods). The algorithm is

therefore equivalent to updating these expected sufficient statistics.

Minimizing the KL-divergence between each marginal distribution (e.g. q(β j))

and the full joint distribution is performed by considering the expectation of the

full log joint distribution with respect to each parameter. For a generic parame-

ter θ, the expectation step is equivalent to setting:

log {q (θ)} ∝
E−θ

[
log

{
p(β1, β2, . . . , βm, pβ+

,

pβ− , σ
2
β+
, σ2

β−
, σ2

e , µ|y, x)
}]

+ C
(2.6)

with C some normalizing constant, and E−θ indicating expectation of the log of

equation 2.4 with respect to every other parameter’s factorized distribution, ex-

cept q (θ). This defines a system of equations which can be iterated through until
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convergence [8, 6]. With the factorized form, it is a simple matter to demonstrate

the time complexity of V-Bay is O(nm) per iteration (Appendix A.2, Methods).

2.5.2 V-Bay Convergence

The factorization of equation 2.4 is used to define a function L (θ) which lower

bounds the log posterior probability of the data (i.e. the probability of the ob-

served data after integrating out all parameters in the model). The lower bound

L (θ) is defined as the expectation of the log of equation 2.4 with respect to every

factorized distribution plus the entropy of each factorized distribution. In the

full form, the convergence of V-Bay to a local maximum of the lower boundL (θ)

is guaranteed because of the convexity of L (θ) with respect to each parameter’s

approximate posterior distribution [13]. In the described implementation we

used an approximation for some higher order expectation terms that we found

increased computational efficiency (Appendix A.2, Methods).

Given that global convergence to a single stationary point is not guaranteed

[135], the standard practice is to use multiple parameter initializations. We

found that with random initializations of expectations of β j, V-Bay finds local

modes that correspond to over-fit (under-determined) models, while with ini-

tializations of only a few non-zero expectations of β j’s, V-Bay tends to update

these values close to zero before converging. We therefore use the approach of

setting all expectations of β j parameters equal to zero as a starting point for all

runs of V-Bay, an approach that has precedent in simultaneous marker analysis

[65]. This also corresponds to appropriate starting estimates given our prior as-

sumption that not too many markers are associated with a phenotype.
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We have found that the order in which the parameters are updated can affect

local convergence, particularly when there is missing genetic data. In general,

the different association models we found using different orderings were not

widely different from one another, often differing in whether they included one

or two specific associations. For cases where we found ordering did make a

difference, we ran V-Bay with multiple random orderings and used the con-

servative criteria of considering only associations found to be significant in at

least 80% of the cases to be true positives for all simulations and data analyses

compared to single-marker analysis. The cutoff of 80% corresponds directly to

a false discovery rate of 0%. We also considered a less stringent cutoff and an

observed false discovery rate of 5% in the comparison to the lasso.

2.5.3 V-Bay Software

An implementation of V-Bay is available at http://mezeylab.cb.bscb.cornell.

edu/Software.aspx. The software has basic control parameters available to the

user and only requires tab delimited genotype and phenotype files as input. The

algorithm itself consists of the following steps: 1) randomize marker ordering,

2) initialize the expected sufficient statistics and expectations of parameters, 3)

update the expected sufficient statistics for a particular parameter, given the ex-

pectations of all the other parameters, 4) update the expectations of a particular

parameter given the expectations of all the other parameters, 5) repeat steps 3

and 4 for all the parameters in the model, 6) check convergence based on the

current estimate of the lower bound, L (θ). Further functional details are pre-

sented in Appendix A, Tables A.3-A.9. The main output from the algorithm is

38



the −log10 of p-vbay= p j+ + p j− statistic for each marker, which can be used to

assess significance of a marker association.

2.5.4 The Lasso

Originally proposed by Tibshirani [130], recently applied to GWA data by Wu et

al. [142] and modified by Hoggart et al. [65], the lasso is a form of hierarchical

regression that imposes a double exponential prior on the coefficients of each

marker. Although expressed in a Bayesian context, maximum a posteriori (MAP)

estimates are obtained by maximizing the following penalized log-likelihood:

`(β|Y, λ) = `(β|Y) + log p(β|λ)

= `(β|Y) − λ
m∑

j=1

|β j| (2.7)

where `(β|Y) is the log-likelihood for the relevant generalized linear model. By

penalizing the magnitude of each β j coefficient, MAP estimates shrink the coef-

ficient values compared to the estimates under the unpenalized model. This

shrinkage causes most coefficients to be exactly zero, so that only very few

markers are selected to be nonzero for a single value of λ. This penalty produces

a convex log-likelihood surface with a single maximum even for underdeter-

mined systems (i.e. when there are more markers than samples). Therefore, the

lasso can jointly consider all markers in a single model and simultaneously ac-

count for variance in the response caused by multiple markers. The lasso model

is fit for multiple values of λ and a single subset of coefficients is selected to be

nonzero by 10-fold cross-validation. Confidence scores are obtained for each se-

lected marker by comparing an unpenalized model with all selected markers to

a model that omits each marker in turn. An F-test is performed for each marker,

39



but note that these confidence scores cannot be interpreted as typical p-values

since they are obtained from a two step procedure. Algorithmic details for fit-

ting the LASSO model for the linear-Gaussian case are provided by [143, 47].

2.5.5 Simulation Study

GWA data were simulated under the set of conditions listed in Table 2.1. The

genomic marker data were generated using MaCS [22], a scalable approximate

coalescent simulator, using the default approximation tree width. For the com-

parison to single-marker analysis, three basic types of genotype data sets were

simulated. For the first and second type, 0.5 Gb of DNA was simulated from

a single diploid population with Ne = 10000, the population scaled mutation

rate 4Neµ = θ = 0.001, and the genome-wide population scaled recombination

rate 4Neκ = ρ = .00045, values taken from Voight et al. [133]. Samples of 200

and 1000 were sampled screening the minor allele frequency (MAF) to be 0.10,

leaving more than one-million markers for analysis. For the third type, 200

diploid samples of 0.5 Gb were simulated from a simple four population mi-

gration model. The approximation Fst = 1
(4Ne M+1) = 0.12, as observed in the

overall Phase I HapMap analysis [2], was used to determine the population per

generation migration rate for a simple symmetric island migration model, with

populations of equal size. After screening MAF to be > 0.10, this left over 660

thousand markers for analysis. The final data included the addition of 2% miss-

ing data.

Given the simulated genotypic data, phenotypic data were produced with a

simple additive linear model as shown in equation 2.1. The genotypes were
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represented in the linear model with a consistent dummy variable encoding of

{0, 1, 2} across loci. The additive effects were drawn independently from a Γ(2, 1)

distribution or from a model with fixed effects. The locations for loci were ran-

domly sampled throughout the genome. For each genomic data set, 4, 8, or

32 loci with phenotype associations were simulated. The total heritability of the

phenotype was fixed at either 0.5 or 0.9. The MAF is computed for each sampled

locus in the genetic model since each locus is chosen from the SNPs generated

by MaCS. By combining the MAF with the effects sampled for each locus in the

genetic model, it is possible to determine the proportion of observed variation

contributed by each locus. This individual heritability for each locus is defined

as follows:

h2
j =

2 f j(1 − f j)β2
j

σ2
p

(2.8)

where f j is the MAF of locus j, β j is the additive effect of the locus j, and σ2
p is

the total phenotypic variance of the trait.

GWA analysis of the simulated data were performed using both V-Bay and a

linear regression single-marker analysis. When population structure was incor-

porated, the linear model (1) becomes a fixed effect ANOVA model, for both

V-Bay and the single-marker analysis. The population means in V-Bay were

treated as having normal priors centered on zero with a very large variance

(τ = 1000), and were updated in a similar fashion as the other parameters in

the V-Bay algorithm. The V-Bay algorithm was run until the tolerance for the

likelihood portion of the lower boundL (θ) was < 10−9. For the simulations with

missing data, the minor allele frequency across loci ( f j ∀ j) was estimated given

the observed genotype data, and then the missing data points were sampled

from a Bin(n = 2, f j), i.e. assuming Hardy-Weinberg equilibrium, for both V-Bay
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and single-marker analysis. We did random re-sampling of missing data to test

the robustness of the output of V-Bay and the single-marker analysis (Appendix

A.2, Methods).

The false positive and true positive rates were calculated for each set of replicate

simulations. Care was taken to account for the effect of linkage disequilibrium

on the test statistics, for both V-Bay and single-marker analysis. A simple win-

dow was computed around each marker to determine when the r2 decayed to

0.4. The cutoff of 0.4 was used to be as generous to single-marker analysis as

possible. Any marker in this window was considered a true positive. In the

case where multiple recombination events occurred recently between different

ancestral lineages, multiple blocks of markers in linkage disequilibrium were

generated, that were separated by markers in low linkage disequilibrium. In

these cases, a conservative rule for evaluating a true positive was implemented.

If a marker had a p-vbay> 0.99, or −log10 p-value for the single-marker analysis

in excess of the Bonferroni correction, and the r2 between the significant genetic

marker and the true location was greater than 0.4, then the marker was consid-

ered a true positive.

For the comparison between V-Bay, the lasso, and single marker analyses, one-

hundred thousand markers and samples sizes of 200 or 1000 for a single pop-

ulation were simulated (the reduced number of markers for these simulations

was used to conserve CPU cycles). The genetic architectures were simulated

as with the larger scale simulations, but with only 4 or 32 loci being sampled

randomly from the one-hundred thousand markers, and effects sampled from

a Γ(2, 1) distributions for 10 replicated data sets. Eight random reorderings of
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the markers were used with the V-Bay analysis, and the false discovery rate

for V-Bay was controlled based on the consensus of associations found across

reorderings with p-vbay>0.99 (e.g. a false discovery rate of 5% corresponded

to an association being found in at least 3 out of the 8 reorderings). The false

discovery rate for the lasso (using F-statistics) and single-marker analysis were

controlled based on the p-values computed for each method respectively.

2.5.6 Data Analysis

We performed a GWA analysis for gene expression levels measured in the eter-

nal lymphoblastoid cell lines that were generated for the 210 unrelated individ-

uals of Phase II of the International HapMap project [123]. This sample included

60 individuals sampled from Utah of European descent (CEU), 45 individuals

sampled from Han Chinese population (CHB), 45 individuals sampled from

Japanese population (JPT), and 60 individuals sampled from the Yoruban pop-

ulation in Africa (YRI). Expression data for these lines were available for 47,000

probes for (∼17,000 genes) assayed with the Illumina bead array. For our analy-

ses, we screened for MAF > 0.10 in all populations which left 1.03 ∗ 106 SNPs on

chromosomes 1 to 22. The X and Y chromosomes were not analyzed by Stranger

et al. and we ignored these chromosomes in our analyses as well. Stranger et

al. [123] reported 879 gene expression probes with highly significant cis-eQTL

associations, found by testing within populations, where every SNP in a 2Mb

window around each gene was analyzed. We performed a GWA analysis, with

both V-Bay and a single-marker regression, for their top 100 most significant

expression probes. We combined genotypic data across populations, where we

accounted for the effect of population structure in each case by including ap-

43



propriate covariates. We also tested the top 20 probes, not in their association

list that had the largest residual variance after correcting for population struc-

ture. Only 120 expression probes were analyzed to conserve CPU cycles; all 879

could easily be analyzed in a future study. The total missing data for this SNP

set was 1.78%. We accounted for missing data using the same approach as with

our simulated data analysis.
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CHAPTER 3

GENE EXPRESSION NETWORK RECONSTRUCTION BY CONVEX

FEATURE SELECTION WHEN INCORPORATING GENETIC

PERTURBATIONS

3.1 Abstract

Cellular gene expression measurements contain regulatory information that can

be used to discover novel network relationships. Here, we present a new algo-

rithm for network reconstruction powered by the adaptive lasso, a theoretically

and empirically well-behaved method for selecting the regulatory features of

a network. Any algorithms designed for network discovery that make use of

directed probabilistic graphs require perturbations, produced by either experi-

ments or naturally occurring genetic variation, to successfully infer unique reg-

ulatory relationships from gene expression data. Our approach makes use of

appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL), which

provide a sufficient set of independent perturbations for maximum network res-

olution. We compare the performance of our network reconstruction algorithm

to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and

the NEO algorithm, all of which have been used to reconstruct directed net-

works among phenotypes leveraging QTL. We show that the adaptive lasso can

outperform these algorithms for networks of ten genes and ten cis-eQTL and is

competitive with the QDG algorithm for networks with thirty genes and thirty

cis-eQTL, with rich topologies and hundreds of samples. Using this novel ap-

proach, we identify unique sets of directed relationships in Saccharomyces cere-

visiae when analyzing genome-wide gene expression data for an intercross be-
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tween a wild strain and a lab strain. We recover novel putative network relation-

ships between a tyrosine biosynthesis gene (TYR1), and genes involved in endo-

cytosis (RCY1), the spindle checkpoint (BUB2), sulfonate catabolism (JLP1), and

cell-cell communication (PRM7). Our algorithm provides a synthesis of feature

selection methods and graphical model theory that has the potential to reveal

new directed regulatory relationships from the analysis of population level ge-

netic and gene expression data.2

3.2 Introduction

Network analyses are increasingly applied to genome-wide gene expression

data to infer regulatory relationships among genes and to understand the

basis of complex disease [23, 39]. Probabilistic graphical techniques, which

model genes as nodes and the conditional dependencies among genes as edges,

are among the most frequently applied methods for this purpose. A diver-

sity of such approaches have been proposed including Bayesian networks

[50, 101, 160], undirected networks [95, 114, 79], and directed cyclic networks

[82, 84, 20]. The popularity of these methods derives, in part, from the structure

of these models that is well suited to algorithm development and because the

network representation of these models can be used to construct specific biolog-

ical hypotheses about the processes governing the activity of genes in a system

[50]. As an example of this latter property, genes connected by an edge may

indicate (at least) one of the genes is regulated by the other.

2This chapter was published in PLoS Computational Biology on December 2, 2010 as a re-
search article [88].

46



In graphical network inference, a theoretical principle that is now well appre-

ciated [134, 71, 111, 108, 20, 84, 21, 160, 161] is that ‘perturbations’ of the net-

work can be leveraged to reduce the set of possible networks that can equiv-

alently explain gene expression. In fact, since equivalent models can indi-

cate conflicting regulatory relationships, perturbations are often necessary to

extract regulatory relationships with any confidence. If the perturbations are

controlled (e.g. knockouts of single genes), then a network among n genes

can be recovered very efficiently with n knockouts [134]. Alternatively, per-

turbations that arise from naturally segregating variants, or combinations of ge-

netic variants produced from carefully designed crosses, can also be leveraged

[71, 111, 108, 20, 84, 4, 21, 98, 161, 160]. Perturbations of this type, caused by

genetic polymorphisms in a population that alter the expression of genes across

a population sample, are expression quantitative trait loci (eQTL) [108].

Despite the acknowledged importance of perturbations in network analysis,

there has been little theoretical work concerning sets of perturbations that max-

imally limit the set of equivalent models for arbitrary directed networks. Lim-

iting the set of equivalent models is of particular concern in cases where the

true network has cyclic structure, where the set of statistically indistinguish-

able models may include drastically different topologies [107]. In this paper, we

present theory concerning a minimally sufficient set of (genetic) perturbations

to infer a maximally limited equivalent set of network architectures, which can

subsequently be reconstructed using a single, convex optimization procedure.

We demonstrate that for a specific type of network among both gene expression

products and genotypes (an interaction or conditional independence network

[80]), when including an appropriate set of genetic perturbations for the geno-
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types, specifically locally occurring cis-eQTL [111], the interaction network con-

tains all the information necessary for directed network reconstruction. We can

therefore estimate the regulatory relationships or features of a network directly

from the interaction network with many different approaches [97, 48, 79, 3, 114].

Here, we use the adaptive lasso [162], a convex optimization procedure, to effi-

ciently solve this model selection problem. This approach allows us to avoid the

reliance on computationally inefficient heuristics [50, 101, 20, 84, 4, 21, 98, 160]

with non-unique solutions, which can generate many possibly poor-fitting net-

works when considering sample sizes that are typical of experiments collecting

genome-wide gene expression data.

Our algorithm includes three steps. First, an association analysis is carried out

to identify strong local (cis-eQTL) perturbations of gene expression. Second,

we combine the gene expression data and genotypes for the cis-eQTL, and use

an adaptive lasso regression procedure [162, 79] to identify an interaction net-

work [80] among gene expression products and cis-eQTL genotypes. The novel

component of our algorithm is incorporated into this step, where we can im-

mediately extract a unique, directed acyclic or cyclic network, given each gene

in the network analysis has a unique cis-eQTL. Third, to ensure the edges in

the interaction network correspond to the correct dependencies in the directed

graph, we do a permutation test to ensure marginal independence between the

cis-eQTL and the upstream gene based on the undirected edges recovered. We

only use genetic perturbations that are cis-eQTL because of empirical evidence

that local genetic polymorphism tends to have larger effects than trans-eQTL

[113, 16, 122], and are therefore statistically more likely to be linked to locally

causal variants. If the true network is a directed cyclic graph and if one uses
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trans-eQTL to attempt to find the true model, there can still be a larger equiva-

lence class of models, since there is no way to know which gene a trans-eQTL

actually feeds into in a cyclic graph because of equivalence (this is shown in the

“Recovery” Theorem in the Methods). Our approach mirrors directed network

inference approaches that seek to identify conditional independence and depen-

dence relationships but avoids a computationally demanding step of iteratively

testing for these relationships [73, 107, 20, 25].

To test this algorithm, we explore performance for simulated data. Specifi-

cally, the simulations are designed to capture scenarios where the underlying

network is relatively sparse, and the strength of both the cis-eQTL and regula-

tory relationships is strong enough to detect given a relatively small numbers

of samples, on the order of the number of genes being tested. We investigated

networks of modest size (either 10 or 30 genes), since we wished to focus on

cases where the set of genes being tested have strong cis-eQTL in linkage equi-

librium, which in a typical eQTL genome-wide association study will be much

smaller than the total number of genes being tested, [122, 16]. As a benchmark,

we compare the performance of our algorithm to the PC-algorithm [120, 73],

the QDG algorithm [20], the QTLnet algorithm [21], and the NEO algorithm

[4]. We find that our algorithm can outperform all of these approaches in terms

of controlling the false-discovery rate, and having greater power (given a large

enough sample size) for the recovery of directed acyclic graphs and directed

cyclic graphs. To empirically assess our algorithm, we also analyze data from a

well powered intercross study in yeast [16]. From this analysis, we identify 35

genes with strong, independent cis-eQTL, and leveraged these perturbations to

identify novel interactions. While we analyze the data from an intercross, both
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the theoretical results as well as the algorithm itself can be applied to natural

populations as well.

3.3 Results

3.3.1 The gene expression network model

Biologically, our goal is to identify relationships between the expression of mul-

tiple genes, such as the case depicted in Figure 3.1. In this figure we see that the

expression level of Gene A has an effect on the expression level of Gene B, me-

diated through some biological process (i.e. unobserved factors). Even though

we do not directly observe all the factors involved in the regulatory interaction,

we still want to be able to detect that there is a regulatory effect, including the

relative magnitude, the presence, and direction of the effect. To resolve these

relationships uniquely, we need perturbations of expression, which in this case

arise from genetic polymorphisms affecting expression. Therefore, both gene

expression and genotype data needs to be collected on the same set of individ-

uals, for all genes of interest, as well as all genotypes that will possibly act as

perturbations of expression. Overall, one can consider our model selection pro-

cess as acting on the joint covariance between and within the gene expression

products and genotypes identified as being strong QTL. In our algorithm we

further focus on cis-eQTL, because of recent studies indicating that there are

widespread genetic polymorphisms local (i.e. cis) to genes that cause significant

changes in expression [113, 16, 122].
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Figure 3.1: Example of biological relationships that can be reconstructed
by the algorithm. An expression Quantitative Trait Locus
(eQTL) directly alters the expression level of Gene A, a rela-
tionship that we represent in our network model with the pa-
rameter β. This gene in turn has an effect on Gene B through an
unobserved pathway represented by the ‘Factors’ node. While
these factors are unobserved we can still infer that there is a
regulatory effect of Gene A on the downstream Gene B, which
is represented in our network model by the parameter λ.

We want to identify the genes with strong cis-eQTL (x) with linear ef-

fects on gene expression (y) parametrized by genetic effect parameters (β), and

then identify unique regulatory relationships among gene expression products

parametrized by λ. For p measured gene expression phenotypes and m loci for

which we have genotypes, the directed graphical model of the network has p+m

nodes and (p(p − 1) + pm) possible edges, representing p(p − 1) possible regula-

tory relationships among the genes, and pm possible perturbation effects of loci

(eQTL) on each of the expression phenotypes. Written in matrix notation, the

network model for a sample of n individuals can be represented as:

YnxpΛpxp = XnxmBmxp + Enxp, (3.1)
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where Y is a matrix of gene expression measurements, Λ is a matrix of regu-

latory effects, X is a matrix of observed perturbations, B is a matrix of genetic

effect parameters, and E ∼ N (0,R), where R is a diagonal matrix. Non-zero

elements of Λ and B are edges representing regulatory relationships and eQTL

effects, respectively, where the size of the parameter indicates the strength of the

resulting relationship, as shown in Figure 2.1. Versions of this model are used

regularly in analysis of networks [50, 84, 79] when assuming that gene expres-

sion measurements are taken from independent and identically distributed (iid)

samples, where the regulatory relationships can be approximated by a system of

linear equations, and the distribution of expression traits across samples is well

modeled with a multivariate normal distribution. Another common assump-

tion we make use of in our algorithm is that most detectable eQTL effects will

have a significant linear component, especially for cis-eQTL [16, 122], where the

polymorphism has simple switch-like behavior, such as determining whether

transcription of the gene is up or down regulated.

A potential pitfall of modeling expression traits using directed networks of the

type in Equation 3.1 is the problem of likelihood equivalence between mod-

els. Figure 3.2 presents a simple example that illustrates the problems raised

by equivalence for network inference. In this example, the true model, which

is a linear pathway between four genes x → y → z → t, is indistinguishable

from three other equivalent models. Each of these equivalent models has a very

distinct implication for regulatory relationships among these genes but they are

indistinguishable, regardless of the sample size. To be able to distinguish be-

tween these models, one needs to either collect time-course data to determine

the temporal sequence in which regulation occurs [163], or alternatively, perturb

52



Figure 3.2: Example of a graphical model equivalence class when deter-
mining regulatory relationships among four genes (x, y, z, t).
Edges represent the direction of regulation. In this case, the
true regulatory network connecting the four genes (blue) has
the same sampling distribution as the other three incorrect
models (red). Without perturbations (i.e. eQTL), each of these
models will equivalently describe the pattern of expression ob-
served among these genes for any data-set.

the expression level of these genes in some fashion.

3.3.2 The Algorithm

Our goal is to identify a unique network underlying the observed expression

and genotype data, especially when the sample size is at most 1,000 (a large,

biologically realistic sample size). To accomplish this, in the Methods we prove

a set of theorems to show that if each gene being considered has its own, unique

eQTL, then one can go from the sample covariance among gene expression phe-
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notypes and genotypes (defined as S in the Methods, see Figure 3.3a), to the

inverse covariance (i.e. precision matrix or undirected network defined as Σ in

the Methods, see Figure 3.3b), then subsequently to a directed cyclic network

underlying the expression data (defined as Λ, see Figure 3.3c), where the last

step makes use of our “Recovery” Theorem. In the algorithm, we begin with

a screening process to identify a set of expression traits with putative strong

cis-eQTL (Step 1). We then make use of the adaptive lasso function for recon-

struction of conditional independence networks (i.e. the structure of the inverse

covariance matrix, Figure 3.3b) (Step 2) to identify genes with strong induced

dependencies among cis-eQTL genotypes and gene expression phenotypes and

reconstruct the unique directed acyclic or cyclic network that is a result of these

induced edges. Finally, for each putative strong induced dependency, we fur-

ther filter the induced edges based on a permutation test (Step 3), to ensure

marginal independence between the upstream gene and the downstream cis-

eQTL:

Step 1: Selection of expression phenotypes:

A standard genome-wide association analysis is performed on each expression

trait, focusing on genetic polymorphisms in a cis-window around a gene (e.g. a

1Mb window) [122]. Each marker is tested individually using either a linear sta-

tistical model or non-parametric test statistic (e.g. Spearman rank-correlation),

with a correction for multiple tests using either a control of false discovery rate

[7], a conservative Bonferroni correction (i.e. α/n, where α is the significance
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Figure 3.3: Outline of the structure of Step 2 of the algorithm. (a) Af-
ter selection of phenotypes in Step 1, we produce a covari-
ance matrix between observed gene expression products, and
their associated unique cis-eQTL. (b) A convex feature selec-
tion method (the adaptive lasso) is used to learn the structure
of the inverse covariance matrix, which is also the conditional
independence or interaction network among gene expression
products and cis-eQTL genotypes. (c) The directed cyclic net-
work among expression products can then be recovered di-
rectly from the conditional independence network, using the
“Recovery” Theorem. For Step 3, each of the induced edges be-
tween expression phenotypes and cis-eQTL, shown in (b), are
tested to ensure marginal independence using a permutation
test.

level and n is the number of tests), or through a permutation approach to com-

pute significance based on the empirical distribution of test statistics after shuf-

fling the data, as in Stranger et al. [122]. After this initial association analysis

is performed, the remaining cis-eQTL and their associated genes are further fil-

tered such that the cis-eQTL genotypes are strongly independent of one another.

In our analyses we use the very conservative cutoff r2 <= 0.03 between any pair.

This ensures that each cis-eQTL represents a unique perturbation, which is es-

pecially important for small sample sizes, when the sampling variability of the
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entire data-set is high.

Step 2: Regulatory network reconstruction:

Once the set of expression phenotypes are identified, we combine the genotype

and gene expression data, so as to infer a joint gene expression, cis-eQTL inter-

action network, (i.e. identifying which elements of the matrix Σ are non-zero).

This model selection method is similar to the network recovery method pro-

posed by [97], except using the adaptive lasso instead of the regular lasso [79].

The adaptive lasso procedure is performed by first solving the lasso problem:

argmaxα

− n∑
i=1

(yi − ziα)2
− η

p+m−1∑
j=1

|α j|

 (3.2)

then using the coefficients from this problem to solve the following adaptive

lasso problem [162]:

argmaxζ

− n∑
i=1

(yi − ziζ)2
− η

p+m−1∑
j=1

ŵ j|ζ j|

 (3.3)

for every phenotype, yi in the reduced data-set, where ŵ = |α̂|−1/2, z is the com-

bined gene expression products and associated cis-eQTL genotypes, and α and ζ

are the corresponding regression coefficients, whose non-zero structure should

asymptotically be the same as Σ, given an appropriate choice of the penalty

parameter η. The penalty parameter η is chosen by five fold cross validation

based on the mean-squared prediction error across both steps of the procedure.

In addition, all variables are centered to have mean zero and rescaled to have

variance one, so that the gene expression products and genotypes with small or

large variances will not be penalized differently. After the interaction network
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is determined, we infer the directed regulatory network immediately from the

interaction network structure, based on the results shown in the “Recovery”

Theorem.

While we could make use of any undirected inference approach that infers the

conditional independence network [73, 107, 20, 25] for Step 2, we use the adap-

tive lasso because of its theoretical advantages [162] and empirical performance,

as far as finding sparse solutions with the lowest mean-squared error (by cross-

validation) [79]. A lasso type procedure can be used for model selection [97] by

shrinking parameters to exactly zero and is convex [129], providing computa-

tionally efficiency. However, there has been theoretical work showing that since

the lasso shrinks non-zero parameters too harshly, it will not always return the

true model asymptotically (i.e. as sample size goes to infinity). In fact the con-

ditions under which it will return the correct model may be very unlikely for

high dimensional problems [158]. The adaptive lasso was proposed to remedy

this problem, and in general appears to have better properties as far as model

selection both theoretically and in practice, without sacrificing the convexity of

the lasso [162, 79].

Step 3: Edge interpretation and filtering:

The primary goal of the “Recovery” Theorem is to map the problem of learning

a directed cyclic graph among a set of phenotypes onto the problem of learn-

ing an undirected graph among a set of phenotypes and appropriately selected
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genotypes (i.e. unique cis-eQTL), then determining the corresponding directed

cyclic graphs from the original problem. Each edge in this idealized larger undi-

rected graph between the genotypes and the phenotypes represents an induced

dependency between a given cis-eQTL and the immediate upstream phenotype

of that cis-eQTL’s cis-gene. Yet in practice, some of these edges identified in

the undirected graph may arise from trans-effects, i.e. a given cis-eQTL may

also have a large marginal correlation with another gene expression product in

the data-set, that is not explained away entirely by the relationships inferred

among phenotypes. In this case a further test can be performed, to ensure that

for any putative induced dependencies identified from the undirected graph,

the cis-eQTL and upstream gene are marginally uncorrelated. For this we per-

form a resampling method of the marginal correlation between cis-eQTL and

upstream phenotype, and only use the edges which are very likely induced de-

pendencies, in this case where the probability of observing a larger marginal

correlation, given that they are uncorrelated, is 0.90. This threshold of 0.90 was

used as a highly conservative threshold for marginal independence.

3.3.3 Simulation analyses and comparison to other network re-

covery algorithms

To benchmark the performance of our algorithm, we compared it to the PC-

algorithm [120, 73], the QDG algorithm [20], the QTLnet algorithm [21], and the

NEO algorithm [4]. The other previously proposed cyclic algorithms either do

not scale well (e.g. the approach of Li et al. [82]) or have prohibitively complex

implementations (Richardson’s cyclic recovery algorithm [107] or the algorithm
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of Liu et al. [84]). The PC-algorithm is designed to recover directed acyclic

graphs using iterative tests of conditional dependence and independence, is

a computationally efficient algorithm (scales to thousands of genes for sparse

networks), and has competitive performance with other directed acyclic graph

reconstruction algorithms [73, 131]. Additionally, the PC-algorithm forms the

backbone of the QDG algorithm where it is used to construct an undirected

graph (the skeleton of the directed acyclic graph) among expression phenotypes

before orienting these edges using known QTL [20]. The QTLnet algorithm pro-

poses a full Markov chain Monte Carlo approach to network inference, but does

not scale above twenty phenotypes because of convergence rates of the Markov

chain, and does not explicitly model directed cyclic graphs [21]. We also com-

pared our algorithm to the NEO algorithm [4], and found that our approach

controlled the false-discovery rate much better and had higher power for small

networks (p = 5, results not shown), but the implementation of the NEO al-

gorithm available from the author was not stable for our simulations of larger

networks (p >= 10), and so we did not include it in a larger comparison.

To compare the performance we simulated data from the model presented in

Equation 3.1 with strong cis-eQTL, low sample variances, and different topolo-

gies, representing a scenario where there are strong eQTL, and few direct inter-

actions between genes, with sample networks illustrated in Figure 3.4. The four

different classes of simulations included directed acyclic graphs for 10 pheno-

types, with sparse and dense topologies (Figure 3.4a, 3.4b), and directed cyclic

graphs for dense (Figure 3.4c) and intermediate topologies (Figure 3.4d), with

10 and 30 phenotypes respectively, for a total of 160 distinct network topolo-

gies generated across all the simulations. This simulation is biologically moti-
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vated by the need for strong, statistically independent cis-eQTL and interactions

among genes, as observed in previous studies [113, 16, 122].

We simulated a set of either 10 or 30 expression phenotypes and genotypes

for sample sizes of n = 50, 100, 200, 300, 400, 600, 800, and 1000 for both

directed acyclic graphs and directed cyclic graphs. We simulated an F2 cross

with the R package QTL [17], with either 10 or 30 independent known unique

cis-eQTL of constant effect (diag(B) = 1), and error variances of 1x10−2. The

regulatory effects (Λ) were sampled from a uniform distribution with parame-

ters (1/2, 1) or (−1,−1/2) with equal probability. The network topologies were

generated by randomly connected variables with equal probability, where the

expected number of edges for each variable was either one, two, or three.

Five replicate simulations were performed, sampling a new network topology

and parameterization each time, and the power and false-discovery rate were

computed for the adaptive lasso, PC-algorithm, QDG algorithm, and QTLnet

algorithm for 10 expression traits, and all except QTLnet for 30 expression traits

(because of the scaling of QTLnet). In addition, because we simulate the QTL in-

dependently, with no trans effects, we do not perform the third step of our adap-

tive lasso algorithm. We compared the performance for both directed acyclic

graphs as well as directed cyclic graphs. In Figure 3.5 and Figure 3.6 we show

the power and false discovery rate for recovering the correct set of directed

edges using these methods. While some of the power and false-discovery rate

curves show large fluctuations with increasing sample size in Figure 3.5 and

Figure 3.6, this is due to elevated sampling variability due to each replicate sim-
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Figure 3.4: Examples of four network topologies used to simulate gene
expression data from 160 total topologies. Sparse acyclic (a),
dense acyclic (b), and dense cyclic (c) graphs were simulated
for networks with 10 genes. Intermediately dense cyclic net-
works were simulated networks with 30 genes (d). Nodes rep-
resent expression levels of genes and the directed edges repre-
sent regulatory (conditional) relationships among genes, where
the strength of the relationships were determined by sampling
from a uniform distribution. Each phenotype (node) has a
unique, independent cis-eQTL feeding into into it (not shown),
with constant effect.
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ulation having a unique topology and parameterization.

For two of these scenarios, we show that our algorithm using the adaptive lasso

can outperform the PC-algorithm, the QDG algorithm, and QTLnet in terms of

statistical performance (see Figure 3.5c, 3.5d and Figure 3.6a, 3.6b) with simi-

lar computational scaling. In general, only the QDG algorithm has competitive

performance with the adaptive lasso (see Figure 3.6c, 3.6d). This indicates that

the necessary sample size to have a significant performance gain over the QDG

algorithm may be much larger than is biologically realistic for larger more com-

plex networks. These are significant results in two ways, the first being that we

show that a feature selection method using linear regression can 1) identify di-

rected regulatory architecture (given sufficient perturbations) and 2) it can also

outperform state of the art network reconstruction algorithms, given a sufficient

samples size and appropriate model dimension.

The adaptive lasso approach appears to work the best for smaller problems

(i.e. 10 phenotypes) with denser topologies (i.e. Figure 3.4b, 3.4c) and performs

better than other approaches in such cases (see Figure 3.5c, 3.5d and Figure

3.6a, 3.6b). This may be because smaller dimensional problems behave asymp-

totically at a faster rate. Unfortunately, this suggests that for larger problems

(e.g. hundreds to thousands of phenotypes), unless the true topology is rela-

tively sparse, the adaptive lasso, and perhaps all of these approaches will have

poor performance without unrealistically large sample sizes (e.g. thousands) for

both directed acyclic and cyclic graphs. We also performed a simulation for a

small network (e.g. 10 phenotypes and 10 cis-eQTL), with dense directed acyclic
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Figure 3.5: Performance of our algorithm using the adaptive lasso for di-
rected acyclic graphs compared to other algorithms. Theses
other algorithms include the PC-algorithm, the QDG algo-
rithm, and the QTLnet algorithm for reconstructing different
acyclic topologies of 10 genes. For a sparse directed acyclic
topology (as in Figure 3.4a), the power (a) and false discovery
rate (b) are plotted as a function of the sample size for five repli-
cate simulations. Similarly, for a dense directed acyclic topol-
ogy (as in Figure 3.4b), the power (c) and false discovery rate
(d) are plotted.
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Figure 3.6: Performance of our algorithm using the adaptive lasso for di-
rected cyclic graphs compared to other algorithms. These other
algorithms include the PC-algorithm, the QDG algorithm, and
the QTLnet algorithm for reconstructing different cyclic topolo-
gies of 10 genes (a) and (b) or 30 genes (c) and (d). For a dense
directed cyclic topology (as in Figure 3.4c), the power (a) and
false discovery rate (b) are plotted as a function of the sample
size for five replicate simulations. Similarly, for an intermedi-
ately dense directed cyclic topology of 30 genes (as in Figure
3.4d), the power (c) and false discovery rate (d) are plotted.
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topology and 200 or 1000 individuals with random variances and eQTL effects

simulated from a Γ(2, 1) distribution. We found a uniform reduction in power

(10-20%) across all methods, as well as a modest increase in false discovery rate

(5-10%). Increased sample size appeared to correct for this additional random-

ness in the parameterization (results not shown).

3.3.4 Yeast Network Analysis

We used our algorithm to reconstruct network structure for genome-wide gene

expression data and genetic markers assayed in 112 segregants of a cross be-

tween two strains of Saccharomyces cerevisiae, reported by Brem and Kruglyak

[16]. This cross was between a lab strain (BY4716) and a wild strain (RM11-

1a), with 2,957 genetic markers genotyped and expression levels for 5,727 genes

measured. While the sample size is relatively small, the study was well pow-

ered, with many strong cis-eQTL and interactions among genes [16]. An in-

dividual marker analysis was run around the cis region of each gene (25 kb

around the start site of the gene) to identify a set of gene expression products

with strong cis-eQTL (−log10(p-value)< 1x10−5), which identified 262 genes. We

further filtered this set to remove cis-eQTL genotypes with high linkage, by fil-

tering for a set with pairwise r2 < 0.03 between any two cis-eQTL genotypes.

Additionally, we tested the robustness of the inferred edges by randomly sam-

pling the flanking genetic markers 20 times for all cis-eQTL and refitting the

model. The percentage recovery for the top six recovered directed edges for the

20 resamplings are shown in Table 3.1. All missing data for a given genotype or

phenotype was set to the sample mean of the respective variable.
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After the additional filtering described above, we were left with 35 genes with

unique, independent cis-eQTL, with an undirected network shown in Figure

3.7a, and possibly directed network shown in Figure 3.7b. Performing the adap-

tive lasso procedure on these 35 gene expression phenotypes and 35 genotypes

identified 91 possibly directed edges among these genes, and 145 undirected

edges among the genes. These hits were further filtered to ensure they rep-

resented induced dependencies, leaving six edges with relatively strong evi-

dence of directionality (see Table 3.1 and Figure 3.7b). These include four edges

feeding out of the TYR1 gene, a gene involved in tyrosine biosynthesis [94].

Since TYR1 is also a hub in the undirected network (see Figure 3.7a), this sug-

gests that amino acid biosynthesis, and perhaps anabolism in general is driving

the expression of many of this particular subset of genes. The genes in which

TYR1 appears to have direct effects on have diverse molecular and biological

functions including endocytosis (RCY1), sulfonate catabolism (JLP1), cell-cycle

checkpoint (BUB2), and cell-cell communication (PRM7) [141, 64, 46, 60].

Additionally PRM7 feeds into POC4, a proteasome chaperone protein [81],

representing possible cross-talk between cell-cell communication response and

protein processing. Finally, SEN1, a helicase indicated in RNA polymerase 2 ter-

mination [105], appears to robustly directly affect MST27 an integral membrane

protein implicated in vesicle formation [109]. In the implied undirected graph,

there were striking topological features, including an average degree of 8.28

(relatively dense), and four genes appeared to be major hubs of a sort, TYR1,

NUP60, RDL1, and POC4. These hub genes may represent major axes of vari-

ation driving the expression of this subset of genes including processes such
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Table 3.1: Directed regulatory edges identified by the adaptive lasso for S.
cerevisiae cross.

Regulator gene Target gene Scaled effect % Recovery from adjacent marker resamplings

TYR1 RCY1 0.035 0.05

TYR1 JLP1 0.123 0.35

TYR1 BUB2 -0.0056 0.55

TYR1 PRM7 0.0576 0.55

SEN1 MST27 -0.135 0.85

PRM7 POC4 0.154 0.15

as amino acid biosynthesis, information transfer across the nuclear envelope

[32], and protein degradation. While most of the edges in the network were

not orientable, there still appeared to be many dependencies (even with a possi-

bly high false-discovery rate), indicating a potentially complex set of regulatory

interactions, projected on this subset of genes, driving variation in expression.

Additionally, there were many edges from eQTL that would appear to be trans

associations (i.e. with large marginal correlations), demonstrating that many of

the pathways that mediate these trans genetic effects are not captured in the

observed sets of genes. Based on the simulation study, and the complexity of

the recovered network (which most likely indicates a high false discovery rate),

a much higher sample size would need to be collected to definitively resolve

this possible set of regulatory interactions, and have increased confidence in the

directional interpretation of the induced edges.
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Figure 3.7: Sparse network reconstruction among 35 gene expression
products. These genes were filtered for having strong, inde-
pendent cis-eQTL (pairwise r2 ≤ 0.03) using the adaptive lasso
algorithm for a Saccharomyces cerevisiae cross between a wild
strain and lab strain [16], with 112 segregants (see text for de-
tails). (a) Recovered undirected network among these 35 gene
expression products and (b) putative directed network recon-
structed for the same genes, based on the edges between cis-
eQTL (not shown) and the 35 genes. Bold edges represent
directed edges with strong confidence based on a resampling
procedure (see text for details).

3.4 Discussion

Our algorithm represents a novel approach to directed network recovery by

making use of a convex optimization approach for regulatory feature selection

when analyzing gene expression products and cis-eQTL. This is the first algo-

rithm that makes use of sufficient sets of cis-eQTL to infer unique directed cyclic

networks from gene expression data with a feature selection methodology. Our

use of the adaptive lasso procedure for feature selection has significant compu-

68



tational and theoretical advantages, since the underlying optimization program

is convex (ensuring a computationally efficient, unique solution), is model se-

lection consistent, and has the oracle property (asymptotically, the estimates of

the non-zero regression coefficients behave as if the model was known a pri-

ori) [162]. There have not been many algorithms proposed for genome-wide

cyclic regulatory network recovery, [107, 82, 84, 20] and they all have either

computational or theoretical challenges associated with them, including heuris-

tic searches through regulatory network space with no guarantee to reach net-

works with the strongest evidence given the data [84, 20, 4], or lack sufficient

perturbations to allow unambiguous regulatory inference [107, 82]. With re-

spect to directed acyclic network recovery, we see in the simulations that our

feature selection approach with sufficient perturbations outperforms the PC-

algorithm, the QDG algorithm, and the QTLnet algorithm for dense, small scale

problems as shown in Figure 3.5c, 3.5d and Figure 3.6a, 3.6b. This increase in

performance is a direct function of the adaptive lasso procedure correctly iden-

tifying the children of a given node, which will then force an edge to appear

between the additional co-parents of that node, and its unique cis-eQTL. Once

all these induced edges are identified, the structure of the directed network can

be elucidated, since all the expression parents of each gene will be known. Our

algorithm also does this all in a single optimization procedure, avoiding sets of

iterative tests, where type-I and type-II errors can build up at each stage, such

as in the PC-algorithm. Alternatively for larger more complex graphs the per-

formance appears to be similar to that of the QDG algorithm Figure 3.6c, 3.6d,

perhaps because the asymptotic properties take much larger sample sizes to be

practically realized.
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For the analysis of the yeast data the topology of the identified network in-

cluded many undirected cycles, with the few orientable edges being acyclic, as

shown in Figure 3.7. In addition there were a set of genes which appeared to be

hubs (the most connected being TYR1, NUP60, RDL1, POC4, and SEN1, PCD1,

and SAN1 to a lesser extent). This phenomena is probably in part due to an

inflation in false-positives because of the small sample size, and a complex un-

derlying model with many unobserved variables. Yet a subset of these edges

may represent hub genes capturing different broad patterns of variation across

this entire sub-network. Even though most of the edges in this network are not

orientable, an experiment could be devised where each of these hubs was per-

turbed, and given the topology it would produce a prediction about how a rel-

atively large set of other genes in the hub’s neighborhood would behave. More

strongly, in the case of the TYR1 gene which had the most orientable edges, it

suggests that if the process driving that gene’s expression was stopped, many

other genes would also be affected, but not vice-versa.

A number of assumptions concerning biological networks are implicit to our

algorithm. These include assumptions that are common to most graphical

modeling techniques, such as sparsity, faithfulness, linearity of regulatory re-

lationships, and normally distributed error, as well as an assumption that is

specific to our algorithm: the presence of known, independent perturbations

from cis-eQTL. The common assumptions are reasonable when constructing

a first approximation to regulatory network structure. Sparsity and faithful-

ness (i.e. the true network does not contain pathological parametrizations

where there is parameter cancellation) are essential assumptions that are im-

plicit in algorithms for both directed and undirected network inference algo-
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rithms [95, 73, 107, 20, 25, 21, 160]. Regulatory relationships are not linear, but

linearity is the simplest approximation that provides biologically relevant in-

formation, i.e. there is a detectable relationship between two genes, or no re-

lationship. An assumption of normality is conservative in terms of being the

most ‘random’ distribution that could have generated the data, since given an

observed covariance structure, normal distributions have maximum entropy

[136]. Given the absence of knowledge about the specific biological process

generating the distribution of expression measurement error, and barring any

clear evidence of non-normality in data, such a conservative approximation is

appropriate.

The assumption of independent, detectable cis-eQTL effects is the most restric-

tive assumption. Other methods have proposed to use trans-eQTL directly to

increase the power to detect causal relationships and reduce the space of equiv-

alent models [160, 84, 98, 21, 82, 4, 20]. We require the assumption of only cis-

eQTL, because without it, there is no longer the exact isomorphism between

the undirected graph among genotypes and phenotypes and the directed cyclic

graph among phenotypes. This occurs because in the case of directed cyclic

graphs, it is statistically impossible to know which phenotype in a network a

trans-eQTL directly feeds into, unless their is prior knowledge about the true

causal structure of the system, as with the assumption we make about cis-eQTL.

This statistical degeneracy arises as a result of the “Recovery” Theorem, where

when there is a set of equivalent models with independent, unique perturba-

tions, that contains reversals of cycles, each equivalent directed cyclic graph will

have an alternative perturbation topology (i.e. the mapping between unique

eQTL and gene expression phenotypes, determining which eQTL causally af-
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fects which gene expression product).

Alternatively, as we show in real data, even if there do appear to be many trans-

eQTL we can still detect a subset of edges from the cis-eQTL that behave how

we would like (by using Step 3 of the algorithm). While this may reduce our

power to detect directed cycles in practice, it ensures that for real data-analysis

we are more confident in the edges we reconstruct. Another possible solution to

the incorporation of trans-eQTL would be to use the adaptive lasso to generate

the initial undirected graph among genotypes and phenotypes, then to orient

the edges in the graph using an iterated testing approach, as in the NEO algo-

rithm [4], the algorithm of Millstein et al. [98], or the QDG algorithm [20]. We

do not expect the requirement of unique cis-eQTLs to be a good approximation

for all regulatory modeling situations. However, this assumption also seems

reasonable, given recent biological observations of strong local polymorphism

associations with gene expression (eQTL) which are often not in linkage dise-

quilibrium [16, 122, 38, 113, 89]. What is more, due to the structure of linkage

disequilibrium in outbred populations (the correlation structure among geno-

types) it is often possible to identify a large set of cis-eQTL that are uncorrelated

and each have unique expression phenotypes, e.g. a set of eQTL that are present

on different chromosomes or are far away from one another in terms of genetic

map distance [122].

As a final comment, the theory of sufficient perturbations that maximize reg-

ulatory resolution, which is used as the foundation of our algorithm, is quite

general, and could be used to integrate multiple data types to make predic-

tions about putative causal regulators underlying complex phenotypes, such as
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disease [23, 39]. The “Recovery” Theorem defines a class of perturbation archi-

tectures where there is a direct isomorphism between two very different types

of networks: the inverse covariance structure (an undirected network) with per-

turbations and a directed cyclic graph representing a regulatory network. The

theory does not require perturbations to be cis, just that there be an appropriate

set of perturbations that provide resolution. More complex perturbation sets,

which include sufficient perturbations as a subset, can also provide maximum

resolution. One could therefore construct algorithms similar to the algorithm

presented in this paper, without the local cis perturbation restriction. Moreover,

the specific topology of eQTL effects need not be known, if one is willing to ac-

cept the cost of larger network equivalence classes and therefore less total regu-

latory resolution. With this restriction lifted, it would be possible to jointly infer

the genetic perturbation architecture simultaneously with regulatory architec-

ture, although such a joint reconstruction would require much larger sample

sizes.

3.5 Methods

3.5.1 The Network Model

The network model is presented in equation 3.1. For this model, we make the

assumption that in the true network model, Λ is sparse. In addition, we as-

sume that R, the error covariance matrix of expression products, is diagonal,

and diag (Λ) = 1, where the constraint on the diagonal of Λ ensures model

identifiability. This constraint corresponds to a lack of self-loops, since the pa-
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rameters representing self-loops are confounded with the error variance pa-

rameters specified by R. These latter assumptions on R and Λ (i.e. no er-

ror covariance or self-loops) are standard, and used by all popular graphi-

cal network inference algorithms, directed and undirected, proposed to date

[50, 111, 82, 84, 120, 73, 107, 20, 95]. The model depicted by Equation 3.1 is a

completely observed structural equation model (SEM) [11].

3.5.2 Likelihood and Equivalence

The conditional log-likelihood of the model defined by Equation 3.1 can be writ-

ten as:

` (Y|X;Λ,B,R) ∝ log
{
det

(
Σyy

)}
− Tr (ΣS) , (3.4)

where the full precision matrix Σ and empirical covariance matrix S are:

Σ =

 Σyy Σyx

ΣT
yx Σxx

 =

 ΛR−1ΛT ΛR−1BT

BR−1ΛT BR−1BT

 (3.5)

S =
1
n

 YTY YTX

XTY XTX

 , (3.6)

with the data matrices Y and X re-centered.

We can define a fully parametrized model matrix Γ:

Γ =

 ΛR− 1
2

BR− 1
2

 , (3.7)

since by definition R > 0, and diag (Λ) = 1, both Λ and B can be rescaled by the

positive square root of the error precision matrix R−1.
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From Equation 3.5, Equation 3.6, and Equation 3.7 the relationship between the

fully parametrized model matrix Γ, and the full precision matrix Σ is

ΓΓT = Σ. (3.8)

This defines a system of homogeneous polynomials of degree two which exactly

specifies the relationship between the directed graph Γ, which may contain no

cycles (a directed acyclic graph or DAG) or may contain cycles (a directed cyclic

graph or DCG), and the moralized undirected graph Σ.

Definition of equivalence [100]:

Two sparse directed cyclic graphs specified by the model in Equation 3.1, with

parametrization Γ1 and Γ2, are equivalent in distribution iff for all parametriza-

tions Γ1,∃Γ2 : Γ2Γ
T
2 = Γ1Γ

T
1 and for all parametrizations Γ2,∃Γ1 : Γ1Γ

T
1 = Γ2Γ

T
2 .

Intuitively, the parametrization defined by Γ1 and Γ2 provide a unified repre-

sentation of the directed cyclic graph among gene expression products along

with the set of perturbations of expression (i.e. genotypes). This definition of

equivalence allows us to characterize our theory of sufficient perturbations.

3.5.3 “Recovery” Theorems

Given the importance of having as small a set of equivalent models as possible

for making meaningful inference, and the necessity of perturbations for mini-
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mizing equivalence classes, it is of interest to know what will constitute a suffi-

cient set of perturbations, i.e. to shrink the size of arbitrary equivalence classes

as much as possible. In the following section we provide proofs of three the-

orems that describe such a set. We note that it should also be possible to use

the work of Richardson on cyclic causal discovery [107] to arrive at the same

theoretical condition concerning a set of sufficient perturbations, though it is

beyond the scope of this work to show this connection. Here, we use an inde-

pendent and simpler proof based on normal theory and matrix algebra. Our

theory also provides a generalization of the work of Chaibub Neto et al. [20],

which shows that sets of unique (or “driving”) QTL for each phenotype can be

used to uniquely orient edges in a directed cyclic network. Our approach allows

us to represent the problem of directed network inference as a model selection

problem within a regression equation for each phenotype. This allows us to

avoid the reliance on computationally inefficient heuristics [50, 84, 20], which

can generate many possibly poor-fitting networks depending on how the al-

gorithm is run, when considering sample sizes that are typical of experiments

collecting genome-wide gene expression data.

The “Recovery” Theorem demonstrates how the set of equivalent DCGs can be

recovered from the precision matrix between expression phenotypes and loci

(the matrix Σyx). This last result is incorporated into our algorithm for infer-

ring sparse network structure with a sufficient perturbation (eQTL) set. Note

that while the algorithm depends on sparsity for efficient network recovery, the

results of these theorems are general and do not require such a constraint. In

addition, we note in a further Lemma that even in the case of directed cycles, if

we know which phenotype a perturbation feeds into, we can further reduce the
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size of the equivalence class to a unique directed cyclic graph.

Theorem 1:

Given two distribution equivalent directed cyclic graphs, with equivalent

parametrizations Γ1 and Γ2, any matrix A which satisfies Γ1A = Γ2, must be or-

thonormal (i.e. AAT = I).

Proof of Theorem 1:

Since Γ1AATΓT
1 = Γ2Γ

T
2 , and from the definition of equivalence, if Γ1 and Γ2 are

equivalent, then Γ1Γ
T
1 = Γ2Γ

T
2 . Therefore, Γ1AATΓT

1 = Γ1Γ
T
1 . Left multiply by ΓT

1

and right multiply by Γ1, then CAATC = CC, where C = ΓT
1Γ1 is a positive defi-

nite invertible matrix of rank p. Left and right multiply by C−1, and AAT = I.

The matrix A can be thought of as a linear operator that allows transformations

between models which produce the same covariance (and inverse covariance)

structure (even between models which are not faithful). We use this operator to

prove the following theorem after rescaling the network and perturbation pa-

rameters as in Equation 3.7: Λi = ΛiR
− 1

2
i , Bi = BiR

− 1
2

i :
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Theorem 2:

If there exists an ordered set S =
{
s1, s2, . . . , sp

}
of rows of the perturbation graph

parametrized by B1 such that L1 = B(S)
1 P1, where L1 is a diagonal matrix of rank

p and P1 is a signed permutation matrix, then 1) if Λ1 parametrizes a DAG,

then for any parametrization Λ1 of any DAG, there does not exist an alterna-

tive equivalent DAG or DCG, and 2) if Λ1 parametrizes a DCG, then for any

parametrization of any DCG, there exists a finite set of equivalent DCGs, where

each equivalent DCG contains a reversed directed cycle with reference to the

original DCG.

Proof of Theorem 2:

Given L1 exists, assume there exists an alternative equivalent model

parametrized by B2 and Λ2. Then, by Theorem 1, there exists an orthonormal

matrix A where Λ1A = Λ2, B1A = B2, and L1A = L2. Because L1 and L2 are in-

vertible, we have: A = L−1
1 L2. This implies that L1LT

1 = L2LT
2 . Since L1 is diag-

onal for any parametrization B1, L1LT
1 and L2LT

2 must also be diagonal for all

equivalent parametrizations L1,L2. If there does not exist a signed permuta-

tion matrix P2 such that F = L2P2, with F diagonal, then there always exists a

parametrization of L2 where L2LT
2 is not diagonal, and therefore not equivalent

(since all non-zero elements of L2 are free to vary). Therefore A = PT
2 is either

an identity matrix or a signed permutation matrix. Now consider Λ1A = Λ2. Be-

cause in this parametrization, diag (Λ) = diag
(
R 1

2
)
, the only allowable equivalent

model transformations must have positive non-zero elements along the entire
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diagonal. Therefore, if Λ parametrizes a DAG, then A = I, and if Λ parametrizes

a DCG, then A = P where P is any signed permutation matrix which ensures

non-zero positive elements along the diagonal of Λ. This corresponds directly

to reversing the order of any set of directed cycles in the graph.

This theorem allows us to understand constraints on possible equivalent mod-

els in the specific case when each node has at least one unique perturbation. In

the next theorem, we focus on the structure of the moralized graph (i.e. the pre-

cision matrix Σ) for these models, and see how it maps back to the set of possible

unmoralized directed graphs that generated the moralized graph. We define the

set of parents of a particular node, yi, from the directed graph as pa(yi), and the

set of all nodes in an undirected graph Σ that have edges to node z as ad j(Σ, z).

“Recovery” Theorem:

If in Σ there exists an independent perturbation vertex set x = (x1, . . . , xq) and

a response vertex set y = (y1, . . . , yq) where ∀i, |ad j(Σyx, yi)| ≥ 1 and ∃x j ∈ pa(yi),

then the only equivalent directed cyclic graphs among y that could have gener-

ated Σ contain permutations of cycles, and can be recovered from Σyx.
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Proof of the “Recovery” Theorem:

The existence of an independent perturbation vertex set and response vertex set

that satisfies these conditions corresponds directly to a perturbation topology

and parametrization specified by L1 from Theorem 2. Given this observation,

Theorem 2 ensures the constraint on possible equivalent models. Finally, the

reason the structure can be recovered from Σyx is apparent from Equation 3.5

and 3.7, where Σyx = ΛBT, and therefore ΣL1
yx = ΛLT

1 Since LT
1 is diagonal it won’t

change which elements of ΣL1
yx are zero or non-zero.

In the case of DAGs, a generalization of this theorem is trivial to prove for

graphs defined over arbitrary probability measures, since the process of moral-

ization of a graph connects all the parents of a given node. Since in this specific

perturbation case, each node has at least one unique parent (from the pertur-

bations), then a connection will be induced between the unique perturbation

parent and each of its co-parents, indicating exactly what the unique set of par-

ents are for that given node.

Alternatively, as we saw in Theorem 2, the assumptions of normality and lin-

earity are key to showing that even for directed cyclic graphs that have unique

perturbations, there still exists multiple equivalent models. In the “Recov-

ery” Theorem we see that we can still determine these ‘minimal’ equivalence

classes from the moralized graph. It is interesting to observe that the perturba-

tion topology can completely change among equivalent directed cyclic graphs,

whereas it cannot for directed acyclic graphs. If one knows which node each

perturbation feeds into, then the following is true:
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Lemma:

If the underlying perturbation topology, B1, is known, then the cardinality of all

directed cyclic equivalence classes is reduced to one.

This further reduction of the equivalence relationships is apparent when one

considers that each equivalent perturbation topology specifies exactly one mem-

ber of the equivalence class (from the “Recovery” Theorem). Therefore, if

one knows the true perturbation topology, then one knows the true regula-

tory model. This allows us to infer a unique directed cyclic graph in the case

where we know which phenotype each genetic perturbation feeds into. Hence,

the reason behind making our major biological assumption: to only consider

the genetic effects of cis-eQTL and assume that the cis-eQTL feeds directly and

uniquely (i.e. non-pleiotropically) into the local gene. With trans-eQTL, unless

there is prior knowledge about exactly which gene each trans-eQTL affects (i.e.

about the pathways in question), there is no way to reduce this equivalence class

to a unique directed cyclic graph.
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3.6 Algorithms

3.6.1 Adaptive lasso

For Step 1 of the algorithm, we perform an individual marker analysis of each

genetic polymorphism in a window around the start site of the gene, and only

include the markers that are significant given a Bonferroni correction for multi-

ple testing. We then filter these sets of cis-eQTL such that they are effectively in-

dependent given the linkage disequilibrium structure of the data. For the anal-

ysis of the yeast data, we found that a maximum pairwise r2 <= 0.03 between

cis-eQTL genotypes was a very conservative threshold given a resampling test

of random markers across the genome (results not shown).

For Step 2 of the algorithm, the lasso problems from Equation 3.2 and 3.3 are

solved using the cyclic coordinate descent method of Friedman et al. [49],

as implemented in the ‘glmnet’ package, called by the ‘parcor’ package [79].

While this method is an approximation to solving the adaptive lasso for the log-

likelihood defined in Equation 3.4, there are theoretical connections between an

exact solution to the problem, and this approximate solution which suggest that

in some cases the approximation will not perform much worse than the exact

solution (i.e. highly penalized cases) [48].

For Step 3 of the algorithm, we performed a permutation test to very conser-

vatively ensure that the induced edge found between an upstream gene, and

the cis-eQTL, did not arise from a trans-effect of the cis-eQTL. To do this we ran-

domly resampled the genotype data 10,000 times for each induced edge, and
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determined the proportion of the time the absolute value of the marginal corre-

lation between upstream gene and cis-eQTL under the empirical null model was

greater than the absolute value of the observed marginal correlation. We only

treated induced edges as representing a directed relationship between a pair of

phenotypes if the probability of observing a greater value under the empirical

null model was greater than 0.90.

3.6.2 PC-algorithm

While this is only designed to reconstruct directed acyclic graphs, it has been

used in a combined gene expression and genotype context to reconstruct di-

rected cyclic graphs [20]. The PC-algorithm reconstructs the skeleton (i.e. set

of edges regardless of edge orientation) of a partially directed acyclic graph

(PDAG) by performing forward tests of conditional independence. It first starts

by constructing a correlation graph (i.e. a conditional independence graph

where one conditions on the empty set), then in a forward step-wise manner,

removing edges in the neighborhood of each node by increasing the size of the

conditioning set based on the neighborhood of each node. Once the cardinality

of the conditioning set is equal to or larger than the neighborhood for all nodes,

the algorithm terminates. While this is being done, all identified v-structures

(co-parents of a common child) are being tabulated, so that afterwards these

edges can be oriented. Then, there is a set of rules, based on the seed v-structures

which orient a small initial set of edges, which orient many additional edges in

the network, by propagating the implications of the few initial oriented edges,

with respect to the d-separation criterion defined for directed acyclic graphs

[120, 73].
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We applied the PC-algorithm by giving it the entire set of gene expression prod-

ucts with cis-eQTL as well as all of the cis-eQTL genotypes as well. There is one

tuning parameter, α, for the implementation ‘PCalg’, which represents the level

of significance each test of conditional independence has to pass to correspond

to removing an edge from the skeleton of the network. We used a conservative

value of α = 0.001, based on simulation results presented in Kalisch et al. [73].

For directed acyclic graphs, the PC-algorithm will also use the cis-eQTL to ori-

ent each of the edges in the network correctly and uniquely. For directed cyclic

graphs, the PC-algorithm will try to orient the edges to form a directed acyclic

graph, but often will fail, and draw a random DAG instead. We also apply the

PC-algorithm to directed cyclic network recovery by having it identify both the

skeleton with perturbations, and then have it attempt to orient as many edges as

possible, given that every regulatory relationship should be orientable with the

PC-algorithm when there are sufficient, unique perturbations. While in some

cases this will fail, especially as the sample size grows and it becomes more sen-

sitive to variations away from the assumption of no cycles, in practice it is able

to orient many edges correctly in a directed cyclic graph.

3.6.3 QDG algorithm

The default settings were used for the QDG algorithm, as provided by the au-

thors [20]: α = 0.005 for the PC-algorithm skeleton reconstruction step, the

skeleton reconstruction method based on the PC-algorithm, and the number

of random restarts of iterative testing of different global edge orientations was

set to ten. The QDG algorithm uses either the PC-algorithm or UDG algorithm
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[116] to generate a skeleton among phenotypes [20]. Then, the QDG algorithm

orients edges between phenotypes based on a LOD score computed by lever-

aging each phenotype’s known QTL. To find a globally optimal orientation of

edges, an iterative search over orientations is performed to find all possibly

cyclic networks which fit the data well [20]. We tried both methods in the QDG

algorithm to generate the skeleton, and did not see a significant difference in

performance for our simulations (results not shown).

3.6.4 QTLnet algorithm

The default settings were used for the QTLnet algorithm, as provided by the

authors [21]: we ran it for 20,000 iterations, sampling every 20th iteration af-

ter a burn-in of 2,000 iterations. The QTLnet algorithm uses a fully Bayesian

Markov chain Monte Carlo approach to solve the problem of joint phenotype

genotype network inference, constraining the proposed graph transitions to di-

rected acyclic graphs [21]. In our analyses, we use the Bayesian model averaged

output of the QTLnet algorithm, and include an edge only if its posterior prob-

ability of inclusion is greater than 0.50.

3.6.5 NEO algorithm

We used the default settings for the NEO algorithm, based on the code available

from the author’s website: http://www.genetics.ucla.edu/labs/horvath/aten

/NEO/ [4]. The NEO algorithm uses multiple QTL to orient edges between

an arbitrary pair of phenotypes based on different structural equation model
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based statistics [4], but has no mechanism to remove edges among phenotypes

by conditioning on other phenotypes, and will therefore often have high false-

discovery rate for recovery of the network generating the data among pheno-

types. This was another justification, aside from the scaling of the algorithm, for

why we did not include it in our broader comparison of alternative methods.
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CHAPTER 4

AGGRESSIVE FALSE POSITIVE CONTROL FOR GENOME-WIDE

FEATURE SELECTION IN A MOUSE F2 CROSS

4.1 Abstract

Complex disease risks can arise from a variety of genetic, molecular, and envi-

ronmental factors. We propose a novel machine learning algorithm to aggres-

sively control false positive rates for sparse models of the simultaneous effect of

genetic variants and molecular phenotypes on downstream phenotypes, as well

as sparse models within molecular phenotypes (i.e. network models). While

other sparse feature selection procedures have been proposed in the fields of

machine learning and statistics, such as the lasso, our algorithm is the first

that is explicitly designed to be both highly scalable, as well as contain a nat-

ural metric for stringent control of false positives, all within a single statistical

model. We use our algorithm to characterize the effect of genetic markers and

liver expression traits on weight, cholesterol, glucose, and free fatty acid levels

in an F2 mouse intercross. A sparse simultaneous model among >24,000 phe-

notypes and genotypes was generated in less than 72 hours on a single work-

station where we identify a set of genes, Zfp69, Crhr1, Qpctl, Vcam-1, Cnr2,

Gabarabl1, Gch1, and a quantitative trait loci (QTL) on chromosome 7 near the

Atp10a gene, all directly linked to weight, and all previously associated with

obesity. Strikingly, these specific interactions with previous known associations

to obesity were not identified as significant in the initial and subsequent anal-

yses of this specific data set. In addition we identify a set of nine genes previ-

ously associated with obesity-related phenotypes, including insulin resistance,
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hypertension, and diabetes, as well as 78 novel genes and QTL affecting weight,

cholesterol, glucose, and free fatty acid levels.

4.2 Introduction

Recent studies have shown that complex disease risk can be mediated by many

interacting molecular pathways, and these pathways can be identified through

statistical methodologies and algorithms [23, 39, 110, 112, 66, 161, 27, 91]. With

the advent of high throughput sequencing and molecular phenotype character-

ization technologies it is now possible to collect genome-wide profiles of both

sequence variation, and gene activity variation in a sample of individuals [108].

Given that all sources of systematic error are controlled, these data present the

unique possibility to identify novel regulatory mechanisms and pathways un-

derlying disease [110, 23, 39, 112]. For example, Yang et al. [146] validated three

novel genes involved in obesity and obesity related traits in an F2 mouse cross,

based on predictions made from models generated on combined genome-wide

molecular phenotype and genotype variation. Yet, many of the models used to

generate these predictions are inaccessible to the practical user, or may suffer

from poor performance for realistic data (i.e. the strongest scoring interactions

may still be heavily enriched for false positives), which can make the process of

validation of novel interactions prohibitively expensive [110].

Previous statistical model generation approaches have focused on different lev-

els in the hierarchy of variation when considering combined gene expression

and genotype data, from broad patterns (i.e. ensemble behavior of groups of

genes), to specific conditional relationships (i.e. network models of interactions
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among genes). An example of an ensemble method that has been proposed

is gene expression module identification using clustering techniques [154]. This

type of method has been used to identify specific modules associated with quan-

titative trait loci (mQTL), as well as the effect of those modules on disease risk

[161, 23, 58, 51]. Additionally, authors have proposed methods based on the

inference of the topology of a network, which fall into two broad classes, undi-

rected networks [95, 97, 159, 114] and directed networks [50, 101, 73, 160, 111].

These models are able to capture complex and conditional relationships among

genes but will be more sensitive to sampling variation and the effects of system-

atic error [88]. In the context of directed networks, one goal has been to leverage

QTL, to reduce the space of models with equivalent sampling distributions, to

gain possibly causal interpretation for the direction of the edges in the inferred

graph [98, 4, 84, 111, 71, 108]. One constraint of all of the previously proposed

approaches is that they can suffer from high false positive rates for the identifi-

cation of any specific edge in a statistical network underlying the observed data

[88], when considering genome-wide network reconstruction. Our algorithm

augments the previous approaches for generating novel statistical models of

genomic variation in two ways. First, we focus on the specific and practical

problem of generating simultaneous statistical models (i.e. undirected network

models), where the false positive rate can be stringently controlled, all within

a single statistical feature selection framework. Second, our approach is highly

scalable in that it can be run on a single workstation, with any level of rele-

vant genomic variation included in the model. We propose a novel variational

Bayes algorithm for undirected network inference, generalizing the algorithm

proposed in Logsdon et al. [87].
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Statistically, these data-sets exist in the realm of “large p, small n”, in terms

of having large number of features (e.g. genetic polymorphisms, gene expres-

sion phenotypes, protein quantification phenotypes), and relatively few sam-

ples [140, 78]. The false discovery rate (FDR) can be controlled directly, as-

suming a uniform distribution of the null p-values [7] in a parametric or semi-

parametric model, yet when the null distribution of p-values deviates from

uniformity, more sophisticated methods must be employed [125]. In addition,

statistical problems in the “large p, small n” realm have generally focused on

controlling the FDR of marginal, or individual tests whereas if the underlying

model being tested includes multiple features simultaneously, the problem of

controlling FDR becomes even more challenging [78, 156, 87]. We seek to pro-

pose a method which can aggressively control the FDR in complex, multiple

feature statistical models.

To address the “large p, small n” problem, a handful of machine learning al-

gorithms have been proposed with respect to learning the structure of a sta-

tistical undirected graph underlying observed molecular phenotype and geno-

type variation, using a penalized or regularized objective function. With respect

to learning purely generative models, the lasso [97], and adaptive lasso [159]

penalized regression has been proposed for neighborhood selection. In addi-

tion Schäfer and Strimmer have proposed a shrinkage estimator [114], based

on a shrunken estimate of inverse covariance matrix (in a Gaussian graphical

model this defines the structure of the graph; see Equations 4.1-3), which was

expanded by Chu et al. [25], to analyze both expression and genotypic data.

Friedman et al. [48], and Fan et al. [43] proposed algorithms to solve the full

penalized likelihood version of the lasso and adaptive lasso Gaussian graphical
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model (GGM) problems. It has has been argued that in the p � n realm, solving

the full penalized likelihood version of the problem is ill-conditioned because of

the positive semidefinite constraint on the structure of the inferred inverse co-

variance matrix. Additionally, full semidefinite programming solutions to this

type of constraint are not computationally practical on the scale of tens of thou-

sands of features[151].

We therefore propose a highly scalable algorithm based on a penalized regres-

sion model for feature selection that has significant computational and perfor-

mance advantages over these other approaches. Our algorithm is related to a

mixture penalty, or spike and slab model [56], in a fully Bayesian hierarchical

model, similar to Zhang et al. [155]. The form of the penalty function is illus-

trated in the first panel of Figure 4.1, as compared to the popular lasso penalty,

(or a Laplace prior in a Bayesian context) shown in the second panel of Figure

4.1. The spike and slab prior we use is a Bayesian representation of a mixture

L0, L2
2 norm, with an additional probabilistic interpretation. This approach has

certain theoretical advantages over the lasso [155, 156, 147], and is equally as

scalable. To demonstrate this property we analyze genome wide genetic vari-

ation and expression variation, and their effects on downstream phenotypes

related to weight in a mouse intercross [58].

In our data analysis we demonstrate that our approach can generate better per-

formance than the lasso and the adaptive lasso in terms of identifying strictly

statistically relevant features for a simultaneous feature model. (We also val-

idate this property on simulated data, as shown in Appendix B). We can out-

perform the lasso because it can suffer from poor model selection performance
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Figure 4.1: The spike and slab prior (L0 + L2
2 penalty) and the log Laplace

prior (L1/lasso penalty) used in the regularized regression pro-
cedures for model selection.

with low false-discovery rate, especially for models with many correlated fea-

tures. These drawbacks include model selection inconsistency (when the ir-

representability condition is met [158]), where even asymptotically the correct

model will not be selected, because of pathological correlations between fea-

tures in the true model, and features that are not in the true model. While other

penalties have been proposed to remedy this problem including the adaptive

lasso [158], the smooth clipped absolute deviation penalty (SCAD) [44], most

of those penalties still have significant drawbacks in terms of requiring asymp-

totics to take advantage of properties like model selection consistency, as well as

the problem of the choice of model complexity penalty parameter, which must

be done through a heuristic process like minimizing some metric of cross vali-

dation error, or through minimizing a model complexity measure such as AIC

or BIC [43], for data when p � n.
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4.3 Results

4.3.1 Mouse Network Analysis

We analyzed the F2 progeny of a cross between the C57BL/6J (B6) and

C3H/HeJ (C3H) strains on an apolipoprotein E null (ApoE – / –) background

(BXH.ApoE−/−), as presented in Ghazalpour et al. and Wang et al. [58, 138]. This

cross was generated to investigate metabolic syndrome associated phenotypes

[58, 138]. We focused on the gene expression data that was collected in the liver

of the mice where expression was assayed on 23,574 custom probes [58]. In

addition there were 22 downstream phenotypes that were assayed, including

weight, cholesterol, glucose, free fatty acid, among other metabolic phenotypes,

as well as 1,347 genetic markers [58]. After filtering down to a common set of

individuals with both expression and markers collected we were left with 298

individuals. Previous authors have shown with this data that there is antago-

nistic sex effects [138], i.e. the effect of a risk locus is opposite between males

and females. To address the sex specific effects, as well as other possibly con-

founding factors, we included both the sex, as well as the 20 first eigenvectors

computed across samples for expression phenotypes as fixed effects in our lin-

ear model, as depicted in Equation 4.6.

We ran our analysis in two steps. First, we ran the variational algorithm on

each of the 22 obesity related downstream phenotypes individually, where we

performed sparse feature selection on all genes products, genetic markers, given

the 20 top principal components, and sex, with 1,000 random restarts of the algo-

rithm that let us identify many possible models, and their associated evidence
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(see Appendix B). The variational algorithm produced a sparse set of expres-

sion and genetic markers for each downstream phenotype, with the phenotypes

with more than seven expression or genotype features identified shown in Table

4.1 (with a cutoff of p̂ j > 0.99). In addition, we ran the lasso and the adaptive

lasso with five-fold cross validation for the same set of downstream phenotypes,

as shown in Table 4.1. While the size of the identified neighborhoods of each

downstream phenotype was on average much larger for the lasso and the adap-

tive lasso, the variational algorithm identifies additional features, with only 55%

overlap with the lasso, and 30% overlap with the adaptive lasso for these seven

phenotypes shown in Table 4.1. In addition, when the features were extracted

for each method, and analyzed in an independent, non-penalized linear multi-

ple regression model, (for all phenotype except weight), both the lasso and the

adaptive lasso contained many features that were not statistically significant at

the P < 0.05 significance level. Alternatively, for the variational method, the

features identified were all statistically significant. This strengthens the results

of the simulation study, where at the p̂ j > .99 cutoff, all the returned features

make significant statistical contributions to the model, and are therefore more

likely to be biologically relevant.

In the second step, we generated an expression-eQTL undirected network, by

solving the neighborhood selection problem defined in Equation 4.6 for each

gene expression product individually, against all other genes and genetic mark-

ers, given the top 20 principal components, and the sex, with 50 restarts. We

resolved the neighborhoods of the expression-eQTL network very conserva-

tively, by averaging the p̂ j scores in both directions of regression for the ex-

pression phenotypes, and only declaring an interaction between genes present
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Table 4.1: Model size, intersections, and proportion of significant associa-
tions based on an independently fit linear model, between the
variational method, the lasso, and the adaptive lasso, where
‘Vari’ indicates the variational method, Adalasso indicates the
adaptive lasso, Vari ∩ Lasso indicates the intersection of the fea-
tures returned by the variational method, and the lasso, and %
P < 0.05 indicates the percentage of features with P-values less
than 0.05 in an independently fit linear simultaneous statistical
model.

Pheno Vari Lasso Adalasso Vari ∩ Lasso Vari ∩ Adalasso %P < 0.05 Vari %P < 0.05 Lasso %P < 0.05 Adalasso

Weight 13 107 14 6 3 100% 29% 100%

Total Chol 12 176 55 7 4 100% 17% 69%

HDL 9 186 24 7 5 100% 16% 88%

UC 13 172 39 8 4 100% 20% 77%

FFA 9 194 23 5 2 100% 10% 96%

Glucose 8 196 100 3 3 100% 22% 65%

LDL+VLDL 12 187 127 6 2 100% 13% 33%

in the model if the averaged p̂ j scores were greater than 0.99. To determine

the most relevant aspects of this sparse network with respect to weight and

other related phenotypes, we combined the neighborhoods produced for each

of the downstream phenotypes, and the expression-eQTL undirected network,

to depict the local sub-networks associated with each downstream phenotype,

as shown in Figure 4.2 for weight, and Figure 4.3 for total cholesterol, high den-

sity lipoprotein (HDL) cholesterol, unesterified cholesterol (UC), free fatty acids

(FFA), glucose levels, and low density lipoprotein + very low density lipopro-

tein (LDL+VLDL) levels. Table 4.2 summarizes identified genes which have

been previously implicated in obesity, or related diseases and pathologies.

Most strikingly, in Figure 4.2 we see that the expression of the zinc-fingered

protein 69 (Zfp69) is directly linked to weight, in this conditional regression
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Weight

AI661017

Hormad2

A4gnt

Zfp69
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Upk3a
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Olfr771
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Gna14

BC013529

Rab7l1
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Gch1

Dlgap1

B3galt6

rs3699204

rs3686635

Figure 4.2: A sparse, reconstructed sub-network with the variational algo-
rithm for all expression products and genetic markers associ-
ated with weight in a BXH.ApoE−/− F2 mouse intercross. The
blue nodes represent genetic markers, the red nodes expression
traits, and the green node is the weight phenotype.

96



TC

HDLUC

FFA Glucose

LDL+VLDL
1190002J23Rik

F11r
Smyd2

Ifi202b

Gpnmb

Trem2

Oplah

1810015C04Rik
Rad52b

Gabarapl1

BC060167

4432416J03Rik

Bcdo2

Glra4
5930437A14Rik

Nsccn1

1100001E04Rik

4930431A04Rik

Olfr656

9030425E11Rik

Ndrg1

Wisp1

Atp6v0d2
Aph1c

Rps23

2810429K17Rik

Ssbp2

Fdft1Pou4f1

A530088H08Rik

1810055E12Rik

D19Ertd737e

Alad

Hdhd3

Ubc

Ncor2

NP_059010

AA546554
Pnpo

2410091C18Rik

BC021367

Ier2
D12Ertd647e

XM_141326

Slc24a3

Crhr1

AF011418

Qpctl

Gdpd1

Vcam1

Yy1

Rps3

Ccl19

E2f5

rs3663150

rs3664823

Psmd3

Gp2
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Figure 4.3: A sparse, reconstructed sub-network with the variational al-
gorithm for total cholesterol (TC), high density lipoprotein
cholesterol (HDL), unesterified cholesterol (UC), low-density
lipoprotein cholesterol (LDL+VLDL), free fatty acids (FFA),
and glucose levels. As with Figure 4.2, the blue nodes repre-
sent genetic markers, the red nodes expression products, and
the green nodes are downstream metabolic phenotypes.
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Table 4.2: Interactions identified by the Variational method with previ-
ous evidence as being associated with obesity, or obesity related
traits.

Gene/SNP Disease Organism(s) Reference

Zfp69 Candidate gene for diabetes associated with obesity Mouse and Human [115]

Gna14 Association study of hypertension Human [77]

F11r Induces hypertension in the brain stem Rat [137]

Gabarabl1 Regulator of insulin dependent hepatic autophagy Mouse [85]

Wisp1 Association study of hypertension Human [145]

Fdft1 Squalene (cholesterol) biosynthesis gene Mouse and Human [75, 102]

Ier2 Induced gene in insulin signaling pathways Rat [74]

Slc24a3 Down regulated in diet sensitive obesity Human [57]

Crhr1 Candidate obesity gene possibly affecting feeding behavior Mouse and Human [26, 103]

Qpctl Association study identified candidate obesity gene Human [118]

Vcam-1 Atherosclerotic plaque associated gene Human [30, 99]

Gch1 Identified in linkage studies of maximal sedentary oxygen uptake Human [12]

Dlgap1 Type-2 diabetes associated gene Human [5]

Yy1 Type-1 diabetes associated gene Rat [76]

Ccl9 Adipocyte inflammation Human [153]

Cnr2 Obesity associated adipocyte inflammation Mouse [33]

Atp10a/rs3664823 Obesity associated gene Mouse [34]

neighborhood selection model. This gene has previously been identified as a

candidate gene, for the diabetogenic effect of the Nidd/SJL loci in obese mice

[115]. In addition, the expression of the genes GTP cyclohydrolase 1 (Gch1),

discs, large (Drosophila) homolog-associated protein 1 (Dlgap1), and guanine

nucleotide binding protein, alpha 14 (Gna14), are all also directly linked to

weight, where Gch1 was previously identified in a linkage scan for maximal

sedentary oxygen uptake [12], Dlgap1 has been identified as possibly associated

to Type-2 diabetes in humans [5], and Gna14 has been identified as associated

with hypertension [77], which are all diseases with related etiologies with obe-

sity. Furthermore, we identify two SNPs in the sub-network directly connected

to the expression products associated with mouse weight. First, rs3699204 is
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a cis-eQTL linked to Al661017 (Tmem71), a transmembrane protein on chro-

mosome 15, and second, rs3686635 is a cis-eQTL for BC038311 (Cox18), a cy-

tochrome c oxidase assembly homolog.

In Figure 4.3, we see that the gene F11r, also known as junctional adhesion

molecule-1 (JAM-1) is related to both the total cholesterol levels, as well as the

combined LDL and VLDL cholesterol levels, through the 1190002J23Ri probe

i.e. kelch domain containing 9 (Klhdc9) gene. The F11r gene has been previ-

ously identified in rats as having a role in hypertension, where over-expression

of the gene significantly increased blood pressure [137]. The gene gamma-

aminobutyric acid (GABA) A receptor-associated protein-like 1 (Gabarabl1) was

also identified as being directly connected to total cholesterol and LDL+VLDL

cholesterol levels, and is a known regulator of autophagy [85]. This gene was

previously identified as being down-regulated in the liver of mice that were

induced to be insulin resistant [85]. The gene Yin yang 1 (Yy1) has been previ-

ously associated with type-1 diabetes in rats [76] and the gene WNT1 induced

signaling pathway protein 1 (Wisp1) was connected with HDL levels through

the N-myc downstream regulated gene 1 (Ndrg1) gene. This gene was recently

identified as being associated with hypertension in a Japanese population from

a longitudinal analysis [145].

The gene farnesyl diphosphate farnesyl transferase 1 (Fdft1) is a known squa-

lene (cholesterol) synthesis gene, and high levels of this gene are known to be

associated with visceral obesity [102], and is known to be up-regulated in mice

on a high fat diet [75] and is directly linked to the unesterified cholesterol levels.

The gene immediate early response 2 (Ier2) also known as Pip92, is known to be
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induced by insulin signaling [74], and is linked through BC021367 (a transmem-

brane protein also known as Tmem161a) to the levels of free fatty acids. Solute

carrier family 24, member 3 (Slc24a3), has been previously identified as having

significantly decreased expression in a panel of individuals with diet-sensitive

obese women, and is directly linked to glucose levels in our network [57]. Fur-

thermore, both the genes corticotropin releasing hormone receptor 1 (Crhr1) and

glutaminyl-peptide cyclotransferase-like (Qpctl) are directly linked to Slc24a3,

and have both been previously implicated as candidate obesity genes [26, 103].

Additionally, the gene vascular cell adhesion molecule 1 (Vcam1), has been pre-

viously shown to be at expressed in human atherosclerosis lesions [30, 99], and

is linked to the levels of glucose through the expression of the gene glycerophos-

phodiester phosphodiesterase domain containing 1 (Gdpd1) in our network.

We also see that the gene chemokine ligand 19 (Ccl19) is directly linked to to-

tal cholesterol levels, where this gene has been shown to be up-regulated un-

der induced endoplasmic reticulum (ER) stress in adipocyte tissue [153], where

obesity is known to put ER stress on adipocyte tissue [153]. We also identify

cannabinoid receptor 2 (Cnr2) as being directly connected to both the levels of

free fatty acids and glucose, where Cnr2 has been shown to be directly mediate

an innate immune response leading to inflammation in obese mice adipocytes

[33]. Finally, we also identified a possible genetic variant that has been previ-

ously linked to increased obesity, with the SNP rs3664823 on chromosome 7,

interacting with the total levels of cholesterol [34].
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4.4 Discussion

Identifying multiple, sparse, strongly supported statistical interactions among

different levels of a biological system is a very challenging and relevant prob-

lem, especially when the number of features greatly exceeds the sample size, as

is common in genome-wide assays of joint molecular genetic, phenotypic, and

downstream phenotype variation [23, 39, 110, 112, 66, 161, 27, 91]. This goal is

especially relevant when attempting to characterize the specific drivers of a dis-

ease, where the underlying disease aetiology can be complex and conditional

[110]. Having a statistical model which can account for a rich set of interactions,

as with a conditional Gaussian graphical model, is necessary to both leverage

all the available information in the data, and generate a nuanced understand-

ing of how previously uncharacterized features fit into the context of a specific

biological system. For example, we were able to generate the prediction that

a cis-eQTL near rs3686646 effects Cytochrome c assembly, which in turn may

have an impact on weight. To this end we have identified a rich set of genes

whose expression is strongly statistically linked to both weight (Figure 4.2), as

well as weight associated phenotypes (Figure 4.3). We have demonstrated that

our novel methodology can outperform other commonly used penalized regres-

sion approaches in the F2 mouse intercross (Table 4.1) in terms of only returning

interactions that have very strong statistical support, given the available infor-

mation in the data. We also demonstrate this for simulated data, as shown in

Appendix B, with figures B.1, and B.2.

Some authors have suggested that even though not all the features identified

by the lasso or the adaptive lasso are statistically relevant (Table 4.1), one could
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implement a two stage procedure where after running either method, one per-

forms statistical tests on the identified features (where the penalty parameter

has been chosen based on cross-validation or an information criterion) [142].

Yet, if the initial number of features returned by the model is large, this could

lead to ill-behaved test-statistics (e.g. if the effective degrees of freedom in an

unpenalized model is low); additionally in the case of the analysis we present in

Table 4.1, the variational method consistently identifies a sparse subset where

all the features are significant, and not a strict subset of any of the features iden-

tified by the lasso or adaptive lasso. For example, neither the lasso nor adaptive

lasso (which by definition returns a strict subset of the features identified by

the lasso) identify the gene Zpf69, a known obesity candidate gene, as being di-

rectly connected to weight, whereas the variational method does. Furthermore,

the regression model is fit in a single procedure with the variational method,

where the model dimension is adaptively determined by an inference proce-

dure in the hierarchical Bayesian model based on the evidence in the data, and

the probabilistic consistency bound on model size.

We focus on the reconstruction of sparse undirected graphs, because they are

more amenable to highly scalable, sparse feature selection methods based on

penalized probabilistic models [79]. Directed regulatory networks represent

a richer class of statistical models (e.g. most parametric representations of

Bayesian networks are in the curved exponential family [53]), and are therefore

not only more challenging to learn (NP-hard, [24]), but the sampling variabil-

ity of directed inferences will also be much higher, because the possible set of

models is much richer. In the realm of p � n this is a significant challenge, since

the sampling error may dominate most of the observed variation and covaria-
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tion. In addition, when the goal is specifically novel interaction discovery, with

low false-discovery rates, sacrificing inference of the direction of the interaction,

while gaining the knowledge of a novel contributing factor is a worthwhile com-

promise.

We propose a mean-field, or variational Bayes, type approximation to the full

posterior inference problem, where data analyses and simulations indicate that

this approximation is appropriate for the highly sparse model selection prob-

lem. The deterministic algorithm defined through the variational Bayes ap-

proximation allows us to scale our approach to problems beyond the scope of

current exact inference approaches (e.g. Markov chain Monte Carlo (MCMC) al-

gorithms [56, 155, 156]). Also, because the best-subset selection problem can be

unstable in certain circumstances [15], there will be many local solutions. This

translates into a highly multi-modal posterior surface. Applying the ridge like

penalty to the non-zero coefficients with the ‘slab’ component of the mixture

can regularize or stabilize the problem. Unfortunately, there is still a funda-

mental computationally intense problem of finding many possible models or

modes, and determining the relative evidence of each model or mode. Because

the algorithm is very fast, we can run it many times (up to thousands) and iden-

tify many models, along with the relative evidence of each model identified,

based on the lower bound (Equation B.14), and integrate the evidence across the

models through approximate Bayesian model averaging, as in equation B.16.

Frequentist approaches do not inherently have the option of Bayesian model

averaging, and therefore in the case of model selection when there are many

competing models with similar evidence, we believe that the fully Bayesian ap-

proach is the most effective at integrating this information, and generating the
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best estimates of which interactions are most strongly supported by the data.

Hence even the recently proposed Minorization-Maximization (MM) algorithm

of [147] which approximates a similar spike and slab prior as depicted in this

paper for a likelihood version of the regression problem, could still suffer from

identifying many unstable solutions (modes of the likelihood surface) with no

natural way to regularize across modes or models.

This mixture penalty in a Bayesian framework has attractive theoretical proper-

ties, including bounded shrinkage and indications that it may approach optimal

efficiency for sparse underlying parameter spaces [72]. Plus, recent theoretical

work suggests that the spike and slab penalty is still model selection consistent

when the irrepresentability condition is met [147]. In addition, as previously

proposed by Zhang et al. [155, 156], we incorporate a very stringent model com-

plexity control through a probabilistic consistency bound of the total number of

features allowed in the model of O
(√

n/m
)
. This provides a consistency bound

to ensure asymptotically optimal mean-squared error [156]. One of the main ad-

vantages of this approach is that the hierarchical model can adaptively shrink

the penalty to match the sparsity of the underlying parameter space, without

having to resort to prediction based metrics like cross-validation or possibly

heuristic model complexity measures based on information criterion such as

AIC or BIC.

One of the most important novel contributions of our algorithm over the previ-

ously proposed version [87] is an approximate Bayesian model averaging step

[104]. Because this penalty is non-convex, the posterior surface can be highly

multi-modal, where each mode in the posterior density can represent a different
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set of identified features (i.e. neighborhood). One well characterized weakness

of the L0 type penalty, also known as best subset selection, is that the solution

can be highly unstable to perturbations of the data [14]. By performing Bayesian

model averaging across the identified modes, we can additionally regularize

the solution, by reweighting the assignments to different posterior probabili-

ties, proportional the the volume underneath the mode (also a measure of the

relative evidence of the given model). In the machine learning literature this

is also known as bagging [15], and it allows us to additionally regularize our

solution based on the set of identified solutions.

In addition we use a novel maximization step to correct for potentially globally

confounding factors in the model by including the k first principal components.

The possibility of globally confounding variables is well known in the genome-

wide association study literature when population structure can broadly bias

association test statistics [106]. While in this model we take a naive approach

through the incorporation of principal components to correct for global pat-

terns of variation across expression phenotypes, a more nuanced model could

be defined that includes explicit hidden factors, or a full mixed model of regres-

sion such as been suggested by Listgarten et al. [83]. Correcting for these large

scale patterns is essential, since they may arise from confounding effects like

sex, batch effect, or other sources of systematic error, which prevents the iden-

tification of specific local interactions within and among genetic variants and

downstream phenotypes, with low false discovery rates.
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4.5 Methods

4.5.1 The network model

For a set of p gene expression traits m genetic markers and fixed effects we define

the log-likelihood of the conditional Gaussian Graphical model as follows [48]:

log (Y|X,Θ) ∝ log
{
det

(
Θyy

)}
− Tr (SΘ) , (4.1)

where:

Θ =

 Θyy Θyx

ΘT
yx Θxx

 , (4.2)

and

S =
1
n

 YTY YTX

XTY XTX

 , (4.3)

being the sample covariance matrix, X and Y mean-centered, X being an n x m

matrix of genotypes and fixed effects, and Y being an n x p matrix of expres-

sion or downstream phenotypes. The matrix Θ represents the pairwise Markov

dependencies of the random variables Y [80]. Intuitively, the set of non-zero

θi j parameters for a given random variable yi, defines the set of other pheno-

types once conditioned on, make yi probabilistically independent from the rest

of the variables in the model (also known as the neighborhood of yi). In this

model everything is conditional on the state of the entire set of genotypes and

fixed effects. The non-zero structure of the Θyy sub-matrix specifies a condi-

tional Markov random field among the expression phenotypes. Accordingly,

the element θi j
yy for i , j of the Θyy matrix is zero iff

p
(
yi, y j|Y−(i, j),X

)
= p

(
yi|Y−(i, j),X

)
p
(
y j|Y−(i, j),X

)
, (4.4)
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i.e. the probability distribution satisfies the local Markov property with respect

to an undirected graph G = (V,E), with Y−(i, j) indicating the set of other phe-

notypes, excluding the variables yi and y j. Since this is a Markov random field

conditioned on X, the non-zero structure of theΘyx sub-matrix does not imply a

factorization over an underlying probability density, but the element θi j
yx is zero

iff

cov
(
xi, y j|X−i,Y−j

)
= 0, (4.5)

i.e. the covariance between xi and y j is zero, when conditioning on all other

variables. Finally, since this is a conditional Markov random field, the rank of

the matrix Θ is p and Θxx = ΘxyΘ
−1
yyΘyx.

To infer the structure of the underlying undirected graph, many authors have

proposed putting different forms of element-wise penalties on the Θ matrix,

such as the lasso (L1 norm). Additionally, as other authors have noted [151],

the positive-semi definite constraint on Θ imposed by the log {det} function in

the log likelihood makes optimization of the full likelihood problem challeng-

ing for large scale problems, especially when the number of phenotypes and

genotypes p + m greatly exceeds the sample size, n. Therefore, instead of solv-

ing the full likelihood optimization problem, we follow the general strategy of

Meinshausen and Bühllman, Zhou et al., and Kraemer et al. [97, 159, 79], and

treat the structure learning problem as a neighborhood identification problem;

i.e. we perform model selection on a set of uncoupled regression equations,

where each expression phenotype is regressed on every other phenotype, and

genotype. At the end of this process we resolve the neighborhoods of each gene

expression product by averaging the posterior probabilities of edge inclusion in

both directions of regression.
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We define a given multiple regression equation as:

yi = µ +

p+m−1∑
j

zi jβ j +

k∑
l

tikαk + ei, (4.6)

where yi is ith sample of a given phenotype, zi j is the ith sample of the jth feature,

out of the combined phenotype and genotypes, excluding the phenotype y, β j is

the effect of the jth feature, tik is the ith sample of the kth non-penalized effect, αk is

the effect of this kth feature, and ei is the residual error term, assumed to be nor-

mally distributed with mean zero, and variance σ2
e . In addition, the population

mean is modeled as a fixed effect, µ.

4.5.2 Bayesian hierarchical model for sparse feature selection

Given the regression equation defined in equation 4.6, we define the following

hierarchical model, similar in vein to Zhang et al. and Logsdon et al. [155, 156,

87]:

β j ∼ pβ=0I
[
β = 0

]
+ pβ,0N

(
0, σ2

β

)
, (4.7)

pβ=0, pβ,0 ∼ Beta (1, 1) , (4.8)

σ−2
β ∼ Γ (2, 1/2) , (4.9)

σ−2
e ∼ Γ (2, 1/2) , (4.10)

with the additional truncation restriction on the prior distribution over pβ of

pβ ≤
√

n/m.
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4.6 Network recovery algorithms

4.6.1 Variational spike and slab algorithm

The variational Bayes approximation for an arbitrary parameter θ is given as

follows:

qt+1
θ j

(
θ j

)
=

1
Zθ j

p (θ) exp
{∫

qt
θ (θ) dθlog {p (y|θ,X)}

}
, (4.11)

where a factorization is defined over the joint approximate posterior distribu-

tion of parameters:

qθ (θ) =
∏

i

qθi (θi) , (4.12)

and the integral in equation 4.11 at iteration t is taken with respect to every

approximate distribution except qt
θ j

(
θ j

)
. The details of this approximation for

each density are presented in Appendix B. A probability of inclusion statistic, p̂ j

is computed after the algorithm converges, and this statistic is averaged across

all models identified (i.e. modes in the posterior surface), based on the total

evidence for each model (i.e. equation B.17). This model averaged probability

of inclusion statistic, p̂ j is used to determine whether the jth feature is included

in the model, at a given threshold.

4.6.2 Lasso and Adaptive lasso

First proposed by Tibshirani [129], the lasso, and the adaptive lasso [162], were

implemented using the R package ‘parcor’ [79]. There are very efficient cyclic
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coordinate descent algorithms for the penalized regression problem to solve the

lasso [49]:

argmaxβ

− n∑
i=1

(yi − ziβ)2
− η

p+m−1∑
j=1

|β j|

 , (4.13)

and then using the coefficients from this problem to solve the following adaptive

lasso problem [162]:

argmaxζ

− n∑
i=1

(yi − ziζ)2
− η

p+m−1∑
j=1

ŵ j|ζ j|

 , (4.14)

where ŵ = |α̂|−1/2, z is the combined gene expression products genetic marker

genotypes, and α and ζ are the corresponding regression coefficients. The model

tuning parameter, η is determined as in Kraemer et al., with ten-fold cross vali-

dation [79]. Additional algorithms used for comparison with analysis of simu-

lated data are shown in Appendix B.
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APPENDIX A

A VARIATIONAL BAYES ALGORITHM FOR FAST AND ACCURATE

MULTIPLE LOCUS GENOME-WIDE ASSOCIATION ANALYSIS

A.1 Supplementary Results

A.1.1 Data analysis.

We chose a subset of eleven gene expression phenotypes from the Stranger et

al. study [123] that contained putative trans-associations from a single run of

the algorithm (for a single sampling of missing data). We did both completely

random reordering of the markers as well as resampling of the missing data.

In all cases the putative trans-associations were not robust under the random

re-orderings and resampling, hence we only reported the cis-associations (iden-

tified by both V-Bay and our single-marker reanalysis). We report an additional

61 cis-associations (along with these 11) that were identified with both V-Bay

and single-marker analysis under a single run of V-Bay in Tables A.1, A.2.

A.2 Supplementary Methods

A.2.1 V-Bay algorithm steps.

The algorithm proceeds as follows: 1) Initialize all expected sufficient statistics

and expectations for β j parameters and the expectation of µ to 0. Initialize expec-

tations for pβ+, pβ− parameters to 1
3 . Initialize expectations of variance param-
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Table A.1: HapMap Phase II gene expression reanalysis results.

GENE SNP ID Position Chromosome

FLJ10781 rs12978825 51666146 19

UGT2B17 rs3100645 69525783 4

UGT2B11 rs2708697 69031629 4

GSTM1 rs366631 110052995 1

C14orf52 rs10132742 64456675 14

KIAA1463 rs3742062 49415099 12

UBA2 rs2314664 18552942 19

GSTT1 rs407257 22676550 22

Hs.396207 rs3014241 45860466 1

UGT2B7 rs2708697 69031629 4

FLJ46603 rs1014390 72224481 17

LOC284293 rs6567407 5978905 18

LOC51240 rs1233276 190393027 2

USMG5 rs11191688 105182560 10

MRPL43 rs10786612 102643755 10

MGC2752 rs7249714 63749895 19

PKHD1L1 rs1026437 110562125 8

PHACS rs2074040 44049899 11

LOC283970 rs6499292 68661559 16

IRF5 rs10229001 128386633 7

hmm1412 rs747172 70242799 11

NUDT2 rs4310287 34364979 9

FLJ21616 rs1487969 28941580 8

PTER rs4748302 16595868 10

Hs.400876 rs752775 36488195 20

AXIN1 rs214249 288688 16

TINP1 rs6883061 74128556 5

LOC284184 rs11150780 76878755 17

FLJ21347 rs6504675 45989356 17

RPL37A rs284565 217067051 2

LOC375097 rs752775 36488195 20

C21orf107 rs2836934 39486755 21

LCMT1 rs7188975 25044950 16

MRPL43 rs10786612 102643755 10

hmm8232 rs3863641 46615803 1

CCNDBP1 rs2412752 41127265 15
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Table A.2: HapMap Phase II gene expression reanalysis results.

GENE SNP ID Position Chromosome

PLOR2E rs3787016 1041803 19

LOC378075 rs2419490 64907258 7

LOC400642 rs9948693 5237432 18

KIAA1913 rs4897398 130649264 6

XRRA1 rs2298746 74231482 11

EIF2S1 rs1078194 66777549 14

SYNGR1 rs909685 38077617 22

PEX6 rs2274514 43042478 6

FLJ90036 rs6814287 112323 4

QRSL1 rs6568448 107200445 6

LOC339804 rs1177303 61241859 2

Hs.453941 rs880034 119702442 8

CDK5RAP2 rs2297454 122211576 9

NUDT2 rs7039222 34322740 9

VPS13A rs1054368 78981613 9

LOC339229 rs3830068 77233294 17

PPA2 rs13108489 106512574 4

KIAA1712 rs4695916 175437965 4

Hs.519979 rs3862293 2992845 6

MGC12458 rs1979568 243259095 1

MGC22773 rs792310 74438081 1

STK25 rs2240482 242053684 2

HSRTSBETA rs2305995 683977 18

UGT2B10 rs3100651 69495658 4

LOC400933 rs10854876 48396574 22

dJ383J4.3 rs1951626 172158724 1

LOC197322 rs12931350 87735816 16

Hs.6637 rs2293577 47393768 11

FLJ32112 rs12046885 54329878 1

Hs.379903 rs9891938 15855797 17

Hs.26039 rs2279327 10709785 5

WBSCR27 rs4304218 72890916 7

ST7L rs7415820 112970972 1

HLA-DQA2 rs9275312 32773706 6

hmm26268 rs11118858 220019581 1

OAS1 rs7134391 11851074 12
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eters σ2
e and hyperparameters σ2

β+,σ2
β− to 1. 2) Compute the likelihood portion

of the lower bound, L (θ). The likelihood component of L (θ) was a very practi-

cal convergence diagnostic in terms of computational efficiency. 3) Update the

expected sufficient statistics and expectation of the µ parameter. 4) Update the

expected sufficient statistics and expectations for each β j parameter. 5) Update

the expected sufficient statistics and expectations for the error term σ2
e . 6) Up-

date the expected sufficient statistics and expectations for the variance hyperpa-

rameters σ2
β+, σ2

β−. 7) Update the expected sufficient statistics and expectations

for the probability of effect hyperparameters pβ+, pβ−. 8) Repeat steps 2-7) until

the difference in lower bound between updates is less than 10−9. 9) Return the

sufficient statistics, specifically the p j+ and p j− parameters (see Table A.4).

A.2.2 Expected sufficient statistics and expectations of parame-

ters.

The population mean µ has a normal approximate factorized posterior, and is

therefore characterized by a mean µµ and variance σ2
µ illustrated in Table A.3.

The expectation E
[
µ
]

is just the mean statistic, µµ.

The factorized approximate posterior density for each β j parameter is a mixture

distribution characterized by six sufficient statistics, a (posterior) positive ef-

fect mean µ j+, a (posterior) negative effect mean µ j−, a (posterior) positive effect

variance σ2
j+, a (posterior) negative effect variance σ2

j+, a (posterior) probability
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of positive effect p j+, and a (posterior) probability of negative effect p j−. Table

A.4 shows the expectations of these sufficient statistics in terms of the expec-

tations of other parameters in the model. The functions φ (x) and Φ (x) are the

standard Normal probability density and cumulative density functions respec-

tively. Once the expected sufficient statistics for β j are computed, the necessary

expectations of β j can be computed, E
[
β j

]
and E

[
β2

j

]
as shown in Table A.5. Note

that E
[
pβ+

]
and E

[
pβ−

]
are used instead of exp

(
E

[
log

{
pβ+

}])
and exp

(
E

[
log

{
pβ+

}])
respectively for computational convenience, which we found did not affect the

performance of the algorithm significantly (results not shown).

The approximate factorized posterior for the inverse of the error variance, σ−2
e

is characterized by a Gamma distribution, hence has shape and scale sufficient

statistics, νe = n
2 and ρe shown in Table A.6. Some of the higher order terms

are dropped here from ρe (specifically the E
[
β2

j

]
terms) for ease of computation.

Again, we found that this did not significantly affect the performance of the al-

gorithm (results not shown). The expectation for σ−2
e is therefore E

[
σ−2

e

]
= νeρe.

Next we turn to the expected sufficient statistics for the positive and negative

effect class variance hyperparameters,
(
σ−2
β+, σ

−2
β−

)
. Since the priors for these are

χ2
1, the approximate posterior distribution for each parameter is a Gamma dis-

tribution, characterized by two sufficient statistics, a shape statistic ν+ or ν−,

and a scale statistic ρ+ or ρ− as shown in Table A.7. Then the expectations,(
E

[
σ−2
β+

]
,E

[
σ−2
β−

])
, can be computed as shown in Table A.8.

In addition, the expected sufficient statistics for the probability of membership

in the positive, negative, and zero effect classes
(
Θβ, φβ,Ψβ

)
are illustrated in
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Supplementary Table A.9. A uniform prior was assumed for this Dirichlet dis-

tribution. To compute the expectations with a truncated Dirichlet prior we used

the property that any pairwise marginal distribution of the Dirichlet distribu-

tion is a Beta distribution. We used the marginal distribution with the positive

and negative effect classes pooled since this is how the truncation was defined:

pβ+ + pβ− ≤
√

n
m . With the Beta distribution we used the GNU Scientific Library

[52] to access the incomplete Beta function to compute the necessary expecta-

tions,
(
E

[
pβ+ + pβ−

]
, 1 − E

[
pβ+ + pβ−

])
for a truncated Beta distribution. Then,

we used the relative proportion of evidence in the positive and negative effect

class to evaluate the expectation for the classes (e.g. E
[
pβ+

]
= E

[
pβ+ + pβ−

]
Θβ

Θβ+Φβ
).

A.2.3 Population structure.

The population structure version of the algorithm has additional population

mean parameters αl for k populations incorporated into the linear model in

Equation 2.1 in the main text. The same factorization as in equation Equation 2.5

in the main text is assumed over the posterior distribution of the αl parameters.

A normal prior with large variance is applied to each αl parameter, leading to

update equations similar to those in Table A.4, except the approximate posterior

density is no longer a mixture density but just a Normal distribution character-

ized by mean and variance sufficient statistics (not shown, available on request).
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A.2.4 Additional algorithmic details.

For data sets with marker number ≥ 100, 000, the numerical library we used to

evaluate the truncated expected sufficient statistics for the E
[
pβ

]
terms did not

have high enough numerical precision to prevent underflow for large values of

the sufficient statistics Θβ and Φβ. We therefore used a harsh update
√

n
100m for

each expectation E
[
pβ+

]
and E

[
pβ−

]
for the initial iterations where the sufficient

statistics were large. In general, once the sufficient statistics shrink sufficiently

(so as to be on the order of
√

n
m ), then the truncated expectations E

[
pβ

]
can be

computed exactly. We empirically found this to be the best trade-off between

converging to a suboptimal over-fit model with hundreds of significant mark-

ers for too weak of an approximate update and too harsh of an update where

we lose significant power (results not shown). For smaller marker numbers,

m ≤ 100, 000, this was not a problem.

A.2.5 O (nm) complexity for a single update.

As demonstrated by the form of µ j+ or µ j− in Table A.4, the most computationally

intensive step in the algorithm occurs during the update of the expected suffi-

cient statistic for the β j parameters. This is because the residual term
∑

l, j E
[
βl
]

xli

must be recomputed for each step. Most of the terms in summation in this ex-

pression stay the same for updates of different β j parameters. Hence, we store

this residual term as a vector of length n and for any particular update of the

expected sufficient statistics of a new β j parameter we add or subtract the nec-
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Table A.3: Expected Sufficient Statistics for µ.

Expected Statistic

µµ
1
n

∑n
i=1

(
yi −

∑m
j=1 E

[
β j

]
x ji

)
σ2
µ

E[σ2
e]

n

essary terms (e.g. subtract the term E
[
β j

]
x ji∀ i from this residual when updating

µ j+ and µ j− for the β j parameter). The update of a single β j expected sufficient

statistic therefore has O (n) complexity. Because there are m β j parameters the

total time complexity of a single update of all β j parameters is O (nm). The com-

plexity of updating the other parameters is either linear in terms of the sample

size n or marker number m (e.g. updating σ2
e has complexity O (n), and updating

σ2
β+ has complexity O (m).) Therefore the total time complexity of the algorithm

is O (nm).

A.3 Supplementary Tables
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Table A.4: Expected Sufficient Statistics for β j.

Expected Statistic

µ j+
E
[
σ2
β+

]∑n
i=1 x ji(yi−E[µ]−∑l, j E[βl]xli)

E[σ2
e]+E

[
σ2
β+

]∑n
i=1 x2

ji

µ j−
E
[
σ2
β−

]∑n
i=1 x ji(yi−E[µ]−∑l, j E[βl]xli)

E[σ2
e]+E

[
σ2
β−

]∑n
i=1 x2

ji

σ2
j+

E
[
σ2
β+

]
E[σ2

e]
E[σ2

e]+E
[
σ2
β+

]∑n
i=1 x2

ji

σ2
j−

E
[
σ2
β−

]
E[σ2

e]
E[σ2

e]+E
[
σ2
β−

]∑n
i=1 x2

ji

p j+

2E[pβ+] σ j+√
E[σβ+]

Φ

(
µ j+
σ j+

)
exp

 µ2
j+

2σ2
j+


1−E[pβ+]−E[pβ−]+2E[pβ+] σ j+√

E[σβ+]
Φ

(
µ j+
σ j+

)
exp

 µ2
j+

2σ2
j+

+2E[pβ−] σ j−√
E[σβ−]

Φ

(
−
µ j−
σ j−

)
exp

 µ2
j−

2σ2
j−


p j−

2E[pβ−] σ j−√
E[σβ−]

Φ

(
−
µ j−
σ j−

)
exp

 µ2
j−

2σ2
j−


1−E[pβ+]−E[pβ−]+2E[pβ+] σ j+√

E[σβ+]
Φ

(
µ j+
σ j+

)
exp

 µ2
j+

2σ2
j+

+2E[pβ−] σ j−√
E[σβ−]

Φ

(
−
µ j−
σ j−

)
exp

 µ2
j−

2σ2
j−



Table A.5: Expectations of β j.

Expectations

E
[
β j+

]
µ j+ +

σ j+φ
(
−
µ j+
σ j+

)
1−Φ

(
−
µ j+
σ j+

)
E

[
β j−

]
µ j− −

σ j−φ
(
−
µ j−
σ j−

)
Φ

(
−
µ j−
σ j−

)
E

[
β j

]
p j+E

[
β j+

]
+ p j−E

[
β j−

]
V

[
β j+

]
σ2

j+

1−
µ j+
σ j+

φ
(
−
µ j+
σ j+

)
1−Φ

(
−
µ j+
σ j+

) −
 φ

(
−
µ j+
σ j+

)
1−Φ

(
−
µ j+
σ j+

)
2

V
[
β j−

]
σ2

j−

1+
µ j−
σ j−

φ
(
−
µ j−
σ j−

)
Φ

(
µ j+
σ j−

) −

 φ(− µ j−
σ j−

)
Φ

(
−
µ j−
σ j−

)
2

E
[
β2

j

]
p j+

(
V

[
β j+

]
+ E

[
β j+

]2
)

+ p j−

(
V

[
β j−

]
+ E

[
β j−

]2
)
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Table A.6: Expected Sufficient Statistics for σ−2
e .

Expected Statistic

ρe 2
(∑n

i=1

(
yi − E

[
µ
]
−

∑m
j=1 E

[
β j

]
x ji

)2
)−1

Table A.7: Expected Sufficient Statistics for
(
σ−2
β+, σ

−2
β−

)
.

Expected Statistic

ν+
1
2 +

∑m
j=1 p j+

ρ+

(
1
2 + 1

2

∑m
j=1 E

[
β2

j

]
p j+

)−1

ν−
1
2 +

∑m
j=1 p j−

ρ−
(

1
2 + 1

2

∑m
j=1 E

[
β2

j

]
p j−

)−1

Table A.8: Expectations of
(
σ−2
β+, σ

−2
β−

)
.

Expectations

E
[
σ−2
β+

]
ν+ρ+

E
[
σ−2
β−

]
ν−ρ−

Table A.9: Expected Sufficient Statistics for
(
pβ+, pβ−

)
.

Expected Statistic

Θβ 1 +
∑m

j=1 p j+

Φβ 1 +
∑m

j=1 p j−

Ψβ 1 + m −
∑m

j=1 p j+ −
∑m

j=1 p j−
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APPENDIX B

AGGRESSIVE FALSE POSITIVE CONTROL FOR GENOME-WIDE

FEATURE SELECTION IN A MOUSE F2 CROSS

B.1 Variational spike and slab updates

The variational Bayes expectation (VBE) steps are defined as:

qt+1
β j

(
β j

)
= (1 − pt

j)I
[
β j = 0

]
+ pt

jN
(
µt

j, σ
2
j
t) (B.1)

with sufficient statistics:

µt
j =

∑n
i=1 zi j〈r− j〉∑n

i=1 x2
i j + 〈σ−2

β 〉/〈σ
−2
e 〉

,

σ−2
j

t
= 〈σ−2

e 〉

n∑
i=1

z2
i j + 〈σ−2

β 〉,

pt
j =

1
1 + Ct

j
, (B.2)

and expectations:

〈β j〉 = pt
jµ

t
j,

〈β2
j〉 = pt

j

(
µ2

j
t
+ σ2

j
t)
, (B.3)

where 〈r− j〉 is the expectation of the linear residual term with respect to each

approximate distribution, and

Ct
j =

(
1 − exp

{
〈log

(
pβ

)
〉
})
/(

2σt
jexp

{
1
2

(
2〈log

(
pβ

)
〉 + µ2

j
t
/
(
σ2

j
t)

+ 〈log
(
σ−2
β

)
〉
)})

. (B.4)

The update for the distribution of the approximate error variance is

qt+1
σ−2

e

(
σ−2

e

)
= Γ (η1, η2) , (B.5)
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with sufficient statistics:

η1 =
n + 1

2

η2 =
〈U〉 + 1

2
(B.6)

with expectations:

〈σ−2
e 〉 =

η1

η2

〈log
(
σ−2

e

)
〉 = ψ (η1) + log (1/η2) (B.7)

with 〈U〉 the expectation of the residual sum of square errors with respect to

each current approximating distribution, and ψ (x) the digamma function.

qt+1
σ−2
β

(
σ−2
β

)
= Γ (ζ1, ζ2) , (B.8)

with sufficient statistics:

ζ1 =

∑
pt

j + 1

2
,

ζ2 =

∑
〈β2

j〉 + 1

2
, (B.9)

with expectations:

〈σ−2
β 〉 =

ζ1

ζ2
,

〈log
(
σ−2
β

)
〉 = ψ (ζ1) + log (1/ζ2) , (B.10)

qt+1
pβ

(
pβ, 1 − pβ

)
= TBeta

(
ρ1, ρ2,

√
n

m

)
(B.11)

with sufficient statistics:

ρ1 =
∑

pt
j + 1

,

ρ2 = m −
∑

pt
j + 1, (B.12)

and expectations 〈pβ〉 and 〈log
(
pβ

)
〉 computed by numerical integration (with

TBeta (x, y, z) being a truncated Beta distribution with parameter x, y and support
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on [0, z]). A maximization step of the effect α of the fixed covariates, T, is defined

as:

α̂t+1 =
(
T′WT

)−1 T′W (y − X〈β〉) (B.13)

with W = diag
(
〈σ−2

e 〉
)
. The lower bound:

Lt+1 = 〈U〉 + 〈θ〉, (B.14)

is computed every iteration, and stored after the algorithm converges (in prac-

tice when the per iteration change ∆L ≤ 0.0001), where

〈θ〉 = ρ2log
(
1 − exp

{
〈log

(
pβ

)
〉
})

+

1
2
ρ1

(
〈log

(
σ−2
β

)
〉 + 1 + 2〈log

(
pβ

)
〉
)
−

ζ2

(
〈σ−2

β 〉 + 1
)

+
1
2

(n + 1) 〈log
(
σ−2

e

)
〉. (B.15)

Multiple re-orderings of markers are initialized, and an approximate posterior

distributions over possible models is generated by assigning the following prob-

abilities to every unique model discovered (i.e. unique mode in the approximate

posterior surface):

p (Mi) =
exp (Li)∑
exp (Li)

(B.16)

And approximate Bayesian model averaged results are generated for all the suf-

ficient statistics/expectations:

p̂ j =
∑

i

p ji pMi (B.17)

Therefore, if there is a high degree of model uncertainty in the estimate, then

this will reduce the variance of estimates. Before we run the algorithm, we

rescale and recenter all the features in equation 6 to have mean zero, and vari-

ance one, so as not to penalize each possible feature (i.e. expression trait of
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genetic marker) differently based on the scale of the feature. We also set spo-

radic missing data to the empirical mean of the observed data for all variables.

We include a weak pre-filtering step, where we only include the genetic mark-

ers and gene expression phenotypes which have P < 0.1 from a marginal test

in a linear model (conditioned on the fixed effects, T). This is motivated by re-

cent theoretical work by Fan et al. [45], that suggests that a simple marginal test

statistic can be used to effectively screen features that are not relevant, i.e. not

in the full model. The size of the reduced filtered set of features is used when

computing the truncation of the distribution over pβ.

B.1.1 Shrinkage estimator

The shrinkage estimator of Schäfer and Strimmer [114] involves taking a con-

vex combination of a unregularized estimate of the sample covariance matrix,

Σ, and combines it with a low-rank regularized estimate, T, with a weighting

parameter λ. The inverse covariance matrix is inferred based on this regularized

estimate of the sample covariance. The number of significant non-zero param-

eter is determined based on an empirical estimation of the false discovery rate

[114].

Σ̂λ = λT̂ + (1 − λ) Σ̂ (B.18)

B.1.2 Partial least squares estimator

The partial least squares estimator in regularized regression proposed by Tene-

nahaus et al. [127], and is defined as a constrained optimization problem to
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identifying a small set of orthogonal predictors, with maximal covariance with

the response variable in question. The regularization from this approach arises

by choosing a small subset of orthogonal predictors, where the number of pre-

dictors is chosen by cross-validation [79].

B.1.3 Ridge estimator

As opposed to an L1 lasso penalty, Kraemer et al. [79] propose a ridge penalty

(i.e. an L2
2 penalty), and use an empirical control of false discovery rate (FDR)

based on semi-parametric estimation of either the tail area-based FDR or local

FDR [125]:

argmaxβ

− n∑
i=1

(yi − ziβ)2
− η

p+m−1∑
j=1

β2
j

 (B.19)

B.1.4 Simulation analyses and comparison to other network re-

covery algorithms

To test our method on simulated data, we compared it to a set of other methods

that were recently proposed and combined [79] for sparse, regularized undi-

rected network inference. To allow a consistent comparison with Kraemer et

al., we use the same set of simulation parameters, network connectivity, and

implementation of the five methods aforementioned methods. In this case we

simulated data from a network of 100 gene expression phenotypes (with no

genotypes), with a density of 0.05 (i.e. 248 undirected edges were randomly as-

signed between pairs of variables, across 10 replicate simulations). A constant

variance of one is assumed across all phenotypes, and the edges weights are
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simulated as uniformly distributed between -1 and 1; and the full Θyy matrix is

rescaled such that diag
(
Θyy

)
= 1. The performance of all the methods for vary-

ing sample sizes is illustrated in Figure B.1 in terms of a Precision-Recall curve

in terms of the combined estimated regression coefficients for each method (i.e.

the β coefficients). We see that the three best methods are the adaptive lasso,

the lasso, and the variational spike and slab algorithm, which all appear to be

close in terms of performance for the range of high true discovery rate (TDR or

Recall), for similar power (Precision).

While this performance is similar among these three methods as a function of

the estimated regression coefficient, there is still a fundamental problem associ-

ated with how to decide which nonzero elements are statistically significantly

different from zero, where the null distribution of any test statistic would be

non-trivial [142]. In Figure B.2 we see the true discovery rate for different sam-

ple sizes in terms of the features that are very confidently returned by the vari-

ational spike and slab, the lasso and the adaptive lasso algorithms. For the

variational spike and slab algorithm, we see that if we choose only the edges

which have posterior probability, p̂ j > 0.99, we can aggressively control the

FDR. Whereas, if we include every feature that is proposed by either the lasso

or the adaptive lasso, we have a significant number of false positives that get

carried along. This suggests that we can use the variational spike-and-slab to

identify edges between genes only when there is very strong statistical support

for the interaction in the data.
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Figure B.1: A comparison across network reconstruction methods for a
sparse (density of 0.05), undirected graph with 100 gene ex-
pression products. The precision (power) v.s. the recall (true
discovery rate) is plotted for sample size 50 (A), 100 (B), and
200 (C), as determined by the estimated regression coefficients
for each method.
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Figure B.2: True discovery rate as a function of sample size for the varia-
tional spike and slab method, the adaptive lasso, and the lasso,
under the same simulations as shown in Figure 2.
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mensional regression and Gaussian graphical modeling. Arxiv preprint
arXiv:0903.2515, 2009.

[160] J. Zhu, M.C. Wiener, C. Zhang, A. Fridman, E. Minch, P.Y. Lum, J.R. Sachs,
and E.E. Schadt. Increasing the Power to Detect Causal Associations by
Combining Genotypic and Expression Data in Segregating Populations.
PLoS Computational Biology, 3(4):e69, 2007.

[161] J. Zhu, B. Zhang, E.N. Smith, B. Drees, R.B. Brem, L. Kruglyak, R.E. Bum-
garner, and E.E. Schadt. Integrating large-scale functional genomic data
to dissect the complexity of yeast regulatory networks. Nature genetics,
40(7):854–861, 2008.

[162] H. Zou. The adaptive lasso and its oracle properties. Journal of the Ameri-
can Statistical Association, 101(476):1418–1429, 2006.

143



[163] M. Zou and S.D. Conzen. A new dynamic Bayesian network (DBN) ap-
proach for identifying gene regulatory networks from time course mi-
croarray data. Bioinformatics, 21(1):71–79, 2005.

144


